
Mathematical optimisation 2021

Branch & Bound

Lorenzo Castelli, Università degli Studi di Trieste.



Mathematical optimisation 2021

Branch & Bound

1 | 30Divide and conquer

Branch and bound uses a “divide and conquer” approach to explore the
set of feasible integer solutions. However, instead of exploring the entire
feasible set, it uses bounds on the optimal value to avoid certain parts of
the set of feasible integer solutions.

Consider the problem

z = max{cx : x ∈ S}

How can we break the problem into a series of subproblems that are
easier, solve the smaller problems, and then put the information together
again to solve the original problem?



Mathematical optimisation 2021

Branch & Bound

2 | 30Proposition

Proposition 1
Let S = S1 ∪ . . . ∪ SK be a decomposition of S into smaller sets,
and let zk = max{cx : x ∈ Sk} for k = 1, . . . , K . Then
z = maxkzk

A typical way to represent such a divide and conquer approach in
via an enumeration tree. For instance if S ⊆ {0, 1}3, we might
construct the enumeration tree shown in slide (3).



Mathematical optimisation 2021

Branch & Bound

3 | 30Enumeration tree



Mathematical optimisation 2021

Branch & Bound

4 | 30Enumeration tree

We first divide S into S0 = {x ∈ S : x1 = 0} and
S1 = {x ∈ S : x1 = 1}, then
S00 = {x ∈ S0 : x2 = 0} = {x ∈ S : x1 = x2 = 0},
S01 = {x ∈ S0 : x2 = 1} = {x ∈ S : x1 = 0, x2 = 1}, and so
on. Note that a leaf of the tree Si1i2i3 is nonempty if and only if
x = (i1, i2, i3) is in S. Thus the leaves of tree correspond precisely
to the point of {0, 1}3 that one would examine if one carried out
complete enumeration. By convention the tree is drawn upside
down with the root at the top.



Mathematical optimisation 2021

Branch & Bound

5 | 30Enumeration tree for the TSP

- Enumeration of all the tours of the TSP
- First, we divide S the set of all tours on 4 cities into S(12), S(13), S(14) where

S(ij) is the set of all tours containing arc (i , j).
- Then S(12) is divided again in S(12)(23) and S(12)(24), and so on.
- At the first level we have arbitrarily chosen to branch on the arcs leaving

node 1, and at the second level on the arcs leaving node 2 that do not
immediately create a subtour with the previous branching arc.

- The six leaves of the tree correspond to the (n − 1)! tours, where i1i2i3i4
means that the cities are visited in the order i1i2i3i4 respectively.

- This is an example of multiway as opposed to binary branching, where a set
can be divided into more than two parts.



Mathematical optimisation 2021

Branch & Bound

6 | 30Enumeration tree



Mathematical optimisation 2021

Branch & Bound

7 | 30Implicit enumeration - motivation

- Complete enumeration is totally impossible for most problems
as son as the number of variables in an integer program, or
nodes in a graph exceeds 20 or 30. So we need to do more
than just divide indefinitely.

- How can we use some bounds on the values of {zk}
intelligently?

- First, how can we put together bound information?



Mathematical optimisation 2021

Branch & Bound

8 | 30Implicit enumeration - bounds

Proposition
Let S = S1 ∪ . . . ∪ SK be a decomposition of S into smaller sets,
and let zk = max{cx : x ∈ Sk} for k = 1, . . . , K , zk be an
upper bound on zk and zk be a lower bound on zk . Then

z = maxk zk is an upper bound on z
z = maxk zk is a lower bound on z

What can be deduced about lower and upper bounds on the
optimal value z and which sets need further examination in order
to find an optimal value?



Mathematical optimisation 2021

Branch & Bound

9 | 30Pruned by optimality

- In slide (10) we show a decomposition of S into two sets S1
and S2 as well as upper and lower bounds on the
corresponding problems.

- We note that z = maxk zk = max{20, 25} = 25.
- We note that z = maxk zk = max{20, 15} = 20.
- We observe that as lower and upper bound on z1 are equal,

z1 = 20, and there is no further reason to examine the set S1.
The branch S1 of the enumeration tree can be pruned by
optimality.



Mathematical optimisation 2021

Branch & Bound

10 | 30Pruned by optimality



Mathematical optimisation 2021

Branch & Bound

11 | 30Pruned by bound

- In slide (12) we show a decomposition of S into two sets S1
and S2 as well as upper and lower bounds on the
corresponding problems.

- We note that z = maxk zk = max{20, 26} = 26.
- We note that z = maxk zk = max{18, 21} = 21.
- We observe that as the optimal value has value at least 21,

and the upper bound z1 = 20, no optimal solution can lie in
the set S1.

The branch S1 of the enumeration tree can be pruned by bound.



Mathematical optimisation 2021

Branch & Bound

12 | 30Pruned by bound



Mathematical optimisation 2021

Branch & Bound

13 | 30No pruning possible

- In slide (14) we show a decomposition of S into two sets S1
and S2 as well as upper and lower bounds on the
corresponding problems.

- We note that z = maxk zk = max{24, 37} = 37.
- We note that z = maxk zk = max{13,−} = 13.
- Here no other conclusions can be drawn and we need to

explore both sets S1 and S2 further.



Mathematical optimisation 2021

Branch & Bound

14 | 30No pruning possible



Mathematical optimisation 2021

Branch & Bound

15 | 30Upper and lower bounds

How the bounds are to be obtained?
- The primal (lower) bounds are provided by feasible solutions.
- The dual (upper) bounds are provided by relaxation or duality.

Building an implicit enumeration algorithm based on the above
ideas is now in principle a fairly straightforward task. There are,
however, many questions that must be addressed before such an
algorithm is well-defined.



Mathematical optimisation 2021

Branch & Bound

16 | 30How to build a B&B algorithm

- What relaxation or dual problem should be used to provide an upper bound?
- How should one choose between a fairly weak bound that can be calculated

very rapidly and a stronger bound whose calculation takes a considerable
time?

- How should a feasible region be separated into smaller regions
S = S1 ∪ . . . ∪ SK?

- Should one separate into two or more parts?
- Should one use a fixed a priori rule for dividing up the set, or should the

division evolve as a function of the bounds and solutions obtained en route?
- In what order should the subproblems be examined?
- Typically there is a list of active problems that have not yet been pruned.

Should the next one be chosen on a basis of last-in first-out, of best/largest
upper bound first, or of some totally different criterion?



Mathematical optimisation 2021

Branch & Bound

17 | 30B&B - an example

Let’s consider the following linear integer program

z = max 4x1 − x2

7x1 − 2x2 ≤ 14
x2 ≤ 3

2x1 − 2x2 ≤ 3
x ∈ Z2

+



Mathematical optimisation 2021

Branch & Bound

18 | 30Bounding

- To obtain a first upper bound, we solve the linear programming
relaxation in which the integrality constraints are dropped.

- We obtain an upper bound z = 59/7 = 8.43 and a
non-integral solution (20/7, 3).

- Is there any straightforward way to find a feasible solution? In
this case it is (0, 0) and z = 0.

- By convention, if no feasible solution is yet available, we take
as lower bound z = −∞



Mathematical optimisation 2021

Branch & Bound

19 | 30LP relaxation



Mathematical optimisation 2021

Branch & Bound

20 | 30Branching

Now because z < z, we need to divide or branch.
- How should we split up the feasible region?.

One simple idea is to choose an integer variable which is nonzero
and fractional in the linear programming solution, and split the
problem into two about this fractional value. If xj = xj /∈ Z1, one
can take:

S1 = S ∩ {x : xj ≤ bx jc}
S2 = S ∩ {x : xj ≥ dx je}

It is clear that S = S1 ∪ S2 and S1 ∩ S2 = ∅.



Mathematical optimisation 2021

Branch & Bound

21 | 30Branching

Another reason for this choice is that the solution x of LP(S) is
not feasible in either LP(S1) or LP(S2). This implies that (if there
are not multiple LP solutions) max{z1, z2} < z, so the upper
bound will strictly decrease.

Following this idea, as x1 = 20/7 /∈ Z1, we take
S1 = S ∩ {x : x1 ≤ 2} and S2 = S ∩ {x : x1 ≥ 3}. The
subproblems (nodes) that must still be examined are called active.



Mathematical optimisation 2021

Branch & Bound

22 | 30LP relaxation



Mathematical optimisation 2021

Branch & Bound

23 | 30Next steps - Node S1

- Choosing a Node. The list of active problems (nodes) to be
examined now contains S1, S2. We arbitrarily choose S1.

- Reoptimizing. We solve the linear relaxation of S1. The results
is z1 = 15/2 = 7.5, and (x1

1, x1
2) = (2, 1/2).

- Branching. S1 cannot be pruned, so using the same branching
rule as before, we create two new nodes
S11 = S1 ∩ {x : x2 ≤ 0} and S12 = S1 ∩ {x : x2 ≥ 1} and
add them to the node list.



Mathematical optimisation 2021

Branch & Bound

24 | 30LP relaxation



Mathematical optimisation 2021

Branch & Bound

25 | 30Next steps - Node S2

- Choosing a Node. The list of active problems (nodes) to be
examined now contains S2, S11, S12. We arbitrarily choose S2,
and remove it by the node list.

- Reoptimizing. We solve the linear relaxation of S2. We see
that the linear program is infeasible. Hence node S2 is pruned
by infeasibility.



Mathematical optimisation 2021

Branch & Bound

26 | 30Next steps - Node S12

- Choosing a Node. The node list now contains S11, S12. We
arbitrarily choose S12 and remove it from the list.

- Reoptimizing. S12 = S ∩ {x : x1 ≤ 2, x2 ≥ 1}. The resulting
linear program has optimal solution x12 = (2, 1) and z12 = 7.
Since x12 is integer z12 = z12 = 7.

- Updating the incumbent. As the solution of LP(S12) is integer,
we update the value of the best feasible solution found
z ← max{z = 0, 7} and store the corresponding solution
(2, 1). S12 is now pruned by optimality.



Mathematical optimisation 2021

Branch & Bound

27 | 30LP relaxation



Mathematical optimisation 2021

Branch & Bound

28 | 30LP relaxation



Mathematical optimisation 2021

Branch & Bound

29 | 30Next steps - Node S11

- Choosing a Node. The node list now contains only S11.
- Reoptimizing. S11 = S ∩ {x : x1 ≤ 2, x2 ≤ 0}. The resulting

linear program has optimal solution x11 = (3/2, 0) and
z11 = 6. Since z = 7 > x11 = 6 the node is pruned by bound.

- Choosing a node. As the node list is empty, the algorithm
terminates. The incumbent solution x = (2, 1) with z = 7 is
optimal.



Mathematical optimisation 2021

Branch & Bound

30 | 30Pruning reasons

Pruning by optimality. zt = max{cx : x ∈ St} has been
solved.
Pruning by bound. zt ≤ z .
Pruning by infeasibility. St = ∅.


