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B&B for binary problems 1 |30

When addressing a binary problem, the natural choice is to branch
on the binary variables, i.e., considering at each level of the tree a
variable x; and branching on it: x; = 0 and x; = 1.

Mathematical optimisation 2021



Branch & Bound (ll)

Binary tree 2 |30
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B&B for the knapsack problem 3130

The Knapsack problem is formulated as
n
Z = max Z PjXj
j=1

n

> wixg < W

j=1

xj € {0,1} forj=1,...,n.

We always assume Zj'.':l w; > W. Otherwise the solution is
trivial.
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Dantzig’s upper bound 4 |30
1. Variables are ordered so that p1/wy > -+« > p,/w,.
2. Set

xi=1lforj=1,...,r—1

Xy = 4W_ZW;;1 Wi
Xj :Oforjr—r—i—l
3. where r is such that Z 1 w; < W and Zf_l Wj > W.

5. We can prove it alwags holds that z* § UB.
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Knapsack problem - example 51|30

z = maxbx; + 8xy + 7x3 + 5xa
3x1 +2xp + 5x3 +5x4 < 8
xj € {0,1} forj=1,...,4

We first re-arrange the variables so that
p1/w1 > p2/wa > p3/w3 > pa/wy

z = max8xy + 6x2 + 7x3 + 5xa
2x1 +3x2 + 5x3 +5x4 < 8
xj € {0,1} forj=1,...,4
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Root node - 0 6 | 30

We first calculate the upper bound UBy

- Object 1 can enter, hence x; = 1 and W==6

- Object 2 can enter, hence x =1 and W =3

- Object 3 cannot enter, hence r = 3 and x3 = 3/5

- X4 = 0

-UBy=|8+6+7%(3/5)] =|14+21/5] =18
A lower bound is easily identified by setting
x1=x2=1,x3 = x4 =0, hence LB = 14
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Root node - 0 7 |30

18

14
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Branching on x3 8 | 30
x3 =20 x3 =1
z = max8x; + 6x2 + 5x4 z = max8x; + 6xy +5x4 +7
2x; +3x2 +5x4 < 8 2x1 +3x2 +5x4 < 3
x € {0,1}* x € {0,1}*
- Object 1 can enter, hence x; = 1 - Object 1 can enter, hence x; = 1
and W =6 and W =1
- Object 2 can enter, hence x; =1 - Object 2 cannot enter, hence r = 2
and W =3 and x =1/3
- Object 4 cannot enter, hence r = 4 -x2=0
and x = 3/5 - UBy = [84+7+6x(1/3)] =
- UB;=|8+6+5%(3/5)] = [15+2] =17
[14+3] =17 - LBy =15 due to (1,0,1,0)

= LBl = 14 due to (1, 1,0, 0) - Hence LB = 15

Mathematical optimisation 2021



Branch & Bound (ll)

Branching on x3 9 | 30
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x3 = 0, branching on x4 10 | 30
x3=0,x =0 x3=0,x =1
z = max8x; + 6xy z = max8x; +6x, +5
2x1 +3x2 < 8 2x1 +3x2 < 3
x € {0,1}* x € {0,1}*
Object 1 can enter, hence x; =1 - Object 1 can enter, hence x; = 1
and W =6 and W =1
- Object 2 can enter, hence x; =1 - Object 2 cannot enter, hence r = 2
and W =3 and x =1/3
- UB3=8+6] =14 - UBy=|8+5+6x(1/3)] =
- LB; = 14 due to (1,1,0,0) [13+2] =15
- STOP. Pruned by optimality. - LBy =13 due to (1,0,0,1)
- STOP. Pruned by bound:
UB, = LB
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x3 = 0, branching on x4 11 | 30

optimality bound
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x3 = 1, branching on x; 12 | 30
x3=1,x =0 x3=1,x=1
z=max8x; +5x4 +7 z = max8x; + 5x4 + 13
2x1 +5x4 < 3 2x;1 +5x4 <0
x € {0,1}* x € {0,1}*
Object 1 can enter, hence x; =1 - Object 1 cannot enter, r = 1 and
and W =1 x1=0
- Object 4 cannot enter, hence r = 4 - x4 =0
and x4 =1/5

- UBg = |13+ 8% (0)] =13
- LBg = 13 due to (0,1,1,0)
- STOP. Pruned by optimality.

- UBs=[8+7+5%(1/5)] =
[15+1] = 16

LBs = 15 due to (1,0,1,0)
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x3 = 1, branching on x; 13 | 30

optimality bound optimality
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x3 = 1, x = 0, branching on x4 14 | 30
x3=1,x=0,%x =0 x3=1,x=0,x4 =1
z=max8x; +7 z = max8x; + 12
2x1 <3 2x; < —2 INFEASIBLE!!
x € {0,1}* x € {0,1}*
- Object 1 can enter, hence x; = 1 - STOP. Pruned by infeasibility.
and W =1

- UB;=|8+7] =15
- LB7 =15 due to (1,0, 1,0)
- STOP. Pruned by optimality.
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x3 = 1, xp = 0, branching on x4 15 | 30

optimality infeasibility
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Knapsack problem - example 16 | 30

- The optimal solution is (1,0,1,0) and z* = 15

- This solution was found on node 2 but six other nodes had to
be visited before confirming that (1,0, 1,0) is indeed the
optimal solution.
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Node selection 17 | 30

Given a list £ of active subproblems (or active nodes), the
question is to decide which node should be examined in detail
next. There are two basic options

that determine, in advance, the order in which
the tree will be developed.

that choose a node using information (bounds,
etc.) about the status of the active nodes.
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18 | 30

B&GB - A very small tree

—
(]
o
N
c
.o
+—
[}
A
£
]
o
o
©
D
+—
@
£
(]
H=
+
(3}
=




Branch & Bound (ll)

B&B - A large tree 19 | 30
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B&B - Active nodes 20 | 30
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A priori rules 21 | 30

A widely used a priori rule is

, if the current node is not pruned, the
next node considered is one of its two sons.

means that when a node is pruned, we go back
on the path from this node toward the root until we find the
first node (if any) that has a son that has not yet been
considered.

It is a completely a priori rule if we fix a rule for choosing
branching variables and specify that, for instance, the left son is
considered before the right son.
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Depth-first search plus backtracking 22 | 30
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A priori rules 23 |30
Definition
The of a node in an enumeration tree is the number of edges

in the unique path between it and the root.

In , all the nodes at a given level are
considered before any nodes at the next lower level.
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Breadth-first search 24 | 30
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Adaptive rules 25 | 30

: From all active nodes choose the one that has
the largest upper bound. Thus if £ is the set of active nodes,
select an i € L that maximises Z'.
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Best-first search 26 | 30
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Best-first search 27 |30

- UBj = 25. Not pruned. Its sons have UB = 24 and UB = 23, L = {23,24}
- UBj = 24. Not pruned. Its sons have UB = 21 and UB =19, £ = {19, 21, 23}
- UB3 = 23. Not pruned. Its sons have UB = 22 and UB = 18, £ = {18, 19, 21, 22}

- UB4q = 22. Not pruned. Its sons have UB = 20 and UB = 17,
L£={17,18,19,20,21}

- UBs = 21. Not pruned. Its sons have UB = 18 and UB = 16,
L = {16,17,18,18,19,20}

- UBg = 20. Pruned. £ = {16,17,18,18,19}

- UB7 =19. Not pruned. Its sons have UB = 18 and
UB = 15,C = {15,16,17,18,18,18}

- UBg = UBy = UBjp = 18. All pruned. £ = {15,16,17}
- UBj; = 17. Pruned. £ = {15,16}

- UBjz = 16. Pruned. £ = {15}

- UBj3 = 15. Pruned. L =10
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Stopping criteria 28 | 30

- ldeally, the B&B algorithm stops when the optimal solution is
found, i.e., when the list of active nodes is empty (i.e., £ = 0)

- Practically, the tree can be so large that it is not possible to
reach the condition £ = 0.
- Some stopping criteria are
- Run the algorithm for a predefined amount of time
- The algorithm visits a predefined amount of
nodes only.
- The algorithm stops when a
predefined number of integer solutions is reached
- The algorithm stops at node t if 2! — z < K

- The algorithm stops at node t if i 4 < €(%)

P4
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Relative gap - example 1 29 | 30
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Relative gap - example 2 30 | 30
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