
Mathematical optimisation 2021

Branch & Bound (II)

Lorenzo Castelli, Università degli Studi di Trieste.



Mathematical optimisation 2021

Branch & Bound (II)

1 | 30B&B for binary problems

When addressing a binary problem, the natural choice is to branch
on the binary variables, i.e., considering at each level of the tree a
variable xj and branching on it: xj = 0 and xj = 1.



Mathematical optimisation 2021

Branch & Bound (II)

2 | 30Binary tree



Mathematical optimisation 2021

Branch & Bound (II)

3 | 30B&B for the knapsack problem

The Knapsack problem is formulated as

z = max
n∑

j=1
pjxj

n∑
j=1

wjxj ≤ W

xj ∈ {0, 1} for j = 1, . . . , n.

We always assume
∑n

j=1 wj > W . Otherwise the solution is
trivial.



Mathematical optimisation 2021

Branch & Bound (II)

4 | 30Dantzig’s upper bound

1. Variables are ordered so that p1/w1 ≥ · · · ≥ pn/wn .
2. Set

xj = 1 for j = 1, . . . , r − 1

xr =
W −

∑r−1
j=1

wj

wr
xj = 0 for j = r + 1, . . . , n

3. where r is such that
∑r−1

j=1 wj ≤ W and
∑r

j=1 wj > W .

4. If W = W −
∑r−1

j=1 wj then UB = b
∑r−1

j=1 pj + pr
W
wr
c

5. We can prove it always holds that z∗ ≤ UB.



Mathematical optimisation 2021

Branch & Bound (II)

5 | 30Knapsack problem - example

z = max6x1 + 8x2 + 7x3 + 5x4

3x1 + 2x2 + 5x3 + 5x4 ≤ 8
xj ∈ {0, 1} for j = 1, . . . , 4

We first re-arrange the variables so that
p1/w1 ≥ p2/w2 ≥ p3/w3 ≥ p4/w4

z = max8x1 + 6x2 + 7x3 + 5x4

2x1 + 3x2 + 5x3 + 5x4 ≤ 8
xj ∈ {0, 1} for j = 1, . . . , 4



Mathematical optimisation 2021

Branch & Bound (II)

6 | 30Root node - 0

We first calculate the upper bound UB0

- Object 1 can enter, hence x1 = 1 and W = 6
- Object 2 can enter, hence x2 = 1 and W = 3
- Object 3 cannot enter, hence r = 3 and x3 = 3/5
- x4 = 0
- UB0 = b8 + 6 + 7 ∗ (3/5)c = b14 + 21/5c = 18

A lower bound is easily identified by setting
x1 = x2 = 1, x3 = x4 = 0, hence LB = 14



Mathematical optimisation 2021

Branch & Bound (II)

7 | 30Root node - 0



Mathematical optimisation 2021

Branch & Bound (II)

8 | 30Branching on x3

x3 = 0

z = max8x1 + 6x2 + 5x4

2x1 + 3x2 + 5x4 ≤ 8

x ∈ {0, 1}4

- Object 1 can enter, hence x1 = 1
and W = 6

- Object 2 can enter, hence x2 = 1
and W = 3

- Object 4 cannot enter, hence r = 4
and x4 = 3/5

- UB1 = b8 + 6 + 5 ∗ (3/5)c =
b14 + 3c = 17

- LB1 = 14 due to (1, 1, 0, 0)

x3 = 1

z = max8x1 + 6x2 + 5x4 + 7
2x1 + 3x2 + 5x4 ≤ 3

x ∈ {0, 1}4

- Object 1 can enter, hence x1 = 1
and W = 1

- Object 2 cannot enter, hence r = 2
and x2 = 1/3

- x4 = 0
- UB2 = b8 + 7 + 6 ∗ (1/3)c =
b15 + 2c = 17

- LB2 = 15 due to (1, 0, 1, 0)
- Hence LB = 15



Mathematical optimisation 2021

Branch & Bound (II)

9 | 30Branching on x3



Mathematical optimisation 2021

Branch & Bound (II)

10 | 30x3 = 0, branching on x4

x3 = 0, x4 = 0

z = max8x1 + 6x2

2x1 + 3x2 ≤ 8

x ∈ {0, 1}4

- Object 1 can enter, hence x1 = 1
and W = 6

- Object 2 can enter, hence x2 = 1
and W = 3

- UB3 = b8 + 6c = 14
- LB3 = 14 due to (1, 1, 0, 0)
- STOP. Pruned by optimality.

x3 = 0, x4 = 1

z = max8x1 + 6x2 + 5
2x1 + 3x2 ≤ 3

x ∈ {0, 1}4

- Object 1 can enter, hence x1 = 1
and W = 1

- Object 2 cannot enter, hence r = 2
and x2 = 1/3

- UB4 = b8 + 5 + 6 ∗ (1/3)c =
b13 + 2c = 15

- LB4 = 13 due to (1, 0, 0, 1)
- STOP. Pruned by bound:

UB4 = LB



Mathematical optimisation 2021

Branch & Bound (II)

11 | 30x3 = 0, branching on x4



Mathematical optimisation 2021

Branch & Bound (II)

12 | 30x3 = 1, branching on x2

x3 = 1, x2 = 0

z = max8x1 + 5x4 + 7
2x1 + 5x4 ≤ 3

x ∈ {0, 1}4

- Object 1 can enter, hence x1 = 1
and W = 1

- Object 4 cannot enter, hence r = 4
and x4 = 1/5

- UB5 = b8 + 7 + 5 ∗ (1/5)c =
b15 + 1c = 16

- LB5 = 15 due to (1, 0, 1, 0)

x3 = 1, x2 = 1

z = max8x1 + 5x4 + 13
2x1 + 5x4 ≤ 0

x ∈ {0, 1}4

- Object 1 cannot enter, r = 1 and
x1 = 0

- x4 = 0
- UB6 = b13 + 8 ∗ (0)c = 13
- LB6 = 13 due to (0, 1, 1, 0)
- STOP. Pruned by optimality.



Mathematical optimisation 2021

Branch & Bound (II)

13 | 30x3 = 1, branching on x2



Mathematical optimisation 2021

Branch & Bound (II)

14 | 30x3 = 1, x2 = 0, branching on x4

x3 = 1, x2 = 0, x4 = 0

z = max8x1 + 7
2x1 ≤ 3

x ∈ {0, 1}4

- Object 1 can enter, hence x1 = 1
and W = 1

- UB7 = b8 + 7c = 15
- LB7 = 15 due to (1, 0, 1, 0)
- STOP. Pruned by optimality.

x3 = 1, x2 = 0, x4 = 1

z = max8x1 + 12
2x1 ≤ −2 INFEASIBLE !!

x ∈ {0, 1}4

- STOP. Pruned by infeasibility.



Mathematical optimisation 2021

Branch & Bound (II)

15 | 30x3 = 1, x2 = 0, branching on x4



Mathematical optimisation 2021

Branch & Bound (II)

16 | 30Knapsack problem - example

- The optimal solution is (1, 0, 1, 0) and z∗ = 15
- This solution was found on node 2 but six other nodes had to

be visited before confirming that (1, 0, 1, 0) is indeed the
optimal solution.



Mathematical optimisation 2021

Branch & Bound (II)

17 | 30Node selection

Given a list L of active subproblems (or active nodes), the
question is to decide which node should be examined in detail
next. There are two basic options

A priori rules that determine, in advance, the order in which
the tree will be developed.
Adaptive rules that choose a node using information (bounds,
etc.) about the status of the active nodes.



Mathematical optimisation 2021

Branch & Bound (II)

18 | 30B&B - A very small tree



Mathematical optimisation 2021

Branch & Bound (II)

19 | 30B&B - A large tree



Mathematical optimisation 2021

Branch & Bound (II)

20 | 30B&B - Active nodes



Mathematical optimisation 2021

Branch & Bound (II)

21 | 30A priori rules

A widely used a priori rule is depth-first search plus backtracking.
In depth-first search, if the current node is not pruned, the
next node considered is one of its two sons.
Backtracking means that when a node is pruned, we go back
on the path from this node toward the root until we find the
first node (if any) that has a son that has not yet been
considered.

It is a completely a priori rule if we fix a rule for choosing
branching variables and specify that, for instance, the left son is
considered before the right son.



Mathematical optimisation 2021

Branch & Bound (II)

22 | 30Depth-first search plus backtracking



Mathematical optimisation 2021

Branch & Bound (II)

23 | 30A priori rules

Definition
The level of a node in an enumeration tree is the number of edges
in the unique path between it and the root.

In breadth-first search, all the nodes at a given level are
considered before any nodes at the next lower level.



Mathematical optimisation 2021

Branch & Bound (II)

24 | 30Breadth-first search



Mathematical optimisation 2021

Branch & Bound (II)

25 | 30Adaptive rules

Best-first search: From all active nodes choose the one that has
the largest upper bound. Thus if L is the set of active nodes,
select an i ∈ L that maximises z i .



Mathematical optimisation 2021

Branch & Bound (II)

26 | 30Best-first search



Mathematical optimisation 2021

Branch & Bound (II)

27 | 30Best-first search

- UB1 = 25. Not pruned. Its sons have UB = 24 and UB = 23, L = {23, 24}
- UB2 = 24. Not pruned. Its sons have UB = 21 and UB = 19, L = {19, 21, 23}
- UB3 = 23. Not pruned. Its sons have UB = 22 and UB = 18, L = {18, 19, 21, 22}
- UB4 = 22. Not pruned. Its sons have UB = 20 and UB = 17,
L = {17, 18, 19, 20, 21}

- UB5 = 21. Not pruned. Its sons have UB = 18 and UB = 16,
L = {16, 17, 18, 18, 19, 20}

- UB6 = 20. Pruned. L = {16, 17, 18, 18, 19}
- UB7 = 19. Not pruned. Its sons have UB = 18 and

UB = 15,L = {15, 16, 17, 18, 18, 18}
- UB8 = UB9 = UB10 = 18. All pruned. L = {15, 16, 17}
- UB11 = 17. Pruned. L = {15, 16}
- UB12 = 16. Pruned. L = {15}
- UB13 = 15. Pruned. L = ∅



Mathematical optimisation 2021

Branch & Bound (II)

28 | 30Stopping criteria

- Ideally, the B&B algorithm stops when the optimal solution is
found, i.e., when the list of active nodes is empty (i.e., L = ∅)

- Practically, the tree can be so large that it is not possible to
reach the condition L = ∅.

- Some stopping criteria are
- Time Run the algorithm for a predefined amount of time
- Number of nodes The algorithm visits a predefined amount of

nodes only.
- Number of solutions found The algorithm stops when a

predefined number of integer solutions is reached
- Gap The algorithm stops at node t if zt − z ≤ K
- Relative gap The algorithm stops at node t if zt −z

z ≤ ε(%)



Mathematical optimisation 2021

Branch & Bound (II)

29 | 30Relative gap - example 1



Mathematical optimisation 2021

Branch & Bound (II)

30 | 30Relative gap - example 2


