Branch & Bound (1)

UNIVERSITA
DEGLI STUDI DI TRIESTE

Mathematical optimisation 2021

Branch & Bound (ll)

B&B for binary problems 1 |30

When addressing a binary problem, the natural choice is to branch
on the binary variables, i.e., considering at each level of the tree a
variable x; and branching on it: x; = 0 and x; = 1.

Mathematical optimisation 2021

Branch & Bound (ll)

Binary tree 2 |30

Mathematical optimisation 2021

Branch & Bound (ll)

B&B for the knapsack problem 3130

The Knapsack problem is formulated as
n
Z = max Z PjXj
j=1

n

> wixg < W

j=1

xj € {0,1} forj=1,...,n.

We always assume Zj'.':l w; > W. Otherwise the solution is
trivial.

Mathematical optimisation 2021

Branch & Bound (ll)

Dantzig’s upper bound 4 |30
1. Variables are ordered so that p1/wy > -+« > p,/w,.
2. Set

xi=1lforj=1,...,r—1

Xy = 4W_ZW;;1 Wi
Xj :Oforjr—r—i—l
3. where r is such that Z 1 w; < W and Zf_l Wj > W.

5. We can prove it alwags holds that z* § UB.

Mathematical optimisation 2021

Branch & Bound (ll)

Knapsack problem - example 51|30

z = maxbx; + 8xy + 7x3 + 5xa
3x1 +2xp + 5x3 +5x4 < 8
xj € {0,1} forj=1,...,4

We first re-arrange the variables so that
p1/w1 > p2/wa > p3/w3 > pa/wy

z = max8xy + 6x2 + 7x3 + 5xa
2x1 +3x2 + 5x3 +5x4 < 8
xj € {0,1} forj=1,...,4

Mathematical optimisation 2021

Branch & Bound (ll)

Root node - 0 6 | 30

We first calculate the upper bound UBy

- Object 1 can enter, hence x; = 1 and W==6

- Object 2 can enter, hence x =1 and W =3

- Object 3 cannot enter, hence r = 3 and x3 = 3/5

- X4 = 0

-UBy=|8+6+7%(3/5)] =|14+21/5] =18
A lower bound is easily identified by setting
x1=x2=1,x3 = x4 =0, hence LB = 14

Mathematical optimisation 2021

Branch & Bound (ll)

Root node - 0 7 |30

18

14

Mathematical optimisation 2021

Branch & Bound (ll)

Branching on x3 8 | 30
x3 =20 x3 =1
z = max8x; + 6x2 + 5x4 z = max8x; + 6xy +5x4 +7
2x; +3x2 +5x4 < 8 2x1 +3x2 +5x4 < 3
x € {0,1}* x € {0,1}*
- Object 1 can enter, hence x; = 1 - Object 1 can enter, hence x; = 1
and W =6 and W =1
- Object 2 can enter, hence x; =1 - Object 2 cannot enter, hence r = 2
and W =3 and x =1/3
- Object 4 cannot enter, hence r = 4 -x2=0
and x = 3/5 - UBy = [84+7+6x(1/3)] =
- UB;=|8+6+5%(3/5)] = [15+2] =17
[14+3] =17 - LBy =15 due to (1,0,1,0)

= LBl = 14 due to (1, 1,0, 0) - Hence LB = 15

Mathematical optimisation 2021

Branch & Bound (ll)

Branching on x3 9 | 30

Mathematical optimisation 2021

Branch & Bound (ll)

x3 = 0, branching on x4 10 | 30
x3=0,x =0 x3=0,x =1
z = max8x; + 6xy z = max8x; +6x, +5
2x1 +3x2 < 8 2x1 +3x2 < 3
x € {0,1}* x € {0,1}*
Object 1 can enter, hence x; =1 - Object 1 can enter, hence x; = 1
and W =6 and W =1
- Object 2 can enter, hence x; =1 - Object 2 cannot enter, hence r = 2
and W =3 and x =1/3
- UB3=8+6] =14 - UBy=|8+5+6x(1/3)] =
- LB; = 14 due to (1,1,0,0) [13+2] =15
- STOP. Pruned by optimality. - LBy =13 due to (1,0,0,1)
- STOP. Pruned by bound:
UB, = LB

Mathematical optimisation 2021

Branch & Bound (ll)

x3 = 0, branching on x4 11 | 30

optimality bound

Mathematical optimisation 2021

Branch & Bound (ll)

x3 = 1, branching on x; 12 | 30
x3=1,x =0 x3=1,x=1
z=max8x; +5x4 +7 z = max8x; + 5x4 + 13
2x1 +5x4 < 3 2x;1 +5x4 <0
x € {0,1}* x € {0,1}*
Object 1 can enter, hence x; =1 - Object 1 cannot enter, r = 1 and
and W =1 x1=0
- Object 4 cannot enter, hence r = 4 - x4 =0
and x4 =1/5

- UBg = |13+ 8% (0)] =13
- LBg = 13 due to (0,1,1,0)
- STOP. Pruned by optimality.

- UBs=[8+7+5%(1/5)] =
[15+1] = 16

LBs = 15 due to (1,0,1,0)

Mathematical optimisation 2021

Branch & Bound (ll)

x3 = 1, branching on x; 13 | 30

optimality bound optimality

Mathematical optimisation 2021

Branch & Bound (ll)

x3 = 1, x = 0, branching on x4 14 | 30
x3=1,x=0,%x =0 x3=1,x=0,x4 =1
z=max8x; +7 z = max8x; + 12
2x1 <3 2x; < —2 INFEASIBLE!!
x € {0,1}* x € {0,1}*
- Object 1 can enter, hence x; = 1 - STOP. Pruned by infeasibility.
and W =1

- UB;=|8+7] =15
- LB7 =15 due to (1,0, 1,0)
- STOP. Pruned by optimality.

Mathematical optimisation 2021

Branch & Bound (ll)

x3 = 1, xp = 0, branching on x4 15 | 30

optimality infeasibility

Mathematical optimisation 2021

Branch & Bound (ll)

Knapsack problem - example 16 | 30

- The optimal solution is (1,0,1,0) and z* = 15

- This solution was found on node 2 but six other nodes had to
be visited before confirming that (1,0, 1,0) is indeed the
optimal solution.

Mathematical optimisation 2021

Branch & Bound (ll)

Node selection 17 | 30

Given a list £ of active subproblems (or active nodes), the
question is to decide which node should be examined in detail
next. There are two basic options

that determine, in advance, the order in which
the tree will be developed.

that choose a node using information (bounds,
etc.) about the status of the active nodes.

Mathematical optimisation 2021

Branch & Bound (ll)

18 | 30

B&GB - A very small tree

—
(]
o
N
c
.o
+—
[}
A
£
]
o
o
©
D
+—
@
£
(]
H=
+
(3}
=

Branch & Bound (ll)

B&B - A large tree 19 | 30

19881200 |
19881250 -
19081300
19981350 -
19981400 -
19981450 -
190

500 -
19981550 -
19981600 -
19981650 -
19981700 -
19981750
19981800
19081850 -
19081000
19981050+
19982000 -
19982050 -
19982100 -
19982150 -
19982200 -
19982250 -
19982300 -
19982350 -
19882400 -
19080450 -
19082500
19082550 -
19982600 -
19982650 -
19982700 -
19982750 -

19962800 -

199e2850 -

Mathematical optimisation 2021

Branch & Bound (ll)

B&B - Active nodes 20 | 30

usa13509 active node summary (as of May 8, 1888}
2000 : . ;

1800

1600

1400

1200

1000

active nodes

800 4

800 e

200 B

0 I I I
0 Be+07 1e+08 1.5e+08 2e+08
cpu time {seconds)

Mathematical optimisation 2021

Branch & Bound (ll)

A priori rules 21 | 30

A widely used a priori rule is

, if the current node is not pruned, the
next node considered is one of its two sons.

means that when a node is pruned, we go back
on the path from this node toward the root until we find the
first node (if any) that has a son that has not yet been
considered.

It is a completely a priori rule if we fix a rule for choosing
branching variables and specify that, for instance, the left son is
considered before the right son.

Mathematical optimisation 2021

Branch & Bound (ll)

Depth-first search plus backtracking 22 | 30

Mathematical optimisation 2021

Branch & Bound (ll)

A priori rules 23 |30
Definition
The of a node in an enumeration tree is the number of edges

in the unique path between it and the root.

In , all the nodes at a given level are
considered before any nodes at the next lower level.

Mathematical optimisation 2021

Branch & Bound (ll)

Breadth-first search 24 | 30

Mathematical optimisation 2021

Branch & Bound (ll)

Adaptive rules 25 | 30

: From all active nodes choose the one that has
the largest upper bound. Thus if £ is the set of active nodes,
select an i € L that maximises Z'.

Mathematical optimisation 2021

Branch & Bound (ll)

Best-first search 26 | 30

Mathematical optimisation 2021

Branch & Bound (ll)

Best-first search 27 |30

- UBj = 25. Not pruned. Its sons have UB = 24 and UB = 23, L = {23,24}
- UBj = 24. Not pruned. Its sons have UB = 21 and UB =19, £ = {19, 21, 23}
- UB3 = 23. Not pruned. Its sons have UB = 22 and UB = 18, £ = {18, 19, 21, 22}

- UB4q = 22. Not pruned. Its sons have UB = 20 and UB = 17,
L£={17,18,19,20,21}

- UBs = 21. Not pruned. Its sons have UB = 18 and UB = 16,
L = {16,17,18,18,19,20}

- UBg = 20. Pruned. £ = {16,17,18,18,19}

- UB7 =19. Not pruned. Its sons have UB = 18 and
UB = 15,C = {15,16,17,18,18,18}

- UBg = UBy = UBjp = 18. All pruned. £ = {15,16,17}
- UBj; = 17. Pruned. £ = {15,16}

- UBjz = 16. Pruned. £ = {15}

- UBj3 = 15. Pruned. L =10

Mathematical optimisation 2021

Branch & Bound (ll)

Stopping criteria 28 | 30

- ldeally, the B&B algorithm stops when the optimal solution is
found, i.e., when the list of active nodes is empty (i.e., £ = 0)

- Practically, the tree can be so large that it is not possible to
reach the condition £ = 0.
- Some stopping criteria are
- Run the algorithm for a predefined amount of time
- The algorithm visits a predefined amount of
nodes only.
- The algorithm stops when a
predefined number of integer solutions is reached
- The algorithm stops at node t if 2! — z < K

- The algorithm stops at node t if i 4 < €(%)

P4

Mathematical optimisation 2021

Branch & Bound (ll)

Relative gap - example 1 29 | 30

1.06 T T T T

I Iow:erbOLImd
105V . : optimal 7
foa b i upper bound --------

1.03 | .
1.02 | | .
1.01 | .

1
0.99

0o L]] 1]] 1]] 1
0 100 200 300 400 500 600 700 80O 900

nodes of B&B tree explored

Mathematical optimisation 2021

relative gap to optimal solution

Branch & Bound (ll)

Relative gap - example 2 30 | 30

E oy

Optimality GAP (%)
Optimality GAP (%)

0 50 1000 150 2000 200 3000 3500 0 500 1000 1500 2000 200 3000 3500
Execution time (5) Execution time ()

(a) 50 Commodities (b) 100 Commodities

Optimality GAP (%)

Optimality GAP (%)

0 S0 1000 1500 2000 200 3000 3500 0 S0 1000 1500 2000 200 3000 3500
Execution time () Execution time ()
(¢) 150 Commodities (d) 200 Commodities

— 1 Computing Node (12 co
e 2 Computing Nodes (24 cor

== 4 Computing Nodes (48 corcs)
=== & Computing Nodes (96 cores)

Mathematical optimisatio 1

