
Mathematical optimisation 2021

Local search and approximation algo-
rithms

Lorenzo Castelli, Università degli Studi di Trieste.



Mathematical optimisation 2021

Local search and approximation algorithms

1 | 28Local search

Once an initial feasible solution, called the incumbent, has been
found, it is natural to try to improve the solution. The idea of a
local search heuristic is to define a neighbourhood of solutions
close to the incumbent. Then the best solution in the
neighbourhood is found. If it is better than the incumbent, it
replaces it, and the procedure is repeated. Otherwise the
incumbent is locally optimal with respect to the neighbourhood,
and the heuristics terminates.



Mathematical optimisation 2021

Local search and approximation algorithms

2 | 28Knapsack - Local search

Starting from the greedy solution we now see a possible local
search algorithm that examines each element in solution in
sequence and, if possible and convenient, exchanges it with a
subsequent element that is not in solution.

Let zg the value of the greedy solution and cu the remaining
unused capacity.



Mathematical optimisation 2021

Local search and approximation algorithms

3 | 28Knapsack - Local search

begin
call Greedy and get zg and cu
z := zg
for i := 1 to n do

if x(i) = 1 then
for j := i + 1 to n do

if x(j) = 0 and cu + w(i) >= w(j) and p(j) > p(i) then
x(i) := 0, x(j) := 1,
z := z - p(i) + p(j), cu := cu + w(i) - w(j)

end-if
end-for

end-if
end-for

end



Mathematical optimisation 2021

Local search and approximation algorithms

4 | 28Knapsack - Local search

max100x1 + 60x2 + 70x3 + 45x4 + 45x5 + 4x6 + 4x7 + 4x8 + 15x9

10x1 + 10x2 + 12x3 + 8x4 + 8x5 + x6 + x7 + x8 + 4x9 ≤ 26
xj ∈ {0, 1} for i = 1, . . . , 9

The greedy solution is (1, 1, 0, 0, 0, 1, 1, 1, 0), with zg = 172 and cu = 3.

For i = 2 and j = 3 an exchange can be made, such that we get

x = (1, 0, 1, 0, 0, 1, 1, 1, 0), with z = 182 and cu = 1

No further exchanges are possible.

The optimal solution is (1, 0, 0, 1, 1, 0, 0, 0, 0) with z∗ = 190



Mathematical optimisation 2021

Local search and approximation algorithms

5 | 28Knapsack - Local search

The linear relaxation gives (1, 1, 0.5, 0, 0, 0, 0, 0, 0) with zl = 195. Hence
before starting the B&B algorithm, we know that 182 ≤ z∗ ≤ 195.



Mathematical optimisation 2021

Local search and approximation algorithms

6 | 28TSP - Local search: k − opt

At each iteration k arcs are removed from the current tour and the
resulting k paths are connected with other arcs (if possible) so as
to form a new tour of lower cost. For k = 2:

procedure Two-Opt
begin

let C be the initial tour
while there are (i , j), (k, l) ∈ C : cij + ckl > cil + ckj do

C := C\{(i , j), (k, l)}
⋃
{(i , l), (k, j)}

end-while
end



Mathematical optimisation 2021

Local search and approximation algorithms

7 | 28TSP - 2− opt



Mathematical optimisation 2021

Local search and approximation algorithms

8 | 28TSP - 2− opt



Mathematical optimisation 2021

Local search and approximation algorithms

9 | 28Metaheuristics

Local search algorithms terminate the execution when no move can
improve the current solution. The basic rule of accepting only convenient
moves can however lead to lose the possibility of improvement.
In the knapsack example, the local search algorithm terminates in

x = (1, 0, 1, 0, 0, 1, 1, 1, 0), with z = 182 and cu = 1,

as no move can improve it.
Suppose to accept the inconvenient exchange between x3 and x9. We get

x = (1, 0, 0, 0, 0, 1, 1, 1, 1), with z = 127 and cu = 9.

At the next iteration it is possible to exchange x6 and x2 and get

x = (1, 1, 0, 0, 0, 0, 1, 1, 1), with z = 183 and cu = 0.



Mathematical optimisation 2021

Local search and approximation algorithms

10 | 28Metaheuristics

A local search algorithm stops when it determines a local
maximum of the objective function, and a possible way to avoid
this is to modify it in such a way that it can accept, in certain
situations, moves that worsen the value of the current solution.
This is the main feature of metaheuristic algorithms, today’s most
widespread tool for the approximate solution of optimisation
problems.
The simplest way is to introduce elements of randomisation in the
construction of the solutions and / or in the determination of the
moves.



Mathematical optimisation 2021

Local search and approximation algorithms

11 | 28Metaheuristics

The main metaheuristic approaches are:
- Taboo search
- Simulated annealing
- Genetic algorithms
- Ant colony optimisation
- Swarm particle optimisation
- Variable neighbourhood search



Mathematical optimisation 2021

Local search and approximation algorithms

12 | 28Approximation algorithm

Definition
A polynomial algorithm A is said to be a δ-approximation algorithm if
for every problem instance I with an optimal solution OPT (I)

RA(I) =
A(I)

OPT (I)
≤ δ.

δ ≥ 1 for minimisation problems and ≤ 1 for maximisation problems.
The smallest value of δ is the approximation ratio RA of the algorithm
A.
For maximisation problems, sometimes 1

δ
is considered to be the

approximation ratio.



Mathematical optimisation 2021

Local search and approximation algorithms

13 | 28Approximation algorithms for the TSP

We present two approximation algorithms for the TSP
- MST approximation: RA = 2
- Christofides’ algorithm: RA = 3

2

Assumption
The triangle inequality always holds

cik ≤ cij + cjk ∀i , j , k ∈ {1, 2, . . . , n}

In other words, the shortest distance between two points (cities) is
the straight line (direct route)



Mathematical optimisation 2021

Local search and approximation algorithms

14 | 28MST vs TSP

The MST provides a lower bound on the optimal tour length:
deleting any arc from a tour yields a spanning tree consisting of a
single path through all the cities.
Thus the optimal travelling salesman tour must be strictly longer
than the minimum spanning tree.

MST (I) < OPT (I)

We see now that the triangle inequality allows us to use the MST
to obtain an upper bound of the optimal tour length.



Mathematical optimisation 2021

Local search and approximation algorithms

15 | 28Using the MST

- We visit all the cities, but are only allowed to use arcs of the
MST

- We start at a ‘leaf’ of the tree (vertex of degree 1) and apply
the following strategy
• If there is any untraversed arc leaving the current vertex, follow

that arc to a new vertex.
• If all the arcs from the current vertex have been traversed, go

back along the arc by which the current vertex was first reached
to the vertex from which it was visited.
• Halt when we eventually return to our starting vertex.

The procedure is called the depth first traversal of the MST



Mathematical optimisation 2021

Local search and approximation algorithms

16 | 28Depth first traversal of the MST



Mathematical optimisation 2021

Local search and approximation algorithms

17 | 28Depth first traversal of the MST

- We visit all the cities.
- We traverse no arcs of the MST more than twice.
- Thus the route for visiting all the cities has length no more

than twice that of the MST, and since MST (I) < OPT (I) at
most twice the length of the optimum travelling salesman tour.

The only thing that prevents this traversal from being a travelling
salesmen tour is the fact that it may visit some cities more than
once.



Mathematical optimisation 2021

Local search and approximation algorithms

18 | 28Introducing shortcuts

Thanks to the triangle inequality, we can avoid repeated cities by
introducing ‘shortcuts’ that do not increase the total length of the
traversal
- Start, as before, at a leaf of the MST.
- Whenever the depth first traversal would lead us back to an

already-visited city, skip ahead in the traversal and go directly to
the next as-yet-unvisited city.

- The direct route can be no longer than the previous indirect one
- If all cities have been visited go back to the starting point.

We have now constructed an actual tour (it visit no city except the
starting point more than once) and because its length is no more than
that of the original depth first traversal, this tour has length at most
twice that of the optimal tour.



Mathematical optimisation 2021

Local search and approximation algorithms

19 | 28Shortcuts in the double MST



Mathematical optimisation 2021

Local search and approximation algorithms

20 | 28The minimum spanning tree algorithm

This procedure is called the minimum spanning tree algorithm.

Theorem
For all TSP instances I that obey the triangle inequality, if
MSTA(I) is the length of the tour constructed by the minimum
spanning tree algorithm applied to I , then

MSTA(I) ≤ 2OPT (I)



Mathematical optimisation 2021

Local search and approximation algorithms

21 | 28Eulerian graphs and tours

- An Eulerian graph is a connected graph in which every vertex has even
degree.

- Eulerian graphs are those graphs that contain an Eulerian tour, i.e., a cycle
that passes through every arc exactly once.

The minimum spanning tree algorithm can be reinterpreted in these terms
- We start with a MST, double its edge to obtain an Eulerian graph
- We find an Eulerian tour for this graph and the convert it to a Hamiltonian

tour by using shortcuts.
- By the triangle inequality the Hamiltonian tour can be no longer than the

Eulerian tour and hence at most twice the length of the MST
If we find better (shorter) Eulerian graphs connecting the cities, we can have
better (shorter) Hamiltonian tours.



Mathematical optimisation 2021

Local search and approximation algorithms

22 | 28Matching

Definition
Given a set containing an even number of cities, a matching is a
collection of arcs M such that each city is the endpoint of exactly
one arc in M .

Definition
A minimum weight matching is one for which the total length of
the arcs is minimum.



Mathematical optimisation 2021

Local search and approximation algorithms

23 | 28Matching for Eulerian graphs

- Consider the minimum spanning tree T for a TSP instance
- Certain of the vertices in T already have even degree (they do

not need to receive more arcs if we want to turn the tree in an
Eulerian graph)

- There might be some vertices with odd degree
- There must be an even number of these odd-degree vertices,

since the sum of all vertex degrees must be even
- Thus by adding a matching for the odd-degree vertices in T ,

we construct an Eulerian graph that includes T
- If we add to T a minimum weight matching for its odd-degree

vertices, we obtain an Eulerian graph that has minimum length
among those that contain T



Mathematical optimisation 2021

Local search and approximation algorithms

24 | 28Another Eulerian graph



Mathematical optimisation 2021

Local search and approximation algorithms

25 | 28Length of the minimum weight matching

- Consider an Hamiltonian tour, with the cities that correspond
to odd-degree vertices in T emphasised

- The tour determines two matchings M and M ′

- If I denotes the given TSP instance, by the triangle inequality
we must have

LENGTH(M) + LENGTH(M ′
) ≤ OPT (I)

- Hence one of M and M ′ must have length less than or equal
to OPT (I)/2.

- Thus the length of a minimum weight matching (let it be
matching M) for the odd-degree vertices of T must also be at
most OPT (I)/2



Mathematical optimisation 2021

Local search and approximation algorithms

26 | 28TSP and Matching



Mathematical optimisation 2021

Local search and approximation algorithms

27 | 28Christophides’ algorithm



Mathematical optimisation 2021

Local search and approximation algorithms

28 | 28Length of the Hamiltonian tour

Since LENGTH(T ) < OPT (I) and shortcuts can be applied to
the Eulerian tour to transform it into a Hamiltonian tour, if C(I) is
the length of the tour constructed according to this algorithm,
called Christofides’ algorithm, we have that

C(I) ≤ LENGTH(T ) + LENGTH(M) <
3
2

OPT (I).


