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1 | 34Preferences

To make explicit the preferences of a decision maker it is better to
make a direct comparison between all the possible alternatives.
The decision maker is asked to compare all pairs of alternatives.
For each pair the result of the comparison can be one of four
cases:
- I prefer the alternative A to B
- I prefer the alternative B to A
- I am indifferent between A and B
- I am not able to compare A and B
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The term “indifference” indicates the total interchangeability of
one decision with another.
- Indifference between A and B means that A can be replaced

with B and vice versa and the decision maker finds the two
options equivalent.

- Likewise, if it were also to be indifferent between B and C , it
could replace B with C and vice versa.

- This interchangeability means that C could also replace A
and vice versa.

- So there is indifference also between A and C , as to say that
indifference is a transitive relationship.
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Incomparability is not a transitive relationship.

- You can always imagine a situation where two alternatives A and B
are not comparable because A is much better than B for one
criterion but B is much better than A for another criterion.

- For example A could be a decision that involves high costs but also
excellent quality and B instead could be a very cheap but also low
quality choice.

- Similarly it could happen between A and C , but this does not imply
that B and C are also not comparable.

- It could happen that B is preferred to C because it is a little
cheaper than C and of a slightly better quality than C .
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For each ordered pair of decisions (A,B) the relationship that is
established between the two decisions assumes a value among the
following four

≺ � ∼ ?

where

A ≺ B ⇒ A is preferred over B
A � B ⇒ B is preferred over A
A ∼ B ⇒ A and B are indifferent
A ? B ⇒ A and B are not comparable
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- We can define for each set X of feasible decisions a structure
of preferences such that for each ordered pair of decisions
x ∈ X and y ∈ X we have xRy where R ∈ {≺,�,∼, ?}.

- Assuming that preferences are consistent, if x ≺ y occurs,
then solution y must be discarded.

These considerations lead to the following definition.

Definition
Decisions x are said to be non-dominated, or efficient, or
Pareto-optimal, if there is no decision y to be preferred to x .
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- Consistency implies the existence of at least one non-dominated
decision (if X is a finite set).

- The problem in reality is that there are normally many
non-dominated decisions and more refined criteria must be
established to prefer one decision over all (in the end you have to
choose one and only one decision).

- Note also that the presence of pairs of incomparable decisions
increases the number of non-dominated decisions.

- If there were no incomparable pairs, the non-dominated decisions
would all be indifferent to each other and therefore the problem of
the final choice would not exist.
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Let X be the set of feasible decisions. Assume that m different
objectives are defined on X , which take the form of m objective
functions fi (x) : X → R to be minimised. These functions define
the following preference structure:

x ≺ y ⇔ fi (x) ≤ fi (y), i ∈ {1, . . . ,m}, and f (x) 6= f (y)
x � y ⇔ fi (x) ≥ fi (y), i ∈ {1, . . . ,m}, and f (x) 6= f (y)
x ∼ y ⇔ f (x) = f (y)
x ? y otherwise
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We say that a decision x dominates a decision y if fi (x) ≤ fi (y)
for each i ∈ {1, . . . ,m} and thar there exists an objective k such
that fk(x) < fk(y). If there is only one non-dominated decision
x∗, then we would have

fi (x∗) ≤ fi (x), i ∈ {1, . . . ,m}, x ∈ X

and such a decision would obviously be the best possible in every
respect and there would be nothing more to say. We therefore
suppose that there is more than one non-dominated decision.
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- In accordance with the criterion of rationality dominated decisions
must certainly be discarded.

- If objectives f1, ..., fm are actually all the objectives and reflect the
preferences of a single decision maker, then it is natural to assume
that ‘x is rationally preferred to y ’ if x dominates y .
In case of multiple decision makers, it may not be universally
acceptable to reject decision y because of x ’s dominance. A decision
maker whose objective function was indifferent between x and y
might not like an improvement from all other decision makers and
therefore would not automatically prefer x to y.

- In the following, however, we will not deal with this second aspect
and we will always think that the decision maker is unique and the
objective functions express his preferences.
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- In this perspective, the only decisions that can be taken into
consideration are the Pareto optima.

- These are usually represented geometrically in the image
space of the objective functions.

- For each decision x ∈ X consider points f1(x), . . . , fm(x) and
define f (X) as the union of all such points.

- All possible objective function values therefore correspond to
elements of the set f (X)
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- Given a decision x , consider f (x), attach to point f (x) the negative
orthant Rm

− to define the set f (x) + Rm
−.

- If there are decisions x̂ such that f (x̂) ∈ f (x) + Rm
− and

f (x̂) 6= f (x), x̂ dominates x by definition.
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In this figure, points f (x1) and f (x3) are Pareto optima, while
f (x2) is not. The Pareto optima are all the points on the boundary
of f (X) highlighted with a solid thick black line.
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- We have to build power plants to meet the energy need of a region.

- 5 sites have been identified and the possible plants for each site.

- The powers obtainable from the plants and the construction costs
were respectively estimated as P = (50, 35, 30, 25, 60) (MW) and
C = (20, 16, 13, 6, 12) (Me).

- We need to decide in which site to build which plant.

- The overall power is the sum of the powers of the plants built and
the same is true for the cost.

We initially want to evaluate which decisions are efficient. Then the
choice will be made between the efficient solutions based on the
estimated power demand and the funds available.
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We can represent the problem as

X = {0, 1}5 f1(x) =
5∑

i=1
Pi xi f2(x) =

5∑
i=1

Ci xi

where f1 has to be maximised, while f2 minimised.

- There are 32 alternatives as shown in Figure (a) (in abscissa the
power and in ordinate the cost)

- In Figure (b) the 15 Pareto optimal solutions are highlighted.

- The choice of the decision maker will have to fall between these 15
solutions depending on the cost-benefit evaluation you want to do.
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The Pareto solutions are

{0, 0, 0, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, {0, 0, 0, 1, 1}, {0, 0, 1, 0, 1},
{0, 1, 0, 0, 1}, {0, 0, 1, 1, 1}, {0, 1, 0, 1, 1}, {1, 0, 0, 1, 1}, {1, 0, 1, 0, 1},
{0, 1, 1, 1, 1}, {1, 0, 1, 1, 1}, {1, 1, 0, 1, 1}, {1, 1, 1, 0, 1}, {1, 1, 1, 1, 1},

where the associated objective function values are

{0, 0}, {25, 6}, {60, 12}, {85, 18}, {90, 25},
{95, 28}, {115, 31}, {120, 34}, {135, 38}, {140, 45},
{150, 47}, {165, 51}, {170, 54}, {175, 61}, {200, 67}.

If, for instance, we need a power between 120 and 150 MW, we could evaluate
the following four options {120, 34}, {135, 38}, {140, 45}, {150, 47}.
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- Pareto solutions can be very numerous, even infinite in
continuous problems, and therefore the problem arises of how
to choose a particular decision within the Pareto optima.

- While restricting the choice between non-dominated solutions
is a target that can be left to the analyst, the choice of the
final decision pertains to the decision maker.

- For this reason various methods have been suggested to
generate Pareto optima by interacting with the decision maker.
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The problem is reduced to a single objective function through an
aggregation as a linear combination with positive coefficients

F (x) :=
∑

i
αi fi (x), where αi > 0, (1)

and we solve
min{F (x) : x ∈ X} (2)

Aggregating different criteria into a single objective function as in (1)
poses the following questions:

1. given some values αi > 0, do you always get a Pareto solution by
solving (2)?

2. given a Pareto optimum x̂ , do there always exist some values
αi > 0 to get this x̂?
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The positive aspect of the aggregation is that min{F (x) : x ∈ X}
gives rise to a Pareto optimum. In fact, if y is a solution
dominated by x, we have by the definition of dominance

αi fi (x) ≤ αi fi (y) i ∈ {1, . . . ,m} αkfi (x) < αi fk(y).

By summing up, we get∑
i
αi fi (x) <

∑
i
αi fi (y)

and therefore no dominated solution can be optimal for (2).
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- On the question of whether any Pareto optimum can be obtained from an
appropriate choice of αi coefficients, unfortunately the answer is not
positive in general.

- We note that solving (2) is equivalent to minimising the linear function∑
i αi yi for y ∈ f (X) (see Figure (a)).

- It is also known that the minima of a linear function on a set Y belong (in
addition to Y ) to the frontier of the convex envelope of Y .

- So those Pareto optima that are not on the frontier of the convex envelope
cannot be generated by (2).

- More exactly, since only non-negative αi coefficients are allowed, solving
(2) only generates optima that lie on the frontier of the convex envelope of
f (X) + Rm

+ . In Figure (b) the convex envelope of f (X) + Rm
+ and the Pareto

optima (solid thick black line) that can be generated with this method.
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The feasible set is X = {0, 1}5 and the objective functions are

f1(x) = 50x1 + 35x2 + 30x3 + 25x4 + 60x5

f2(x) = 20x1 + 16x2 + 13x3 + 6x4 + 12x5

Since f1 must be maximised, in (1) we must consider −f1.
Moreover, since there are only two objectives, the coefficients α1
and α2 can be replaced by α and 1− α. Then problem (2)
becomes:
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min
x∈{0,1}5

− α(50x1 + 35x2 + 30x3 + 25x4 + 60x5)+

(1− α)(20x1 + 16x2 + 13x3 + 6x4 + 12x5) =

min
x∈{0,1}5

(20− 70α)x1 + (16− 51α)x2 + (13− 43α)x3+

(6− 31α)x4 + (12− 72α)x5 =

min
x1∈{0,1}

(20− 70α)x1 + min
x2∈{0,1}

(16− 51α)x2+

min
x3∈{0,1}

(13− 43α)x3 + min
x4∈{0,1}

(6− 31α)x4 + min
x5∈{0,1}

(12− 72α)x5
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The minima are 0 or 1 depending on the sign of the coefficient of
the variable. Therefore we have, for 0 ≤ α ≤ 1 (the values
indicated correspond to the values of α for which the coefficients
become zero):

x {f1(x), f2(x)}

0 ≤ α < 1/6 {0, 0, 0, 0, 0} {0, 0}
1/6 < α ≤ 6/31 {0, 0, 0, 0, 1} {60, 12}
6/31 < α ≤ 2/7 {0, 0, 0, 1, 1} {85, 18}
2/7 < α ≤ 13/43 {1, 0, 0, 1, 1} {135, 38}

13/43 < α ≤ 16/51 {1, 0, 1, 1, 1} {165, 51}
16/51 < α ≤ 1 {1, 1, 1, 1, 1} {200, 67}
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6 Pareto optima are obtained. However, we know there are 15 Pareto
solutions, therefore 9 Pareto optima cannot be generated by the convex
combination. In particular, only one of the four solutions previously
highlighted is included among the six solutions generated!



Mathematical optimisation 2021

Multi-objective optimisation

28 | 34Constraints on objectives

In this method, out of the m objective functions, only one is
maintained as an objective and the other m − 1 are transformed
into constraints, setting threshold values K2, . . . ,Km above which
(if the functions are to be minimised) solutions are not allowed:

minf1(x)
f2(x) ≤ K2

f3(x) ≤ K3
...
fm(x) ≤ Km

x ∈ X
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Q: Do we always get a Pareto optimal solution?
A: Not always. The solution of problem (3) is certainly not

dominated if it is the only optimum. Unfortunately, the
uniqueness of an optimum is not a property that can always be
easily verified. It could happen that by solving (3) we get an
optimum x̂ , while, without our knowledge, there is another
optimum x , such that

f1(x̂) = f1(x), f2(x) < f2(x̂) ≤ K2

The optimum x̂ is dominated.
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Q: given a Pareto optimum x̂ , do they exist values Ki > 0 such
that x̂ is optimal in (3)?

A: Yes. In fact, if x̂ is a Pareto optimum solution, just choose

Ki := fi (x̂) i = 2, . . . ,m

Then, if there is a solution x feasible for problem (3) and such
that f1(x) < f1(x̂), we would have that x dominates x̂ , which
is contrary to the hypothesis of Pareto optimality of x̂ . Hence,
no Pareto optimum is lost by varying the Ki parameters,
regardless of the convexity or non-convexity of f (X).
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It is necessary to solve, by applying (3) and choosing to turn the
cost objective into a constraint,

max50x1 + 35x2 + 30x3 + 25x4 + 60x5

20x1 + 15x2 + 13x3 + 6x4 + 12x5 ≤ K
x ∈ {0, 1}5

This is a KNAPSACK PROBLEM !!!!
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- There are cases where objectives have different priorities and you can think
of improving an objective only if the ones with higher priority have already
been met at best.

- Formally a lexicographic order between elements of Rm is defined by the
following preference relationship ≺:

x ≺ y ⇔ ∃k ∈ {1, . . . ,m} : xi = yi , i ∈ {1, . . . , k − 1}, xk < yk

- The lexicographic order is a total order. Given two elements x 6= y in Rm ,
either x ≺ y or y ≺ x . There are no other alternatives.

- So if the objectives are defined in order of priority f1, f2, . . . , fm , we can
define the lexicographic optimum as that decision x∗ such that the vector
(f1(x∗), . . . , fm(x∗)) is minimal according to the lexicographic order.
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To get the lexicographic optimum, we need to solve m minimum problems in
series. Let x̂k be the optimum of the k-th minimum problem. Then the
k + 1-th problem is defined by

minfk+1(x)
fi (x) = fi (x̂k) i = 1, . . . , k
x ∈ X

A more rapid method consists in solving a single minimum problem obtained as
a linear combination of objectives with weights α1 � α2 � . . .� αm. In
general, the lexicographic optimum is not obtained in this way but it is only
approximated. However, if the problem is discrete and the weights are
sufficiently different from each other, the lexicography optimum is obtained.


