Optimisation Models: exercises

Dipartimento di Ingegneria e Architettura
Universita degli studi di Trieste

23/4/2021, Trieste

Exercise 1: Manpower planning

] 2/28

Exercise 1: Manpower planning

@ 3 projects must be
completed in 6 months

] 2/28

Exercise 1: Manpower planning

@ 3 projects must be
completed in 6 months

@ project 1 takes 3
consecutive months: in
its first month it uses 3
people, in its second, 4
people, and in its third,
2 people. Once
completed it brings a
profit of 10.2K€ per
month.

Project | Duration | Profile | Gain/month
1 3 3,42 10.2
2 3 4,15 12.3
3 4 3,212 11.2

2/28

Exercise 1: Manpower planning

@ 3 projects must be

completed in 6 months Project | Duration | Profile | Gain/month
@ project 1 takes 3 1 3 3,42 10.2

consecutive months: in 2 3 4,15 12.3

its first month it uses 3 3 4 3212 11.2

people, in its second, 4

people, and in its third, Month 1121314156

2 people. Once
completed it brings a
profit of 10.2K€ per o for each month, it is not possible to use
month. more manpower than is available

Personnel | 5|6 |7 |7 |6]|6

. Y

Exercise 1: Manpower planning

@ 3 projects must be

completed in 6 months Project | Duration | Profile | Gain/month
@ project 1 takes 3 1 3 3,42 10.2

consecutive months: in 2 3 4,15 12.3

its first month it uses 3 3 4 3212 11.2

people, in its second, 4

people, and in its third, Month 1121314156

2 people. Once
completed it brings a
profit of 10.2K€ per o for each month, it is not possible to use
month. more manpower than is available

Personnel | 5|6 |7 |7 |6]|6

@ maximise the total benefit obtained through the projects once they
are finished.

. Y

Notation

. Y

Notation

POHD L

CA

. set of projects

: set of months =1,..., nM

: duration of project p

: monthly benefit once project p is finished

: available manpower for month m

3/28

Notation

. set of projects
: set of months =1,..., nM
: duration of project p

: monthly benefit once project p is finished

POHD L

CA

: available manpower for month m

RU, k : resource usage of project p in it’s k-th month

. Y

Decision variables

. 4/28

Decision variables

1 if project p starts in month m
Xp,m = Vpe P, meM
0 otherwise

. e

Decision variables

1 if project p starts in month m
Xp,m = Vpe P, meM
0 otherwise

start,, : starting month of project p

. e

Decision variables constraints

. 5,28

Decision variables constraints

j{: Xpm = 1

meM

VpeP

5/28

Decision variables constraints

> xom=1 Vpe P
meM
Z m - X, m = Start, VpeP

meM

. oY

Decision variables constraints

> xom=1 Vpe P
meM
Z m - X, m = Start, VpeP
meM
start, < nM — D, + 1 VpeP

. oY

Decision variables constraints

! Each project starts once and only once
forall(p in P) sum(m in M) x(p,m) = 1

1
2
3
4 ! Connect variables x(p,t) and start(p)

5 forall(p in P) sum(m in M) m*x(p,m) = start(p)
6

7

8

! Finish everything by the end of the planning period
forall(p in P) start(p) <= nM-D(p)+1

. oV

Resource constraints

. 7/28

Resource constraints

What is the resource usage of project p in a given month m (rp(m))?

. o

Resource constraints

What is the resource usage of project p in a given month m (rp(m))?
It depends on starty:

if start, < m, in month m, p is in its (m — start, + 1)-st month

. o

Resource constraints

What is the resource usage of project p in a given month m (rp(m))?
It depends on starty:

if start, < m, in month m, p is in its (m — start, + 1)-st month

m
ro(m) = Z RUp m—s+1 - Xps
s=1

. o

Resource constraints

What is the resource usage of project p in a given month m (rp(m))?
It depends on starty:

if start, < m, in month m, p is in its (m — start, + 1)-st month

m
ro(m) = Z RUp m—s+1 - Xps
s=1

Z rpo(m) < CAPp, VYme M

pEP

. o

1
2
3

Resource constraints

What is the resource usage of project p in a given month m (rp(m))?
It depends on starty:

if start, < m, in month m, p is in its (m — start, + 1)-st month

m
ro(m) = Z RUp m—s+1 - Xps
s=1

Z rpo(m) < CAPp, VYme M

pEP

! Resource availability
forall(m in M)
sum(p in P,s in 1..m) RU(p,m-s+1)*x(p,s) <= CAP(m)

7/28

Objective function

] 8/28

Objective function

For how many months project p contributes to the profit? (np)

. S

Objective function

For how many months project p contributes to the profit? (np)
Project p ends in the (startp, + Dy — 1)-th month

. S

Objective function

For how many months project p contributes to the profit? (np)
Project p ends in the (startp, + Dy — 1)-th month

np = nM — (start, + D, — 1)

. S

Objective function

For how many months project p contributes to the profit? (np)
Project p ends in the (startp, + Dy — 1)-th month

np = nM — (start, + D, — 1)

max E Gp - np

pEP

. S

Objective function

For how many months project p contributes to the profit? (np)
Project p ends in the (startp, + Dy — 1)-th month

np = nM — (start, + D, — 1)

max E Gp - np

pEP

! Objective: Maximize Benefit
MaxBen:=
sum(p in P) (G(p)*(nM-start(p)-D(p)+1))

! Solve the problem
maximize (MaxBen)

o o r W N R

. S

-
SOS1

Special Ordered Sets of type 1: an ordered set of non-negative variables
at most one of which can take a non-zero value.

o the order is specified by assigning weights (reference row values) to
each variable

@ used for branching on sets of variables, rather than individual
variables

@ the search procedure will generally be noticeably faster

. o

SOS1

Special Ordered Sets of type 1: an ordered set of non-negative variables
at most one of which can take a non-zero value.

o the order is specified by assigning weights (reference row values) to
each variable

@ used for branching on sets of variables, rather than individual
variables

@ the search procedure will generally be noticeably faster

if not USESOS then ! Turn variables x into binaries
forall(p in P,m in M) x(p,m) is_binary

else ! Define S0S-1 sets

forall(p in P) sum(m in M) m*x(p,m) is_sosl

end-if

. o

-
SOS1

Standard branching

e “l-branch” (strong decision) eliminates a very large number of
possible solutions

@ "0O-branch” (weak decision) eliminates only a few

@ unbalanced tree

. R

-
SOS1

Standard branching

e “l-branch” (strong decision) eliminates a very large number of
possible solutions

@ "0O-branch” (weak decision) eliminates only a few

@ unbalanced tree

SOS1 branching
@ all the variables in one subset are set to 0
@ any combination of the variables in the other subset sums to 1
o strong decision deferred
@ unpromising variables placed in the new “set-to-0" subset

@ better balanced and smaller tree

. R

Exercise 2: Purchasing with price breaks

. TR

Exercise 2: Purchasing with price breaks

@ 3 suppliers offer decreasing prices for increased lot size (incremental
discounts)

. TR

Exercise 2: Purchasing with price breaks

@ 3 suppliers offer decreasing prices for increased lot size (incremental
discounts)

@ we wish to buy 600 items in total

@ we want to buy at least total cost, yet not buy too much from any
one supplier

. TR

Exercise 2: Purchasing with price breaks

@ 3 suppliers offer decreasing prices for increased lot size (incremental
discounts)

@ we wish to buy 600 items in total

@ we want to buy at least total cost, yet not buy too much from any
one supplier

Supplier | Max% | Unit Price | Breakpoint | UP | BP | UP | BP
1 40% 9.2 100 9 | 200 | 7 | 1000
2 35% 9 50 8.5 | 250 | 8.3 | 2000
3 40% 11 100 8.5 | 300 | 7.5 | 4000
@ if you buy 220 items from supplier 1, you pay
9.2-100+9-100 + 7-20. We can buy at most 40% of the
requirement from supplier (240 items)
] 11/28

Notation

. YR

Notation

S : set of suppliers
R : set of price ranges
COSTs : unit cost of price range r for supplier s
Bs , : breakpoint where the unit cost change
from COST; , to COST; 41 for supplier s
T : total amount we wish to buy

Qs : maximum percentage that may be bought from supplier s

. YR

Decision variables

. 13/28

Decision variables

Xs,r - number of items bought from suppliers s at the price range r

. e

Decision variables

Xs,r - number of items bought from suppliers s at the price range r

1 if we have bought any items from
Ysr = supplier s at the price range r VseS,reR
0 otherwise

. e

Objective function

] 14/28

Objective function

min Z xs,r - COSTs ,

seS,reR

. e

Constraints

. o

Constraints

Z Xs,r 2 T

seS,reR

. o

Constraints

Z Xs,r 2 T

seS,reR

d X < Qs T VseS
reR

. o

Decision variables constraints

. 16/28

Decision variables constraints

y(s,r) > y(s,r+1) VseS,r:r,r+1eR

. 16/28

Decision variables constraints

y(s,r) > y(s,r+1) VseS,r:r,r+1eR

Xs,r < (Bs,y — Bsr—1) - y(s,r) VseS,reR

. TR

Decision variables constraints

y(s,r) > y(s,r+1) VseS,rir,r+1eR
Xs,r < (Bs,y — Bsr—1) - y(s,r) VseS,reR
(Bsr — Bsr—1) - y(s,r+1) < xsr VseS,r:r,r+1eR

. TR

Decision variables constraints

y(s,r) > y(s,r+1) VseS,rir,r+1eR
Xs,r < (Bs,y — Bsr—1) - y(s,r) VseS,reR
(Bsr — Bsr—1) - y(s,r+1) < xsr VseS,r:r,r+1eR

(Bs,O =0 Vse S)

. TR

-
SOS2

Special Ordered Sets of type 2: an ordered set of non-negative
variables, of which at most two can be non-zero, and if two are non-zero
these must be consecutive in their ordering

e the order is specified by assigning weights (reference row values) to
each variable

@ used for branching on sets of variables, rather than individual
variables

@ the search procedure will generally be noticeably faster

. e

-
SOS2

Special Ordered Sets of type 2: an ordered set of non-negative
variables, of which at most two can be non-zero, and if two are non-zero
these must be consecutive in their ordering

e the order is specified by assigning weights (reference row values) to
each variable

@ used for branching on sets of variables, rather than individual
variables

@ the search procedure will generally be noticeably faster

@ generally used for modeling piecewise approximations of functions
of a single variable

. e

fA

SOS2: piecewise functions

N

=

=0

Y

-

Y

weights:

18/28

SOS2: piecewise functions

5
f
X = Z Ri-yi (reference row)
i=1

Gn M oem wn
M L

El

5
f=> Fi-yi
i=1

weights: 4 Y

5
Z yi=1 (convexity row)
i=1

] 18/28

N
SOS2: adjacency condition

W Znom o m

i

y1 =0.5
Y2 =

y3=0.5
ya=20
y5 =0

19/28

SOS2: alternative formulation

1 if the value of x
b; = lies between R; and Rj;1 Viel,..., 4
0 otherwise

ni<bh
y2 < b1+ b2
y3 < by + b3
ya < bz + by
ys < by

b1+ b+ b3+ by=1

] 20/28

-
SOS2: Purchasing with price breaks

Cost

Y

0= = = = = = = = = — — —

] 21/28

Notation

S : set of suppliers
R : set of price ranges
COSTs,; : unit cost of price range r for supplier s
Bs., : breakpoint where the unit cost change
from COST; , to COST; ,41 for supplier s
T : total amount we wish to buy

Qs : maximum percentage that may be bought from supplier s

. SR

Notation

S : set of suppliers
R : set of price ranges
COSTs,; : unit cost of price range r for supplier s
Bs., : breakpoint where the unit cost change
from COST; , to COST; ,41 for supplier s
T : total amount we wish to buy

Qs : maximum percentage that may be bought from supplier s

Po : set of breakpoints including 0 =0,1,2,3
CBPs , : total cost at breakpoint p for supplier s

. SR

Notation

Po : set of breakpoints including 0 =0,1,2,3
CBPs p, : total cost at breakpoint p for supplier s

CBP, g :=0
CBP;, := CBPs 51 + COST; - (Bsp — Bsp_1) ¥p € Po,p >0

(Bso:=0 Vs € S)

. R

Decision variables

Xs.r : number of items bought from suppliers s at the price range r

1 if we have bought any items from
Ysr = supplier s at the price range r VseS,reR

0 otherwise

] 24/28

Decision variables

Xs.r : number of items bought from suppliers s at the price range r

1 if we have bought any items from
Ysr = supplier s at the price range r VseS,reR

0 otherwise

ns : number of items bought from suppliers s

] 24/28

Decision variables

Xs.r : number of items bought from suppliers s at the price range r

1 if we have bought any items from
Ysr = supplier s at the price range r VseS,reR

0 otherwise

ns : number of items bought from suppliers s

Ws p : weight variables associated with breakpoint p

] 24/28

Decision variables constraints

y(s,r) > y(s,r+1)
Xsr < (Bs.r - Bs,rfl) y(S I’)
(Bs,r o Bs-rfl) ’ y(57 r+ 1) < Xs,r

VseS,r:rr+1eR
VseS,reR
VseS,r:r,r+1€eR

25/28

Decision variables constraints

y(s,r) > y(s,r+1) VseS,r:rr+1eR
Xs,r < (Bs.rf Bs,rfl) }/(5 I’) Vse S, reR
(Bs,r*BS_rfl)'y(S,r%»l)SXS_,, VSES,r:r,r+1€R

(reference row) ns = Z Wsp-Bsp VseS
p<Po

. EpE

Decision variables constraints

y(s,r) > y(s,r+1) VseS,r:rr+1eR
Xs,pr < (Bs.r - Bs,rfl) }/(5 r) Vse S, reR
(Bs,r = Bs,r—1) - y(s,r +1) < xs VseS,r:r,r+1eR

(reference row) ns = Z Wsp-Bsp VseS
p<Po

(convexity row) Z wsp=1 VseS§
PEPo

. EpE

Decision variables constraints

y(s,r) > y(s,r+1) VseS,r:rr+1eR
Xs,pr < (Bs.rfgs,rfl)'}/(s- r) Vse S, reR
(Bs,r*BS_rfl)'y(S,r%»l)SXs_r VSGS,r:r,r+1€R

(reference row) ns = Z Wsp-Bsp VseS
p<Po

(convexity row) Z wsp=1 VseS§
PEPo

VseS | J{wsp} SOS-2 with coeff. B,
pPEPy

25/28

Decision variables constraints

1 ! Define z and also order the weight variables by breakpoint
quantities
forall(s in S) sum(p in PO) B(s,p) * w(s,p) = z(s)

2
3
4 ! The convexity row (w sum to 1)

5 forall(s in S) sum(p in PO) w(s,p) = 1
6

7

! Define the w as S0S-2 as we can linearly interpolate

between the breakpoints

g forall(s in S)

9 makesos2 (union(p in PO){w(s,p)}, sum(p in PO) B(s,b)*w(s,p))

10

11 ! Alternative formulation:

12 !The weight coefficients BR are all augmented by EPS

13 !'since Mosel does not accept O-valued weights with ‘is_sos2’

14 forall(s in S)

15 sum(p in PO) (B(s,p)+10E-20) * w(s,p) is_sos2

. oY

Constraints

Z Xs,rz T

seS,reR

Y X< Qs T VseS

rer

. ey

Constraints

Z Xs,rz T

seS,reR
Y X< Qs T VseS
reR

D> m=T

seS

. ey

Constraints

Z Xs,rz T

seS,reR
Y X< Qs T VseS
reR
SnaT
seS
ns < Qs- T Vse s

. ey

Constraints

Z Xs,rz T

seS,reR
Y X< Qs T VseS
reR
SnaT
seS
ns < Qs- T Vse s

! The minimum quantity that must be bought
sum(s in S) z(s) >= T

! No more than the maximum percentage from each supplier

forall(s in S) z(s) <= Q(s)*T
NS, e

[I O

Objective function

min Z Xs.r* COSTsr

seS,reR

] 28/28

Objective function

min Z Xs.r* COSTsr

seS,reR

] 28/28

Objective function

min Z Xs.r* COSTsr

seS,reR

! Objective: sum of costs*weights
MinCost:= sum(s in S, p in PO) CB(s,p) * w(s,p)

AW N =

minimize (MinCost)

. oy

