Optimisation Models: exercises

Dipartimento di Ingegneria e Architettura
Universita degli studi di Trieste

30/4/2021, Trieste

Exercise 1: Economic lot sizing problem (ELS)

@ production planning of 4 products over 7 time periods

. Y

Exercise 1: Economic lot sizing problem (ELS)

@ production planning of 4 products over 7 time periods

@ in every period, a given demand (tons) for every product must be

satisfied by the production in this period and by inventory carried

over from previous periods

Time Periods

Prod | 1 2 314(5|6)|7
= 1 [2|35 [3]4]2]5
Sl 2 |3)1]2[3]5[3]1
Sl 3 | 3|5 |2 |1|2|1]3

4 | 201211 3]2]1]2
W 1 |53 [2]1[3[1]a
<2 1423|131
2 3 |33 |3|4/4|3]|3
Cloa | 221213334
Setup |17 |14 |11]6|9 6] 15

2/26

Exercise 1: Economic lot sizing problem (ELS)

@ production planning of 4 products over 7 time periods

@ in every period, a given demand (tons) for every product must be

satisfied by the production in this period and by inventory carried

over from previous periods

.) Time Periods
@ unit production cost per Prod | 11213 |4l5]6| 7
product and time period o 1 > T3 153225
1 c
(no inventory cost) 5 2 31112 13l5/3]1
gl 3 | 3|5 |2]1]|2|1]3
4 2 2 1 (3211 2
@ L |53 21[3[1]4
< 2 |1 [4|23]1]3]|1
2 3 |33 |3|4/4|3]|3
Yl 4 |2 2]2|3[3|3]4
Set-up |17 | 14| 11]6 /96 15
] 2/26

Exercise 1: Economic lot sizing problem (ELS)

@ production planning of 4 products over 7 time periods

@ in every period, a given demand (tons) for every product must be
satisfied by the production in this period and by inventory carried
over from previous periods

‘ _ Time Periods
@ unit production cost per Prod| 1 | 213]4als5l6] 7
[()roduct and time pe)riod S 1 > 1351314125

no inventory cost P

@ set-up cost (k€) 5 g g é ; i) g i) ;
associated each product o 4 2 2 1 (1312111 2
and each period wl 1 51 3|2 111(3|1)| 4
<2 142 (3]1]3]1
2 3 | 3|3|3|4[4[3]|3
Yl 4 |2 2]2|3[3|3]4
Set-up |17 |14 |11 6|9 |6 15

. VS

Exercise 1: Economic lot sizing problem (ELS)

@ production planning of 4 products over 7 time periods

@ in every period, a given demand (tons) for every product must be
satisfied by the production in this period and by inventory carried
over from previous periods

‘ _ Time Periods
@ unit production cost per Prod| 1 | 213]4als5l6] 7
product and time period —— > 1351314125
(no inventory cost) 5
A 3112 |3|5(3]|1
@ set-up cost (k€) Sl 3 3|5 21213
associated each product 4 2 2 1 (1312111 2
and each period @ 1 51 3|2 111(3|1)| 4
@ limited total production = 2 1142 (3]1[3]1
capacity (12 tons per 2l 3 3 13|13 (4(4]3]3
period) Yl 4 | 2]2]2]3|3|3]4
Set-up |17 [14|11 |6 |9 |6 |15

. VS

Exercise 1: Economic lot sizing problem (ELS)

@ production planning of 4 products over 7 time periods

@ in every period, a given demand (tons) for every product must be

satisfied by the production in this period and by inventory carried
over from previous periods

@ unit production cost per
product and time period
(no inventory cost)

@ set-up cost (k€)
associated each product
and each period

@ limited total production
capacity (12 tons per
period)

@ minimise the total cost

Time Periods

Prod | 1 2 314(5|6)| 7
- 1 [2|35 [3][4]2]5
Sl 2 |3 |1]2[3][5[3]1
Sl 3 | 3|5 |2|1|2|1]3
4 | 20121 13]2]1]2

W 1 |53 [2]1[3[1]a
<2 1423|131
2 3 |33 |3|4/4|3]|3
Cloa | 221213334
Setup |17 |14 11696 15
2/26

Notation

. Y

Notation

P : set of products
T : set of time periods =1,...,NT
DEM,, ;+ : demand for every product p in period t
PCp ¢ : unit production cost of product p in period t
SC; : set-up up cost associated with production in period t

CAP:; : total production capacity in period t

. Y

Decision variables

. 4/2

Decision variables

Xp,t : amount of product p made in period t

. Y

Decision variables

Xp,t : amount of product p made in period t

1 if a setup takes places for
Ypt = product p in period t VpeP,teT
0 otherwise

. Y

Objective function

] 5/26

Objective function

min Z (SCt - ypt + PCpot - Xpt)
peEP,teT

. oY

Objective function

min Z (SCt - ypt + PCpot - Xpt)
peEP,teT

! Objective: minimize total cost
MinCost:= sum(p in P, t in T)
(sc(t) * y(p,t) + PC(p,t) * x(p,t))

[I N S I

minimize (MinCost)

. oY

Decision variables constraints

. 6,26

Decision variables constraints

Xp,t < Dpt.NT * Vp,t VpeP,teT

. 6,26

Decision variables constraints

Xp,t < Dp,t,NT *Yp,t VpeP,teT

Dp t,.1, : total demand of product p in periods t; to to

. oV

Decision variables constraints

Xp,t < ENLLNT"YbJ VpeP,teT

Dp t,.1, : total demand of product p in periods t; to to

forall(p in P,s,t in T) D(p,s,t):= sum(k in s..t) DEM(p,k)

! If there is production during t then there is a setup in t
forall(p in P, t in T)
x(p,t) <= D(p,t,NT) * y(p,t)

[I N N

. oV

Constraints

. s

Constraints

t
pr,s >Dp1r VpeP,teT
s=1

. s

Constraints

t
pr,s >Dp1r VpeP,teT
s=1

Y xpr < CAP, VteT
peEP

. s

Constraints

t
pr,s >Dp1r VpeP,teT
s=1

Y xpr < CAP, VteT
peEP

! Satisfy the total demand
forall(p in P,t in T)
sum(s in 1..t) x(p,s) >= D(p,1,t)

! Capacity limits
forall(t in T) sum(p in P) x(p,t) <= CAP(t)

o 0 r W N -

. s

-
ELS: (1,S)-inequalities

VpeP, leT, SC{l...1}

/
Y Xpet D DpesYpe = Dpr
tes t=1|t¢S

. Y

-
ELS: (1,S)-inequalities

VpeP, leT, SC{l...1}

!
pr,t + Z Dp.t,1 - ¥p,t = Dp1,i
tes t=1|t¢S

® > ,c5Xp,t : actual production of product p in periods included in S

° Z{‘:l\&zs Dp ¢, ¥p,t - maximum potential production of product p in
the remaining periods (those not in S)
@ D, 1, : total demand of product p in periods 1 to /

. Y

-
ELS: (1,S)-inequalities

VpeP, leT, SC{l...1}

/
pr,t + Z Dp,t,l “Yp,t > Dp,l,l

tes t=1|t¢S

® > ,c5Xp,t : actual production of product p in periods included in S

° Z{‘:l\&zs Dp ¢, ¥p,t - maximum potential production of product p in
the remaining periods (those not in S)
@ D, 1, : total demand of product p in periods 1 to /

ZXPJ + Z Dp.t.1 - Yp,t 2 Zm'“ Xpt, Dpt1-¥Ypt) > Dp1y
tesS t=1|t¢S

. Y

-
ELS: (1,S)-inequalities

t |1]2]3
DEM;, |2 |35

p=1 =3, V¥SC{1,2,3}

3 .
> tes X1t + Lomajegs Drea - yie = i ymin(xie, D13 -yie) > D113

S=0— 10
S={1} —

S={2} > 10
S={3}— 10
S={1,2} —
5={2,3} —» 10
S$={1,3} —»
§$=1{1,2,3} -

“y11+8-y1p

X11+8-y12

“y1,1 + X122
“y11+8-y1p

X1,1 + X1,2

“y11+X12

X11+8-y12
X1,1 + X1,2

+5-y13>10
+5-y13>10
+5-y13>10
+x1,3 > 10
+5-y13>10
+x1,3 > 10
+x13 > 10
+x13 > 10

9/26

Using valid inequalities

! I
ZXPJ + Z Dp.t.1 - Yp,t = Z min(xp.t, Dpti-Ypt) > Dp 1,
tesS t=1|t¢S t=1

. R

Using valid inequalities

/ |
pr,t + Z Dp,t,l “Ypt = Z min(xp,ta Dp,t,l : yP,t) > Dp,l,l
tesS t=1|t¢S t=1

@ add them to the initial formulation

e creates a formulation with better LP relaxation
e only when you have a “small” set of valid inequalities
e easy to implement

] 10/26

Using valid inequalities

/ |
pr,t + Z Dp,t,l “Ypt = Z min(xp,ta Dp,t,l : yP,t) > Dp,l,l
tesS t=1|t¢S t=1

@ add them to the initial formulation

e creates a formulation with better LP relaxation
e only when you have a “small” set of valid inequalities
e easy to implement

@ add them only as needed to cut off fractional solutions

] 10/26

-
Cut Manager

@ the search for a solution of a MILP problem involves optimisation of a
large number of LP problems (nodes)

@ this process is often made more efficient by supplying additional rows
(cuts) to the matrix which reduce the size of the feasible region,
whilst ensuring that it still contains any optimal integer solution

@ by default, cuts are automatically added to the matrix by the solver
during a global search to speed up the solution process

@ users may also write their own cut manager routines to be called at
various points during the Branch and Bound search

. TR

-
Cut Manager

@ users may also write their own cut manager routines to be called at
various points during the Branch and Bound search

addcut

Purpose
Add a cut to the problem in the optimizer.

Synopsis

procedure addcut(cuttype:integer, type:integer, linexp:linctr)
Arguments

cuttype Integer number for identification of the cut

type Cut type (equationfinequality), which may be one of
CT_GEQ Inequality (greater or equal)

CT_LEQ Inequality (less or equal)
CT_EQ Equality

linexp Linear expression (= unbounded constraint)

Further information
This procedure adds a cut to the problem in the Optimizer. The cut is applied to the current node and all its descendants.

] 12/26

Callback functions
"users may define their own routines which should be called at various

stages during the optimisation process, prompting the solver to return to
the user's program before continuing with the solution algorithm”

. R

Callback functions

"users may define their own routines which should be called at various
stages during the optimisation process, prompting the solver to return to
the user's program before continuing with the solution algorithm”

setcallback

Purpose
Set optimizer callback functions and procedures.

Synopsis
procedure setcallback(cbtype:integer, cb:string)

13/26

Callback functions

"users may define their own routines which should be called at various
stages during the optimisation process, prompting the solver to return to
the user's program before continuing with the solution algorithm”

setcallback @ cbtype : type of the callback

Purpose
Set optimizer callback functions and procedures.

Synopsis
procedure setcallback(cbtype:integer, cb:string)

cbtype Type of the callback
XPRS_CB_CHGNODE User select node callback
XPRS CB PRENODE User preprocess node callback
XPRSicBioPTNODE User optimal node callback
XPRS_CB INFNODE User infeasible node callback
XPRS_CB_INTSOL User integer solution callback
XPRS:CB:NODECUTOFF User cut-off node callback
XPRS CB NEWNODE New node callback
XPRS CB BARITER Barrier iteration callback
XPRS:CB:CUTMGR Cut manager (branch-and-bound node) callback

. R

Callback functions
"users may define their own routines which should be called at various

stages during the optimisation process, prompting the solver to return to
the user's program before continuing with the solution algorithm”

@ cbtype : type of the callback

setcallback
purpose @ cb : name of the callback
Set optimizer callback functions and procedures. funCtion; the parameters and
s)
ynopsn;rocedure setcallback{cbtype:integer, cb:string) the type of the return value var
y

depending on cbtype

cbtype Type of the callback
XPRS_CB_CHGNODE User select node callback
XPRS CB PRENODE User preprocess node callback
XPRS CB OPTNODE User optimal node callback
XPRS_CB_INFNODE User infeasible node callback
XPRS CB_INTSOL User integer solution callback
XPRS_CB_NODECUTOFF User cut-off node callback
XPRS CB NEWNODE New node callback
XPRS CB BARITER Barrier iteration callback
XPRS_CB_CUTMGR Cut manager (branch-and-bound node) callback

. R

Callback functions: example

1 !The following example defines a procedure to handle
solution printing and sets it to be called whenever an
integer solution is found using the integer solution
callback

procedure printsol

declarations
objval:real
end-declarations

objval:= getparam("XPRS_lpobjval")
writeln("Solution value: ", objval)
end-procedure

© © N o U A~ W N

10
11 setcallback (XPRS_CB_INTSOL, "printsol")

] 14/26

-
Cut Manager

@ the solver works with tolerance values for solution feasibility that are
typically of the order of 107 by default. When evaluating a solution
it is important to take into account these tolerances

. TR

-
Cut Manager

@ the solver works with tolerance values for solution feasibility that are
typically of the order of 107 by default. When evaluating a solution
it is important to take into account these tolerances

@ to run the cut manager from Mosel, it may be necessary to (re)set
certain control parameters of the optimiser:

e presolve
@ cut strategy
e reserving space for extra rows in the matrix

! Switch presolve off
setparam ("XPRS_PRESOLVE", 0)

! No cuts
setparam ("XPRS_CUTSTRATEGY", 0)

! Reserve extra rows in matrix
setparam ("XPRS_EXTRAROWS", 4000)

. TR

© N o O » W N =

-
PRESOLVE

This control determines whether
presolving should be performed prior to
starting the main algorithm. Presolve
attempts to simplify the problem by
PRESOLVE 1 detecting and removing redundant
constraints, tightening variable bounds,
etc. In some cases, infeasibility may even
be determined at this stage, or the
optimal solution found.

-1 = Presolve applied, but a problem will
not be declared infeasible if primal
infeasibilities are detected. The problem
will be solved by the LP optimization
algorithm, returning an infeasible solution,
which can sometimes be helpful.

0 = Presolve not applied.

1 = Presolve applied.

2 = Presolve applied, but redundant
bounds are not removed. This can
sometimes increase the efficiency of the
barrier algorithm.

. TR

CUTSTRATEGY
Branch and Bound: This specifies the cut
strategy. A more aggressive cut strategy,
generating a greater number of cuts, will
result in fewer nodes to be explored, but
CUTSTRATEGY -1

with an associated time cost in
generating the cuts. The fewer cuts
generated, the less time taken, but the
greater subsequent number of nodes to
be explored.

-1 = Automatic selection of the cut
strategy.

0 = No cuts.
1 = Conservative cut strategy.
2 = Moderate cut strategy.
3 = Aggressive cut strategy.

17/26

-
EXTRAROWS

The initial number of extra rows to allow
for in the matrix, including cuts. If rows
are to be added to the matrix, then, for

maximum efficiency, space should be
reserved for the rows before the matrix is
input by setting the EXTRAROWS
control. If this is not done, resizing will
occur automatically, but more space may
be allocated than the user actually
requires. The space allowed for cuts is
equal to the number of extra rows
remaining after rows have been added
EXTRAROWS NIA but before the global optimisation starts.

EXTRAROWS is set automatically by the
optimiser when the matrix is first input to
allow space for cuts, but if you add rows,

this automatic setting will not be updated.

So if you wish cuts, either automatic cuts

or user cuts, to be added to the matrix
and you are adding rows, EXTRAROWS
must be set before the matrix is first
input, to allow space both for the cuts and
any extra rows that you wish to add.
Default value depends on the matrix
characteristics.

. R

-
Cutting plane algorithm

© solve the LP relaxation

@ identify violated (I, S)-inequalities by testing violations of

/
Z min(Xp.t, Dp e Yp.t) > Dp1,

t=1

© add violated inequalities as cuts to the problem
Q re-solve the LP problem

. e

© 0 N o U A W N

10

11

Cutting plane algorithm

parameters

ALG = 1 ! Default algorithm: no user cuts
CUTDEPTH = 10 ! Maximum tree depth for cut generation
EPS = 1le-6 ! Zero tolerance

end-parameters

procedure tree_cut_gen

setparam ("XPRS_PRESOLVE", 0) ! Switch presolve off

setparam (" XPRS_EXTRAROWS", 4000) ! Reserve extra rows
in matrix

setcallback (XPRS_CB_CUTMGR, "cb_node") ! Set the cut-

manager callback function
end-procedure

@ cb_node will be called by the solver from every node of the
Branch-and-Bound search tree (XPRS_CB_CUTMGR)

@ the prototype of this function is prescribed by the type of the callback

. SR

Cutting plane algorithm options

@ TOPONLY - generation of cuts only in the root node
(Cut-and-Branch) or also during the search (Branch-and-Cut)

o SEVERALROUNDS - number of cut generation passes at a node

o CUTDEPHT - search tree depth for cut generation

@ exclusive use of (I,S)-cuts or combination with others (e.g.default cuts
generated by the solver)

. YR

-
Cutting plane algorithm

1 function cb_node:boolean

2 declarations

3 solx: array(P,T) of real ! Sol. values for var.s x

4 soly: array(P,T) of real ! Sol. values for var.s y

5 ncut:integer ! Counter for cuts

6 cut: array(range) of linctr ! Cuts

7 cutid: array(range) of integer ! Cut type identification
8 type: array(range) of integer ! Cut constraint type

9 objval ,ds: real

10 end-declarations

11 depth:=getparam ("XPRS_NODEDEPTH")

13 if ((TOPONLY and depth<1) or (not TOPONLY and depth<=
CUTDEPTH)) then

14 ncut :=0

15 forall(t in T, p in P) do ! Get the solution values
16 solx(p,t):=getsol(x(p,t))

17 soly(p,t):=getsol(y(p,t))

18 end-do

. 2T

-
Cutting plane algorithm

1 ! Search for violated constraints

2 forall(p in P,1 in T) do

3 ds:=0

4 forall(t in 1..1)

5 if (solx(p,t)<D(p,t,l)*soly(p,t)+EPS) then ds+=solx(p,t)
6 else ds += D(p,t,l)*soly(p,t)

7 end-if

8

9 ! Generate the violated inequality

10 if(ds < D(p,1,1) - EPS) then

11 cut (ncut) := sum(t in 1..1)

12 if (solx(p,t)<(D(p,t,l)*soly(p,t))+EPS, x(p,t),
13 D(p,t,l)*xy(p,t)) - D(p,1,1)

14 cutid (ncut) := 1

15 type (ncut) := CT_GEQ

16 ncut+=1

17 end-if

18 end-do

. R

-
Cutting plane algorithm

1 returned:=false ! Call this function once per node
2

3 ! Add cuts to the problem

4 if (ncut>0) then

5 addcuts (cutid, type, cut);

6

7 if SEVERALROUNDS then

8 returned:=true ! Repeat until no new cuts generated
9 end-if

10 end-if

11 end-if

12 end-function

@ at every node this function is called repeatedly, followed by a
re-solution of the current LP, as long as it returns true.

] 24/26

|
Cutting plane algorithm options

SEVERALROUNDS :=false
TOPONLY :=false

case ALG of

© 0 N o U A W N e

0: break

1: setparam("XPRS_CUTSTRATEGY", 0) ! No cuts

2: setparam ("XPRS_PRESOLVE", 0) ! No presolve

3: tree_cut_gen ! User branch-and-cut + automatic cuts

4: do tree_cut_gen !User branch-and-cut (several rounds)
10 setparam ("XPRS_CUTSTRATEGY", O0) !mo automatic cuts
11 SEVERALROUNDS :=true end-do
12 5: do tree_cut_gen !User cut-and-branch (several rounds)
13 SEVERALROUNDS :=true ! + automatic cuts
14 TOPONLY :=true end-do
15 6: do tree_cut_gen !User branch-and-cut (several rounds)
16 SEVERALROUNDS :=true end-do ! + automatic cuts

17 end-case

. covER

Cutting plane algorithm results

ALG First Best

817 (2s/53) 788 (703s/187933)
852 (0s/77) BOOD (5925/244761)
845 (0s/77) 803 (2355121778)
818 (1s/50) 788 (271s/27653)
831 (1s/62) 788 (2535/19834)
809 (0s/45) 790 (984s/118846)
793 (1s/32) 788 (476s5/45495)

= T - T N R L~

Opt./Best bound
774.75 (1800s/358969)
723.13 (1800s/440753)
727.95 (1800s/412300)
783.06 (1800s/190171)
779.95 (1800s/146871)
784.07 (1800s/214400)
Opt. (1571s/168820)

@ larger problem (20 time periods)

e First, Best solution found and Best lower bound (Opt. if optimality

was proven)

@ solution value (running time / number of nodes)

@ all runs were stopped after 1800 seconds

26 /26

