
Optimisation Models: exercises

Dipartimento di Ingegneria e Architettura
Università degli studi di Trieste

30/4/2021, Trieste

Exercise 1: Economic lot sizing problem (ELS)

production planning of 4 products over 7 time periods

in every period, a given demand (tons) for every product must be
satisfied by the production in this period and by inventory carried
over from previous periods

unit production cost per
product and time period
(no inventory cost)

set-up cost (ke)
associated each product
and each period

limited total production
capacity (12 tons per
period)

minimise the total cost

Time Periods
Prod 1 2 3 4 5 6 7

D
em

an
d 1 2 3 5 3 4 2 5

2 3 1 2 3 5 3 1
3 3 5 2 1 2 1 3
4 2 2 1 3 2 1 2

C
os

t
(k
e

) 1 5 3 2 1 3 1 4
2 1 4 2 3 1 3 1
3 3 3 3 4 4 3 3
4 2 2 2 3 3 3 4

Set-up 17 14 11 6 9 6 15

2 / 26

Exercise 1: Economic lot sizing problem (ELS)

production planning of 4 products over 7 time periods
in every period, a given demand (tons) for every product must be
satisfied by the production in this period and by inventory carried
over from previous periods

unit production cost per
product and time period
(no inventory cost)

set-up cost (ke)
associated each product
and each period

limited total production
capacity (12 tons per
period)

minimise the total cost

Time Periods
Prod 1 2 3 4 5 6 7

D
em

an
d 1 2 3 5 3 4 2 5

2 3 1 2 3 5 3 1
3 3 5 2 1 2 1 3
4 2 2 1 3 2 1 2

C
os

t
(k
e

) 1 5 3 2 1 3 1 4
2 1 4 2 3 1 3 1
3 3 3 3 4 4 3 3
4 2 2 2 3 3 3 4

Set-up 17 14 11 6 9 6 15
2 / 26

Exercise 1: Economic lot sizing problem (ELS)

production planning of 4 products over 7 time periods
in every period, a given demand (tons) for every product must be
satisfied by the production in this period and by inventory carried
over from previous periods

unit production cost per
product and time period
(no inventory cost)

set-up cost (ke)
associated each product
and each period

limited total production
capacity (12 tons per
period)

minimise the total cost

Time Periods
Prod 1 2 3 4 5 6 7

D
em

an
d 1 2 3 5 3 4 2 5

2 3 1 2 3 5 3 1
3 3 5 2 1 2 1 3
4 2 2 1 3 2 1 2

C
os

t
(k
e

) 1 5 3 2 1 3 1 4
2 1 4 2 3 1 3 1
3 3 3 3 4 4 3 3
4 2 2 2 3 3 3 4

Set-up 17 14 11 6 9 6 15
2 / 26

Exercise 1: Economic lot sizing problem (ELS)

production planning of 4 products over 7 time periods
in every period, a given demand (tons) for every product must be
satisfied by the production in this period and by inventory carried
over from previous periods

unit production cost per
product and time period
(no inventory cost)

set-up cost (ke)
associated each product
and each period

limited total production
capacity (12 tons per
period)

minimise the total cost

Time Periods
Prod 1 2 3 4 5 6 7

D
em

an
d 1 2 3 5 3 4 2 5

2 3 1 2 3 5 3 1
3 3 5 2 1 2 1 3
4 2 2 1 3 2 1 2

C
os

t
(k
e

) 1 5 3 2 1 3 1 4
2 1 4 2 3 1 3 1
3 3 3 3 4 4 3 3
4 2 2 2 3 3 3 4

Set-up 17 14 11 6 9 6 15
2 / 26

Exercise 1: Economic lot sizing problem (ELS)

production planning of 4 products over 7 time periods
in every period, a given demand (tons) for every product must be
satisfied by the production in this period and by inventory carried
over from previous periods

unit production cost per
product and time period
(no inventory cost)

set-up cost (ke)
associated each product
and each period

limited total production
capacity (12 tons per
period)

minimise the total cost

Time Periods
Prod 1 2 3 4 5 6 7

D
em

an
d 1 2 3 5 3 4 2 5

2 3 1 2 3 5 3 1
3 3 5 2 1 2 1 3
4 2 2 1 3 2 1 2

C
os

t
(k
e

) 1 5 3 2 1 3 1 4
2 1 4 2 3 1 3 1
3 3 3 3 4 4 3 3
4 2 2 2 3 3 3 4

Set-up 17 14 11 6 9 6 15
2 / 26

Exercise 1: Economic lot sizing problem (ELS)

production planning of 4 products over 7 time periods
in every period, a given demand (tons) for every product must be
satisfied by the production in this period and by inventory carried
over from previous periods

unit production cost per
product and time period
(no inventory cost)

set-up cost (ke)
associated each product
and each period

limited total production
capacity (12 tons per
period)

minimise the total cost

Time Periods
Prod 1 2 3 4 5 6 7

D
em

an
d 1 2 3 5 3 4 2 5

2 3 1 2 3 5 3 1
3 3 5 2 1 2 1 3
4 2 2 1 3 2 1 2

C
os

t
(k
e

) 1 5 3 2 1 3 1 4
2 1 4 2 3 1 3 1
3 3 3 3 4 4 3 3
4 2 2 2 3 3 3 4

Set-up 17 14 11 6 9 6 15
2 / 26

Notation

P : set of products

T : set of time periods = 1, . . . ,NT

DEMp,t : demand for every product p in period t

PCp,t : unit production cost of product p in period t

SCt : set-up up cost associated with production in period t

CAPt : total production capacity in period t

3 / 26

Notation

P : set of products

T : set of time periods = 1, . . . ,NT

DEMp,t : demand for every product p in period t

PCp,t : unit production cost of product p in period t

SCt : set-up up cost associated with production in period t

CAPt : total production capacity in period t

3 / 26

Decision variables

xp,t : amount of product p made in period t

yp,t =


1 if a setup takes places for

product p in period t ∀p ∈ P, t ∈ T
0 otherwise

4 / 26

Decision variables

xp,t : amount of product p made in period t

yp,t =


1 if a setup takes places for

product p in period t ∀p ∈ P, t ∈ T
0 otherwise

4 / 26

Decision variables

xp,t : amount of product p made in period t

yp,t =


1 if a setup takes places for

product p in period t ∀p ∈ P, t ∈ T
0 otherwise

4 / 26

Objective function

min
∑

p∈P,t∈T
(SCt · yp,t + PCp,t · xp,t)

1 ! Objective: minimize total cost

2 MinCost := sum(p in P, t in T)

3 (SC(t) * y(p,t) + PC(p,t) * x(p,t))

4

5 minimize(MinCost)

5 / 26

Objective function

min
∑

p∈P,t∈T
(SCt · yp,t + PCp,t · xp,t)

1 ! Objective: minimize total cost

2 MinCost := sum(p in P, t in T)

3 (SC(t) * y(p,t) + PC(p,t) * x(p,t))

4

5 minimize(MinCost)

5 / 26

Objective function

min
∑

p∈P,t∈T
(SCt · yp,t + PCp,t · xp,t)

1 ! Objective: minimize total cost

2 MinCost := sum(p in P, t in T)

3 (SC(t) * y(p,t) + PC(p,t) * x(p,t))

4

5 minimize(MinCost)

5 / 26

Decision variables constraints

xp,t ≤ Dp,t,NT · yp,t ∀p ∈ P, t ∈ T

Dp,t1,t2 : total demand of product p in periods t1 to t2

1 forall(p in P,s,t in T) D(p,s,t):= sum(k in s..t) DEM(p,k)

2

3 ! If there is production during t then there is a setup in t

4 forall(p in P, t in T)

5 x(p,t) <= D(p,t,NT) * y(p,t)

6 / 26

Decision variables constraints

xp,t ≤ Dp,t,NT · yp,t ∀p ∈ P, t ∈ T

Dp,t1,t2 : total demand of product p in periods t1 to t2

1 forall(p in P,s,t in T) D(p,s,t):= sum(k in s..t) DEM(p,k)

2

3 ! If there is production during t then there is a setup in t

4 forall(p in P, t in T)

5 x(p,t) <= D(p,t,NT) * y(p,t)

6 / 26

Decision variables constraints

xp,t ≤ Dp,t,NT · yp,t ∀p ∈ P, t ∈ T

Dp,t1,t2 : total demand of product p in periods t1 to t2

1 forall(p in P,s,t in T) D(p,s,t):= sum(k in s..t) DEM(p,k)

2

3 ! If there is production during t then there is a setup in t

4 forall(p in P, t in T)

5 x(p,t) <= D(p,t,NT) * y(p,t)

6 / 26

Decision variables constraints

xp,t ≤ Dp,t,NT · yp,t ∀p ∈ P, t ∈ T

Dp,t1,t2 : total demand of product p in periods t1 to t2

1 forall(p in P,s,t in T) D(p,s,t):= sum(k in s..t) DEM(p,k)

2

3 ! If there is production during t then there is a setup in t

4 forall(p in P, t in T)

5 x(p,t) <= D(p,t,NT) * y(p,t)

6 / 26

Constraints

t∑
s=1

xp,s ≥ Dp,1,t ∀p ∈ P, t ∈ T

∑
p∈P

xp,t ≤ CAPt ∀t ∈ T

1 ! Satisfy the total demand

2 forall(p in P,t in T)

3 sum(s in 1..t) x(p,s) >= D(p,1,t)

4

5 ! Capacity limits

6 forall(t in T) sum(p in P) x(p,t) <= CAP(t)

7 / 26

Constraints

t∑
s=1

xp,s ≥ Dp,1,t ∀p ∈ P, t ∈ T

∑
p∈P

xp,t ≤ CAPt ∀t ∈ T

1 ! Satisfy the total demand

2 forall(p in P,t in T)

3 sum(s in 1..t) x(p,s) >= D(p,1,t)

4

5 ! Capacity limits

6 forall(t in T) sum(p in P) x(p,t) <= CAP(t)

7 / 26

Constraints

t∑
s=1

xp,s ≥ Dp,1,t ∀p ∈ P, t ∈ T

∑
p∈P

xp,t ≤ CAPt ∀t ∈ T

1 ! Satisfy the total demand

2 forall(p in P,t in T)

3 sum(s in 1..t) x(p,s) >= D(p,1,t)

4

5 ! Capacity limits

6 forall(t in T) sum(p in P) x(p,t) <= CAP(t)

7 / 26

Constraints

t∑
s=1

xp,s ≥ Dp,1,t ∀p ∈ P, t ∈ T

∑
p∈P

xp,t ≤ CAPt ∀t ∈ T

1 ! Satisfy the total demand

2 forall(p in P,t in T)

3 sum(s in 1..t) x(p,s) >= D(p,1,t)

4

5 ! Capacity limits

6 forall(t in T) sum(p in P) x(p,t) <= CAP(t)

7 / 26

ELS: (l,S)-inequalities

∀p ∈ P, l ∈ T , S ⊆ {1 . . . l}∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥ Dp,1,l

∑
t∈S xp,t : actual production of product p in periods included in S∑l
t=1|t /∈S Dp,t,l · yp,t : maximum potential production of product p in

the remaining periods (those not in S)

Dp,1,l : total demand of product p in periods 1 to l

∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥
l∑

t=1

min(xp,t, Dp,t,l · yp,t) ≥ Dp,1,l

8 / 26

ELS: (l,S)-inequalities

∀p ∈ P, l ∈ T , S ⊆ {1 . . . l}∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥ Dp,1,l

∑
t∈S xp,t : actual production of product p in periods included in S∑l
t=1|t /∈S Dp,t,l · yp,t : maximum potential production of product p in

the remaining periods (those not in S)

Dp,1,l : total demand of product p in periods 1 to l

∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥
l∑

t=1

min(xp,t, Dp,t,l · yp,t) ≥ Dp,1,l

8 / 26

ELS: (l,S)-inequalities

∀p ∈ P, l ∈ T , S ⊆ {1 . . . l}∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥ Dp,1,l

∑
t∈S xp,t : actual production of product p in periods included in S∑l
t=1|t /∈S Dp,t,l · yp,t : maximum potential production of product p in

the remaining periods (those not in S)

Dp,1,l : total demand of product p in periods 1 to l

∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥
l∑

t=1

min(xp,t, Dp,t,l · yp,t) ≥ Dp,1,l

8 / 26

ELS: (l,S)-inequalities

p = 1, l = 3, ∀S ⊆ {1, 2, 3}
t 1 2 3

DEM1,t 2 3 5∑
t∈S x1,t +

∑3
t=1|t /∈S D1,t,3 · y1,t ≥

∑3
t=1 min(x1,t, D1,t,3 · y1,t) ≥ D1,1,3

S = ∅ → 10 · y1,1 + 8 · y1,2 +5 · y1,3 ≥ 10

S = {1} → x1,1 + 8 · y1,2 +5 · y1,3 ≥ 10

S = {2} → 10 · y1,1 + x1,2 +5 · y1,3 ≥ 10

S = {3} → 10 · y1,1 + 8 · y1,2 +x1,3 ≥ 10

S = {1, 2} → x1,1 + x1,2 +5 · y1,3 ≥ 10

S = {2, 3} → 10 · y1,1 + x1,2 +x1,3 ≥ 10

S = {1, 3} → x1,1 + 8 · y1,2 +x1,3 ≥ 10

S = {1, 2, 3} → x1,1 + x1,2 +x1,3 ≥ 10

9 / 26

Using valid inequalities

∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥
l∑

t=1

min(xp,t, Dp,t,l · yp,t) ≥ Dp,1,l

add them to the initial formulation

creates a formulation with better LP relaxation
only when you have a “small” set of valid inequalities
easy to implement

add them only as needed to cut off fractional solutions

10 / 26

Using valid inequalities

∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥
l∑

t=1

min(xp,t, Dp,t,l · yp,t) ≥ Dp,1,l

add them to the initial formulation

creates a formulation with better LP relaxation
only when you have a “small” set of valid inequalities
easy to implement

add them only as needed to cut off fractional solutions

10 / 26

Using valid inequalities

∑
t∈S

xp,t +
l∑

t=1|t /∈S

Dp,t,l · yp,t ≥
l∑

t=1

min(xp,t, Dp,t,l · yp,t) ≥ Dp,1,l

add them to the initial formulation

creates a formulation with better LP relaxation
only when you have a “small” set of valid inequalities
easy to implement

add them only as needed to cut off fractional solutions

10 / 26

Cut Manager

the search for a solution of a MILP problem involves optimisation of a
large number of LP problems (nodes)

this process is often made more efficient by supplying additional rows
(cuts) to the matrix which reduce the size of the feasible region,
whilst ensuring that it still contains any optimal integer solution

by default, cuts are automatically added to the matrix by the solver
during a global search to speed up the solution process

users may also write their own cut manager routines to be called at
various points during the Branch and Bound search

11 / 26

Cut Manager

users may also write their own cut manager routines to be called at
various points during the Branch and Bound search

12 / 26

Callback functions

”users may define their own routines which should be called at various
stages during the optimisation process, prompting the solver to return to
the user’s program before continuing with the solution algorithm”

cbtype : type of the callback

cb : name of the callback
function; the parameters and
the type of the return value vary
depending on cbtype

13 / 26

Callback functions

”users may define their own routines which should be called at various
stages during the optimisation process, prompting the solver to return to
the user’s program before continuing with the solution algorithm”

cbtype : type of the callback

cb : name of the callback
function; the parameters and
the type of the return value vary
depending on cbtype

13 / 26

Callback functions

”users may define their own routines which should be called at various
stages during the optimisation process, prompting the solver to return to
the user’s program before continuing with the solution algorithm”

cbtype : type of the callback

cb : name of the callback
function; the parameters and
the type of the return value vary
depending on cbtype

13 / 26

Callback functions

”users may define their own routines which should be called at various
stages during the optimisation process, prompting the solver to return to
the user’s program before continuing with the solution algorithm”

cbtype : type of the callback

cb : name of the callback
function; the parameters and
the type of the return value vary
depending on cbtype

13 / 26

Callback functions: example

1 !The following example defines a procedure to handle

solution printing and sets it to be called whenever an

integer solution is found using the integer solution

callback

2 procedure printsol

3 declarations

4 objval:real

5 end -declarations

6

7 objval := getparam("XPRS_lpobjval")

8 writeln("Solution value: ", objval)

9 end -procedure

10

11 setcallback(XPRS_CB_INTSOL , "printsol")

14 / 26

Cut Manager

the solver works with tolerance values for solution feasibility that are
typically of the order of 10−6 by default. When evaluating a solution
it is important to take into account these tolerances

to run the cut manager from Mosel, it may be necessary to (re)set
certain control parameters of the optimiser:

presolve
cut strategy
reserving space for extra rows in the matrix

1 ! Switch presolve off

2 setparam("XPRS_PRESOLVE", 0)

3

4 ! No cuts

5 setparam("XPRS_CUTSTRATEGY", 0)

6

7 ! Reserve extra rows in matrix

8 setparam("XPRS_EXTRAROWS", 4000)

15 / 26

Cut Manager

the solver works with tolerance values for solution feasibility that are
typically of the order of 10−6 by default. When evaluating a solution
it is important to take into account these tolerances

to run the cut manager from Mosel, it may be necessary to (re)set
certain control parameters of the optimiser:

presolve
cut strategy
reserving space for extra rows in the matrix

1 ! Switch presolve off

2 setparam("XPRS_PRESOLVE", 0)

3

4 ! No cuts

5 setparam("XPRS_CUTSTRATEGY", 0)

6

7 ! Reserve extra rows in matrix

8 setparam("XPRS_EXTRAROWS", 4000)

15 / 26

PRESOLVE

16 / 26

CUTSTRATEGY

17 / 26

EXTRAROWS

18 / 26

Cutting plane algorithm

1 solve the LP relaxation

2 identify violated (l, S)-inequalities by testing violations of

l∑
t=1

min(xp,t , Dp,t,l · yp,t) ≥ Dp,1,l

3 add violated inequalities as cuts to the problem

4 re-solve the LP problem

19 / 26

Cutting plane algorithm

1 parameters

2 ALG = 1 ! Default algorithm: no user cuts

3 CUTDEPTH = 10 ! Maximum tree depth for cut generation

4 EPS = 1e-6 ! Zero tolerance

5 end -parameters

6

7 procedure tree_cut_gen

8 setparam("XPRS_PRESOLVE", 0) ! Switch presolve off

9 setparam("XPRS_EXTRAROWS", 4000) ! Reserve extra rows

in matrix

10 setcallback(XPRS_CB_CUTMGR , "cb_node") ! Set the cut -

manager callback function

11 end -procedure

cb node will be called by the solver from every node of the
Branch-and-Bound search tree (XPRS CB CUTMGR)

the prototype of this function is prescribed by the type of the callback

20 / 26

Cutting plane algorithm options

TOPONLY - generation of cuts only in the root node
(Cut-and-Branch) or also during the search (Branch-and-Cut)

SEVERALROUNDS - number of cut generation passes at a node

CUTDEPHT - search tree depth for cut generation

exclusive use of (l,S)-cuts or combination with others (e.g.default cuts
generated by the solver)

21 / 26

Cutting plane algorithm

1 function cb_node:boolean

2 declarations

3 solx: array(P,T) of real ! Sol. values for var.s x

4 soly: array(P,T) of real ! Sol. values for var.s y

5 ncut:integer ! Counter for cuts

6 cut: array(range) of linctr ! Cuts

7 cutid: array(range) of integer ! Cut type identification

8 type: array(range) of integer ! Cut constraint type

9 objval ,ds: real

10 end -declarations

11 depth := getparam("XPRS_NODEDEPTH")

12

13 if((TOPONLY and depth <1) or (not TOPONLY and depth <=

CUTDEPTH)) then

14 ncut :=0

15 forall(t in T, p in P) do ! Get the solution values

16 solx(p,t):= getsol(x(p,t))

17 soly(p,t):= getsol(y(p,t))

18 end -do

22 / 26

Cutting plane algorithm

1 ! Search for violated constraints

2 forall(p in P,l in T) do

3 ds:=0

4 forall(t in 1..l)

5 if(solx(p,t)<D(p,t,l)*soly(p,t)+EPS) then ds+=solx(p,t)

6 else ds += D(p,t,l)*soly(p,t)

7 end -if

8

9 ! Generate the violated inequality

10 if(ds < D(p,1,l) - EPS) then

11 cut(ncut):= sum(t in 1..l)

12 if(solx(p,t) <(D(p,t,l)*soly(p,t))+EPS , x(p,t),

13 D(p,t,l)*y(p,t)) - D(p,1,l)

14 cutid(ncut):= 1

15 type(ncut):= CT_GEQ

16 ncut +=1

17 end -if

18 end -do

23 / 26

Cutting plane algorithm

1 returned :=false ! Call this function once per node

2

3 ! Add cuts to the problem

4 if(ncut >0) then

5 addcuts(cutid , type , cut);

6

7 if SEVERALROUNDS then

8 returned :=true ! Repeat until no new cuts generated

9 end -if

10 end -if

11 end -if

12 end -function

at every node this function is called repeatedly, followed by a
re-solution of the current LP, as long as it returns true.

24 / 26

Cutting plane algorithm options

1 SEVERALROUNDS := false

2 TOPONLY := false

3

4 case ALG of

5 0: break

6 1: setparam("XPRS_CUTSTRATEGY", 0) ! No cuts

7 2: setparam("XPRS_PRESOLVE", 0) ! No presolve

8 3: tree_cut_gen ! User branch -and -cut + automatic cuts

9 4: do tree_cut_gen !User branch -and -cut (several rounds)

10 setparam("XPRS_CUTSTRATEGY", 0) !no automatic cuts

11 SEVERALROUNDS :=true end -do

12 5: do tree_cut_gen !User cut -and -branch (several rounds)

13 SEVERALROUNDS :=true ! + automatic cuts

14 TOPONLY :=true end -do

15 6: do tree_cut_gen !User branch -and -cut (several rounds)

16 SEVERALROUNDS :=true end -do ! + automatic cuts

17 end -case

25 / 26

Cutting plane algorithm results

larger problem (20 time periods)

First, Best solution found and Best lower bound (Opt. if optimality
was proven)

solution value (running time / number of nodes)

all runs were stopped after 1800 seconds

26 / 26

