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Agenda

Thermodynamic properties & phase equilibria
 Phase equilibrium: pure components
 Clausius-Clapeyron equation  
 Phase equilibrium: mixtures
 Fugacity, Fugacity coefficient, Activity coefficient, 
 Calculation of phase equilibria (gamma-phi and phi-phi)
 Henry’s law

Phase diagrams 
 Binary T-x and P-x diagrams

 High pressure diagrams

 Binary x-y diagrams 

 Azeotropes 

 Other diagrams (activity coefficients, excess enthalpy,…) 

Modeling phase equilibria
 Activity coefficient models – GE models 
 Equations of state
 QM methods: COSMO-RS

Thermodynamic consistency 
 Barker’s method



Thermodynamic properties & phase 
equilibria

 Phase equilibrium: pure components

 Clausius-Clapeyron equation 

 Phase equilibrium: mixtures

 Fugacity, Fugacity coefficient, activity coefficient, 

 Calculation of phase equilibria (gamma-phi and phi-phi)

 Henry’s law
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Vapor liquid contacting system
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Vapor liquid contacting system



Separation Processes – Maurizio Fermeglia Trieste, 28 February, 2021 - slide 6

Thermodynamic properties and 
Phase Equilibrium

N. of phases
 Single phase systems

 Multi phase systems

N. of components
 Pure components

 Mixtures 
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Single Phase systems

Motivation: 
 most of the material balances in single phase involve liquids and gases 

and their volumetric properties

Data is necessary (density, …)
 Look it up in the data bank  find the right DB and values

 Estimate it  pay attention to the estimation method

 Measure it  problems of correlation and extrapolation

For liquid systems the main problem is mixture density

For gas system the main problem is the equation of state
 Ideal gas law

 Real gases and critical state

 Van der Waals equation of state and related EOS

 More complex equations of state

 Compressibility factor EOS and corresponding states
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Multi Phase Systems

One component systems
 phase diagrams

 vapor pressure and saturated properties

Binary Systems
 Gibbs phase rule

 General conditions for equilibrium

 Vapor – liquid equilibrium (all condensable components)

 Gas – Liquid equilibrium (non condensable component)

 Other equilibrium: solid – liquid and liquid - liquid

Multi component systems

Two phases in equilibrium

Three or more phases in equilibrium
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PVT for an ideal gas: pure component
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Phase behavior for a pure component
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3D Phase diagram: pure component
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PV diagram for a pure component system
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PT diagram for a pure component system

Water Clausius-Clapeyron Relation
𝑑𝑃

𝑑𝑇
=

λ

𝑇∆𝑣
=
∆𝑠

∆𝑣

λ = phase transition

latent specific heat

𝑣 = specific volume

s = specific entropy

V C F 2N N  

Gibbs phase rule
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Thermodynamic Potentials

Four important thermodynamic functions. These are:
 The total (mean) Internal Energy U (E)

 The Enthalpy H

 The Helmholtz Free Energy F

 The Gibbs Free Energy G

Any one of these functions can be used to characterize the 
thermodynamic properties of a macroscopic system. These 
functions are sometimes called Thermodynamic Potentials (TP) 
or State functions. 
 Internal Energy U, 

 Enthalpy H = U + pV

 Helmholtz Free Energy F = U – TS

 Gibbs Free Energy G = U – TS + pV

They depend ONLY on the Equilibrium state of the system

If the integral of df doesn't depend on the path of integration, 
f is a state function and df is an exact differential. 
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Thermodynamic Potentials

If we define: 
 N  Number of particles in the system. 

   Chemical potential of the system. 

For each TP, a set of so-called “natural variables” exists.
 Internal Energy U = U(S,V,N)

 Enthalpy H = U + pV = H(S,p,N)

 Helmholtz Free Energy F = U – TS = F(T,V,N) 

 Gibbs Free Energy G = U – TS + pV = G(T,p,N)

Potential Variables

U(S,V,N) S,V,N

H(S,p,N) S,p,N

F(T,V,N) V,T,N

G(T,P,N) P,T,N
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 , ,dU S V N TdS PdV dN  

  dNVdPdSTNPSdH ,,

  dNPdVSdTNVTdF ,,

  dNVdPSdTNPTdG ,,

Thermodynamic potentials

All thermodynamic properties of a system can be found 
by taking appropriate partial derivatives of the 
Thermodynamic Potential. 

The total differentials resulting from the combined 1st & 
2nd Laws for each Thermodynamic Potential are:
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Why Use Maxwell Relations?
What Good are They?

Some variables in thermodynamics are hard to measure 
experimentally. 
 For example, the entropy

The Maxwell Relations provide a way to exchange 
variables.

They relate theoretical quantities, such as equations of 
state & entropy to more easily measured quantities 

Internal energy (U), Enthalpy (H), Helmholtz free energy 
(F) and Gibbs free energy (G) are used to derive the 4 
most common Maxwell equations. 
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Deriving Maxwell Relations: a recipe

dV
V

U
dS

S

U
dU

SV




























Assume an infinitesimal quasi-static process & express an 
energy as a function of the other variables. For the 
internal energy U as a function of T, S, P, V, we have 

Next, take the total derivative of the energy with respect 
to the natural variables.  

 For example, for the internal energy U, natural 
variables are entropy S & volume, V

 U is a state function and dU is an exact differential.
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Deriving Maxwell Relations: a recipe

Now that we have the total derivative with respect to its 
natural variables, we can refer back to the original equation for 
the energy U and define, in this example, T and P.

T
S

U

V













P

V

U

S














dV
V

U
dS

S

U
dU

SV



























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Deriving Maxwell Relations: a recipe

Now if we take into account a rule about partial 
derivatives for analytic functions (Schwarz theorem): 

Next, when taking the partial derivative of

We obtain the same result, which is equal to ൗ𝜕2𝑈
𝜕𝑆𝜕𝑉 for 

both derivatives: we have derived a Maxwell Relation

T
S

U

V













P

V

U

S













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The 4 Most Common Maxwell Relations

Internal energy (U), Enthalpy (H), Helmholtz free energy 
(F) and Gibbs free energy (G) are used to derive the 4 
most common Maxwell equations. 

These are derived assuming that
 The external parameter is the volume V

 The generalized force is the pressure P

VS S

P

V

T


























VT T

P

V

S


























PS S

V

P

T


























PT T

V

P

S

























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Maxwell Relations
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Clausius-Clapeyron Equation (Maxwell relations)

Phases (A,B) equilibrium condition:

 𝑇𝐴 = 𝑇𝐵; 𝑃𝐴 = 𝑃𝐵; 𝐺𝐴= 𝐺𝐵
 𝑑𝐺𝐴 𝑇, 𝑝 = 𝑑𝐺𝐵(𝑇, 𝑝)



𝜕𝐺𝐴

𝜕𝑇
𝑑𝑇 +

𝜕𝐺𝐴

𝜕𝑝
𝑑𝑝 =

𝜕𝐺𝐵

𝜕𝑇
𝑑𝑇 +

𝜕𝐺𝐵

𝜕𝑝
𝑑𝑝

Gibbs-Helmholtz Equation

 𝑑𝐺 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇
𝜕𝐺

𝜕𝑇
= −𝑆,

𝜕𝐺

𝜕𝑝
= V

 𝑉𝐴𝑑𝑝 − 𝑆𝐴𝑑𝑇 = 𝑉𝐵𝑑𝑝 − 𝑆𝐵𝑑𝑇
𝑑𝑝

𝑑𝑇
=

𝑆𝐵−𝑆𝐴

𝑉𝐵−𝑉𝐴

From II law (ds=dq/T) and phase Transition is isothermal

And Vv >> VL: 

𝑆𝐵−𝑆𝐴 = න
𝐴

𝐵 𝛿𝑄

𝑇
=
1

𝑇
න
𝐴

𝐵

𝛿𝑄 =
𝜆

𝑇 )( VlVvTdT

dP vap




 

2RT

P

dT

dP

P
RTVvVlVv

vap 









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Clausius-Clapeyron Equation (Carnot cycle)

Work from a reversible Carnot cycle

Efficiency of a reversible Carnot cycle

          dPVlVvTPdTTPVlVvdw

P

V

T

T + dT

dP°

Vl Vv

)( VlVvTdT

dP vap




 

2RT

P

dT

dP

P
RTVvVlVv

vap 










 
T

dT
dma

dPVlVv
d

vap




 



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Saturation and Vapor Pressure

Clausius-Clapeyron curve represents the VLE of a pure 
component = saturation
 Vapor is saturated when the first drop of liquid is formed (dew point)

 Liquid is saturated when the first bubble of vapor is formed (bubble point)

Vapor fraction: mass fraction of the less dense (vapor) phase 
with respect to the total mass

Vapor Pressure and Temperature
 Clausis-Clapeyron expression for 

moderate pressure when vg>>> vl

 Semi empirical laws: Antoine

 where A, B and C are fluid (and units) dependent constants

ln 𝑃 = −
λ

𝑅
∗
1

𝑇
+ 𝑐

ln𝑃 = 𝐴 −
𝐵

(𝑇 + 𝐶)

𝑑𝑃°

𝑑𝑇
=
λ𝑃°

𝑅𝑇2
V= volume

v= sp. volume V/m
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Gibbs phase rule

The variables for describing a process are
 Extensive (depends on size of system)

 Intensive (do not)

The number of  intensive variables that can be specified 
independently is called degree of freedom (DF). If c= # 
components and P= # phases

Valid if no reaction occur

If r independent reaction occur, the right hand side of the 
equation should be reduced by r

T,P

𝐷𝑜𝐹 = 2 + 𝑐 − 𝑃 − 𝑅

𝐷𝑜𝐹 = 2 + 𝑐 − 𝑃
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Phase behavior of a mixture of components

Pure componentsMixtures
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Mixtures: phase Equilibrium Relationships

𝑇(1) = 𝑇(2) = 𝑇(3) = ⋯ = 𝑇(𝜋)

𝑃(1) = 𝑃(2) = 𝑃(3) = ⋯ = 𝑃(𝜋)

𝜇1
(1)

= 𝜇1
(2)

= 𝜇1
(3)

= ⋯ = 𝜇1
(𝜋)

…

𝜇𝑚
(1)

= 𝜇𝑚
(2)

= 𝜇𝑚
(3)

= ⋯ = 𝜇𝑚
(𝜋)

ҧ𝐺1
(1)

= ҧ𝐺1
(2)

= ҧ𝐺1
(3)

= ⋯ = ҧ𝐺1
(𝜋)

𝑑𝐺 𝑇, 𝑝, 𝒏
𝜕𝐺

𝜕𝑛
= 𝜇(𝑇, 𝑝)



Separation Processes – Maurizio Fermeglia Trieste, 28 February, 2021 - slide 29

𝜇𝑖
(𝛼)

− 𝜇𝑖
0𝛼 = 𝑅𝑇 ln

መ𝑓𝑖
𝛼

𝑓𝑖
0𝛼

From Chemical Potential μ to Fugacity f

𝑑𝜇𝑇 = 𝑑𝑔𝑇 = 𝑣𝑑𝑝 = 𝑅𝑇
𝑑𝑝

𝑝
= 𝑅𝑇𝑑𝑙𝑛 𝑝 valid for perfect gas

𝑖 = 1,2, … ,𝑚
𝛼 = 1,2, … , 𝜋

𝜇𝑖
01 + 𝑅𝑇 ln

መ𝑓𝑖
(1)

𝑓𝑖
01 = 𝜇𝑖

02 + 𝑅𝑇 ln
መ𝑓𝑖
(2)

𝑓𝑖
02 = ⋯ = 𝜇𝑖

0𝜋 + 𝑅𝑇 ln
መ𝑓𝑖
(𝜋)

𝑓𝑖
0𝜋

න
𝑔𝑝,𝑇,𝑝

𝑔𝑟,𝑇,𝑝

𝑑𝜇𝑇 = න
𝑔𝑝,𝑇,𝑝

𝑔𝑟,𝑇,𝑝

𝑅𝑇𝑑𝑙𝑛(𝑓)
Fugacity represents the pressure of 
an real gas (gp) whose temperature 

and molar Gibbs free energy are 
equal to the ones of a real gas (gr)
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Phase Equilibrium in terms of Fugacity

𝑇(1) = 𝑇(2) = 𝑇(3) = ⋯ = 𝑇(𝜋)

𝑃(1) = 𝑃(2) = 𝑃(3) = ⋯ = 𝑃(𝜋)

መ𝑓1
(1)

= መ𝑓1
(2)

= መ𝑓1
(3)

= ⋯ = መ𝑓1
(𝜋)

…

መ𝑓𝑚
(1)

= መ𝑓𝑚
(2)

= መ𝑓𝑚
(3)

= ⋯ = መ𝑓𝑚
(𝜋)
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Fugacity coefficient and Equilibrium

i

i

i

i
i

P

f

Px

f ˆˆ
ˆ 

Fugacity is more convenient than chemical potentials...
 … but equilibrium is best expressed in term of fugacity coefficients

 ... which is one if the fugacity is equal to the partial pressure

Fugacity coefficient may be considered as the correction 
factor to the partial pressure (effective partial pressure)
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Phase Equilibrium in terms of Fugacity 
coefficients (𝜑 𝜑 approach)

𝑇(1) = 𝑇(2) = 𝑇(3) = ⋯ = 𝑇(𝜋)

𝑃(1) = 𝑃(2) = 𝑃(3) = ⋯ = 𝑃(𝜋)

ො𝜑1
(1)
𝑥1
(1)
𝑃 = ො𝜑1

(2)
𝑥1
(2)
𝑃 = ො𝜑1

(3)
𝑥1
(3)
𝑃 = ⋯ = ො𝜑1

(𝜋)
𝑥1
(𝜋)

𝑃

…

ො𝜑𝑖
𝐿𝑥𝑖 = ො𝜑𝑖

𝑉𝑦𝑖

At the Liquid - Vapor Equilibrium

𝑖 = 1,2, … ,𝑚

ො𝜑𝑚
(1)
𝑥𝑚
(1)
𝑃 = ො𝜑𝑚

(2)
𝑥𝑚
(2)
𝑃 = ො𝜑𝑚

(3)
𝑥𝑚
(3)
𝑃 = ⋯ = ො𝜑𝑚

(𝜋)
𝑥𝑚
(𝜋)

𝑃
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Fugacity from an Equations of State

𝐹 𝑃, 𝑉, 𝑇, 𝑦1, … , 𝑦𝑛−1 = 0

Equation of State is a function…

Fugacity is obtained by integration

𝑅𝑇𝑙𝑛 ො𝜑𝑖 = න

0

𝑃

𝑣 −
𝑅𝑇

𝑝
𝑑𝑝 →

𝑅𝑇𝑑𝑙𝑛 𝑝 = 𝑅𝑇 ln
መ𝑓𝑖
𝛼

𝑝𝑖
0𝛼 = 𝑅𝑇𝑙𝑛 ො𝜑𝑖 = 𝑑𝜇𝑇

Z =
𝑝𝑣

𝑅𝑇
compressibility factor

𝑑𝜇𝑇 = 𝑑𝑔𝑇 = 𝑣𝑑𝑝 = 𝑅𝑇
𝑑𝑝

𝑝
= 𝑅𝑇𝑑𝑙𝑛(𝑝)

𝑙𝑛 ො𝜑𝑖 =
1

𝑅𝑇
න

0

𝑃
𝑝𝑣 − 𝑅𝑇

𝑝
𝑑𝑝

𝑙𝑛 ො𝜑𝑖 = න

0

𝑃

𝑍 − 1
𝑑𝑝

𝑝



Separation Processes – Maurizio Fermeglia Trieste, 28 February, 2021 - slide 34

RT
nA

n
RT Zi

r

i n T Vj

ln  ln

, ,

 










 





 

 

2

,,

2

2

,

,

,

1

lnˆln

,,

,,

V

n

V

P

RTV

F

Z
n

F

T

F

RT

nVTnS

T

F

V

n

RT

P

V

F

RT

nTVnA
F

nTnT

i

VTi

r

nV

nT

r






































































Vn

P

RTnV

F

RT

P

T

P

RTVT

F

T

P

RT

V

TTnT

F

nn

P

RT

V

nnn

F

T

F

TRT

nC

T

F

VTiTi

nVn

nV

i

nP

i

Vi

VTj

i

PTj

i

VTji

nV

r

V

nV

11

1

1ˆln

1ˆln

2

,

2

2

,

2

,,

2

,,,

2

,

2

,

2

2






























































 








































 


















































































… may be obtained by differentiation



Separation Processes – Maurizio Fermeglia Trieste, 28 February, 2021 - slide 35

Fugacity from Activity Coefficients

Vapor fugacity
V
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Order of magnitude of corrections

Fugacity correction ratio for 
Ethanol @ 150 °C

Poynting factor for 
Ethanol @ 150 °C
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Types of VLE Phase behaviour

Ideal systems
 Systems that obey the Raoult’s law

 Consist of molecules of the same size and shape and intermolecular
forces

 Mixtures at low pressures that may be assumed as ideal mixtures
(hydrocarbons, isomers,…)

 Ideal mixtures cannot form azeotropes or multiple liquid phases

Non ideal systems
 Due to interactions between functional groups creatinf non randomness

in the mixture

 Due to energy effects created by size and shape differences

 Is accounted for activity coefficients

x

Psat

Raoult’s
Law

A B
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Types of VLE Phase behavior: effects of non 
ideality

γ > 1  because molecules are dissimilar and tend to aggregate more 

with molecules of the same species, creating large local 
concentration. Ge is positive. Positive deviation from ideality

γ >>>> 1: liquid may split into two phases

γ < 1  when attractive forces between dissimilar molecules are 

stronger than the forcess between the like molecules. Ge is negative. 
Negative deviation from ideality

if γ < may have chemical complexes (ammonia water system)

x

Psat Positive 
Deviation

A B

Negative 
Deviation
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Calculation of phase equilibria 

γ-φ approach:
 fugacity coefficients in the vapor phase by the Hayden-O’Connell (HOC) 

model

 activity coefficients by a suitable GE model

 NOTE 1: limited pressure range due to HOC and GE models validity

 NOTE 2: it is essential a correct calculation of the pure component 
vapor pressure

φ-φ approach:
 fugacity coefficients in the vapor phase by an Equation-of-State (EOS) 

model

 fugacity coefficients in the liquid phase by same Equation-of-State 
(EOS) model

 NOTE 1: simplest EOS’s suitable for this application are cubic EOS’s

 NOTE 2: no applicability limits as far as pressure is concerned

 NOTE 3: computational effort much bigger than for the γ-φ approach
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VLE: comparison of two Approaches

GAMMA - PHI
Pros
 Reliability at low pressure

 Very good for describing polar 
mixtures

 Simplicity

 Easy programming and low CPU 
time

Cons
 Valid only at low pressure

 Parameters of the model are 
highly correlated

 Consistency at the critical point

PHI - PHI
Pros
 Continuity at the critical point 

(one model)

 Parameters are non so strongly 
correlated

 Applicable in an high T and P 
range

 Describes volumetric properties 
as well as equilibrium

Cons
 Complexity and high CPU time

 Polar and low pressure mixtures
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Calculation of phase equilibria: binary system

γ-φ approach:

φ-φ approach:

 NOTE 1: five possibilities for the calculation: (T, x); (T, y); (P, x); (P, y); (T, P)

 NOTE 2: the simplest model (at lower pressure)
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Calculation of phase equilibria

Cubic EOS’s are the simplest model to apply the φ-φ 
approach for VLE calculation.
 The simplest cubic EOS is the VdW EOS

 Evaluation of VdW EOS parameters for pure components

 Evaluation of VdW EOS parameters for mixtures

NOTE: only two properties are needed to calculate the 
VdW parameters

2

C
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v b v
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Fugacity from Henry’s law

01*  

iiii xas

Vapour phase fugacity

Liquid phase fugacity:

Where

Since pure liquid does not exist 

Henry’s law is used to determine the amount of a supercritical 
component or light gas in the liquid phase
Only used with Ideal and Activity Coefficient models
𝐻𝑖 is calculated from temperature-dependent Henry’s constants for each 
solute-solvent pair
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Graphical representation of H



Phase Equilibria diagrams

 Binary T-x and P-x diagrams

 High pressure diagrams

 Binary x-y diagrams 

 Azeotropes 

 Other diagrams 
(activity coefficients, excess enthalpy,…) 
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VLE diagram for a binary system

48

Vapor

Liquid
P

Z=const
section

P=const
section

T=const
section
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Binary diagrams at constant T / P 

50

IMPIANTI CHIMICI – A.A. 2019-2020
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Constant composition diagram

51

IMPIANTI CHIMICI – A.A. 2019-2020

Critical Locus
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Retrograde condensation region
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High Pressure

High pressure phase 
equilibria 

Type I to type VI  
mixtures 
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3D P-T-x diagrams for type I, II, III, V, VI
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Scott and van Konynenburg classification
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Composition diagram
(x-y)

56

IMPIANTI CHIMICI – A.A. 2019-2020

Liquid

Vapour

P=const

Dew curve

Bubble  curve
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Homogeneous azeotropic systems

58

IMPIANTI CHIMICI – A.A. 2019-2020

Positive 

azeotropes 

are also 

called 

minimum 

boiling 

mixtures or 

pressure 

maximum

azeotropes.
P P

Negative 

azeotropes 

are also 

called 

maximum 

boiling 

mixtures or 

pressure 

minimum

azeotropes..
P=const P=const
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Water - Ethanol @ 1 atm, azeotropic diagram

59

IMPIANTI CHIMICI – A.A. 2019-2020
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T-x, p-x, and x-y diagrams of various types
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T-x, p-x, and x-y diagrams of various types
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X-y diagrams of various type
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Liquid Liquid and VLL equilibrium

The basic VLLE equation is 222111ˆ
ii

o

iii

o

i

V

ii xfxfPy  

Water – 1 butanol @ 1 atm
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LL & VLLE Phase Diagram

Water - 1-Butanol @ 1 atm - UNIFAC

365 K
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Liquid – Liquid Equilibrium

Water - 1-Butanol @ 1 atm, 365K - UNIFAC
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LL & VLLE Phase Diagram

Water - 1-Butanol @ 1 atm - UNIFAC
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Vapor Liquid Liquid Equilibrium

Water - 1-Butanol @ 1 atm, 370K - UNIFAC
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Activity coefficient diagram
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Activity coefficients vs. concentration
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Mixing properties: free energy, enthalpy, 
entropy and excess volume

Free energy 
of mixing 
(a), 

enthalpy of 
mixing (b), 

entropy of 
mixing (c) 

excess 
volume (d) 
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Enthalpy vs. Composition: Ponchon-Savarit Plot
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Enthalpy vs. Composition: Ponchon-Savarit Plot

3 phases are shown on the plot – solid, liquid, and vapor.

Temperature is represented by isothermal tie lines between 
the saturated liquid (boiling) line and the saturated vapor 
(dew) line.

Points between the saturated liquid line and the saturated 
vapor line represent a two-phase, liquid-vapor system.

An azeotrope is indicated by the composition at which the 
isotherm becomes vertical.  Why?

Why are the boiling point temperatures of the pure 
components different than those determined from the y vs. x 
and T vs. x, y plots for ethanol-water?

The azeotrope for ethanol-water is indicated as T = 77.65° C 
and a concentration of 0.955.  Why is this different than that 
determined from the y vs. x and T vs. x,y plots for ethanol-
water?
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Enthalpy vs. Composition: Ponchon-Savarit Plot
Bubble point Temperature

82.2 oC
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Enthalpy vs. Composition: Ponchon-Savarit Plot
1st Bubble point Temperature
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Enthalpy vs. Composition: Ponchon-Savarit Plot
Dew point Temperature

94.8 oC
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Enthalpy vs. Composition: Ponchon-Savarit Plot
Last liquid drop composistion
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Enthalpy vs. Composition: 
Enthalpy Determination

The major purpose of an enthalpy diagram is to 
determine enthalpies.

We will use enthalpies in energy balances later.

For example, if one were given a feed mixture of 35% 
ethanol (weight %) at T = 92°C and P = 1 kg/cm2 and 
the mixture was allowed to separate into vapor and 
liquid, what would be the enthalpies of the feed, vapor, 
and liquid?
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Enthalpy vs. Composition: 
Enthalpy Determination

425

295

90
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Vapor pressure is crucial in VLE calculation

The correction given by activity coefficient is insufficient if 
the vapor pressure is wrong!



Modeling phase equilibria

 Activity coefficient models

 Solubility parameter 

 Equations of state

 COSMO-RS
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Modeling  Phase Equilibrium

The goals of the modeling are both to correlate existing data and to 
predict phase equilibrium 

Correlation
 regressed parameters

 semi-empirical equations

 fitting of  portions of the phase diagram even with high accuracy

Prediction
 physical significance of the parameters

 theoretically based models need the introduction of additional adjustable parameters

An ideal model would
 use easily measured physical properties to predict phase equilibrium at any condition

 it would be theoretically based.

No such model exists, and any single model cannot treat all situations
  modeling is still case specific

Many problems still to be solved: 
 critical points - multi-component mixtures - polar systems - association and solvation 

Two big families of models
 Excess Gibbs energy models (or activity coefficients models)

 Equations of state models 
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Excess Gibbs free energy models (GE models) 

Polynomial expansions, 
 according to the Wohl method, which is a polynomial correlation of the system 

data for both binary and multicomponent systems. 

 number of parameters to be fitted depends on the polynomial expansion used. 

 Equations such as Van Laar and Margules belong to this category. 

 Note that the Margules expansion can be used with different (i.e. increasing) 
number of adjustable parameters

Models based on the local composition concept 
 introduced by Wilson in 1961. 

 based on a correlation of binary parameters on binary data, 

 multicomponent systems equilibria is done starting from the knowledge of all 
the binary systems based on component pairs in the mixture of interest. 

 Among others, NRTL and UNIQUAC are the best ones. 

 Wilson defined the local composition concept based on 2 things: 
 interactions among molecules are expressed in terms of binary parameters only;

 temperature dependency of parameters is made explicit through a Boltzmann-like equation

Fully predictive models 
 group contribution, solubility parameters and quantum chemistry models 
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Excess Gibbs energy molecular models

Starting point: Excess Gibbs Energy

Margules two suffixes:
𝐺𝐸

𝑅𝑇
= 𝑥1𝑥2(𝐴21𝑥1 + 𝐴12𝑥2) + ⋯

Redlich Kister:
𝐺𝐸

𝑅𝑇
= 𝑥1𝑥2[𝐴 + 𝐵 𝑥1 − 𝑥2 + C 𝑥1 − 𝑥2

2 + 𝐷 𝑥1 − 𝑥2
3 +⋯]

Van Laar: 
𝐺𝐸

𝑅𝑇
= 𝑥1𝑥2

𝐴12𝐴21

𝐴21𝑥1+𝐴12𝑥2

Wilson: 
𝐺𝐸

𝑅𝑇
= 𝑥1 ln 𝑥1 + 𝑥2Λ12 − 𝑥2 ln 𝑥2 + 𝑥1Λ21

UNIQUAC

NRTL (electrolyte)
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Wilson models

Wilson model for activity coefficients (binary system) is:

Wilson parameter is provided by following equation -

where, λ12 - λ11 and λ21 - λ22 are binary interaction 
parameters available from literature for a binary pair. 
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NRTL model

Activity coefficient for binary system are defined as -

Parameter g12 - g22 and g21 - g11 are binary parameters 
available from literature.

α12 is related to non-randomness in mixture and is 
available from literature for binary pairs. 
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UNIQUAC model

Activity coefficient for binary system are defined as -
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UNIQUAC model

Parameter u12 - u22 and u21 - u11 are binary parameters 
available from literature. 

Remaining parameters are calculated as following:

where z is set equal to 10 and r, q & q' are pure 
component UNIQUAC parameters.
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UNIFAC: the UNIversal Functional group 
Activity Coefficient model 

The activity coefficient is calculated from two components

The group contribution components consist of 
 volume contributor - Rk

 surface area contribution - Qk

 interaction parameter between functional groups Amk

To calculate interactions, similar sub-groups are assigned 
to groups and interactions are between these groups

Calculate activity coefficients by summing all contributions 
and interactions

RiCii  lnlnln 
Combinational 
(V, SA)

Residual (interactions) 
(Experiment Fit)



Separation Processes – Maurizio Fermeglia Trieste, 28 February, 2021 - slide 90

UNIFAC-Simple example

Ethanol CH3-CH2-OH
 Interaction parameters are 

fit from experimental data

 This work is still ongoing 
and many parameters still 
not available

Main Group. Subgroup Rk (vol) Qk (SA) Amk

CH3 “CH3” CH3 (1) 0.9011 0.848 0, 0

CH2 “CH2” CH2 (2) 0.6744 0.540 0, 0

OH “OH” OH  (2) 1.000 1.200 986.5, 156.4
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Group contribution model: UNIFAC
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Hildebrand solubility parameter

Gibbs equation: 
 Δ, is the value of a variable for a solution minus the values for the pure 

components considered separately. 

The result obtained by Flory[1] and Huggins[2] is

 with number of moles n and volume fraction ϕ of solvent and polymer 
(component 1 and 2) and the introduction of a parameter χ to take 
account of the energy of interdispersing polymer and solvent molecules. 

The value of the interaction parameter can be estimated 
from the Hildebrand solubility parameters δa and δb

 where Vseg is the actual volume of a polymer segment. 

 δ are Hildebrand solubility parameters, δ=√((ΔHvap-RT)/Vmolar)
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Hansen Solubility Parameter
Developed by Charles Hansen as a way of predicting if one 
material will dissolve in another and form a solution
 They are based on the idea that like dissolves like where one molecule is 

defined as being 'like' another if it bonds to itself in a similar way.

Specifically, each molecule is given three Hansen parameters, 
each generally measured in  :
 The energy from dispersion bonds between molecules 

 The energy from polar bonds between molecules 

 The energy from hydrogen bonds between molecules 

These three parameters can be 
treated as co-ordinates for a point 
in three dimensions also known as 
the Hansen space. 
 The nearer two molecules are in this 

three dimensional space, the more 
likely they are to dissolve into each other. 

Forces of dispersion 
(London) 
(Apolar molecules

polar 

Forces of hydrogen bonding

d

p

h

  5.0222

hpdt  
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Equations of state classification

An equation of state is a relationship among P, V and T (and 
composition)
 Attractive forces
 Repulsive forces
 Other forces (electrostatic, hydrogen bonding, …

Cubic Equations of State: the van der Waals family
 Van der Waals
 Soave Redlich Kwong
 Peng Robinson
 Volume translation

Virial equation of state
 BWR

Corresponding state
Perturbation theory
 The Perturbed Hard Chain Theory
 The Perturbed Hard Sphere Theory
 The SAFT Equation

If equations are valid, 
EOS are independent

from phases!!
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Van der Waals partition function 

Partition function is defined as:

 L is the De Broglie wave length, function of molecular mass, and T

 N is the number of molecules

 Vf is the Free Volume = V-b

 E0 is the intermolecular potential

 qr,v is the degrees of freedom of the molecules
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The van der Waals EOS: cubic EOS

Cubic EOS are widely used, simple, rapidly solved 
analytically
 Cubic in variable v

Easily extended to binary and multi-component systems
 Mixing rules are crucial

All are derived from van der Waals theory

𝑝 =
𝑅𝑇

𝜈 − 𝑏
−

𝑎

𝜈2
→ 𝑝 +

𝑎

𝑣2
𝑣 − b = RT

 a, b depend on critical properties

Pure Component parameters are constrained to:

 But with this the EOS has no more degrees of freedom, namely all 
parameters are fixed by the critical point conditions

 Experimental vapor pressure curves is not correctly given  









 

  

 P

V

P

V
C C











 











 

2

2
0



Separation Processes – Maurizio Fermeglia Trieste, 28 February, 2021 - slide 98

 * *V L

i i 

 *

*

( , , , , )

( , , , , )

V sat V

i i C C

L sat L

i i C C

f P T v a b

f P T v a b









Pure component parameters for the VdW EOS

Calculating Psat through the VdW EOS: we start from the isofugacity
condition:

At a given T, Psat is the only unknown of the iso-fugacity equation, so 
it can be obtained in a predictive way. 
 Of course, its calculated value will be different from the experimental one!

To overcome this problem, a third parameter is needed.
 A third parameter appropriate to solve the problem of inadequate Psat calculation was first 

proposed by Soave in 1972. It is known as “parameter alpha”.
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Pure component parameters for the VdW EOS

According to Soave’s, the VdW EOS is rewritten in the form:

According to Soave’s idea the attractive parameter a is 
evaluated from a = α(T) aC, thus substituting a=aC in both the 
VdW equation and the expressions of i*V and i*L. 
 In this way, the isofugacity condition can be rewritten as:

For a given T, the accurate (experimental) corresponding value 
of Psat can be used. 
 The value of α is uniquely determined to reproduce this Psat value.
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Pure component parameters for the VdW EOS: alpha

Soave proposed an equation to calculate the function 
α(T), which holds for non-polar components only:

In summary, 
 VdW EOS with the function α(T) is able to accurately calculate Psat in a 

predictive way for non-polar components. 

 α is obtained without knowing Psat, which is the only unknown of the 

isofugacity equation. 

 For polar compounds α(T) can be obtained only by fitting Psat

experimental values.
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Soave Redlich Kwong Equation

Redlick Kwong Equation

𝑝 =
𝑅𝑇

𝜈 − 𝑏
−

𝑎

𝑇𝜈(𝜈 + 𝑏)
 Simple, poor for liquids, good when 2Pr<Tr

Soave Equation

𝑃 =
𝑅𝑇

𝜈 − 𝑏
−

𝑎

𝜈(𝜈 + 𝑏)

 Simple, involve acentric factor, best for hydrocarbons

𝑎 = [1 + 𝑚 𝑇𝑟]
2∗ 𝑎𝑐

𝑚 = 0.480 + 1.574𝜔 − 0.176𝜔2

𝑚 = 𝑓(𝜔)

ω = acentric factor
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𝑝 =
𝑅𝑇

𝜈 − 𝑏
−

𝑎

𝑣2 + 2𝑏𝑣 − 𝑏2

Peng-Robinson Equation

Good for critical conditions properties

Better than SRK for density of nonpolar liquids

Wide applications

𝑎 = [1 + 𝑘 𝑇𝑟]
2∗ 𝑎𝑐

k = 0.37464 + 1.54226𝜔 − 0.26992𝜔2
𝑘 = 𝑓(𝜔)

ω = acentric factor
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Peneloux, in 1982, proposed a volume shift (i.e. volume 
translation) in the EOS, applicable to any cubic EOS:

 with  = v + c

Pure component parameters for the VdW
EOS: volume shift

 
2

( ) CT aRT
P

b



 
 
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exp( )L L

calc v c v  

Pure component parameters for the VdW
EOS: volume shift

The c parameter allows better calculation of densities. 
 the value of c can be calculated based of both liquid and vapor density 

data, 

 obtaining a value which is essentially independent of the temperature, 

 except close to the critical temperature (as a rule of thumb, outside the 
range 0.9<Tr<1.1). 

For instance, if the experimental liquid density at ambient 
condition (20°C and 1 atm) is known, it results:

 NOTE: the application of the volume shift does not affect calculation of Psat

and other properties. 

Do not use temperature dependent volume transition 
parameter
 It is thermodynamically inconsistent 
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The ultimate (generic) cubic EOS’s

A cubic EOS is a third-degree polynomial in v, and as such it 
may have a maximum of four parameters. 
 Any cubic EOS, including shifted VdW, shifted SRK and shifted PR EOS, can 

be derived from this equation!

In summary, the pure component parameters calculation 
requires the knowledge of:

1. TC/PC, which can also be predicted by a suitable model

2. Psat, or α in the case of non-polar components.

3. an experimental density value

If any one of the above properties is missing for any of the 
components involved in the process, it is NOT possible to use 
a cubic EOS for process simulation. 
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Applicability of cubic Equations of state

This issue of missing TC/PC or density is not particularly relevant
 They can be easily estimated or measured

It is critical with respect to Psat. 
 If Psat is unpredictable or cannot be measured, cubic EOSs cannot be applied. 

 This happens in the presence of gases and solids (polymers, electrolytes,..). 

In the case of gases, the problem has been solved by a suitable 
extrapolation of the α function above the critical temperature
 But only for a limited extrapolation with respect to T .

With solids there is nothing to do. 

So, it must be concluded that cubic EOS’s cannot be applied to 
components without a measurable vapor pressure, 

EOSs other than cubic ones have to be used to model systems 
containing solids. 
 For instance, the PHSC EOS and the SAFT EOS have been developed for polymer solutions, 

whereas models to represent electrolyte solutions at high pressures are missing .
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Mixture parameters for Cubic EOS: classical 
mixing rules

In summary, to be able to apply a cubic EOS for an accurate 
calculation of mixture parameters, the following properties 
must be known:

1. TC/PC of all the components

2. Psat (or α in the case of non-polar components) for all the 
condensable components at the system temperature.

3. a density value of all the components

4. VLE data of all the binary systems formed by all component 
pairs, to fit kij’s values
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for SRK EOS
and classical
mixing rules:
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Calculation of VLE (but also LLE) by a cubic
EOS
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Features of the Cubic Equations of state

Need three parameters for pure components: Tc, Pc, ω

The main advantage is the flexibility and the easy of use

The main disadvantage is its accuracy in the PVT space 
for both pure components and mixtures

The applicability is questionable when critical properties 
are not known (high molecular weight such as polymers)

Group contribution versions for b and a are available

Volumetric properties are not accurate in the close 
vicinity of the critical point

The physical meaning of the parameters is questionable

Mixture parameters are difficult to predict

They are a very powerful and useful correlation tool
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Binary interaction parameters for SRK
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EOS Models: considerations on kij’s

The values of kij’s have to be fitted to binary data of the 
mixture property. 
 they have to be known for all the binary pairs in the mixture: 

 with NC=3 it means 3 pairs, with NC=4 there are 6 pairs, and so on (the 
number of pairs largely increases with NC). 

Common features of the kij‘s are:
 for each pair, either 1 or 2 kij’s can be used (symmetrical or asymmetrical 

option). It is often assumed that kij≠ kji to increase the model flexibility

 kij is a correction factor. As such, its value must be constant for the given 
pair of components (and for a specific property). Only a slight temperature 
dependency of kij’s is tolerated, whereas kij values must not depend on 
composition (this would cause thermodynamic inconsistency)

 kij is a correction factor. As a rule of thumb, its absolute value should be 
less than 0.1, as larger values would indicate that the model is unsuitable for 
the property calculation

 since kij is a binary parameter, the model can predict the 
multicomponent property starting from the knowledge of (all) the binary 
system values of the same property. In summary, a model with the kij‘s is 
correlative on the binary and predictive on the multicomponent systems.
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Mixture parameters for cubic EOS’s

Classical mixing rules:
 In general, the fitting of VLE binary data by a cubic 

EOS was found to be satisfactory for non-polar 
systems only. 

 In the presence of one (or two) polar components the 
correlation is often insufficient, indicating that the 
values of k1,2 and k2,1 should depend on the 
composition to ensure better and acceptable 
performance.

 Unfortunately, this would result into thermodynamic 
inconsistency problems.
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Huron and Vidal mixing rules

Huron and Vidal used a simple thermodynamic relationship to 
equate the excess Gibbs energy to expressions for the fugacity 
coefficient as computed by equations of state:

𝐺𝐸𝐴 = 𝑅𝑇 ln𝜑 − 𝑆𝑖 𝑥𝑖 𝑅𝑇 ln𝜑𝑖 ∗

Huron-Vidal or non-classical mixing rules:

This is an implicit mixing rule for am if  

However, if we take the limit as P  :

which requires the knowledge of interaction parameters at 
infinite pressure. For SRK EOS:
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Huron and Vidal mixing rules

Huron-Vidal or non-classical mixing rules:

This way, a thermodynamically consistent composition-
dependent mixing rule has been obtained, which can deal 
also with polar component containing systems

 *
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GE-EOS models

It took a while before the approach proposed by Huron 
and Vidal was appreciated by the scientific community
 but it gave inspiration for a number of similar methods which are 

referred to as GE-EOS models, all based on the SRK EOS. 

Among others, the MHV2 EOS by Dahl and Fredenslund
(1990), the Wong-Sandler (WS) EOS (1992) and the 
Predictive SRK (PSRK) EOS by Gmehling (1993). 
 MHV2 and PSRK are based on the UNIFAC activity coefficient model and 

suffer of similar limitations, 

 WS EOS is more theoretically based than HV as regards the second Virial 
coefficient evaluation.

GE-EOS approach is not much more than a smart way to 
address the problem of correlating VLE data of strongly 
non ideal systems. 
 Therefore, it is suggested to use their simplest formulation, i.e. the one 

proposed by Huron and Vidal.                 
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Motivation for non cubic EOS

EOS is a reasonable choice for HP calculations

Cubic Equations are not suitable for predictions
 TC e PC are questionable for ‘natural systems’

 Binary kij are difficult to predict

 The physical basis of Cubic EOS is poor

Perturbation theory gives indications

Perturbed Hard Chain - Perturbed Hard Sphere Chain
 Theory more complex and gives better model

 Parameters become ‘predictable’

 Higher complexity is balanced by good computer codes

Some examples
 Carnahan Starling van der Waals

 PHCT

 PHSCT

 SAFT
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Generalized Van der Waals partition function 

Van der Waals partition function is modified (Beret 
Prausnitz) considering q r,v = q r,v (est) q r,v (int)
 External degrees of freedom= 3 (transl.) * c (transl. equivalent)

 External (= influenced by density) contribution from rotation and 
vibration of the molecules

 Internal contributions depend on Temperature only

P = 𝑘𝑇
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Carnaham Starling equation

Perkus Jevick

Carnahan – Starling:
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Perturbed Hard Chain theory
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A* = p r 2NA V* = (p/6) r 3NA E* = r (e/k) Rg

• 3 parameters: r, a and b

• 3 parameters: , e/k and r

recasting

      
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ar
dgrdgbr
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2
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
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The PHSCT EOS – pure components
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A* = p r 2NA

From molecular
area A

V* = (p/6) r 3NA

From molecular
volume V

E* = r (e/k) Rg

From A*, V* and 
Ek/Ep –

• 3 parameters: r, a and b

• 3 parameters: , e/k and r

recasting
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The PHSCT EOS – pure components
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The PHSCT EOS – binary mixtures
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VIRIAL EQUATION OF STATE

... DCB1Z 32  

Remarkably general provided the intermolecular 
potential obeys certain well-defined restrictions

Takes the interaction into account
 The second virial coefficient considers interaction between two 

molecules

 The higher order coefficients follows in an analogous manner

The coefficients B, C, .. can be calculated ‘a priori’ from 
statistical mechanics

... PDPCPB1Z 3'2'' 
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Virial Equation of State

Z

Pressure

Pressure

Density

Experimental

Z for Argon at -70 C
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Examples of Virial EOS 

Benedict Webb Rubin Lee Starling  

Hayden O’Connell
 Complex term for B accounting for associations and chemical 

effects such as hydrogen bonding
 No interaction parameters for mixtures
 Excellent for gamma phi approach
 Very poor for liquids
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P RT B RT A C T bRT a

a c T

      

  

  

    

0 0 0
2 3

6 3 2 2 21      +  exp
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CORRESPONDING STATES THEORY

Derived by van der Waals - most important result

Based on the critical constraints 
 Variables v, T and P are related by a universal function such that 

F(Tr,Pr,Vr) = 0

The EOS for any one fluid is written in reduced 
coordinates, that equation is also valid for any other fluid.

The original formulation is a two parameter theory
 Only for simple molecules

 In which the force field has a high degree of symmetry

 Typically small, non polar substances

For more complex molecules it is necessary to introduce 
an extra parameter (at least)
 PlocPlocker extension to mixtures of Lee Kesler equation
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Corresponding States Theory: Mixtures

For mixture the definition is the same

One has to define the pseudo critical properties

Tcm , vcm, m

   XPTzPVTF rrrrr ,,,, 
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Molecular Surface

Polarization
Charges

tot=sol +pol =0

Polarizable Solvent

(continuum dielectric)

Quantum chemistry models: COSMO-RS

Extension of the COSMO model beyond the dielectric 
Continuum solvation Models 
 CSMs, successful but hardly justifiable from a theoretical point of view;

ideally screened molecules taken as a starting point for 
the description of molecules in solutions;

deviations from ideal 
screening 
 described as pairwise misfit 

interactions of the ideal 
screening charges on contacting 
parts of the molecules 
in the fluid;

atom parametrizations 
based upon DFT 
calculations
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 e e eij i j ijk 1

++++

Real situation:                 + -

Deviation from                +               -

Ideally screen state               - - - -

+      +         ++++                +     +

- + - - + -

- + - - + -

- - ++++ - -

Misfits         - -

Calculate                         + -

Misfit energy                 + -

++++

X

S

S S

S

COSMO-RS : Basic Idea (deviation from ideal 
screening)
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COSMO-RS: Basic idea (quantify 
interaction energies)

local interactions

COSMO polarization 
charge densities 
and ‘

‘


‘

DEcontact = E(,‘)
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1) Put molecules into ‚virtual‘ conductor (DFT/COSMO)

+
+

+
+

+
+

_
_

_
_

_

 '



 >> 0

 ' << 0(1)

(2)
hydrogen bond

electrostat. misfit

ideal contact

3) Remove the conductor on molecular contact areas (stepwise) and
ask for the energetic costs of each step.

2) Compress the ensemble to approximately right density

(3) specific

interactions

2)'(
2

'
)',( 


  effmisfit aG

}',0min{)()',(
2

hbhbeffhb TcaG  

In this way the molecular
interactions reduce to pair 
interactions of surfaces!

A thermodynamic averaging of many
ensembles is still required!

But for molecules?

Or just for surface pairs?

COSMO-RS:

Scuola Nazionale GRICU di Dottorato di Ricerca – Muravera (CA), 7-11 Giugno 2009
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Screening charge distribution on molecular surface

reduces to "-profile"

For an efficient statistical thermodynamics

… reduce the ensemble of molecules to an ensemble of 
pair-wise interacting surface segments
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    
   

S S

int SkT d p
E

kT
( ) ln ' ' exp

( , ') ( ')
  











chemical potential of solute X in S:

    S

S

XX

S AkTpd ln  
activity coefficients  arbitrary liquid-liquid equilibria

combinatorial contribution:

solvent size effects

-potential:

affinity of solvent for

specific polarity  combX

S

,

COSMO-RS Statistical Thermodynamics

Replace ensemble of interacting molecules by an 
ensemble S of  interacting pairs of surface segments

Ensemble S is fully characterized by its -profile pS() 
 pS() of mixtures is additive! -> no problem with mixtures! 

Chemical potential of a surface segment with charge 
density  is exactly(!) described by: 
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-profiles 

and 

-potentials of 

representative liquids
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sigma-profiles
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-profile 
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Equilibrium data:
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0)(  



   X

ringel

XX

COSMO

X

vac

X

Gas nareaEE

 p kTS

X

gas

X

S

X    exp ( ) /

- partial pressure of X over S:

- vapor pressure of X:

 p kTX

X

gas

X

X

X    exp ( ) /

Vapor Pressure and Partial Pressures

reference state: ensemble of ideally screened molecules  
with vdW-interactions

reference in gas-phase: isolated molecule, ideal gas

chemical potential of X in gas-phase (1 mol/l)  at 298.15 K
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Flory-Huggins-like parameter

Details on calculations
 DFT-calculations with TURBOMOLE 

 Becke-Perdew-86 functional (BP86) within the RI-J approximation 
using a TZVP-basis set

 COSMOtherm SW 

Chemical structure, 
ab initio charge 

density  

Free energy of 
mixing

Interaction Potentials

chemical potentials from COSMO-RS - A. Klamt et al. Fluid Phase Equilib. 172 (2000), 43 

BAABBBAA
mix xx

RT

G
  lnln

)}1()1({)}()({ BBAABBBAAAmix xxxxxxG  D



Separation Processes – Maurizio Fermeglia Trieste, 28 February, 2021 - slide 142

a) DG
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Results of parametrization based on DFT 

(DMol3:   BP91, DNP-basis

650 data

17 parameters

rms = 0.41 kcal/mol

A. Klamt, V. Jonas, J. Lohrenz, T. Bürger,

J. Phys. Chem. A, 102, 5074 (1998)

meanwhile:

COSMOtherm5.0 with Turbomole BP91/TZVP

rms = 0.36 kcal/mol
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COSMO-RS Results — BAYER
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Binary mixture of 

Butanol(1) and Heptane (2)

at 50° C 
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Applications to Phase Diagrams and 
Azeotropes
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Partition coefficient n-octanol/water
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mean average deviation= 0.398 log
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Binary system: Activity coefficient





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 


RT
exp 0,iS,i

i
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Binary system: Vapor phase concentration 
(molar)
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COSMO-RS: Clausen, I. & Arlt,W.,

“ I. Clausen‘s Ph.D. Thesis“

Ethanol (1) and Benzene(2)

COSMO-RS - Binary System
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COSMO-RS - Ternary System

x (exp.) y (exp.) y (cosmo)

Pyridine

Benzene Cyclohexane

Xbenzene/Xcyclohexane = 3/2 

X = liquid phase concentration (molar)

Y = vapor phase concentration (molar)
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COSMO-RS

COSMO-RS - a general theory of molecules in a solvent.  

Predict the chemical potentials of solute molecules in a pure or multi-
component solvent.   

Uses a very small number of fitted  parameters (8 inherent 
parameter and an additional 2 for each element). 
 Cavity radius – related to Bondi radius

 Dispersion coefficient - related to polarizability

Chemical potentials derived from COSMO-RS can be used to compute 
properties such as solubility, vapor pressures, partition coefficients, 
heat of hydration, etc. 

Parameterized by 642 (+230) data points for 217 (+ 100) small 
molecules containing H, C, N, O, and Cl (+ F, Br, I, S). 

Chemical potential differences reproduced with an RMS accuracy of 
0.4 kcal/mol (which corresponds to a factor of 2 in the equilibrium 
constant).
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Summary of COSMO-RS applicability

Can be calculated for any solvent and solvent mixture at 
variable temperatures
 solubility

 vapor pressure

 partition coefficients

 surface tension

 heat of vaporization

 heat of mixing

 liquid-liquid and liquid-gas phase diagrams (azeotropes, miscibility gaps, 
excess enthalpies and excess free energies.)

Is able to describe polymer properties like
 solubility of the polymer in a solvent

 solubility of a compound in a polymer matrix

 vapor pressures above polymers

 partition coefficients for multi phase polymers (e.g. ABS)
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Comparison of COSMO-RS with UNIFAC

PROS
 COSMO-RS needs very few parameters

 COSMO-RS is able to handle rare and exotic molecules

 COSMO-RS is able to handle transition states

 COSMO-RS is able to resolve isomers

 COSMO-RS does not make mean field assumptions

 COSMO-RS does not make additivity assumptions

CONS
 COSMO-RS is presently slightly less accurate (in the core region 

of organic solvents)

 COSMO-RS needs a time-consuming QM-calculation (but only 
once per molecule)

 COSMO-RS is young and full of improvement potential
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1-The statistical thermodynamics of UNIFAC is approximate (mean field

arguments) while the statistical thermodynamics of COSMO-RS is exact!

Analogy of UNIFAC and COSMO-RS
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Phase equilibria modelling conclusions

For low pressure systems use Excess Gibbs energy models 
 Preferably UNIQUAC and NRTL

 Careful to the values of the parameters

Use the Henry’s law approach for the incondensable components

Use EOS for high pressure systems
 The big question today is still ….. cubic or non cubic 

 Cubic Equations of state are used for ‘classical’ mixtures and for hydrocarbon and 
also with polar compounds

 Cubic equations of state are nothing more than a correlation tool for ‘nasty’ 
systems such as polymers, dense gases,...

 Non cubic equations of state are superior, provide volumetric properties but are 
complex

Use UNIFAC for undefined components, or use the correlations for 
the pure component parameters of non cubic EOS

In the intermediate region use the MHV2 Huron and Vidal method for 
combining EOS and activity coefficients models

COSMO-RS is a good fully predictive model
 Useful when group contribution UNIFAC does not work



Thermodynamic Consistency
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Thermodynamic consistency of binary VLE data

The application of this equation to a (T,P,x,y) data set is not 
straightforward even for a binary system. 

Therefore, it was proposed by Barker (1953) to use a model for 
calculating  which is thermodynamically consistent by itself, and to 
fit VLE data by this model. 

If at the end of the procedure the fitting results are statistically 
acceptable (in the sense that is explained below), it will be concluded 
that the data are thermodynamically consistent, and can be reliably 
used for process simulation calculations.
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1 1

satPy P x
2 2(1 ) (1 )satP y P x  

Thermodynamic consistency: the Barker’s method

a) the experimental errors are considered to affect P and y only, 
whereas the values of T and x are regarded to as “exact” 
ones

b) the equilibrium is calculated by a - approach at atmospheric 
pressure, where the iso-fugacity conditions are expressed by:

c) To avoid that a loose fitting result is due to an insufficient 
model, the Margules equations have to be used for calculating 
. In fact, in this model n increasing number of fitting 
parameters can be considered (either 2, 3, 4, 5,..), so it is 
flexible enough to reproduce all the possible shapes of a GE 
function

d) data fitting is performed by minimizing the errors on Pcal, 
according to the objective function
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Thermodynamic consistency: the Barker’s method

e) the suitable number of parameters in the Margules equation is found
by looking at the minimum value of the objective function minima. In
this way, it can be excluded that an inadequate fitting is due to the
fitting model

f) with this number of Margules parameters, the thermodynamic
consistency check is done by looking at the fitting errors of both P
and y. This last is defined as:

g) To avoid that a loose fitting result is due to an insufficient  model,
the Margules equations have to be used for calculating . In fact, in
this model n increasing number of fitting parameters can be
considered (either 2, 3, 4, 5,..), so it is flexible enough to reproduce
all the possible shapes of a GE function

h) data fitting is performed by minimizing the errors on Pcal, according
to the objective function above
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Thermodynamic consistency: the Barker’s method

i) the fitting is deemed as acceptable if, for both P and y: 
a) the average errors are randomly distributed around zero

b) all the errors lay within the experimental errors values ±εP,exp and 
±εy,exp, respectively

j) if this is not the case, there are two possibilities:
a) to measure again the data of some points (i.e. those with errors outside 

the experimental ranges)

b) to neglect those points in the consistency check procedure. In this case 
the fitting has to be completely repeated from point d) above, as the 
final result depends on the entire data set used

k) The VLE data set can be defined as thermodynamically 
consistent ONLY if the conditions of point g) above are 
simultaneously satisfied with a suitable number of 
experimental data points



Separation Processes – Maurizio Fermeglia Trieste, 28 February, 2021 - slide 160

Thermodynamic consistency: the Barker’s 
method

A thermodynamically consistent data set will later be used for 
fitting the parameter values of the property model selected to 
represent the process
 remember also that different thermodynamic property models can be used in 

different sections of the process

Clearly, the Barker’s method as outlined above is suitable for 
applications to VLE data at lower pressure when a - can be 
used (with all i=1). 
 An extension of this method to higher pressure VLE data can be found in the 

article by Bertucco, Barolo, Elvassore, (1997).

An alternative, and more appropriate, method for assessing 
the thermodynamic consistency of binary VLE data is the 
“maximum likelihood” method, which accounts for 
experimental errors on all of the four variables T, P, x, y. 
 The corresponding routine is available in the PS.


