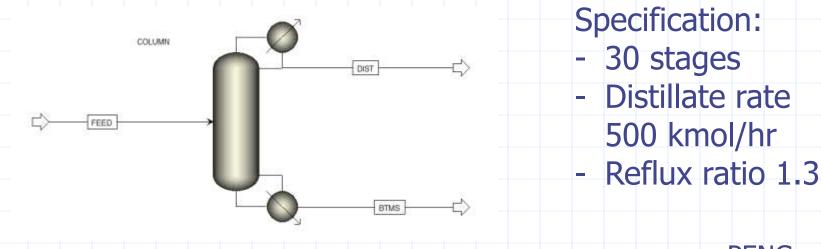
Physical Properties estimation using Aspen Plus

Maurizio Fermeglia

Maurizio.fermeglia@units.it Department of Engineering & Architecture University of Trieste

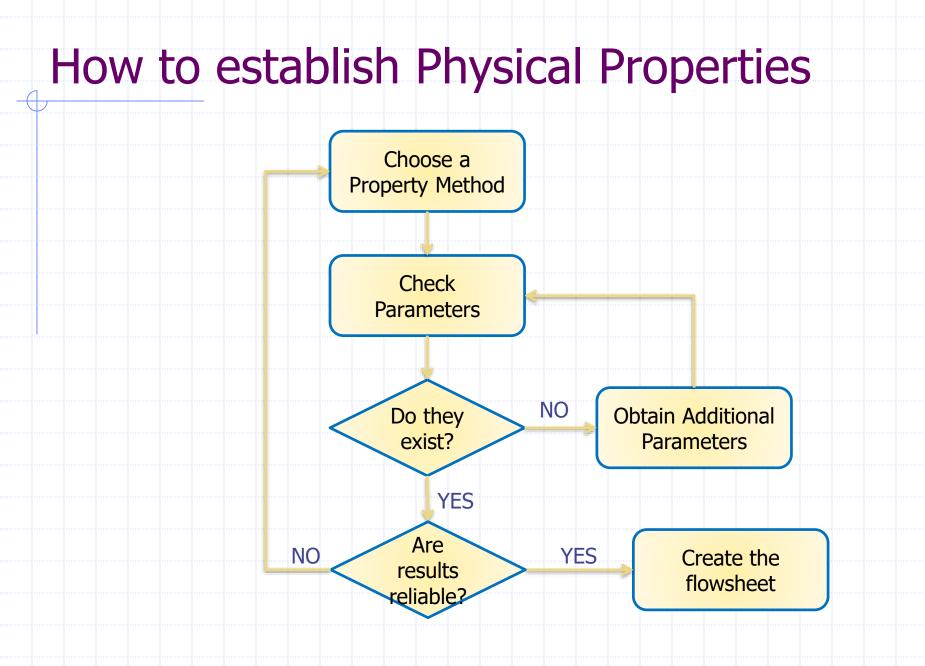


Agenda

Physical properties estimation with ASPEN+

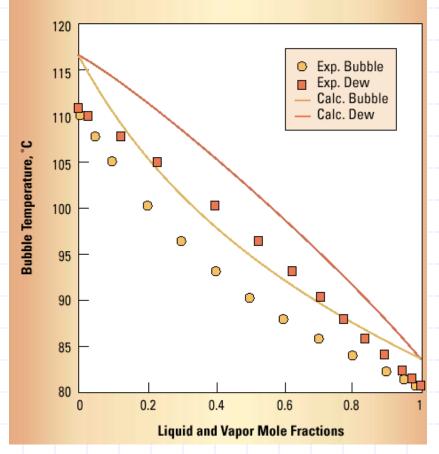
- Property methods: selection guidelines
- Property analysis
- Property sets
- Data regression

Ooops... the results are different!



PENG-ROBINSON

NRTL


14		Units	FEED •	BTMS •	DIST -	BTMS •	DIST -	BTMS -	DIST •
F.	- Mole Flows	kmol/hr	2328.31	1828.31	500	1828.31	500	1828.31	500
	WATER	kmol/hr	1754.07	1691.96	62.1051	1753.92	0,147487	1754.05	0.0143418
	METHANOL	kmol/hr	574.243	136.349	437.895	74.3909	499.853	74.2578	499.986
	- Mole Fractions								
	WATER		0.753365	0.925424	0.12421	0.959312	0.000294974	0.959384	2.86836e-05
	METHANOL		0.246635	0.0745763	0.87579	0.0406884	0.999705	0.0406155	0.999971

IDEAL

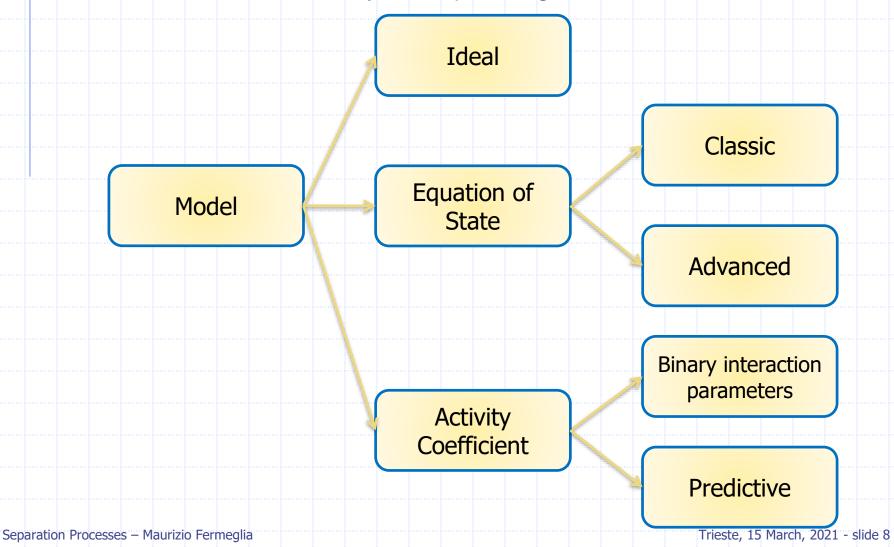
Vapor pressure is the king

- Simple EOS do not use Antoine constants
 - Do nor play around with w (entalpy is affected...)
- More complex EOS may or may not use vapor pressure
 - Always check vapor pressure
- Do not get careless if the problem is simple
 - Low pressure
 - Ideal system
 - Vapor pressure and vapor phase correction becomes important
- Use simple models to your advantage
 - Playing with vapor pressure
 - Playing with simple gamma models

Points of attention in using process simulators

- Extrapolation and documentation
 - Simulation models tend to live longer than their creator
- Check your model also versus the 'less attractive area'
 - Density, entropy, enthalpy, viscosity, …
 - Find some data and check the models

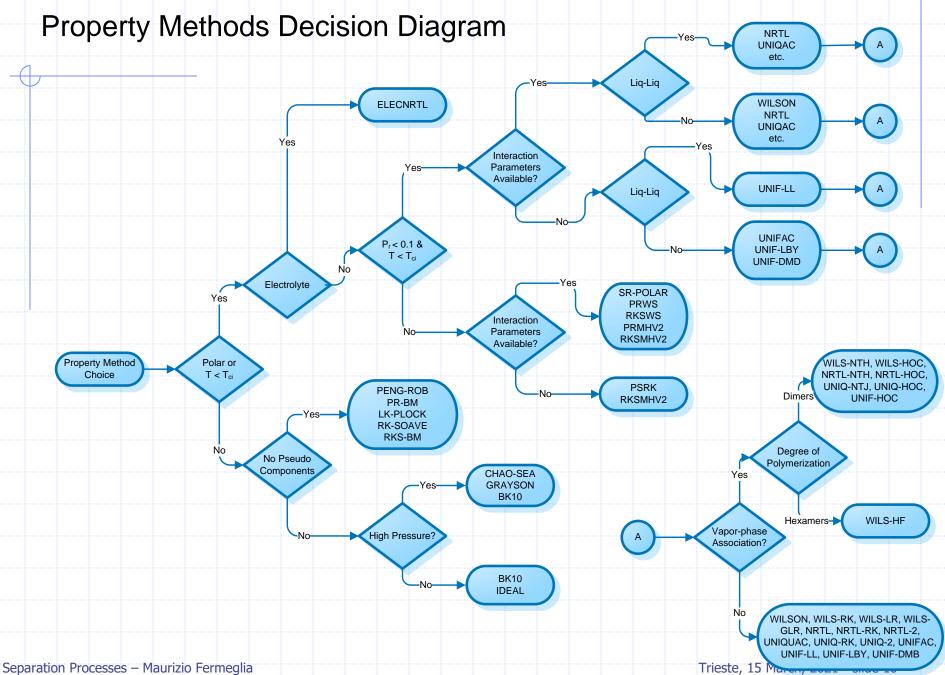
Accuracy vs. precision

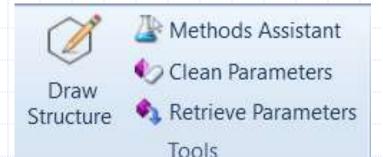

- Remember that Process Simulators are precise
- Process simulators may NOT be accurate
- Use error analysis
- Consider the significant digits
- Henry's law is used to determine the amount of a supercritical component or light gas in the liquid phase
 - Declare any supercritical component or light gas (CO2, N2, etc) as Henry's component in the Properties Environment.
 - Remember to specify Henry's components ID in the thermodynamic method!

Ten Golden Rules

- 1. Check vapor pressure
- Check pure and mixture densities for aqueous mixtures excess volumes are important
- 3. Check pure and mixture enthalpy and heat capacities
- 4. Check transport properties (for heat exchangers and trays)
- 5. Check surface tension if you design trays
- 6. Azeotropes: check if they are present
- 7. Check trace components behavior versus infinite dilution activity coefficients
- 8. Talk to people, interact with chemists (new processes), talk to process simulators vendors
- 9. Beware of estimation methods for screening alternatives
- 10. Check the simulation results versus the reality, talk to the plant personnel, consider the reality (air leaks,...)

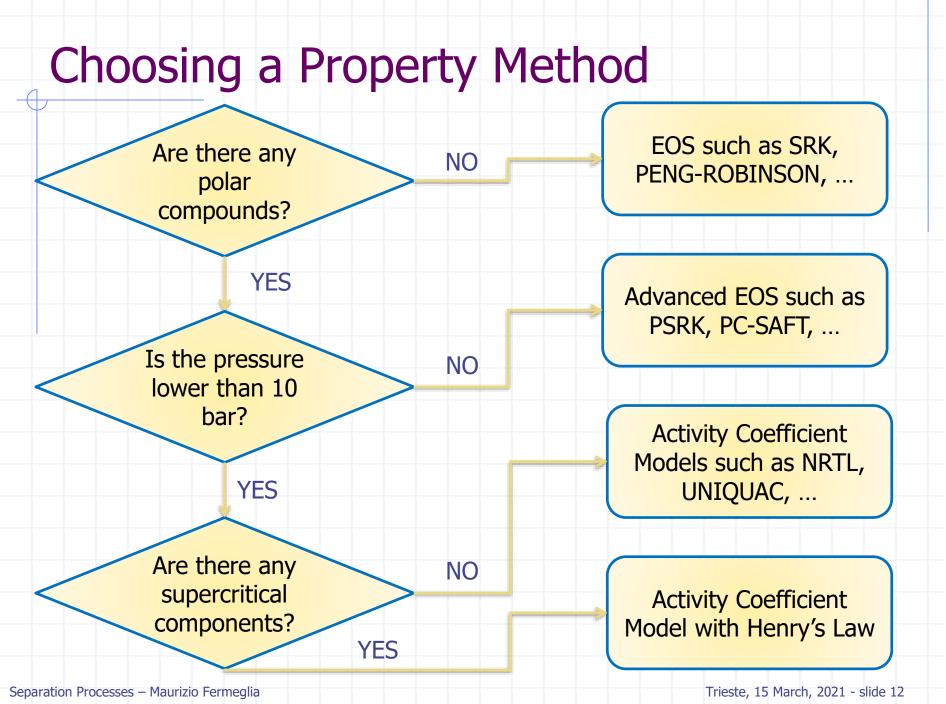
Models


The choice of model depends on degree of non-ideality, model parameters availability and operating conditions


Equation of state vs Activity coefficient

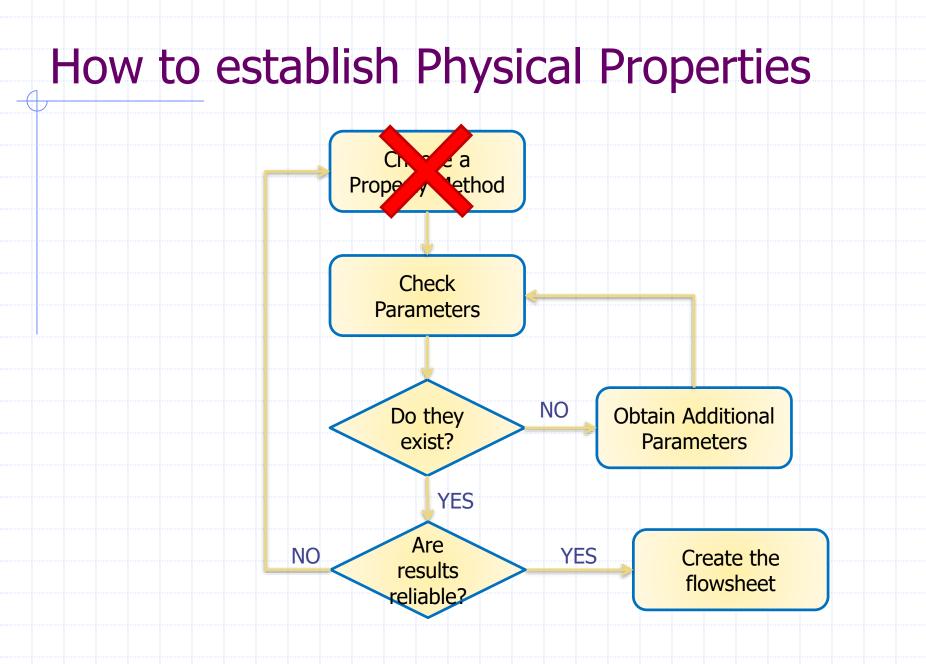
- Good for vapor phase modeling and liquids of low polarity
- Fewer binary parameters required
- Parameters extrapolated reasonably with temperature
- Consistent in critical region
- Typically limited in ability to represent non-ideal liquids
- Examples:
 - PENG-ROB
 - RK-SOAVE
 - PC-SAFT
 - PSRK

- Good for liquid phase modeling only
- Many binary parameters required
- Binary parameters are highly temperature dependent
- Inconsistent in critical region
- Can represent highly non-ideal liquids
- Examples:
 - NRTL
 - UNIQUAC
 - WILSON
 - UNIFAC

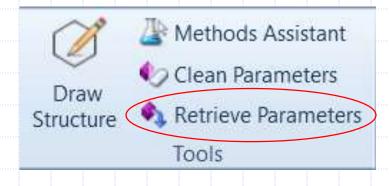

Property Method Selection Assistant

The assistant will help you select the most appropriate property method by guiding you through a series of questions

- Search by components or process types
- At the end, the help topics for the recommended property methods are linked


A report is also available that can be saved or printed

Choosing a Property Method - Examples


Property Method						
EOS (SRK, PENG-ROB)						
AC (UNIQUAC, NRTL-RK,)						
AC (NRTL, WILSON,)						
AC (NRTL,UNIFAC)						
EOS						
AC+Henry						
AC						

Separation Processes – Maurizio Fermeglia

Pure components parameters

- Represent attributes of a single component
- Stored in databanks such as (PURE, AQUEOUS, SOLIDS, ...)
- Scalar: MW, ACENTRIC FACTOR, ...
- Temperature-dependent: PLXANT for parameters in the extended Antoine vapor pressure model

Binary Interaction parameters

- Used to describe interactions between two compounds
- Stored in binary databanks such as APV VLE-IG, APV LLE-ASPEN
- Parameters values from the databanks are visible automatically through the graphical user interface
- Examples:
 - Scalar: RKTKIJ-1 for Rackett model
 - Temperature-dependent: NRTL-1 for parameters in NRTL model

Parameters
Pure Components
Binary Interaction
Electrolyte Pair
Electrolyte Ternary
UNIFAC Groups
UNIFAC Groups Bina
Results

Trieste, 15 March, 2021 - slide 16

Binary Interaction parameters

Properties Parameters Binary Interaction NRTL-1 Form

Press the Regression Info button to display the regression data for each component pair

Component i Vi	Component j W	Source W	Temperature units	AU Vie	All 16			an 24	DU 🐐	ED 75
WATER	CLBENZ	APV100 L	F	0.4452	-8.7003	3906.38 7	047.94	0.2	0	0
			LLE Binary Parameters					×		
			Databank APV100 LLE-ASPI Components WATER, CLBI		meter NRTL					
			Range of data used in Data	Regression						
			State variable	Range						
			Temperature, C	17.7 -	90					
			Liquid I mole fraction (C6H5CL) 0.0073	- 0.0401					
			Liquid II mole fraction (C6H5CL) 0.984	0.99828					
			Residual root mean squares	errors 7.8282						
			Average deviations							
			State variable	No. points	Relative %	Absolute	Maximum			
			Liquid I mole fraction	22	6.291085	8E-06	2.3E-05			

How to establish Physical Properties a Prope ethod Pa ers NO Obtain aitional Pa ers YES Are YES NO Create the results flowsheet reliable?

Property Analysis

	J Un	it of	Chemical	Thermody	/nami	Dun N	lode		Dun	Ph	ase equilibr	ia analysis
	measu	rement	system	c proper	ties	Kull I	IUUE	COI	mman	ds		
ľ									/			
	File	Home View	Customize Dosources			k.		l				5
	A Con La Copy	MET · 슈 Unit Sets	Setup Na* Chemistry Components Customize Methods GP Prop Sets	Draw Structure	DECHEMA	Analysis	Next II	Reset (Control Ranel	Input 🖾 History 🖉 Report 🖾	Pure Colubility Binary A PT Envelope Mixture	A Ternary Diag
	Clipboard	Units	Navigate	Tools	Data Source	Run Mode		Run	S Su	mmary	Analysis	

Used to generate simple property diagrams to validate physical property models and data

Diagram types:

- Pure component, i.e. vapor pressure vs temperature
- Binary, i.e. Txy, Pxy
- Mixture
- Ternary Residue Maps
- Ternary Phase diagrams
- PT envelope

Property Analysis - Review

1. Choose property method, based on:

- Components present in simulation
- Operating conditions in simulation
- Available data or parameters for components

2. Check parameters:

 Determine availability of parameters in Aspen Plus databanks, obtain additional parameters if necessary

3. Confirm Results:

 Verify choice of Property Method and physical property data using Property Analysis plotting tool

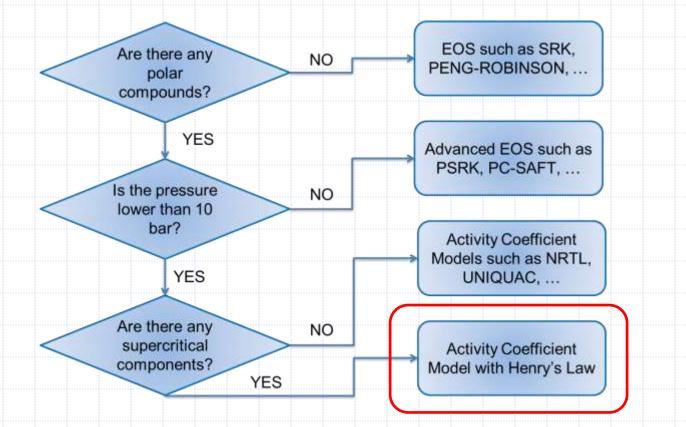
Property Analysis – Hands on A+

Consider the binary mixtures:

- Methanol Propanol
- Water Ethanol
- Ethanol Toluene
- Toluene Water

Check vapor pressure of pure components For each binary system create Txy, xy graph at 1 and 5 bar Compare ideal with NRTL model Compare with experimental data at P= 1 bar

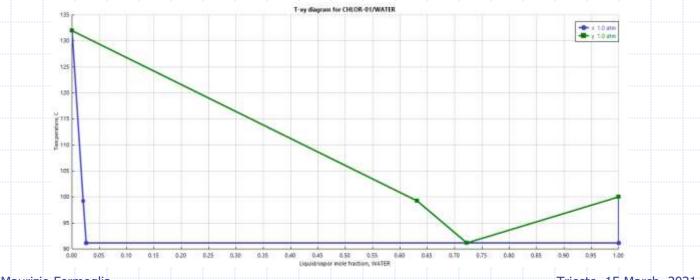
Objective: simulate a two-liquid phase settling tank and investigate the physical properties of the system


A chemical plant has a settling tank that they use to decant off the water from a mixture of water and chlorobenzene; the inlet stream to the tank also contains some carbon-dioxide and nitrogen; the tank and feed are at ambient conditions (25 °C, 1 atm) and have the following flow rates:

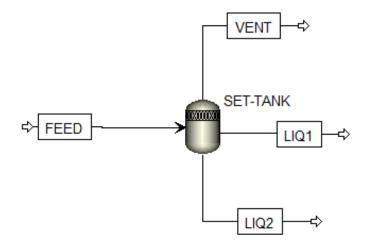
- Water: 230 kg/hr
- Chlorobenzene: 2000 kg/hr
- CO2: 340 kg/hr
- N2: 20 kg/hr

Water and Chlorobenzene form two-liquid phases under the conditions in the tank

- 1. Choose an appropriate Property Method to represent the system. Parameters available?
- 2. Retrieve the Tc for CO2 and water
- 3. Use the binary isotherm analysis to investigate the phase equilibrium of the liquid mixture @ 1 atm
- Set up the flowsheet to model the settling tank using a flash drum


1. Choose an appropriate Property Method to represent the system.

- 1. Choose an appropriate Property Method to represent the system. NRTL, UNIQUAC with Henry's components
- 2. Retrieve the Tc for CO_2 and water


	Parameters	Units	Data set	Component WATER -	Component	Component	
 ×	тс	c	1	373.946	359.2	31.06	

3. Use the binary isotherm analysis to investigate the phase equilibrium of the liquid mixture @ 1 atm

Trieste, 15 March, 2021 - slide 25

1. Set up the flowsheet to model the settling tank using a flash drum

 Modify the stream report to include the constant pressure heat capacity (CPMX) for each phase (Vapor, Liquid 1 and Liquid 2), and the fraction of L1 to total liquid for a mixture (BETA)
Display Total stream mass density as Global Data on the Flowsheet