Condizioni di progetto invernali

Corso di Impianti Termotecnici

Marco Manzan

Università di Trieste Dipartimento di Ingegneria e Architettura

marzo 2021

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

1/76

Normative di riferimento

• Legge 373/76: livello minimo di isolamento. introduce il coefficiente di dispersione

$$C_d < C_{d_{lim}}$$

- Legge 10/91: risparmio energetico, abroga la 373, mantiene la verifica del C_d .
- D.P.R. 412/93 10/91; ribadisce la verifica del C_d , stabilisce altri due parametri da verificare: il fabbisogno energetico normalizzato (FEN) ed il rendimento globale medio stagionale(η_g).
- D.M. 13/12/93: fornisce la traccia della relazione tecnica da presentare ai Comuni per il soddisfacimento del D.P.R.412/93.
- **D.M.** 12/06/94: fornisce l'elenco delle norme UNI da utilizzare per il calcolo del F.E.N. e di (η_g) per il soddisfacimento del D.M.412/93.
- DPR 23/11/82: calcolo $C_{d_{lim}}$ per edifici industriali.
- D.P.R. 21 dicembre 1999, 551 aggiorna il D.P.R. 412/93.

Normative di riferimento

- Direttiva 11/2002/CE Energy Performance of Buldings Directive (EPBD); introduce la certificazione energetica degli edifici a livello europeo già peraltro prevista dalla legge 10) e la classificazione degli edifici;
- DM 27/07/2005 Decreto del Ministero delle infrastrutture, decreto attuativo dell'art 4 commi 1 e 2 della legge 10/91, modifica il calcolo del *CD*₁ imite, affronta il problema dei consumi estivi;
- Decreto Legislativo 19 agosto 2005, n.192 (GU 23/09) Attuazione della direttiva 2002/91/CE relativa al rendimento energetico nell'edilizia.
- Decreto Legislativo 29 dicembre 2006 n. 311 modifica il decreto n. 192
- Decreto 30 maggio 2008 n. 115. Definisce la figura del certificatore energetico
- DPR del 2 aprile 2009 n. 59. Regolamento attuativo articolo 4, comma 1 dlgs 192
- DM del 26 giugno 2009 "Linee guida nazionali per la certificazione energetica degli edifici"

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

3/76

Normative di riferimento

- Direttiva 31/2010/UE EPBD Recast (revisione); indica le tempistiche per l'introduzione di limiti più severe per edifici nuovo NZEB
- DPR 16/04/13 n.75-Decreto Certificatori
- Decreto Legge n. 63 del 4 giugno 2013, recepimento Diretiva 31/2010/CE
- Legge 90 del 3 agosto 2013 Conversione in legge del DL63
- 26/06/2015 Decreti attuativi Legge 90
 - requisiti minimi degli edifici
 - documenti da presentare
 - certificazione energetica

Classificazione degli edifici per categorie

- **E.1** Edifici adibiti a residenza e assimilabili
 - **E.1** (1) Abitazioni adibite a residenza con carattere continuativo;
 - **E.1** (2) Abitazioni adibite a residenza con occupazione saltuaria;
 - **E.1** (3) Edifici adibiti ad albergo, pensione ed attività similari;
- **E.2** Edifici adibiti a uffici e assimilabili: pubblici o privati, indipendenti o contigui a costruzioni adibite anche ad attività industriali o artigianali, puché siano da tali costruzioni scorporabili agli effetti dell'isolamento termico;
- **E.3** Edifici adibiti a ospedali, cliniche, o case di cura e assimilabili ivi compresi quelli adibiti a ricovero o cura di minori o anziani nonché le strutture protette per l'assistenza ed il recupero dei tossicodipendenti e di altri soggetti affidati a servizi sociali pubblici;
- **E.4** Edifici adibiti ad attività ricreative, associative o di culto e assimilabili:
 - E.4 (1) quali cinema e teatri, sale di riunione per congressi;
 - E.4 (2) quali mostre, musei e biblioteche, luoghi di culto;
 - E.4 (3) quali bar, ristoranti, sale da ballo;

<ロ > → □ → → □ → → □ → → へへ(

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

5 / 76

Classificazione degli edifici per categorie

- **E.5** Edifici adibiti ad attività commerciali e assimilabili: quali negozi, magazzini di vendita all'ingrosso o al minuto, supermercati, esposizioni;
- **E.6** Edifici adibiti ad attività sportive:
 - **E.6** (1) piscine, saune e assimilabili;
 - E.6 (2) palestre e assimilabili;
 - **E.6** (3) servizi di supporto alle attività sportive;
- **E.7** Edifici adibiti ad attività scolastiche a tutti I livelli e assimilabili;
- **E.8** Edifici adibiti ad attività industriali ed artigianali e assimilabili.

Flusso termico di progetto

La potenza termica dispersa da un edificio si calcola utilizzando la norma UNI EN 12831:

$$\Phi_I = \Phi_{T,i} + \Phi_{V,1}$$

 $\Phi_{T,i}$ = potenza dispersa per trasmissione;

 $\Phi_{V,1}$ = potenza dispersa per ventilazione.

i due flussi vanno calcolati separatamente.

◆□▶◆□▶◆壹▶◆壹▶ 壹 か9€

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

7 / 76

Potenza dispersa per trasmissione attraverso l'involucro

La potenza dispersa si calcola come

$$\Phi_{T,i} = (H_{T,ie} + H_{T,iue} + H_{T,ig} + H_{Tij}) \cdot (\theta_{int,i} - \theta_e)$$

 $H_{T,ie}$ coefficiente di trasmissione dall'interno all'esterno

 $H_{T,iue}$ coefficiente di trasmissione attraverso ambenti non riscaldati

 $H_{T,ig}$ coefficiente di trasmissione attraverso il terreno

 $H_{T,ij}$ coefficiente di trasmissione con spazi a temperatura diversa (eg: cella frigorifera)

 $\theta_{\mathit{int},i}$ temperatura interna

 θ_e temperatura esterna

Temperatura esterna

Il valore della temperatura esterno di progetto θ_e é fissata dalla Norma UNI 5364 e dal prospetto NA.1 della UNI EN 12831 si considerano delle variazioni:

- effetto della quota: gradiente $-\frac{1}{100}$ K/m, la temperatura si abbassa per ogni 100 m di aumento di quota
- esposizione al vento
 - $-0,5 \div -1$ K per edifici in piccoli agglomerati
 - $-1 \div -2$ K per edifici isolati
 - $-1 \div -2$ K ulteriore correzione per edifici più alti di quelli adiacenti (solo per i piani sporgenti).

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

9 / 76

temperatura interna di progetto

si ricava dal prospetto NA.2 della UNI EN 12831 in funzione della tipologia di locale

Tipo di locale	Temperatura interna °C
Ufficio singolo	20
Uffici a spazio aperto	20
Sala conferenze	20
Auditorium	20
Bar -Ristorante	20
Aule scolastiche	20
Scuola materna	20
Asilo nido	22
Supermercato	16
Locali di abitazione	20
Bagni	24
Chiese	15
Musei -Gallerie	16

Calcolo della potenza dispersa attraverso le pareti

$$H_{T,ie} = \sum_{k=1} A_k \cdot U_k \cdot e_k + \sum_{j=1} \Psi_j \cdot I_j \cdot e_j$$

 A_k area della k-esima parete

 U_k trasmittanza della k-esima parete

 e_k, e_i coefficienti di esposizione

 Ψ_j coefficiente di dispersione del j-esimo ponte termico (trasmittanza lineica);

 l_j lunghezza del j-esimo ponte termico

<□ > <┛ > ∢ ≧ > ∢ ≧ > ≧ ∽ Q()

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

11 / 76

Calcolo della resistenza e trasmittanza di una parete

La resistenza termica e la trasmittanza termica si possono ricavare utilizzando la UNI EN ISO 6946, per strati omogenei abbiamo:

$$R_T = R_{si} + R_1 + R_2 + ...R_n + R_{se}$$

 R_{si} , R_{se} resistenze superficiali interne ed esterne

 R_i resistenze di ciascun strato

dove

$$R_i = \frac{d}{\lambda_i}$$

 $\lambda_i = {
m conduttivit\acute{a}}$ termica dello strato [W/(m K)] , assume valori compresi tra 3 e 0,03 W/(m K) per la pietra e per isolanti asciutti, rispettivamente.

d spessore dello strato

Calcolo delle proprietà

problema

$$R_j = \frac{s_j}{\lambda_j}$$

- sj spessore dello strato
- λ_j conduciblità termica dello strato

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

13 / 76

Calcolo delle proprietà UNI EN ISO 10456

ONI LIN 130 10430

problema

$$R_j = \frac{s_j}{\lambda_j}$$

sj spessore dello strato

 λ_j conduciblità termica dello strato

Che valore utilizzo?

Calcolo parametri secondo UNI/TS 11300-1

Componenti opachi

- proprietà dei materiali da dati di accompagnamento della marcatura CE
- i dati devono essere corretti per tener conto delle condizioni operative
- utilizzo UNI EN 10456
- oppure da UNI 19456, UNI 10351, UNI 1745
- murature o solai da UNI 1745 o UNI 10355

◆□▶◆□▶◆壹▶◆壹▶ 壹 か9€

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

14 / 76

calcolo proprietà UNI EN ISO 10456

variazione delle proprietà

$$\lambda_2 = \lambda_1 \cdot F_T \cdot F_m \cdot F_a$$

F_T fattore di variazione con la temperatura

 F_m fattore di variazione con umidità

F_a fattore di conversione per l'età

Fattori di conversione

fattore di conversione per temperatura

$$F_T = e^{f_T \cdot (\theta_2 - \theta_1)}$$

fattore di conversione per umidità massa/massa

$$F_m = e^{f_u \cdot (u_2 - u_1)}$$

fattore di conversione per umidità volume/volume

$$F_m = e^{f_{\psi} \cdot (\psi_2 - \psi_1)}$$

 f_T coefficiente di conversione per temperatura (da tabella)

 f_u coefficiente di conversione per umidità massa/massa

 f_{ψ} coefficiente di conversione per umidità volume/volume

u contenuto di umidità massa su massa

 ψ contenuto di umidità volume su volume

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

16 / 76

conducibilità termica

valori di f_T

- la conducibilità termica varia con la temperatura
- come varia è riportato nella norma UNI-EN 10456

esempi di valori F_T

Prodotto	Conduttività λ	Fattore conversione f_T
	W/(m K)	1/K
	0,025	0,0046
polistirene estruso	0,030	0,0045
	0,040	0,0045
	0,025	0,0046
polistirene espanso	0,030	0,0045
·	0,040	0,0045
	0,032	0,0030
lana minerale	0,035	0,0033
	0,040	0,0038

conducibilità termica

valori di f_{ψ}

- la conducibilità termica varia con il contenuto di umidità
- l'umidità viene espressa in termini di massa/massa o volume/volume UNI-EN 10456

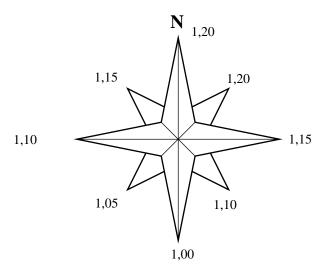
esempi di va	lori $ extit{F}_{\psi}$		
	Prodotto	umidità ψ	Fattore conversione f_{ψ}
		$\mathrm{m}^3/\mathrm{m}^3$	-
	EPS pannelli	< 0, 10	4
	XPS pannelli	< 0, 10	2,5
	Poliuretano rigido	< 0, 15	6
	Lana di roccia pannelli	< 0, 15	4
	Lana di roccia sfusa	< 0, 15	4
	Lana di legno pannelli	< 0, 10	1,8
	Sughero pannelli	< 0, 10	6
	fibra di legno pannelli	< 0.05	1 Δ

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

18 / 76


resistenza termica superficiale

La norma UNI EN ISO 6946 riporta la seguente tabella per il calcolo della resistenza termica superficiale

	Direzione flusso termico			
	ascendente orizzontale discendente			
R_{si}	0,10	0,13	0,17	
R_{se}	0,04	0,04	0,04	

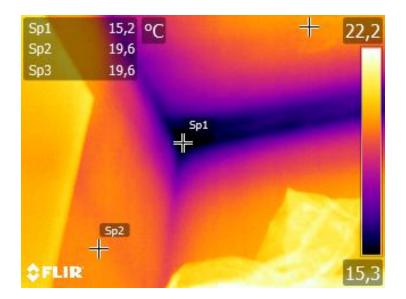
Coefficiente di Esposizione

Il coefficiente di esposizione $e_k = e_l$ previsto nella UNI EN 12831 Tiene conto dell'insolazione normale, del diverso grado di umidità delle pareti, della diversa velocità e temperatura dei venti.

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021


20 / 76

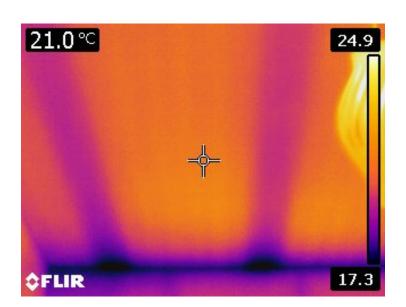
Ponti termici

- Il flusso termico attraverso le pareti viene considerato monodimensionale;
- ci possono essere disomogeneità che portano a percorsi preferenziali per il flusso termico;
- per tenere conto di questi fattori si introducono i ponti termici;
- il ponte termico è caratterizzato dal coefficiente ψ_L detto anche trasmittanza lineica;

Ponti termici: casi

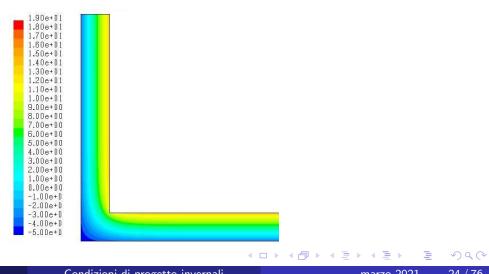
termografia

Marco Manzan (UNITS - DIA)


Condizioni di progetto invernali

marzo 2021

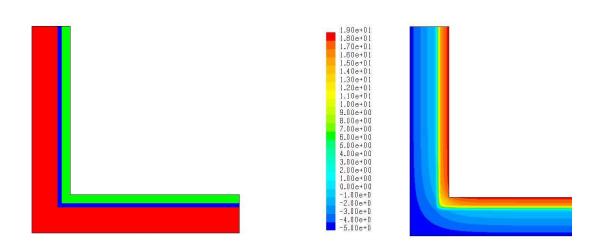
22 / 76


Ponti termici: casi

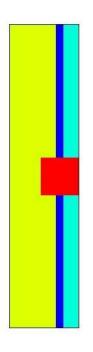
termografia

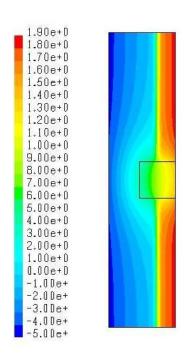
Ponti termici: Angolo

Le disuniformità geometriche modificano il campo termico


Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali


marzo 2021

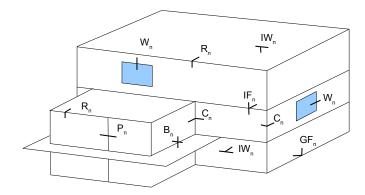

24 / 76

Ponti termici: Angolo isolato

Ponti termici: Pilastro in cemento

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali


marzo 2021

26 / 76

Ponti termici

Calcolo secondo UNI 14683

La norma riporta valori di default per casi tipici

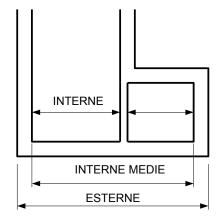
Calcolo dei ponti termici

- per calcolo di progetto attraverso calcolo numerico secondo UNI EN ISO 14683
- utilizzo di atlanti conformi alla UNI EN ISO 14683:2008
- per edifici esistenti ammesso uso calcoli manuali conformi a UNI EN ISO 14683:2008
- è escluso l'utilizzo dell'allegato A della UNI EN ISO 14683:2008
- non è più possibile il calcolo percentuale per edifici esistenti

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021


28 / 76

Dimensioni geometriche

Le dimensioni possono essere

- interne
- medie interne
- esterne

La scelta delle dimensioni deve essere coerente con la scelta del fattore del ponte termico

Calcolo ponti termici

Abachi

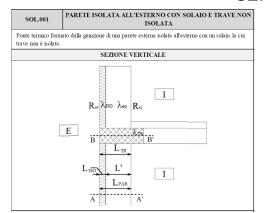
- CENED Abaco dei Ponti Termici elaborato da Politecnico di Milano, Cestec S.p.A. e ANCE Lombardia (gratuito)
- Abaco dei Ponti Termici svizzero, in francese (gratuito)
- Atlante nazionale dei ponti termici conforme alle norme UNI EN ISO 14683 e UNI EN ISO 10211 (EDILCLIMA)
- gli abachi sono implementati anche nei software di progettazione termotecnica

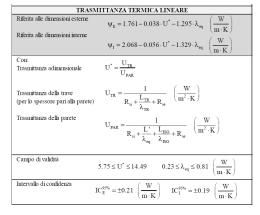
Calcolo numerico

- i ponti termici possono essere calcolati con metodi numerici
- il calcolo deve essere eseguito secondo UNI EN ISO 10211
- esistono programmi gratuiti (2d) per il calcolo es, THERM

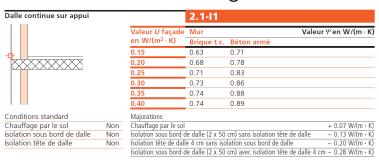
< □ ト < □ ト < 重 ト < 重 ト 回 ● のへで

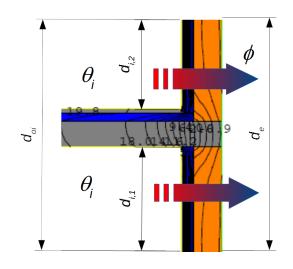
Marco Manzan (UNITS - DIA)


Condizioni di progetto invernali


marzo 2021

30 / 76


Esempi Atlanti


CENED

Suisse Energie

$$L_{2D} = \frac{\Phi}{\theta_i - \theta_e}$$

$$\psi_e = L_{2D} - \sum_k U_k \times d_{e,k}$$

$$\psi_i = L_{2D} - \sum_k U_k \times d_{i,k}$$

$$\psi_{oi} = L_{2D} - \sum_k U_k \times d_{oi,k}$$

Marco Manzan (UNITS - DIA) Condizioni di progetto invernali

marzo 2021

32 / 76

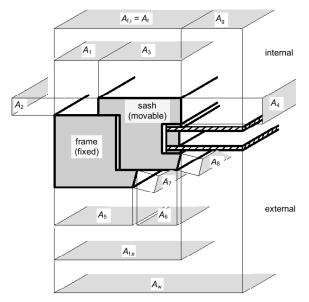
Calcolo della dispersione degli elementi finestrati

Si usa UNI EN 10077-1, la trasmittanza è una media pesata della trasmittanza del vetro, del telaio e del ponte termico tra di essi:

$$U_w = \frac{A_g U_g + A_f U_f + \Psi_g L_g}{A_g + A_f}$$
$$\Phi_w = U_w A_w \Delta \theta$$

 U_g trasmittanza elemento vetrato

 U_f trasmittanza termica del telaio


 ψ_I trasmittanza dei distanziali

L_g Lunghezza perimetrale della superficie vetrata

A_G Area vetro

 A_f area telaio

geometria finestra

NOTE $A_f = \max (A_{f,i}; A_{f,e})$ $A_w = A_f + A_g$ $A_{d,i} = A_1 + A_2 + A_3 + A_4$ $A_{d,e} = A_5 + A_6 + A_7 + A_8$

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

34 / 76

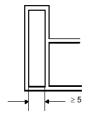
Trasmittanza termica del componente trasparente

La trasmittanza sia per vetro semplice che multiplo è data da

$$U_g = \left(R_e + \sum_{i=1}^n r_i \cdot d_i + \sum_{j=1}^{n-1} R_{si} + R_i\right)^{-1}$$

- $R_{
 m e}$ resistenza termica superficiale esterna $R_{
 m e}=1/h_{
 m e}$;
 - r resistività del vetro r = 1 (m K)/W;
 - d spessore del vetro;
- R_i resistenza termica superficiale interna $R_i = 1/h_i$;
- R_s resistenza termica dell'intercapedine;
 - *n* numero di lastre.

I coefficienti h_i e h_e si calcolano come:


$$h_e = 25$$
 $h_i = 3, 6 + 4, 4 \frac{\varepsilon}{0.837}$ W/(m² K)

Trasmittanza del telaio in plastica

Table D.1 - Thermal transmittances for plastic frames with metal reinforcements

Frame material	Frame type	U_{f}
		$U_{\mathbf{f}}$ W/(m 2 ·K)
Polyurethane	with metal core	2,8
	thickness of PUR ≥ 5 mm	
PVC-hollow profiles ¹⁾	external internal two hollow chambers	2,2
	external internal three hollow chambers	2,0
1) With a distance between wall surfaces of hollow chambers of at least 5 mm (refer to Figure D.1).		

Dimensions in millimetres

◀□▶◀♬▶◀臺▶◀臺▶ 臺 쒸Q♡

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

36 / 76

Trasmittanza del telaio in legno

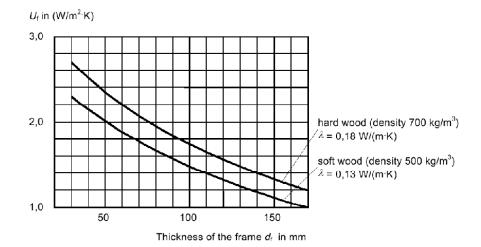
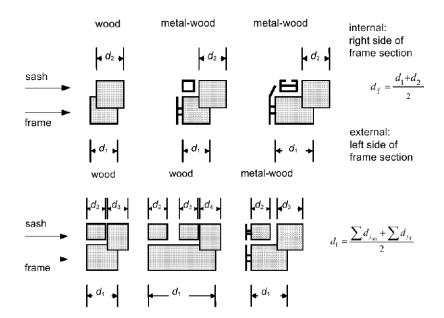



Figure D.2 - Thermal transmittances for wooden frames and metal-wood frames (see Figure D.3) depending on the frame thickness $d_{\rm f}$

Trasmittanza del telaio in legno

◆□▶◆□▶◆壹▶ 壹 か९♡

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

38 / 76

Resistenza intercapedini d'aria

Table C.1 - Thermal resistance $R_{\rm S}$ of unventilated air spaces, in m²-K/W, for coupled and double windows

Thickness of air space	One side coated with a normal emissivity of:			Both sides uncoated	
mm	0,1	0,2	0,4	0,8	
6	0,211	0,190	0,163	0,132	0,127
9	0,298	0,259	0,211	0,162	0,154
12	0,376	0,316	0,247	0,182	0,173
15	0,446	0,363	0,276	0,197	0,186
50	0,406	0,335	0,260	0,189	0,179
100	0,376	0,315	0,247	0,182	0,173
300	0,333	0,284	0,228	0,171	0,163

Calcolo della dispersione delle strutture a contatto col terreno UNI EN ISO 13370

La EN 12381 implementa un metodo di calcolo delle dispersioni attraverso il terreno, ma comunque il metodo della UNI 13370 va utilizzato per il calcolo dell'energia

$$\phi_{G} = H_{T,g} \Delta \theta$$

 ϕ_G potenza dispersa attraverso il terreno;

 H_G coefficiente di dispersione attraverso il terreno;

il coefficiente di dispersione si ricava dalla trasmittanza equivalente del terreno:

$$H_{T,g} = U_{eq} \cdot A$$

Marco Manzan (UNITS - DIA)

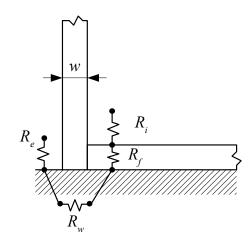
Condizioni di progetto invernali

marzo 2021

40 / 76

Dispersione attraverso il pavimento, tipologie

Per il calcolo della trasmittanza U_{eq} si distinguono tre casi


- pavimento appoggiato sul terreno;
- pavimento su spazio aerato;
- pavimento di vano interrato;
- pavimento interrato non riscaldato
- pavimento interrato parzialmente riscaldato

Spessore di terreno equivalente

Si introduce uno spessore di terreno equivalente d_t

$$d_t = w + \lambda (R_{si} + R_f + R_{se})$$

- w spessore delle pareti verticali,
- λ conduttivitá termica del terreno,
- $R_{si} = \frac{1}{h_i}$ resistenza termica specifica sulla superficie interna,
 - R_f resistenza termica specifica del componente che costituisce il pavimento (floor);
- $R_{se} = \frac{1}{h_e}$ resistenza termica specifica sulla superficie esterna;

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

42 / 76

Dimensione caratteristica e spessore equivalente

La procedura di calcolo è diversa a seconda del grado di isolamento del pavimento, si ha pertanto:

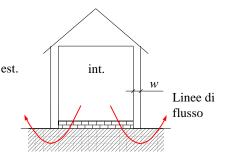
 $d_t < B'$ pavimenti non isolati o poco isolati

 $d_t \geq B'$ pavimenti bene isolati

B' = 2A/P dimensione caratteristica

P perimetro del pavimento

A area del pavimento


Pavimento a livello del terreno esterno

• Pavimenti non isolati o moderatamente isolati ($d_t < B'$)

$$U_{eq}=U_{0}=rac{2\lambda}{\pi\;B'+d_{t}}\; \mathit{In}\left(rac{\pi\;B'}{d_{t}}+1
ight)$$

• Pavimenti bene isolati $(d_t \geq B')$

$$U_{eq} = U_0 = \frac{\lambda}{0,457 \ B' + d_t}$$

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

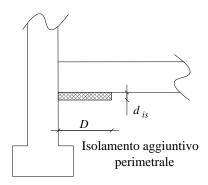
marzo 2021

44 / 76

Isolamento aggiuntivo

In località dal clima particolarmente rigido talvolta si adottano isolamenti aggiuntivi perimetrali si distinguono due casi:

- isolamento aggiuntivo disposto orizzontalmente
- isolamento aggiuntivo disposto verticalmente


in entrambi i casi la trasmittanza equivalente diviene:

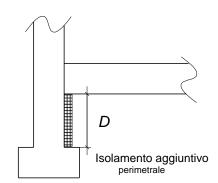
$$U_{eq} = U_0 + \frac{\Delta \Psi P}{A} = U_0 + 2\frac{\Delta \Psi}{B'}$$

con $\Delta \Psi < 0$

Isolamento aggiuntivo disposto orizzontalmente

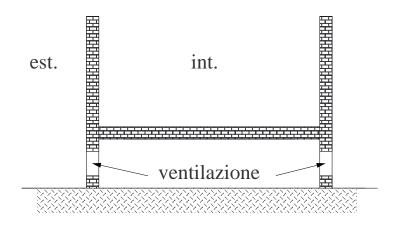
$$\Delta \Psi = -rac{\lambda}{\pi} \left[ln \left(rac{D}{d_t} + 1
ight) - ln \left(rac{D}{d_t + R' \lambda} + 1
ight)
ight]$$
 $R' = rac{d_{is}}{\lambda_{is}} - rac{d_{is}}{\lambda}$

Marco Manzan (UNITS - DIA)


Condizioni di progetto invernali

marzo 2021

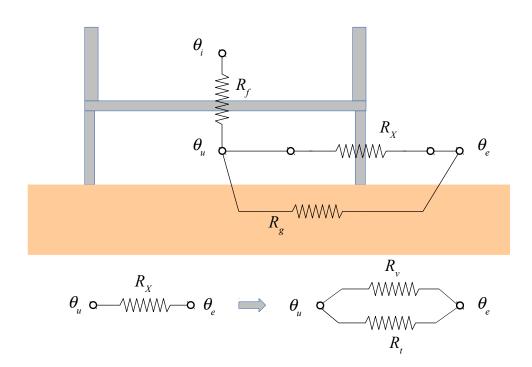
46 / 76


isolamento aggiuntivo disposto verticalmente

$$\Delta \Psi = -rac{\lambda}{\pi} \left[extit{ln} \left(rac{2D}{d_t} + 1
ight) - extit{ln} \left(rac{2D}{d_t + R' \lambda} + 1
ight)
ight]$$

Pavimento su spazio aerato

Il pavimento è sollevato da terra con ventilazione, la trasmittanza è dovuta sia al solaio che allo spazio areato


Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

48 / 76

Resistenze per Pavimento su spazio areato

Pavimento Areato

Resistenze e Trasmittanze

$$R_{Tot} = R_f + \left(\frac{1}{R_g} + \frac{1}{R_x}\right)^{-1}$$
 $R_f = \frac{1}{U_f \cdot A}$
 $R_g = \frac{1}{U_g \cdot A}$
 $R_X = \frac{1}{U_X \cdot A}$

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

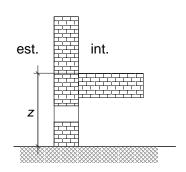
50 / 76

Trasmittanza del pavimento areato

La trasmittanza equivalente tiene conto sia degli scambi conduttivi che di quelli convettivi

$$\frac{1}{U_{eq}} = \frac{1}{U_f} + \frac{1}{U_g + U_x}$$

 U_f è la trasmittanza termica della parte sospesa del pavimento;


 U_g è la trasmittanza attraverso il terreno per il fondo del vano aerato (si calcola come U_0 nel caso di pavimento a livello del terreno);

 U_{\times} è la trasmittanza termica equivalente che tiene conto dello scambio termico per lo spazio sottopavimento attraverso le pareti dell'intercapedine e per effetto della ventilazione dello stesso spazio aerato.

pavimento areato, trasmittanze

La trasmittanza che tiene conto degli scambi convettivi si può scrivere come:

$$U_{x} = \frac{2 z U_{w}}{B'} + 1450\epsilon v \frac{f_{v}}{B'}$$

 U_{w} trasmittanza delle pareti verticali

- ϵ area delle aperture di ventilazione per metro lineare di perimetro $[m^2/m]$
- v velocitá media del vento alla quota di 10m, da UNI 10349
- f_{ν} coefficiente di protezione al vento (dalla norma): $f_{\nu}=0,02$ in centri abitati, $f_{\nu}=0,05$ in periferia, $f_{\nu}=0,10$ in zone rurali.
- 1450 fattore numerico che tiene conto della capacitá termica dell'aria per unità di volume quando la trasmittanza è espressa in $W/(m^2 K)$.

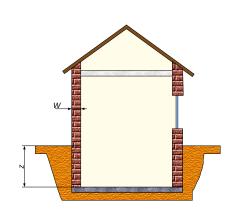
◆□▶◆□▶◆壹▶◆壹▶ 壹 めのご

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

52 / 76


pPavimento interrato

Si tiene conto di:

- profondità z del pavimento rispetto al livello del terreno;
- diversi livelli di isolamento applicati alle pareti e al pavimento

$$U' = \frac{A \cdot U_{bf} + z \cdot P \cdot U_{bw}}{A + z \cdot P}$$

$$H_g = A \cdot U_{bf} + z \cdot P \cdot U_{bw} + P \cdot \Psi_g$$

Pavimenti interrati

Contributo del pavimento

Il primo contributo tiene conto delle dispersioni attraverso il pavimento. Per vani interrati con pavimenti non isolati o poco isolati $(d_t + \frac{z}{2} < B')$:

$$U_{bf}=rac{2\lambda}{\pi\;B'+d_t+rac{z}{2}}\;ln\left(rac{\pi\;B'}{dt+rac{z}{2}}+1
ight)$$

Per pavimenti ben isolati $(dt + \frac{z}{2} \ge B')$:

$$U_{bf} = \frac{\lambda}{0,457 \ B' + d_t + \frac{z}{2}}$$

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

54 / 76

Pavimenti interrati

Contributo delle pareti

Il secondo contributo tiene conto delle pareti verticali

$$U_{bw} = rac{2\lambda}{\pi \ z} \left(1 + rac{d_t/2}{d_t+z}
ight) \ In \left(rac{z}{d_w} + 1
ight)$$

 $d_w = \lambda (R_{si} + R_w + R_{se})$ spessore equivalente di terreno. $d_w < d_t$ in questo caso si deve sostituire d_t con d_w .

Flussi termici per singoli vani

Distinguo un contributo perimetrale ed uno centrale (UNI EN ISO 13370)

- Φ_e flusso perimetrale
- Φ_m flusso centrale
- Φ_t flusso totale

$$egin{aligned} \Phi_e &= \Phi_t rac{A_e}{A_m rac{b+d_t}{0,5B'+d_t} + A_e} \ \Phi_m &= \Phi_t - \Phi_e \ q_e &= \Phi_e/A_e \qquad q_m = \Phi_m/A_m \end{aligned}$$

 q_e è la densità di flusso termico per vani perimetrali;

 q_m è la densità di flusso termico per vani centrali dell'edificio;

b è la larghezza media dei vani perimetrali ;

B' è la dimensione caratteristica dell'intero pavimento

A_e è la superficie dei vani perimetrali;

 A_m è la superficie dei vani centrali;

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 202

56 / 76

Calcolo della dispersione attraverso vani non riscaldati

La norma UNI EN 12831 calcola il coefficiente di dispersione come:

$$H_{T,iue} = \sum_{k} A_k \cdot U_k \cdot b_u + \sum_{l} \Psi_l \cdot l_l \cdot b_u$$

 b_u è un coefficiente di riduzione e può essere calcolato in tre modi:

a) se si conosce la temperatura del vano non riscaldato $heta_u$

$$b_{u} = \frac{\theta_{int,i} - \theta_{u}}{\theta_{int,i} - \theta_{e}}$$

b) se non si conosce θ_{μ}

$$b_u = \frac{H_{ue}}{H_{iu} + H_{ue}}$$

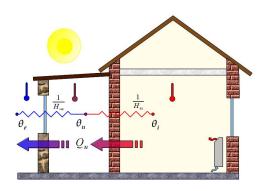
c) utilizzando valori precalcolati per b_u

Valori di norma per b_u

Table D.4 - Temperature reduction factor, bu

Unheated space	b u
Room	
with only 1 external wall	0,4
with at least 2 external walls without outer doors	0,5
with at least 2 external walls with outer doors (e.g. halls, garages)	0,6
with 3 external walls (e.g. external staircase)	0,8
Basement	
without windows/external doors	0,5
with windows/external doors	0,8
Roof space	
high ventilation rate of the roof space (e.g. roofs clad in tiles or other materials giving a discontinuous cover) without sarking felts or sarking boards	1,0
other non-insulated roof	0,9
insulated roof	0,7
Internal circulation areas (without external walls, air exchange rate less than 0.5 h ⁻¹)	0
Freely ventilated circulation areas (area of openings/volume of space > 0.005 m²/m³)	1,0
Suspended floor (floor above crawl space)	0,8

Marco Manzan (UNITS - DIA)


Condizioni di progetto invernali

marzo 2021

58 / 76

Vani non riscaldati

analogia elettrica

$$R_{ie} = R_{iu} + R_{ue}$$

iu pedice relativo agli scambi tra ambiente interno e vano non riscaldato;

ue pedice relativo agli scambi tra vano non riscaldato e ambiente esterno;

ie pedice relativo agli scambi tra ambiente interno ed esterno

Vani non riscaldati, UNI EN 13789

Coefficienti di dispersione

Resistenza totale

$$R_{ie} = R_{iu} + R_{ue}$$

• il coefficiente di dispersione è l'inverso della resistenza:

$$H_{ie} = rac{1}{R_{ie}} \qquad H_{iu} = rac{1}{R_{iu}} \qquad H_{ue} = rac{1}{R_{ue}}$$

• coefficiente di dispersione

$$H_{ie} = \frac{H_{iu}H_{ue}}{H_{iu} + H_{ue}}$$

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

60 / 76

Trasmissione e ventilazione

Il coefficiente di dispersione è dovuto sia alla ventilazione che alla trasmissione

trasmissione

$$H_{T,iu}$$
 $H_{T,ue}$

ventilazione

$$H_{V,iu}$$
 $H_{V,ue}$

coefficienti di trasmissione

$$H_{iu} = H_{T,iu} + H_{V,iu}$$

$$H_{ue} = H_{T,ue} + H_{V,ue}$$

Temperatura del vano non riscaldato

Se il vano è attiguo a più ambienti riscaldati è comodo calcolare la temperatura interna

$$\theta_{u} = \theta_{i} - \frac{H_{ie}}{H_{iu}}(\theta_{i} - \theta_{e})$$

Si può quindi valutare la frazione della dispersione attraverso il locale non riscaldato che compete a più parti riscaldate

$$\phi_{u,j} = (U_j A_j + \dot{m}_{u,j} c_{pa})(\theta_i - \theta_u) = H_{iu,j}(\theta_i - \theta_u)$$

dove

j pedice che indica il j-esimo ambiente riscaldato;

 $\phi_{u,j}$ flusso scambiato dalla j—esimo ambiente;

 $\dot{m}_{u,j}$ portata d'aria scambiata tra ambiente riscaldato e non riscaldato ;

cp calore specifico a pressione costante. dell'aria

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

62 / 76

Calcolo della dispersione per ventilazione

- Si deve tener conto anche del flusso termico legato alla ventilazione:
- sistemi senza sistemi di ventilazione
- sistemi con sistemi di ventilazione

$$\Phi_{v,i} = H_{v,i} \times (\theta_i - \theta_e)
\Phi_{v,i} = \dot{m}_i \times c_p \times (\theta_i - \theta_e)
\Phi_{v,i} = \frac{\rho \times \dot{V}_i \times c_p}{3600} \times (\theta_i - \theta_e)
H_{v,i} = 0,34 \times \dot{V}_i$$

 \dot{V}_i portata volumetrica [$m m^3/h$]; $c_p=1,006$ kJ/kgK e ho=1,2 kg/m 3

Calcolo portata di ventilazione

senza sistemi di ventilazione

$$\dot{V}_i = max(\dot{V}_{inf}, \dot{V}_{min})$$

 \dot{V}_{inf} portata di infiltrazione \dot{V}_{min} portata minima per ragioni igieniche

con sistemi di ventilazione

$$\dot{V}_i = \dot{V}_{inf} + \dot{V}_{su,i} \times f_{v,i} + \dot{V}_{mech,inf,i}$$

 $\dot{V}_{su,i}$ portata aria di rinnovo

 $f_{v,i}$ fattore di riduzione della temperatura $f_{v,i} = \frac{\theta_{int,i} - \theta_{su,i}}{\theta_{int,i} - \theta_{e}}$

 $\dot{V}_{mech,inf,i}$ portata d'aria d'estrazione in eccesso

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

64 / 76

Igiene: portata d'aria

La portata d'aria minima di uno spazio riscaldato può essere determinata come:

$$\dot{V} = n_{min} \times V_i$$

n_{min} tasso orario minimo;

 V_i volume interno netto [m³]

Tipo di locale	$n_{min}~(\mathrm{h}^{-1})$
Locale di abitazione	0,5
Cucina, bagno con finestra	1,5
Ufficio	1,0
Sala riunioni, aula scolastica	2,0

infiltrazioni

La portata d'aria d'infiltrazione di uno spazio riscaldato può essere determinata come:

$$\dot{V}_{inf} = 2 \times V_i \times n_{50} \times e_i \times \epsilon_i$$

- n_{50} tasso orario di ventilazione con salto di pressione da 50 Pa;
 - e; coefficiente di schermatura
 - ϵ_i fattore di correzione per altezza

Tasso di ventilazione per edificio n_{50}

	Grado di tenuta dell'involucro		
tipo di costruzione	alto	medio	basso
	alta qualità della tenuta	finestre a doppio vetro	finestre vetro singolo
Appartamenti monofamiliari	< 4	4-10	> 10
Altri appartamenti o edifici	< 2	2-5	> 5

Marco Manzan (UNITS - DIA)

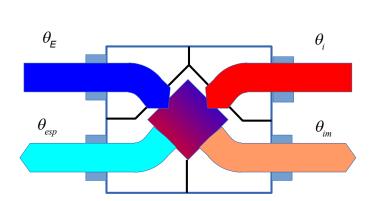
Condizioni di progetto invernali

marzo 2021

66 / 76

infiltrazioni

coefficienti di schermatura e_i


classi di schermatura	con una apertura	con più di una apertura
nessuna schermatura	0,03	0,05
schermatura moderata	0,02	0,03
schermatura pesante	0,01	0,02

correzione per altezza ϵ

Altezza dello spazio riscaldato (centro stanza) al di sopra del livello del suolo	ϵ
0-10 m	1,0
10 > 30 m	1,2
> 30 m	1,5

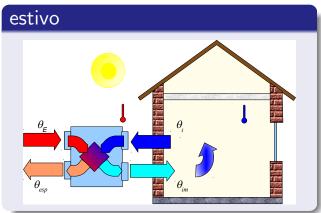
Recuperatori di calore

Recupero energia del sistema di ventilazione

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021


68 / 76

Ventilazione forzata

Utilizzo dei recuperatori

- i recuperatori si utilizzano in presenza di flusso forzato
- permettono di recuperare parte dell'energia che altrimenti sarebbe dispersa nell'ambiente

Recuperatori di calore

efficienza

- i recuperatori sono caratterizzati dall'efficienza
- l'efficienza è il rapporto tra flusso scambiato ed il massimo scambiabile
- si considerano come scambiatori di calore con uguali portate termiche di flusso $c_{pf} imes \dot{m}_f = c_{pc} imes \dot{m}_c$

$$\eta_{V} = \frac{\Phi_{r}}{\Phi_{r,max}} = \frac{\theta_{su} - \theta_{e}}{\theta_{int} - \theta_{e}}$$

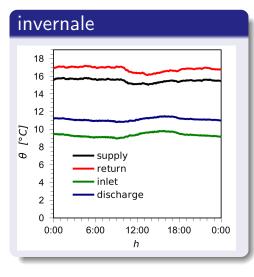
$$f_{V} = \frac{\theta_{int} - \theta_{su}}{\theta_{int} - \theta_{e}} = 1 - \eta_{V}$$

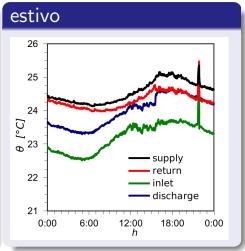
$$\Phi_{V} = \dot{m} \times c_{pa} \times (\theta_{int} - \theta_{su}) = \dot{m} \times c_{pa} \times (1 - \eta_{V})(\theta_{int} - \theta_{e}) \quad [W]$$

$$\Phi_{V} = \dot{m} \times c_{pa} \times f_{V} \times (\theta_{int} - \theta_{e}) = \rho \times c_{p} \times \dot{V}_{su} \times f_{V} \times (\theta_{int} - \theta_{e})$$

$$H_{V} = 0.34 \times \dot{V}_{su} \times f_{V} = 0.34 \times \dot{V}$$

◆ロト ◆昼 ▶ ◆ 昼 ▶ ○ 夏 ○ りへ(^


Marco Manzan (UNITS - DIA)


Condizioni di progetto invernali

marzo 2021

70 / 76

Misure su recuperatori

Distribuzione aria

recuperatore

distribuzione

□ ▶ ◀圖 ▶ ◀ ≣ ▶ ▼ ■ り へ ○

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

72 / 76

Correzione per soffitti alti

Nel caso di soffitti alti la norma europea EN 12831 corregge il flusso termico con la seguente formula:

$$\phi = (\phi_{T,i} + \phi_{V,i}) \cdot f_{h_i}$$

- il valore di f_{h_i} si ricava da tabelle;
- la correzione è necessaria per tener conto dell'effetto del gradiente termico;
- il gradiente di temperatura cresce all'aumentare dell'altezza dell'edificio
- dipende dal sistema di riscaldamento utilizzato.

Tabella per la correzione del flusso termico

	$f_{h,i}$		
Metodo di riscaldamento	Altezza d	ello spazio	
	da 5 a 10 m	da 10 a 15 m	
PRINCIPALMENTE RADIANTE			
pavimento caldo	1	1	
soffitto caldo (temperatura $<$ 40 $^{\circ}$ C)	1,15	non usato	
soffitto caldo (temperatura media e alta)	1	1,15	
PRINCIPLAMENTE CONVETTIVO			
Convezione naturale	1,15	non usato	
CONVEZIONE FORZATA			
incrociata a basso livello	1,30	1,60	
dall'alto	1,21	1,45	
temperatura media ed elevata da livello intermedio	1,15	1,30	

◆□▶ ◆□▶ ◆ 亘▶ ◆ 亘◆○○

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

74 / 76

Riscaldamento intermittente

Si aggiunge un termine per tener conto della potenza necessaria a riportare la temperatura al valore di regime

$$\Phi_{RH,i} = A_i \cdot f_{RH}$$

 A_i area del locale f_{RH} fattore di reheat

Table D 10b - Reheat factor, $\it f_{\rm RH}$, for residential buildings, nightsetback maximum 8 h

	f _{RH} W/m²		
	Assumed internal temperature drop during setback 1)		
	1 K	2 K	3 K
Reheat time hours	building mass high	building mass high	building mass high
1	11	22	45
2	6	11	22
3	4	9	16
4	2	7	13

In well insulated and airtight buildings, an assumed internal temperature drop during set back of more than 2 to 3 K is not very likely. It will depend on the climate conditions and the thermal mass of the building.

Potenza per il dimensionamento della caldaia

La potenza si calcola come:

$$\Phi_{HL} = \sum \Phi_{T,i} + \sum \Phi_{V,i} + \sum \Phi_{RH,i}$$

Posso scegliere la potenza nominale della caldaia

$$\Phi_n \geq \left(\frac{\Phi_{HL}}{\eta_e \eta_c \eta_d} \right) C_s$$

- Φ_n potenza nominale della caldaia;
- C_s fattore correttivo per tener conto delle imprecisioni nei calcoli
- η_e rendimento di emissione
- η_c rendimento di controllo
- η_d rendimento di distribuzione

Marco Manzan (UNITS - DIA)

Condizioni di progetto invernali

marzo 2021

76 / 76