Exercises 3

key words: Absolutely continuous functions. Properties of AC functions, differentiability of AC functions. Characterisation of an AC function as the integral function of a L^1 function. Fundamental theorem of integral calculus.

- 1) Prove that Cantor's function is not an AC function
 - with a direct computation;
 - using the fundamental theorem of integral calculus.
- **2)** Let $f \in C([0,1])$ and suppose that $f \in AC([\varepsilon,1])$ for all $\varepsilon > 0$.
 - prove that if $f \in BV([0,1])$ then $f \in AC([0,1])$;
 - find an example for $f \notin AC([0,1])$.

3) Let

$$f_{\alpha}(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^{\alpha} \cos(\frac{1}{x}) & \text{if } x \in [0, 1]. \end{cases}$$

- For what α we have that $f_{\alpha} \in BV$?
- For what α we have that $f_{\alpha} \in AC$?
- For what α , f_{α} has a bounded derivative in]0,1[and a finite right derivative in 0?