- 1) Esprimere il seguente numero complesso in forma polare $\left(1 + \frac{1+j}{1-j}\right)^5$.
- 2) Un sistema lineare tempo variante è caratterizzato dalla risposta impulsiva (risposta all'impulso applicato all'istante n=k): $h[n,k]=\delta[2n-k]$. Rappresentare graficamente la risposta all'ingresso x[n]=u[n+3]-u[n-4], e la risposta a $x_1[n]=x[n+1]$.
- Usando le proprietà della trasformata di Fourier, determinare la trasformata di $x(t) = \Pi\left(\frac{t}{T} 2\right) + \Pi\left(\frac{t}{T} + 1\right)$ (dove $\Pi(x)$ è uguale a 1 per $|x| \le 1/2$, ed è pari a 0 altrimenti).
- 4) Un sistema LTI ha la seguente risposta impulsiva: $H(z) = \frac{(z-1)^2}{1-z^{-2}}$, con regione di convergenza |z|>1. Si ricavi la risposta impulsiva del sistema. Dire, giustificando la risposta, se il sistema è causale.
- Si consideri la seguente densità di probabilità di una coppia di variabili aleatorie: $f_{XY}(x,y) = \begin{cases} c & 0 \le x \le 1, 0 \le y \le 1, x+y \ge 1 \\ 0 & \text{altrimenti} \end{cases}$ Determinare il valore di c. Verificare se x e y sono indipendenti.
- Si consideri il processo aleatorio $\{x^{(k)}(t)\}=A_k\cos(2\pi f_k t)$, dove A_k e f_k sono variabili aleatorie indipendenti uniformemente distribuite rispettivamente fra -1 e 1 e fra f_1 e f_2 . Dire, giustificando la risposta, se il processo aleatorio è stazionario (o ciclostazionario), e se è regolare.

- 1) Esprimere il seguente numero complesso in forma polare $\left(1 + \frac{1-j}{1+j}\right)^5$.
- 2) Un sistema lineare tempo variante è caratterizzato dalla risposta impulsiva (risposta all'impulso applicato all'istante n=k): $h[n,k]=k\delta[n-2k]$. Rappresentare graficamente la risposta all'ingresso x[n]=u[n+3]-u[n-4], e la risposta a $x_1[n]=x[n-1]$.
- Usando le proprietà della trasformata di Fourier, determinare la trasformata di $x(t) = \Pi\left(\frac{t}{T} 1\right) \Pi\left(\frac{t}{T} + 1\right)$ (dove $\Pi(x)$ è uguale a 1 per $|x| \le 1/2$, ed è pari a 0 altrimenti).
- 4) Un sistema LTI ha la seguente risposta impulsiva: $H(z) = \frac{(z+1)^2}{1-z^{-2}}$, con regione di convergenza |z|>1. Si ricavi la risposta impulsiva del sistema. Dire, giustificando la risposta, se il sistema è causale.
- Si consideri la seguente densità di probabilità di una coppia di variabili aleatorie: $f_{XY}(x,y) = \begin{cases} c & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & \text{altrimenti} \end{cases}$ Determinare il valore di c. Verificare se x e y sono indipendenti.
- Si consideri il processo aleatorio $\{x^{(k)}(t)\}=A_k\cos(2\pi f_k t)$, dove A_k e f_k sono variabili aleatorie indipendenti uniformemente distribuite rispettivamente fra 0 e 1 e fra f_1 e f_2 . Dire, giustificando la risposta, se il processo aleatorio è stazionario (o ciclostazionario), e se è regolare.

- 1) Esprimere il seguente numero complesso in forma polare $\left(1 \frac{1+j}{1-j}\right)^3 \left(1 + j\sqrt{3}\right)$.
- 2) Un sistema lineare tempo variante è caratterizzato dalla risposta impulsiva (risposta all'impulso applicato all'istante n=k): $h[n,k]=k\delta[2n-k]$. Rappresentare graficamente la risposta all'ingresso x[n]=u[n+3]-u[n-4], e la risposta a $x_1[n]=x[n+1]$.
- Usando le proprietà della trasformata di Fourier, determinare la trasformata di $x(t) = \Pi\left(\frac{t}{T} 1\right) + \Pi\left(\frac{t}{T} + 1\right)$ (dove $\Pi(x)$ è uguale a 1 per $|x| \le 1/2$, ed è pari a 0 altrimenti).
- 4) Un sistema LTI ha la seguente risposta impulsiva: $H(z) = \frac{(z-1)^2}{1-z^{-2}}$, con regione di convergenza |z| < 1. Si ricavi la risposta impulsiva del sistema. Dire, giustificando la risposta, se il sistema è causale.
- Si consideri la seguente densità di probabilità di una coppia di variabili aleatorie: $f_{XY}(x,y) = \begin{cases} c & 0 \le x \le 1, 0 \le y \le 1, x \ge y \\ 0 & \text{altrimenti} \end{cases}$ Determinare il valore di c. Verificare se x e y sono indipendenti.
- Si consideri il processo aleatorio $\{x^{(k)}(t)\}=A_k\cos(2\pi f_0t+\phi_k)$, dove A_k e ϕ_k sono variabili aleatorie indipendenti uniformemente distribuite rispettivamente fra -1 e 1 e fra 0 e π . Dire, giustificando la risposta, se il processo aleatorio è stazionario (o ciclostazionario), e se è regolare.

- 1) Esprimere il seguente numero complesso in forma polare $\left(1 + \frac{1+j}{1-j}\right)^3 \left(1 j\sqrt{3}\right)$.
- 2) Un sistema lineare tempo variante è caratterizzato dalla risposta impulsiva (risposta all'impulso applicato all'istante n=k): $h[n,k]=\delta[n-2k]-\delta[2n-k]$. Rappresentare graficamente la risposta all'ingresso x[n]=u[n+3]-u[n-4], e la risposta a $x_1[n]=x[n-2]$.
- Usando le proprietà della trasformata di Fourier, determinare la trasformata di $x(t) = \Pi\left(\frac{t}{T} 1\right) \Pi\left(\frac{t}{T} + 2\right)$ (dove $\Pi(x)$ è uguale a 1 per $|x| \le 1/2$, ed è pari a 0 altrimenti).
- 4) Un sistema LTI ha la seguente risposta impulsiva: $H(z) = \frac{(z+1)^2}{1-z^{-2}}$, con regione di convergenza |z| < 1. Si ricavi la risposta impulsiva del sistema. Dire, giustificando la risposta, se il sistema è causale.
- Si consideri la seguente densità di probabilità di una coppia di variabili aleatorie: $f_{XY}(x,y) = \begin{cases} c & 0 \le x \le 1, 0 \le y \le 1, y \ge x \\ 0 & \text{altrimenti} \end{cases}$ Determinare il valore di c. Verificare se x e y sono indipendenti.
- Si consideri il processo aleatorio $\{x^{(k)}(t)\}=A_k\cos(2\pi f_0t+\phi_k)$, dove A_k e ϕ_k sono variabili aleatorie indipendenti uniformemente distribuite rispettivamente fra 0 e 1 e fra 0 e 2π . Dire, giustificando la risposta, se il processo aleatorio è stazionario (o ciclostazionario), e se è regolare.