Elasticity

Mechanical properties used in describing
linear elastic, isotropic deformation are
elastic modulus, E, and Poisson’s ratio, v.
Other parameters, such as shear modulus G
and bulk modulus K, can be calculated
from the values of E and v.

K=E/3(1- 2v) G=E/2(1+v)

These mechanical properties can be
determined using standardized tests and
basic testing equipment.

Other common metrics that are derived from
a tensile test include

- Ultimate Tensile Strength (UTS),

- Yield Strength (g,),

- Failure Strength (o),

- Strain to failure (ef).



Stress and strain
When a component is loaded, there is normally

some deformation in response to this loading.

This deformation is captured in the concept of

strain, a non-dimensional quantity that
describes the change in a component’s

physical configuration during loading.
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STRESS

P, . Given the object in Figure,
\ | —,[Py\
/\,ap [ ¥ the force vector AP can be
L l‘l L / .
1 ti A KM *“resolved into three
5 s ~°- )/ coordinate directions, the
@ (0) traction vector is then
— | defined as follow:
(a) An object under loading, showing (b) the definition of the traction vector.
_ o AP AR AP
Ty = lim ——, 7, = lim ——,7,, = lim .
AA—0 A A AAd—0 AA AA—0 A A

the first subscript of the traction vector refers
to the plane on which the force is acting, and
the second subscript refers to the direction of
the force.

By convention, t,, = 0, , the normal stress,
while t,, and t,, are shear stresses.

It is important to note here that the
orientation of the surface AA will have an
effect on the magnitude and direction of the
stresses, even if the load AP remains the

same. : ..
In a simple uniaxial case F

stress is defined simply o = IR
0
as:



imagine that there is an

Stress tensor infinitesimal cube inside of an
1 object under loading, whose
% sides are parallel with the three
coordinate planes. In this
configuration, there are three

& % normal stresses (o, 0, and o)
7, =0, and six shear stresses (Ty= Ty,

1 Ty-= T, and To= To2).

Oy "

% |f| __  The stress state of this object
% /—" UJ' — %% demonstrates observer
0.=0 |/ invariance — that is, it does not
1 change when viewed by

% different observers.

However, the components of
stress, the normal and shear
stresses that act on the
orthogonal sides of the
infinitesimal element, can be
different in different
[Figure 65 configurations.

An infinitesimal cube inside an object under loading (top), before (middle), and after (bottom) rotation.

If this infinitesimal cube is rotated, the stresses in the
new configuration will be related to the stresses in the
original configuration, but they will generally not be of
the same magnitude. This change in stresses made by
changing from one set of coordinate axes to another is
known as a stress transformation.



It is common to group the values for stress together in the

r nsor, defined as oy, or:
stress tensor, defined iy o1l 01 o1
0 = |021 022 023

031 032 033

This 1s sometimes written as

0= 1T Oy Ty

It can be shown that this tensor, order for a stress not to
move the material, must be symmetric or that t;; =t;;

When an object is under stress, this stress state can
be broken into dilatational and deviatoric
components. The dilatational component is
responsible for volume change and is sometimes
referred to as the hydrostatic component, while the
deviatoric component is responsible for shape
change, or distortion

The dilatational stress tensor, p 0ij , is written as:

p O O yl\ o
Y
0 P O __‘ryx
0 0 P T - T~ b ¢\ Ty
h O-X—|~ ~‘—O-x
| T
1l __% A B
|?;—|
_ 011 + 022 + 033 ", !
o 3 — h —1

Summation of moments for the x-y plane of an infinitesimal element.



In crystalline metals plastic deformation
occurs by slip, a volume-conserving process
that changes the shape of a material through
the action of shear stresses. On this basis, it
might therefore be expected that the yield
stress of a crystalline metal does not depend
on the magnitude of the hydrostatic stress;
this is in fact exactly what is observed
experimentally.

In amorphous metals, a very slight
dependence of the yield stress on the

hydrostatic stress is found experimentally.



The deviatoric stress tensor, o, is defined as the
difference between the stress tensor and the dilatational
stress tensor as follows:

S11 S12 813 011 O12 013 p 0 O
So1 S S| = |01 o o —1|0 p O
§31  S32 33 031 032 033 0 0 p

Sometimes it is useful to look at
the stresses in several different
\ o', : sets of coordinate axes.
e It is common to apply
# \ , {_ % coordinate transformations in
A )K order to find the set of
coordinate axes that have the
@ highest stress values (either

normal or shear) for yield or
(a) An infinitesimal element, (b) undergoing rotation by an angle 6. o o o
failure predictions.

It can also be useful to know in which coordinate systems
normal or shear stresses are minimized.

Imagine an infinitesimal element in plane stress as given in
Figure a. If it is examined in a different coordinate system
rotated by 6 as shown in Figure b, the stresses o,, 0,, and 1,
are transformed to ¢, ¢'y, and 'y, respectively. It is important
to remember that these quantities are merely a new (and
equivalent) representation of the initial stress state.

y .
= cos 20 + 1, sin 26
O—)C 2 + 2 + y
oy +0 Oy — O i
a; i r 5 Y cos20 — Tyy Sin 26

T = _Ty sin 26 + 1y, cos 26.



o, +0 Oy — .
= ;— A > Oy c0S 20 + Ty, sS1n 20

o, + 0 . — .
= ; y _ 2 20y cos 20 — 1, SIn 20

L B )V 26
Ty = =5 $in20 + 1y, cos 26,




The general stress tensor has six
independent components and could require
us to do a lot of calculations. To make
things easier it can be rotated into
the principal stress tensor by a suitable
change of axes.

For every stress state, we can rotate the

axes, so that the only non-zero components

of the stress tensor are the ones along the

diagonal: (s, 0 0)
0O oo O
\O 0 03 )

that is, there are no shear stress components,
only normal stress components. the elements
0, 0, 05 are the principal stresses. The
positions of the axes now are the principal

aXxes.


https://www.doitpoms.ac.uk/tlplib/metal-forming-1/rotate_axis.php

The largest principal stress is bigger than any
of the components found from any other
orientation of the axes. Therefore, if we need
to find the largest stress component that the
body is wunder, we simply need to
diagonalise the stress tensor.

Remember — we have not changed the stress
state, and we have not moved or changed the
material — we have simply rotated the axes
we are using and are looking at the stress

state seen with respect to these new axes.



It is not necessary to memorize these derivations, as a
convenient graphical method also exists for determining the
stresses in a system after a change of coordinate axes. Mohr’s
circle, introduced by Otto Mohr in the 1880s, can be used in
any loading situation, although each plane rotation must be
addressed separately.

A
T
max

plot the normal
/ and shear stresses
» on the x and y

faces as shown in
Figure.

A

o +0,

— X

xy

T A

Mohr’s circle representation of a two-dimensional problem.

Use these two points to draw a circle.

Rotation of an angle 20 in Mohr’s circle space
represents a rotation of 0 in actual space. For example,
a rotation of 30° in actual space to reach maximum
shear stress is represented by a rotation of 60 in Mohr’s
circle space. Again, geometry can be used to find the
values for the normal and shear stresses after a
coordinate transformation



Forces in an intramedullary rod

A tibial fracture occurs at 80.to the longitudinal axis of a tibia
and is repaired using an intramedullary rod as shown in
Figure.

When the person is standing on both feet, assuming her body
weight, BW, is split evenly between her right/left tibias.

What are the normal and shear forces in the intramedullary
rod in the plane of the fracture?

Also assume for this example that the rod has a diameter, d,
and that it is carrying all of the load in the tibia.

BW V
| .
|-
A X 10
. Ny

il
| L) A

(a) (b) (c)
(a) A bone with fracture and intramedullary rod, (b) an infinitesimal element in this loading scheme, and (c) the infinitesimal
element rotated to match the plane of the crack.
BW
) 2BW 0 0
o, = = — o, = Ty =
T ina? wd?’ P
o —0 BW
Or 800 = — + —= c0s2(80°) = —— (1 = cos(160%))
2 2
o . BW
0y.80° = + 7 Y c0s2(80°) = ——(1 + cos(160°))

BW
Ter.80r = % sin 2(80°) = ——— sin(160°).
T



Using Mohr’s circle to determine maximum

shear stress

T

L

&
Py
(a) (b)

Figure 6.10

| \Pd
1,

A micro-guide-wire used in
catheterization is made from a
ductile metal (Figure).
Knowing that if it fails, it will
fail in shear

Use Mohr’s circle to draw the
coordinate system that
maximizes shear stress in
order to find the weakest
plane and the value for
maximum shear stress.

(a) A microguidewire in an artery, and (b) the same guidewire under tensile loading during retraction.
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Mohr’s circle representation of the stress state described in Example 6.2.

As described earlier, finding the highest stresses is
necessary when exploring failure or yield situations.
Another way to represent this is to rotate the stress tensor
such that all of the shear stresses are eliminated and the
stress tensor can be written as

o]
0
0

19
|

0
0?2
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0
0

03

with oy, 05, and o3 referred to
as the principal stresses
corresponding to principal
directions p;, p,, and ps.

— —— and occurs at 45°.



One method for finding the principal stresses is to take the
derivative of Equations

ol = Ox + % + % 0520 + Tyy SIN 26
2 2
oy +0 Oy — O .
o, = 5 2 5 % 0820 — 1y 5in 20
/ Ox — Oy .
Ty = —— 5 sin 20 + 1y, cos 20.

with respect to O and set equal to zero. The results will give
the principal stresses in two dimensions:

2
_ 1 2
01,0y = T + T2 .
, 2 2 r

In the coordinate transformation that results in the principal
stresses, the shear stresses are found to be zero.

Conversely, if the shear stresses in a representation are zero,
then the normal stresses are the principal stresses.

It may also be useful to know the direction and value for
maximum shear stress.

Using a similar technique, the maximum shear stress is found
to be

__ | Ox — Ox | and the rotation necessary to achieve
Tmax = 5 this is 0 = 45.




Principal stresses in an artificial spinal disk

An infinitesimal
element in an
artificial spinal disk
is loaded as shown
in Figure with

0.=—-2.2 MPa,
o,=—1.1 MPa,
. o-=—-0.58 MPa,
@ © Ty=—0.57 MPa,
%inmrvertebraldisk, and (b) the stress tensor associated with its loading. Ty= _033 MPa/
.= —0.79 MPa.

Use Mohr’s circle to find the principal
stresses in this situation.

-
>

9 From Mohr'’s circle the
principal stresses are

A

o, =—0.25 MPa,
\ o, =—0.86 MPa
T 05 =-2.77 MPa.

Mohr's circle representation of the stress state described in Example 6.3.




The eigenvalues of the stress tensor are the principal stresses

and the eigenvectors are the principal directions.

Given the stress tensor in Equation

19

|

S
=

the principal stresses can be found by solving

Txy Tz
0y Tyz
‘Ezy GZ B

det[o — AI] = 0.

The principal directions are then easily found by solving

lo = AlI][p] =0.

AGAIN lets calculate the Principal stresses in an artificial

spinal disk

22—\
det | —0.57
—0.79

—0.57
—1.1—-A
—0.33

—0.79
—0.33
—0.58 — A




(—2.2 — M[(=1.1 = 1)(—=0.58 — 1) — 0.33?]
+0.57[—0.57(—0.58 — 1) 4 0.33(—0.79)]
—0.79[—0.57(—0.33) + 0.79(—=1.1 — 1)] =0

A1 = —0.25MPa
Ay = —0.86 MPa (Principal stresses)
Az = —2.77 MPa

22—2  0.57 0.79 7 [pi1
057 1.1—% 033 pia| =0

0.79 0.33 0.58 — A; i3

—0.86 0.39 0.34
p1= |—036|,p,= [—092]|, p3 = | 0.13 | (Principal directions)
—0.36 0.01 —0.93

Check orthogonality by verifying that p; - p» = p> - p3 = p3 - p1 = 0.
Check unit length by verifying that |p,| = |p2| = |p3| = 1.

During uniaxial elastic deformation of an isotropic

material, the relationship between stress and strain
is linear and is known as Hooke’s Law and is given
as:

o=F¢

In some cases, such as metals, even different
microstructures will not affect the elastic modulus.
However, for polymers and soft tissues, the
measured value for E is highly dependent on test
conditions such as strain rate



Multiaxial loading

Uniaxial deformation is not a realistic model for many medical
device applications. For this reason, it is important to consider
how equations such as Hooke’s Law can be applied to a
multiaxial loading situation.

The principle of linear superposition, which states that for a
linear system, the overall response to two or more stimuli is
equal to the sum of responses to those stimuli individually, will
be used in this proof. In this case, this means that if the strain
responses to applied loads in the x-, y-, and z-directions are
analyzed individually, and then these responses are summed,
the result is the strain responses for an object under multiple

applied loads.

Figure 6.14

The summation of applied stresses leading to the development of three-dimensional Hooke's Law.




Table 6.1 Development of 3D Hooke’s Law

Strain response to:

GX Gy O’Z
1 ", v
€x = Eax = —vg), = —an = =g, = =—0
v 1 v
gy = —VEg = ——O, = an = —VvEg, = ——0,
v ", 1
&z = Ve = _Eax = V&) = —EO'), = EJZ

To derive three-dimensional Hooke’s Law, sum the strain contributions from each
stress:

1

gy = E[Ux —v(o, + 0,)]
1

€y = E[Uy - 1)(O—x + Uz)]
1

g, = E[O'Z —v(ox +0y)]



Constrained loading in a tibial plateau

30kN

Imagine a design for a tibial |
consider
rigid
' 30mm

plateau that can be modeled for
<—40mm—.

simplicity as shown in Figure
m

(a) Atibial plateau, which can be modeled by fully constrained loading as shown in

It is made of UHMWPE in a constraining frame of CoCer.
Given a load of 30 kN which is evenly spread across the tibial
plateau, what are the stresses and strains that develop in this
implant? Use E =1 GPa and v = 0.4 for UHMWPE and assume

that the CoCr acts as a rigid constraint around the polymer.

& =0=—=[o, — V(Gy + 0.)]
1
g, =0= E[O'y — v(oy + 0;)]

E; = E[GZ — V(Gx + Jy)]

Solve to get o, = 0, = 16.7 MPa, ¢, = 0.012.



Isotropy/anisotropy

The equations in three-dimensional Hooke’s Law assume
that the material is homogeneous and isotropic, meaning
that the deformation in response to load is invariant with
respect to direction.

If a material is anisotropic, the general form of Hooke’s

Law is given as follows:

(&, ] (Si1 S Sz S Sis Sig] [ox)
&y S S S Su Sy Skl | o)

J &\ _ S31 832 833 Sz S35 S36 J o=\
Vyz Ss1 Sa2 Saz Sas Sas Sas| | Tyz
Vex Ss1 Sso Ss3 Ssa Ss5 0 Sse| | Tex

| Vry ) | Se1 Se2 Se3 Sea Ses  See | | Txy

Si= Siin the compliance matrix S.

For the anisotropic case, there are 21 independent constants
needed to fully define the interactions between stress and
strain.

Many standard engineering materials are considered to be

isotropic.



The isotropic case can be defined by two independent

constants, E and v.

This special case is shown in the matrix form as:

-1 -

V V
e N
E E E
(e, ) 2oLy 0 o] (o)
. E E E -
. — =~ — 0 0 0|4
Vyz O 0 0 — 0 of]|Y
Vex G { Tox
\ny/ 0 0 0 0 E (1) \Txy;
O 0 0 0 0 —
| G J

For simplicity, the shear modulus, G, is used instead of its
representation using E and v.



Two other special cases are of interest when considering
biomaterials.

The first is orthotropy.

An orthotropic material possesses symmetry about three
orthogonal planes, such as a composite material with fibers

of different strengths laid 90.to each other, as illustrated in

Figure.

oooocooooooosﬁ

000000000000
(a)

Figure 6.16

Special cases of symmetry: (a) orthotropy and (b) transverse isotropy.

In this case, there will be three elastic moduli, E., E,, and E,,
each associated with one plane of symmetry.

Although this example uses x, y, and z for the planes of
symmetry, the planes do not need to be tied to the coordinate
axis system.

There will also be three shear moduli, G., G,;, and G..and three
Poisson’s ratios, vs, Vi, and v.. It is important to remember
that v,= vi.due to symmetry, which is how the total number
of independent constants for an orthotropic material is
reduced to nine.



The matrix form of Hooke’s Law for an orthotropic material is
given below:

i L Y V= 0 0 0 |
E. E, E.

S S - A Y R N I
€x E. E, E. Ox
% L L R

Jel_| B B E )o. |
y ! T
¥z 0 0 0 0 0 yz
Vzx Gyz Tzx

Vxy ) 0 0 0 0 : 0 ( Ty

G
1
0 0 0 0 0 G
i xy J

Another special case to be considered here
is transverse isotropy.

In transverse isotropy, the mechanical
properties are the same in a single plane
(for example, the x-y plane) and different
in the z direction. An example of this is
shown in Figure.

Transversely isotropic materials have five
independent constants: in this example,
they are E.and vy for the x-y plane, and E,,
Ve, and G for the z direction.




The matrix form is:

1 Vyx Vo T
—  — — 0 0 0
¢ \ _ @ L _ Vax 0 0 0 / \
Ex E. E, {sz Ox
8 XZ Xz O'
ol |5 5 . ° o o o
< : = o x z 1 < IZ ’
Vyz 0 0 0 0 0 vz
Vx Gy Tox
1
 Vxy ) 0 0 0 0 G 0  Txy
zx (1 ’
0 0 0 o o =X Z Vey)

Finding strains in cortical bone

Cortical bone can be thought of as a transversely isotropic
material. The compliance matrix for dry human femur is as

follows (Yoon and Katz, 1976), with values in GPa

[0.053 —0.017 —0010 0 0 0
—0.017 0.053 —0.010 0 0 0
o _ |-0010 —0010 0037 0 0 0
2 0 0 0 0115 0 0
0 0 0 0 0115 0

0 0 0 0 0 0139

If the femur is loaded such that it experiences 5 MPa in
compressive stress along the z-axis, what are the resulting
strains?



Vzx
Vxy )

[ 0.053

0
0
0

0017 —0010 0 0 0
0017 0.053 —0010 0 0 0
—0.010 —0.010 0037 0 0 0 |]-0

0 0 0115 0 0 |
0 0 0 0115 0
0 o 0o 0 0139 |

e

\

0.00005
0.00005

< —0.000185

0
0
0

The bone will experience slight expansion in the x-y plane, and an even smaller
compression in the z-direction.

Stress-strain curves

\




Bending stresses and beam theory

Figure 6.26

(a) A beam under bending moment with (b) marked segments that are perpendicular to the axis.

The stresses which develop due to the bending moment will
be tensile on the convex side of the beam and compressive
on the concave side of the beam. The plane at which the

stresses induced by M.:are zero is known as the neutral axis.

I = area moment of inertia
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Areas and moments of inertia around centroidal axes for basic geometries.



Designing a hip stem cross-section

T Assess if the maximum stresses
are different under a 50 N-m
or bending moment.
In order to keep the cross-
| — ~— sectional area the same, she
N %mm % decides to use the cross-
mngularcms_secnonsmhempstem wmncamess  Se€ctions shown in Figure.

Assuming they are both made of Ti-4Al-6V with E = 114

GPa, what are the maximum stresses in each hip stem?

Using the dimensions given l..=7.18 m*and liwe=4.91 m*.
Substituting these values along with the bending moment
and maximum distance from the neutral axis, the result is
Omax.rect= 365 MPa and  0payx circle = 509 MPa.

The maximum stress is larger in the circular cross-section.
Other things to consider in selecting a cross-sectional
geometry include ease of manufacture, reduced stress-

concentrations, and stabilization inside the femur.



Finding the neutral axis of a composite beam

y
Y

it is assumed that all n sections are
firmly bonded and that the cross-
section is still symmetric in the z-

nE /T\ plane
y; represents the distance to the

centroid of the individual
x sections, and ¢ to represent

|

general vertical distance from

A generic composite beam, used to demonstrate the method for determining the location of the neutra

the point of interest to the
neutral axis.

To find the neutral axis, use the following formula:

Y EiviA;
.=l
YT TR A

Using I; to represent the moment area of inertia for the
section around its own centroid, the following equation,
known as the Parallel Axis Theorem, gives the moment area
of inertia around the neutral axis:

[ =1+ — 9’4,

the stress induced by the bending moment within a particular
section of the composite beam is given as

MtE;

Oi,bending = n
2. Ejl;
j=1



Bending of a composite beam

Consider a composite beam which consists of an UHMWPE
and a Ti-6Al-4V beam perfectly bonded together for a custom
implant that requires a polymer surface on one side and a
metal surface on the other. Both beams have length and width
h =20.0 mm and are bonded as shown in Figure.

Evinwes= 1 GPa and E;,..v= 114 GPa.

What is the maximum stress in the UHMWPE beam under
bending moment M =100.0 N-m?

What is the maximum stress in the Ti-6Al-4V beam

A composite beam for a custom implant described in Example 6.9. The upper half is UHMWPE while the lower half is Ti-6AI-4V.

First, use Equation (6.55) to find the neutral axis.

h h
_ A CA VTR (——)h2
. EwyiAr+ Exa A : (2) 2
— = = —9.83mm
E A+ E>A> E1h2 +E2h2

Substitute this value into Equation (6.57).

- _ M(h— ) E,
UHMWPE ,max —
’ h(h3)  (h S h(h3) h S
E\|—2+(z-0)) | +E —~ =) h
M2 (G- 0) |4 e | M (<5 - o)
= —1.76 MPa
OTi—6A41—-4V = M(—h =) Ea
R h(h)  (h 2 h () h 2
E ——( | | +E — — (D)) K
N2 (5-0) #| e | M (<5 - o)
= —68.5MPa.

If the composite beam is under purely axial loading, the formula for calculating stress
in a composite beam is
FE;

n—.
> E;d;
j=I

(6.58)

O axial =



Composites
Finding upper and lower limit of E

When compposites are composed of unidirectional fibers,
they exhibit orthotropic behavior. Of particular interest in
these cases are the upper and lower bounds for elastic
modulus.

Assume that the fibers are perfectly bonded such that there
is no delamination and that the matrix is an isotropic
material.

The total cross-sectional area will be referred to as A, while
the total cross-sectional area of the fibers is Af and the total

cross-sectional area of the matrix is Am. Thus
A=As+ An. E=Er =&y F=Fr+F,.

0Ad=0rAr+ 0nAp
EuppergA = Efé‘fAf + E, e, An.
A, Ay

szjandV :7,



Eupper = Efo + £, V,,.

To find the lower bound, imagine transverse loading
O =07 =0y

The total length in this direction can be written as the sum of the total lengths of the
fibers and matrix:

I =1s+1,. (6.66)

Furthermore, the total change in length in this direction can be written as the sum of the
changes in the fibers and in the matrix:

Al = Aly + Al (6.67)
As described earlier, the definitions for strain can be written
Al Al Al,
8:—8f:—fsm:— (6.68)
[ [r L
Combining Equations (6.67) and (6.68) gives
[ mlm
g = ST Embm (6.69)

/
/
Using Equations (6.13) and (6.69) and volume fraction definitions V', = Tf and V,, =
I : :
T the following result is found:

1 Vf V., EfEm
= + or Ejgwer = :
Elower Ef Ey Ef Vi + En Vf

(6.70)



Developing optimal thicknesses in layered
devices

An engineer is designing a hydroxyapatite-coated polymer
sleeve to assist with bone ingrowth in a total joint
replacement. The cross-section of the proposed device is
shown in Figure. Although the inner and outer diameters
of the device are fixed at 6 mm and 12 mm, respectively,
the thickness of the two layers needs to be optimized such
that the overall elastic modulus of the device matches that
of bone. Using these parameters, find the optimal thickness

for each layer, using the following values: Epolymer= 10 GPa,

Ena=27 GPa, Evone= 17 GJPa.

Assume that the overall elastic modulus follows
the rule of mixtures, that is:

Ed S EpolymerApolymer + EHAAHA
e Apolymer + AH A .
The area of the polymer cross-section
and the HA cross-section both depend

on the desired value, the thickness of the t2mm

l«— 6mm —>!

polymer layer, ¢.

The cross-section of a hydroxyapatite-coated polymer sleeve

Apolymer = 7 [ (Fpolymer + £ ) — i”golymer 1 Plug these into the equation for E of the device

and set equal to 17 GPa. Solve for t to find ¢t = 2

Ana = 7[ry, — (polymer +1)°].  mm. The optimal thickness of the polymer layer
is 2 mm, leaving 1 mm for the HA layer.



Modifying material and cross-section to reduce
bone absorption

A primary consideration is to ensure that the bone is carrying
enough load that it does not suffer from stress shielding.
In this case study, two factors in the design of a hip stem will

be considered: material choice and hip stem diameter.

F

M
F1om 4 ., 1T
The materials : stem
CoCr alloy or Ti.
E, =17 GPa
_ E..=193 GPa
| cortical _L E =214 GPa
bone E; 4,=124 GPa
M N~ N~ - N~
The outer diameter Ry o ——

of the bone is assumed Y=

A schematic representation of a hip stem fixed into a femur.

to be 2.5 cm, and the inner diameter of the bone is 1.0 cm.

The hip stem will have an outer diameter of 1.1 cm (d1) or 1.5
cm (d2).

Using the geometry and material properties given in Figure,
the stresses in the bone with each stem can be calculated by
evaluating the stresses for an axial load of 2851 N (4 x Body
Weight for a 160 Ib person) and a bending moment of 30 N-m

separately and then summing them.



E bone F
E bone A bone T E stem A stem

Obone,axial —

dbone
2

E bone I bone + E stem I stem

E boneM

Obone,bending —

Stress due to axial load [MPa]

bone alone 6.91

dq do
bone with SS 1.93 1.23
bone with CoCr 1.79 1.12
bone with Ti 2.62 1.78
bone alone 20.07

d4 do
bone with SS 14.09 8.35
bone with CoCr 13.63 7.82
bone with Ti 15.82 10.77

Total stress [MPa]

bone alone 26.98

dq do
bone with SS 16.02 9.58
bone with CoCr 15.43 8.94
bone with Ti 18.44 12.55

worst-case scenario from a stress-shielding point of view is
the CoCr stem with the 1.5 cm diameter. The best-case

scenario is the titanium alloy stem with the 1.1 cm diameter,



Failure theories

How would you safely design a tibial insert of a total knee replacement
that is known to experience a complex loading state with a normal stress

component that is on the order of the uniaxial strength for this material?

The inquiry posed above represents a realistic design
challenge that one might face in the field of orthopedics.
Many of the tibial components used in total knee
arthroplasty utilize UHMWPE with a uniaxial yield stress
on the order of 20 MPa; yet, the contact pressures for many
of the clinical designs exceed this value.

In order to assess the likelihood for failure owing to yield
or plastic deformation, it is important to calculate the
effective stress that provides a scalar representation of the
multiaxial stress state acting on the implant.

It is the effective stress that must be compared to the
uniaxial yield strength as an assessment for the factor of
safety against failure. Furthermore, localized plastic
damage due to the presence of a notch or stress
concentration can serve as a nucleation site for cracks if the

component undergoes cyclic loading conditions.



In general, ductile materials yield before fracture while

brittle materials fracture before yield.

The yield strength of a material is defined as the stress at
which plastic (permanent) deformation begins. The modulus
of resilience for a material is defined as the energy that is
stored in a material until the onset of yielding.

The tensile yield strength provides the stress level at which
permanent deformation will occur in an isotropic material
subjected to a one- dimensional (axial) tensile stress.

This material property serves as an important design
parameter, as it represents the upper limit of stress that can be
applied without incurring plastic deformation to the

component.



Ductile materials generally deform through shear in response
to generalized states of stress.

Consequently the yield criteria developed for ductile metals
are based on localized maximum shear stress (planes of

maximum shear stress) or distortional energy

Henri Tresca developed the first criterion for yield in 1864 —
this theory utilizes the maximum shear stress as the

predictor of plastic deformation in metals.

The other well-known criterion was established in 1913 by
Richard von Mises, who utilized the distortional energy as a
basis for yield in ductile materials.

The Tresca and von Mises yield criteria are commonly

employed to this day.

Brittle materials, are weak in tension and their failure modes
utilize normal stresses rather than shear stresses. In brittle
materials, the generalized failure criterion is based on the
normal stress, or principal stresses, reaching the ultimate

strength of the material.



A yield surface is the surface within 7

Failure Failure

the space of stresses that defines the

Safe |region

O,

boundary between elastic and

Failure Failure

Hypothetical yield surface for a planar (two-dimensional) stress state.

plastic behavior for a material

The yield surface is generally represented in principal stress
space or space defined by the stress invariants. The stress

invariants used to describe the yield surface are given as:

where o is the Cauchy stress
(true stress), o1, 02, o3 are the
prmc1pa1 values of o, and s is
J3 = det(s) = 51583 the deviatoric part of the stress
whose principal values are s, s,
Ss.

I, =01+ 0+ 03
1
Jr = g[(m — 0y)* 4 (03 — 03)* + (03 — 01)*]

These stress invariants are utilized in the fundamental failure
theories discussed below — Tresca employs the use of the
maximum shear stress, von Mises makes use of the deviatoric
part of the stress (J2invariant), and the normal stress criteria

utilize the principal normal stresses.



Maximum shear stress (Tresca yield criterion)

This criterion is based on the notion that yielding (slip)

occurs when the maximum shear stress reaches the yield stress

determined from the uniaxial tensile test

The relationship
between the
principal stresses
and planes of
maximum shear
stress are readily
visualized wusing

the Mohr circle

Uniaxial Tension

|o1-0] or |0-0| or [0-01| > o,
oy or 0 or oy = oy
G O1 = Gy

(@) (b)

T (o', 1)

0 (0-1 ’ o)

(©

[llustration shows the Mohr circle for uniaxial loading and the relationship between maximum shear stress and the principal
(normal) stress. Yielding occurs when the principal stress is greater than or equal to the yield strength measured in the tensile
test. The figure shows (a) uniaxial tension, (b) resulting equations, and (c) relationship depicted using Mohr’s circle.

The planes of maximum shear stress are oriented at O = 45.to the

principal stresses (recall that the Mohr circle plots shear as an

angular function of normal stress using 20 and that maximum

planes of shear stress are oriented at 90.to the principal stress

direction). For uniaxial loading, the maximum shear stress

occurs at oy/2, and thus we can write: Tmax = —— >

lor = 0] _ oy

for

o1=0,,00=03=0



The general three-dimensional Tresca yield criterion is
founded upon the notion that the plane of greatest shear
stress dictates the maximum overall shear stress, and is

given as:

o o1 — 02| |02 — o3| |o1 — 03]
rmaxzrf:%:MAX{ > , > , > .

Determining the Tresca stress in a spinal

implant

Determine the Tresca stress for the infinitesimal element in
an artificial spinal disk that is loaded as shown in Figure.

If the uniaxial yield strength of the implant material is 8

MP4a, is the device safe from yielding?

/i JE/
a_.‘ 7‘_

0'
y

(a) (b)

(a) An artificial intervertebral disk, and (b) the stress tensor associated with its loading.




oy = —2.2MPa, 0, = —1.1 MPa, 0, = —0.58 MPa
Ty = —0.57MPa, 7., = —0.79MPa, 7,, = —0.33 MPa

Mohr’s circle was used in Example 6.3 to find the principal stresses:

o1 = —0.25MPa, 0y = —0.86 MPa, 03 = —2.77 MPa

Using the expression for the Tresca yield criterion (Equation 8.4), the effective Tresca
stress is:

z —Q—MAX{
maX_2_

loy — 02| |0y — 03] |01 — 03]
2 2 T 2 }
1—0.25 — (—0.86)| |—0.86 — (—2.77)| |—0.25—|(=2.77)
2 ’ 2 ’ 2 }
= MAX {0.305MPa, 0.95MPa, 1.26 MPa} = 1.26 MPa
OTresca = 2Tmax = 2(1.26) = 2.52 MPa

-

Yielding occurs when the Tresca stress reaches the uniaxial yield strength. If the
Tresca stress is less than the yield strength, then the material is safe from yield:

OTresca — Oyield (YleldS)
OTresca = 2.92MPa < oyielq = 8 MPa (No Yielding)

The factor of safety (FS) against yielding is defined as the ratio of the yield stress
normalized by the effective (Tresca) stress:

Ovyield . 8 MPa

FS = = =
OTresca  2.92MPa

The factor of safety for this material utilized in the spine application is 3.



von Mises yield criterion

Maximum distortional energy

This criterion is based on the view that yielding occurs when
the maximum distortional energy associated with the

combined stress state reaches the uniaxial yield strength.

The symmetric stress tensor comprises both normal stress
components and shear stress components and can be
decomposed into dilatational and distortional components.
The dilatational portion of stress is responsible for volume
change and is controlled by the normal stresses (imagine a
cube that becomes a larger cube under the action of
hydrostatic stresses). The distortional portion of stress results
in shape change but no volume change and is controlled by

the shear stresses (imagine a deck of cards that is sheared).

1
On =, (Ox+0,+0,)

Oy ‘\O'y-O'm
I 1 1
. ; 7%
—~— " %-» = - ! —_— 4 ] ! AL->
+ =1 7 Ox ,,*_'___ On F"_' =7 O0x~0On
P o, //O-m 27070
Y Y Y
(@) (b) (c)

Illustration depicting the decomposition of (a) state of stress into (b) dilatational stresses and (c) distortional or deviatoric
stresses.




This failure stress is often denoted as the von Mises effective

stress and can be written also as:

Oeff = %\/(01 — 02)" + (02 — 03)* + (03 — 01)".

1
Toct = g\/(O'l — 02)" + (02 — 03)" + (03 — 01)".

Another advantage of the von Mises yield criterion is that it can also be written in
general stress component terms:

1
Oeff = ﬁ\/(ﬁx —0y)* + (0 — 0:)* + (0. —0x)* + 6 (rfy +12 + rzzx). (8.19)

the maximum shear stress criterion is more conservative
than the criterion using the distortional energy; however,
the von Mises yield criterion is known to better match
experimental data for many alloy systems and is commonly
employed in design for the calculation of an effective stress

for a component subjected to multiaxial loading.



Determining the von Mises effective stress in a tibial plateau

); | This implant is made of
: UHMWPE in a constraining
P P frame of CoCr and loaded with

0,=0, a force of 30 kN that is evenly

spread across the tibial plateau.
o, |y ~ UHMWTPE has a uniaxial yield
. strength of 22 MPa. Is the

device safe from yielding?

Applying the 3D Hooke’s Law
and geometric  constraints
provides the stresses and
strains oy = 0, = 16.7MPa

0. = 25MPa

Ty = Ty = T, = 0MPa

& =&, =0

An infinitesimal cube inside an object under loading (top), before (middle), and after (bottom) rotation. &, = 0.012

The effective von Mises stress is found by employing Equation (8.19):

1
Ocff = 75\/(0x —0y)? + (0, —0.)> + (0. —0,)> + 6 (tfy + 1L+ rzzx)

_L _ 2 . 2 . 2
_ﬁ\/(16.7 16.77 + (16,7 — 2512 + (25 — 16.7)

1
— ——1/2(8.3)> = 8.3 MPa
7 (8.3)



The material 1s safe from yielding if the effective (von Mises) stress is less than the
uniaxial strength:

Oeff < Oy

8.3 MPa < 22 MPa’

The factor of safety (FS) against yielding is found by normalizing the yield strength
with the effective stress:

The primary benefit of developing a general yield criterion,
either through maximum shear stress or maximum
octahedral stress, is that a scalar representation of the three-
dimensional stress state can be used in combination with the
uniaxial yield strength to predict the likelihood of failure.
The factor of safety (FS) can be calculated from the ratio of

the uniaxial yield strength to the effective von Mises stress

In general, the factor of safety should be at least a factor of 2—
3 lower than the uniaxial yield strength. For safety-critical
applications, however, this is often insufficient, and factors of
safety are often extended and additional analysis pertaining
to fracture, fatigue, and wear are employed for complete

structural analysis.



Notches and stress concentrations

K =Yoo vma

K is the stress intensity factor
K is a single parameter that describes completely the severity of
the stress in the singularity region near a crack tip, which is of

primary interest in fracture mechanics.

A
Papp
Q)
L ——
P 4
Papp
I F (%) — (lz_Jr(cf‘/’/WV;Lz [0.866 + 4.64(a/ W) — 13.32(a/ W)?

S £ 14.72(a/ W)? — 5.60(a) W)*]

Compact tension (CT) specimen geometry with crack length aand specimen length I/, as measured from the load line. The
specimen thickness (out of the page) is denoted B.




Estimating fracture toughness from

fractography of a tibial implant

This implant is made of UHMWPE in a constraining frame of
CoCr and loaded with a force of 30 kN that is evenly spread
across the tibial plateau.

UHMWPE has a yield strength of 22 MPa and an elastic
modulus of 1 GPa.

A fractured component reveals an embedded penny-shaped
flaw that served as the initiation site for fast fracture. The
fractography reveals that the radius of the flaw is 25 um.

The maximum far field stress is 25 MPa

Estimate the fracture toughness for this material using the
fractography (fracture surface image) and knowledge of
stresses on the system.

from previous example:

ox=oy=16.7 MPa; o0z=25MPa

Txz= Txy= Tyz= 0 MPa

ex=ey=0); €z=0.012

The effective von Mises stress was found oef= 8.3 MPa.

Ki = 0™y/ma = 25MPay/m /25 x 10-5(m) = 0.221 MPay/m,



FATIGUE

Let’s define the primary mechanical variables associated with
the cyclic loading of a component. These factors include

mean stress, peak stress, load ratio, waveform, frequency,

and amplitude variation (spectrum loading).

One cycle - Frequency (v)

Ga1N;

MaX === —————————
Ga2Ny

CazN3

GaaNy

STRESS

Amplitude

Range x
Meanfl Y N __ g 7777777777 i‘T (\ /\

Stress or Strain

IRV

(a) (b)

(CYCLES)

Basic definitions of stress or strain range, stress or strain amplitude and load ratio, R, for cyclic conditions imposed using a

(a) sinusoidal waveform and (b) spectrum (variable amplitude) loading.

the stress range is typically the dominant factor in the

progression of fatigue damage, and failure, especially in

metals, and is defined as:

A0 = Omax— Omin and correspondingly the stress amplitude and

the mean stress of the loading cycle are

Oa= (O'max— O"min)/z

Om= (Umax‘l‘ O"min)/z

The ratio of the minimum stress normalized by the maximum

stress is defined as the stress ratio or R-ratio:

R = O-min/ Omax




One critical aspect of the design process is the decision as to
whether the component’s fatigue life will be dominated by the
initiation or propagation process of a critical flaw.

The total life design methodology assumes that the

component is initially free of any flaws that are sufficiently
sized for growth or ideally that the component is “defect-
free.” This methodology is based on the notion that fatigue
failure is a consequence of crack nucleation and subsequent
growth to a critical size and that the majority of the life is
spent in the nucleation (initiation) phase.

This design philosophy is distinct from the defect-tolerant

approach in which the fatigue life of a component is based on
the number of loading cycles needed to propagate an existing
crack to a critical dimension for the material.

The initial size of the flaw is assumed to correspond to the
resolution of an inspection test. The critical dimension of the
flaw is directly correlated to the fracture toughness of the
material.

The defect-tolerant philosophy is more commonly employed

in safety-critical applications such as heart valve design.



TOTAL LIFE PHILOSOPHY

The fatigue characterization of a material based on the total
lifte philosophy is based on either a stress-based test that
examines the conditions for failure for a range of stress
amplitudes and mean stress, or a strain-based test that

examines the fatigue behavior under cyclic strain amplitudes.

o {HI——11
Rotating beam specimen &
g
177
o (I
Notched rotating beam Time

© I H _ Schematic of typical S-N plot on linear-logarithmic scale showing the stress amplitude (o, ) and concomitant cycles to failure
for that loading range.

Axial stress specimen

Cantilever specimen from sheet

Stress Amplitude

endurance limit

Nt

The endurance limit of most steels is 35-50% of the ultimate
tensile strength.

The endurance limit can be affected by several factors such as
surface finish, stress concentrations, heat treatment,

environment, and component design
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S-N fatigue data for several polymer systems. Note that PET and nylon do not have endurance limits.

nylon and polyethylene terephthalate (PET) do not exhibit an
endurance limit.

On the other hand, polymers such as polyethylene (PE),
polypropylene oxide (PPO), polystyrene (PS),
polytetratfluoroethylene  (PTFE), polypropylene (PP),
polymethylmethacrylate (PMMA), and epoxy (EP) clearly
exhibit an endurance limit below which failure does not occur
in less than 107 cycles .

The relationship between the stress amplitude and the
number of cycles to failure is known as the Basquin
equation (Basquin, 1910) and is given as:

0,=0"; (N)P

0, is the stress amplitude, o’s is the fatigue strength
coefficient and is comparable to the true fracture strength for
the material, Ny is the number of cycles to failure, and b is

the Basquin exponent. b is between —0.05 and —0.10.



Determining the cycles to failure for a
spinal implant

Consider the artificial spinal disk from Example 6.3. The stresses on the implant as
shown in Figure 6.11 are:

oy = —2.2MPa, 0, = —1.1 MPa, 0, = —0.58 MPa
T,y = —0.57 MPa, 7., = —0.79 MPa, 7,. = —0.33 MPa

and the principal stresses:
o1 = —0.25 MPa, 0, = —0.86 MPa, 03 = —2.77 MPa

The Tresca yield criterion (Equation 8.4) was employed in Example 8.1 to determine
the effective stress on the system:

OTresca = 2.92 MPa.

The Basquin exponent for the material is - 0.1.

Let’s determine the stress amplitude for the system. The
largest stress range in this system is determined by the
principal stress difference, 0,— 0,= Oy, = 2.52 MPa.

One can assume that the effective stress range serves as the
effective stress amplitude in this case. The Basquin exponent
for the material is —0.1 and the yield strength is 8 MPa. If the
yield stress is employed as the failure stress, then the Basquin
equation takes the form: o.=0;(Np)’ = 2.52=8W/""

o, g 2.52\ o1
Ny= |2 :<—) = 103,966.
oy 8

Hence, for the effective stress range on the spinal implant, the number of cycles to
failure is predicted to be 103,966 loading cycles.



The use of the Basquin equation assumes that the mean stress
is zero — that is, that the specimen or component is
undergoing fully reversed loading and that each cycle
represents two reversals. If the mean stress is not zero, then
these effects must be considered in predicting the life of the
component. The mean stress has a dramatic effect on the
fatigue behavior of a material, and this is schematically

illustrated in Figure.

Oa, endurance

Decreasing Gean

G, (Stress Amplitude)

N; (Cycles to Failure)

Gmean

Figure 10.7

The effect of mean stress on the fatigue life of a material and the concomitant linearly decreasing endurance limit plotted as a
function of mean stress.

The Palmgren-Miner accumulated damage model

N
D:ZN

fi

(10.7)

When the total damage sums to 1.0, then failure of the component is predicted

Stress

— N, [ N, I N;cycles —

N Npa Ny Cycles to Failure



Stress

Fatigue life using Palmgren-Miner’s rule

Consider a metallic implant that undergoes a series of
variations in hourly loading as shown schematically in
Figure. For this loading block, the variations in load are 6
reversals at ca1= 290MPa, 10 reversals at oga2= 200M7Pa, and

5 reversals at 0a3= 400 MPa.

The form of the Basquin equation for this alloy is

Ga=1758 (N ;) -0.0%,

(i) How many loading blocks

can be sustained Dbefore

N ——f— Nyeyeles —| fracture?

Stress amplitude, Cycles to Cycles at this
o4 (MPa) failure (Ny) amplitude (N)
400 136,000 5 3.67 x107°
290 1,540,000 6 3.89x10°°
200 4.29 x 10° 10 2.33x107°

The total damage in one loading block is ) N/Ny= 4.04x1075;
the number of loading blocks that can be sustained is 24,757.

(ii) Is this a sufficient number of cycles for a fracture fixation
device that must last 6 months? The device offers 24,757 safe
loading blocks. There are 24 hours in a day. The device offers

1,031 days of service. This is more than sufficient to support
loads for 6 months



DEFECT - TOLERANT PHILOSOPHY

The defect-tolerant philosophy is based on the implicit
assumption that structural components are intrinsically
flawed and that the fatigue life is based on propagation of an

initial flaw to a critical size.

% _Pappif(a/W)
T 7
or r
K= cm\/n_q/(a/W) [}
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2.
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Sy el Kr 6. .6 .36
] 6= —= cos—[1-sin—sin—]
Y \N2nr 2 2 2
. K
w > B 0 =— cosg[l+singsinﬁ]
Wo2mr 2 2 2
Peee 0.0
c_= —cos sm—cos—
v Z \2mr 2

Illustration of the compact tension specimen and the associated stress fields at the crack tip.
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Figure 10.14

lllustration of linear crack growth as a function of loading cycles and how this crack velocity (slope) is used to generate data on a
da/aN versus AKplot. The data on the left are shown for a Nitinol (Ni-Ti) shape memory alloy.
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llustration of the sigmoidal fatigue crack propagation plot on log-log scale. This schematic depicts the three primary regimes of
crack growth: near-threshold, linear, and fast fracture where peak intensity drives the fracture process.

Initial flaw size is typically determined from non-
destructive evaluation (NDE) techniques such as
electron microscopy, X-ray spectroscopy, or ultra- sound.
In the event that no defect is found, an initial defect
whose size is the limit of resolution of the NDE method

is assumed to exist as a worst-case scenario.

2 1 1
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for m # 2.



Fatigue design of a Nitinol stent

The typical strut thickness is 500 pm

The fatigue crack propagation constants for Nitinol (tube) are
C =2 x 101 (MPa\vm)™ m = 4.2, and DKy,= 2.5 MPaVm

The geometric parameter, F(a/W) (note that F(a/W) is the same
as F(a)) for the strut is known from finite element analysis to
be 0.624. The maximum allowable flaw size in a medical grade
Nitinol alloy is 39 um as per ASTM F2063. The physiological
stress range on the implant is 294 MPa.

In this case it is essential that any flaw present is incapable
of propagating. For this reason, the threshold stress intensity
factor is used to determine the critical flaw size that initiates

the onset of crack growth
AKy = Aoy/ma - F (%) :

1
Aoy = —
T

AK?
F ()" Ao?

=59 um

Since the critical flaw size for the inception of crack growth is
59 um and the maximum allowable flaw size for the Nitinol
alloy is 39 um, the device is safe against fatigue crack growth



Fatigue crack propagation in a flawed hip implant

lateral

FORCE

@

medial

Years ago, laser etching was
used on the lateral side of the
stem to mark a serial number.
The material removed by the
laser etching is essentially a
small edge-notched crack that
is 1 mm deep on the side of the
stem. It is estimated that the
tensile bending stress on the
stem is approximately 90 MPa
for a typical active male
weighing 200 pounds.

The femoral stem is made of a CoCr alloy with a fracture
toughness of 9.5 MPa, and fatigue crack propagation constants

C =6 x 101! (MPaVm)™ and m

= 4. The form of the stress

intensity factor for a single edge-notched geometry is

Ki=1.10 o Vavm.

What is the critical flaw size for this alloy? How many fatigue

cycles will this system last? Is this acceptable for a hip
implant?

AK = 1.12Ao0+/mta

Aoy —

1

T

2
KIC

1.122Ao?

] = 2.8 mm.
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1 1 1

6 x 10~11(1.12)4(90)*72 | (1 x 1073)2 (2.8 x 1073)?

= 14.2 x 10%cycles = 7.1 years

The average hip implant must lasts 15-20 years. The laser
etching in this case results in a fatigue life that is more than

halved due to the initial stress concentration.

Fatigue crack propagation in metals
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Fatigue crack growth rate as a function of stress intensity range for several medical grade alloys including stainless steel, Nitinol
(Ni-Ti), Haynes 2, pure titanium, and Ti-6AI-4V. (After Ritchie, 1999.)



Fatigue crack propagation in polymers

Polymers are generally known to be susceptible to creep and
strain rate effects; and thus it is important to understand the
viscoelastic nature of polymers under cyclic loading
conditions. The dissipation of energy in cyclic loading of
polymers results in heat generation; the amount of
temperature elevation depends strongly on frequency
deformation amplitude and the damping properties of the

specific polymer The fatigue behavior
of polymers depends
on many factors.

In general, polymers
with higher
molecular  weight,
chain entanglement
density, and
crystallinity are
more resistant to
crack  propagation

A
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o while increased
] crosslinking
2 decreases resistance
\X' l l N .
10 -
[ AK (MPavem) . to fatlgue crack
ropagation
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Fatigue crack growth rate as a function of stress intensity range for a range of clinically relevant formulations of UHMWPE.
Untreated controls, with no crosslinking and greatest level of crystallinity, offer the greatest resistance to fatigue crack
propagation (adapted from Atwood et al., 2009).
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