
Elasticity

Mechanical properties used in describing

linear elastic, isotropic deformation are

elastic modulus, E, and Poisson’s ratio, ν.

Other parameters, such as shear modulus G

and bulk modulus K, can be calculated

from the values of E and ν.

K=E/3(1- 2ν) G= E/2(1+ν)

These mechanical properties can be

determined using standardized tests and
basic testing equipment.

Other common metrics that are derived from

a tensile test include

- Ultimate Tensile Strength (UTS),

- Yield Strength (sy),

- Failure Strength (sy),

- Strain to failure (εf).



Stress and strain
When a component is loaded, there is normally

some deformation in response to this loading.

This deformation is captured in the concept of

strain, a non-dimensional quantity that

describes the change in a component’s

physical configuration during loading.
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Figure 6.2

Two-dimensional strain definitions.

strain is defined as the extension or contraction in the direction that the load is applied,

normalized by the unit length of fibers in that direction. Shear strain is defined as

the change in the angle between two originally orthogonal directions. Shear strain is

measured in radians. For the purposes of this chapter, it is assumed that all strains are

small.

Figure 6.2 illustrates the parameters used in defining the two types of strain. The

object on the left is an undeformed rectangle with sides of length dx and dy, while the

object on the right is the same rectangle after deformation. Reference Point A has been

moved by an amount u(x, y) in the x-direction and v(x, y) in the y-direction to Point A′.

Similarly, Reference Point B has been moved by an amount u(x + dx, dy) and v(x +

dx, dy) to Point B′. According to small deformation theory,

u(x + dx, dy) ∼= u(x, y) +
∂u

∂x
dx (6.1)

From the definition given above, it can be seen that strain in the x-direction, termed εx ,

is defined as:

εx =
A′ B ′ − AB

AB
(6.2)

Using simple geometry, the following is found:
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(6.3)
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When higher order terms are dropped and small displacements are taken into account,

this equation reduces to

A′ B ′ =

(

1 +
∂u

∂x

)

dx . (6.4)

Since AB = dx , the strain equation becomes

εx =

(

1 +
∂u

∂x

)

dx − dx

dx
=

∂u

∂x
. (6.5)

Similarly,

εy =
∂v

∂y
. (6.6)

To develop the shear strain equation, begin with the definition above. Shear strain,

termed γxy , is defined:

γxy =
π

2
− ∠D′ A′ B ′ = α + β. (6.7)

For small deformations, assume α = tan α and β = tan β.

Thus

γxy =

∂v

∂x
dx

dx +
∂u

∂x
dx

+

∂u

∂y
dy

dy +
∂v

∂y
dy

=
∂u

∂y
+

∂v

∂x
(6.8)

after dropping higher order terms. It can also be shown that γxy = γyx .

These analyses can be extended to the y-z and x-z planes such that the complete

equations for strain are defined as follows:

Normal strain: εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z
(6.9)

Shear strain: γxy =
∂u

∂y
+

∂v

∂x
, γyz =

∂v

∂z
+

∂w

∂y
, γzx =

∂w

∂x
+

∂u

∂z
(6.10)

For a simple example, uniaxial displacement is often described. In Figure 6.3, a bar

is placed under a uniaxial load. In this case, strain is defined as:

ε =
l0 − l f

l0
=

'l

l0
(6.11)

Normal strain is unitless, and conventionally, positive values for strain are used to

describe extension, while negative values for strain describe compression.

6.3.2 Definition of stress

Stress is the transmission of force through deformable materials. Given the object in

Figure 6.4, the force vector 'P can be resolved into three coordinate directions. The
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Figure 6.3

A bar under uniaxial tension, before (left) and after (right) loading.

(a) (b)

Figure 6.4

(a) An object under loading, showing (b) the definition of the traction vector.

traction vector is then defined as follows:

τxx = lim
"A→0

"Px

"A
, τxy = lim

"A→0

"Py

"A
, τxz = lim

"A→0

"Pz

"A
. (6.12)

In this notation, the first subscript of the traction vector refers to the plane on which

the force is acting, and the second subscript refers to the direction of the force. By

convention, τxx = σx , the normal stress, while τxy and τxz are shear stresses. It is

important to note here that the orientation of the surface "A will have an effect on

the magnitude and direction of the stresses, even if the load "P remains the same.

Stress is measured in Pascals [Pa] or pounds per square inch [psi]. Similarly to the sign

conventions for strain, positive values for stress indicate tensile stress, while negative

STRESS 

Given the object in Figure,
the force vector ∆P can be
resolved into three
coordinate directions, the
traction vector is then
defined as follow:
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In this notation, the first subscript of the traction vector refers to the plane on which

the force is acting, and the second subscript refers to the direction of the force. By

convention, τxx = σx , the normal stress, while τxy and τxz are shear stresses. It is

important to note here that the orientation of the surface "A will have an effect on

the magnitude and direction of the stresses, even if the load "P remains the same.

Stress is measured in Pascals [Pa] or pounds per square inch [psi]. Similarly to the sign

conventions for strain, positive values for stress indicate tensile stress, while negative

the first subscript of the traction vector refers
to the plane on which the force is acting, and
the second subscript refers to the direction of
the force.
By convention, τxx = σx , the normal stress,
while τxy and τxz are shear stresses.

It is important to note here that the
orientation of the surface ∆A will have an
effect on the magnitude and direction of the
stresses, even if the load ∆P remains the
same. In a simple uniaxial case

stress is defined simply
as:

173 6.3 Stress and strain

values indicate compressive stress. In a simple uniaxial case shown in Figure 6.3, stress

is defined simply as

σ =
F

A0
. (6.13)

6.3.3 Stress tensor

Instead of using the object in Figure 6.4, imagine that there is an infinitesimal cube

inside of an object under loading, whose sides are parallel with the three coordinate

planes as illustrated in Figure 6.5. In this configuration, there are three normal stresses

(σx , σy , and σz) and six shear stresses (τxy = τyx , τyz = τzy , and τzx = τxz). The stress

state of this object demonstrates observer invariance – that is, it does not change when

viewed by different observers. However, the components of stress, the normal and shear

stresses that act on the orthogonal sides of the infinitesimal element, can be different

in different configurations. If this infinitesimal cube is rotated, the stresses in the new

configuration will be related to the stresses in the original configuration, but they will

generally not be of the same magnitude. This change in stresses made by changing from

one set of coordinate axes to another is known as a stress transformation.

It is common to group the values for stress together in the stress tensor, defined as

σi j , or:

σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 (6.14)

This is sometimes written as

σ =





σx τxy τxz

τyx σy τyz

τzx τzy σz



 . (6.15)

It can be shown that this tensor must be symmetric, or that τi j = τ j i . This is accomplished

by looking at each plane in turn. First, take the x-y plane, as shown in Figure 6.6. Sum

the moments around Point A, remembering that static equilibrium requires this sum to

be zero.
∑

MA = τxyh + σy
h

2
+ σx

h

2
− σy

h

2
− σx

h

2
− τyx h = 0 (6.16)

and thus

τxy = τyx . (6.17)

This can be repeated in the x-z and y-z planes to prove τzx = τxz and τyz = τzy .

When an object is under stress, this stress state can be broken into dilatational and

deviatoric components. The dilatational component is responsible for volume change,
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Figure 6.5

An infinitesimal cube inside an object under loading (top), before (middle), and after (bottom) rotation.

and is sometimes referred to as the hydrostatic component, while the deviatoric compo-

nent is responsible for shape change, or distortion. The dilatational stress tensor, pδi j ,

is written as:




p 0 0

0 p 0

0 0 p



 (6.18)

imagine that there is an
infinitesimal cube inside of an
object under loading, whose
sides are parallel with the three
coordinate planes. In this
configuration, there are three
normal stresses (σx, σy, and σz)
and six shear stresses (τxy = τyx,
τyz= τzy, and τzx= τxz).

The stress state of this object
demonstrates observer
invariance – that is, it does not
change when viewed by
different observers.

However, the components of
stress, the normal and shear
stresses that act on the
orthogonal sides of the
infinitesimal element, can be
different in different
configurations.

If this infinitesimal cube is rotated, the stresses in the
new configuration will be related to the stresses in the
original configuration, but they will generally not be of
the same magnitude. This change in stresses made by
changing from one set of coordinate axes to another is
known as a stress transformation.
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deviatoric components. The dilatational component is responsible for volume change,

It is common to group the values for stress together in the 
stress tensor, defined as σij, or: 

It can be shown that this tensor, order for a stress not to
move the material, must be symmetric or that τij =τji

When an object is under stress, this stress state can
be broken into dilatational and deviatoric
components. The dilatational component is
responsible for volume change and is sometimes
referred to as the hydrostatic component, while the
deviatoric component is responsible for shape
change, or distortion

The dilatational stress tensor, p δij , is written as: 
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An infinitesimal cube inside an object under loading (top), before (middle), and after (bottom) rotation.
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Figure 6.6

Summation of moments for the x-y plane of an infinitesimal element.

where

p =
σ11 + σ22 + σ33

3
(6.19)

and the deviatoric stress tensor, si j , is defined as the difference between the stress tensor

and the dilatational stress tensor as follows:





s11 s12 s13

s21 s22 s23

s31 s32 s33



 =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 −





p 0 0

0 p 0

0 0 p



 . (6.20)

Sometimes it is useful to look at the stresses in several different sets of coordinate

axes. It is common to apply coordinate transformations in order to find the set of

coordinate axes that have the highest stress values (either normal or shear) for yield or

failure predictions. It can also be useful to know in which coordinate systems normal

or shear stresses are minimized. An example of this can be seen in the analysis of a

uniaxial loading situation. Imagine an infinitesimal element in plane stress as given

in Figure 6.7(a). If it is examined in a different coordinate system rotated by θ as

shown in Figure 6.7(b), the stresses σx , σy , and τxy are transformed to σ ′
x , σ ′

y , and τ ′
xy ,

respectively. It is important to remember that these quantities are merely a new (and

equivalent) representation of the initial stress state. To find the values of the stresses in
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In crystalline metals plastic deformation

occurs by slip, a volume-conserving process

that changes the shape of a material through

the action of shear stresses. On this basis, it

might therefore be expected that the yield

stress of a crystalline metal does not depend

on the magnitude of the hydrostatic stress;

this is in fact exactly what is observed

experimentally.

In amorphous metals, a very slight

dependence of the yield stress on the

hydrostatic stress is found experimentally.



The deviatoric stress tensor, si j , is defined as the 
difference between the stress tensor and the dilatational
stress tensor as follows: 

175 6.3 Stress and strain

Figure 6.6

Summation of moments for the x-y plane of an infinitesimal element.

where

p =
σ11 + σ22 + σ33

3
(6.19)

and the deviatoric stress tensor, si j , is defined as the difference between the stress tensor

and the dilatational stress tensor as follows:





s11 s12 s13

s21 s22 s23

s31 s32 s33



 =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 −





p 0 0

0 p 0

0 0 p



 . (6.20)

Sometimes it is useful to look at the stresses in several different sets of coordinate

axes. It is common to apply coordinate transformations in order to find the set of

coordinate axes that have the highest stress values (either normal or shear) for yield or

failure predictions. It can also be useful to know in which coordinate systems normal

or shear stresses are minimized. An example of this can be seen in the analysis of a

uniaxial loading situation. Imagine an infinitesimal element in plane stress as given

in Figure 6.7(a). If it is examined in a different coordinate system rotated by θ as

shown in Figure 6.7(b), the stresses σx , σy , and τxy are transformed to σ ′
x , σ ′

y , and τ ′
xy ,

respectively. It is important to remember that these quantities are merely a new (and
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Imagine an infinitesimal element in plane stress as given in
Figure a. If it is examined in a different coordinate system
rotated by θ as shown in Figure b, the stresses σx, σy, and τxy
are transformed to σ′x, σ′y, and τ′xy respectively. It is important
to remember that these quantities are merely a new (and
equivalent) representation of the initial stress state.
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(a) (b)

Figure 6.7

(a) An infinitesimal element, (b) undergoing rotation by an angle θ .

the new coordinate system, use simple geometry to find:

σ ′
x =

σx + σy

2
+

σx − σy

2
cos 2θ + τxy sin 2θ (6.21)

σ ′
y =

σx + σy

2
−

σx − σy

2
cos 2θ − τxy sin 2θ (6.22)

τ ′
xy = −

σx − σy

2
sin 2θ + τxy cos 2θ . (6.23)

These equations give the variation of normal and shear stress in the material as a

function of the angle of rotation between the new coordinate system and the initial

coordinate system. It is not necessary to memorize these derivations, as a convenient

graphical method also exists for determining the stresses in a system after a change of

coordinate axes. Mohr’s circle, introduced by Otto Mohr in the 1880s, can be used in

any loading situation, although each plane rotation must be addressed separately. Recall

the infinitesimal element illustrated in Figure 6.7, and its coordinate transformation by

an amount θ . To show this in Mohr’s circle, plot the normal and shear stresses on the

x and y faces as shown in Figure 6.8. Use these two points to draw a circle. Rotation

of an angle 2θ in Mohr’s circle space represents a rotation of θ in actual space. For

example, a rotation of 30◦ in actual space to reach maximum shear stress is represented

by a rotation of 60◦ in Mohr’s circle space. Again, geometry can be used to find the

values for the normal and shear stresses after a coordinate transformation.

Example 6.1 Forces in an intramedullary rod

A tibial fracture occurs at 80◦ to the longitudinal axis of a tibia and is repaired using an

intramedullary rod as shown in Figure 6.9. When the person is standing on both feet,

assuming her body weight, BW, is split evenly between her right/left tibias, what are

the normal and shear forces in the intramedullary rod in the plane of the fracture? Also

assume for this example that the rod has a diameter, d, and that it is carrying all of the

load in the tibia.

Sometimes it is useful to look at
the stresses in several different
sets of coordinate axes. 
It is common to apply
coordinate transformations in 
order to find the set of 
coordinate axes that have the 
highest stress values (either
normal or shear) for yield or 
failure predictions.

It can also be useful to know in which coordinate systems
normal or shear stresses are minimized.
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the normal and shear forces in the intramedullary rod in the plane of the fracture? Also

assume for this example that the rod has a diameter, d, and that it is carrying all of the

load in the tibia.
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axes, so that the only non-zero components

of the stress tensor are the ones along the

diagonal:
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To understand this page, you first need to understand tensors! Good sources are the books by J.F. Nye [1], G.E. Dieter [2], and D.R. Lovett [3] referred
to in the section Going Further in this TLP. Many undergraduate university courses in physical science or engineering have a series of lectures on
tensors, such as the course at Cambridge University Department of Materials Science and Metallurgy, the handout for which can be found here.

The stress tensor is a field tensor – it depends on factors external to the material. In order for a stress not to move the material, the stress tensor
must be symmetric: σij = σji – it has mirror symmetry about the diagonal.

The general form is thus:

or, in an alternative notation,

The general stress tensor has six independent components and could require us to do a lot of calculations. To make things easier it can be rotated into
the principal stress tensor by a suitable change of axes.

Principal stresses

The magnitudes of the components of the stress tensor depend on how we have defined the orthogonal x1, x2 and x3 axes.

Click on each element to view the stress state
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Clearly, they are the same situation, just with the axes rotated!

σs =
0
0
0

0
σ22
0

0
0
0

σs =
0
0
0

0
0
0

0
0
σ33

σs =
σ11
0
0

0
0
0

0
0
0

For every stress state, we can rotate the axes, so that the only non-zero components of the stress tensor are the ones along the diagonal:

that is, there are no shear stress components, only normal stress components.

This is an example of a principal stress tensor of all the tensors we could use to express the stress state that exists. The elements σ1, σ2, σ3 are the

principal stresses. The positions of the axes now are the principal axes. While it may be that σ1 > σ2 > σ3, it only matters that the x1, x2 and x3
axes define the directions of the principal stresses.

The largest principal stress is bigger than any of the components found from any other orientation of the axes. Therefore, if we need to find the largest
stress component that the body is under, we simply need to diagonalise the stress tensor.

Remember – we have not changed the stress state, and we have not moved or changed the material – we have simply rotated the axes we are using
and are looking at the stress state seen with respect to these new axes.

Hydrostatic and deviatoric components
The stress tensor can be separated into two components. One component is a hydrostatic or dilatational stress that acts to change the volume of the
material only; the other is the deviatoric stress that acts to change the shape only.

where the hydrostatic stress is given by  = .

In crystalline metals plastic deformation occurs by slip, a volume-conserving process that changes the shape of a material through the action of shear
stresses. On this basis, it might therefore be expected that the yield stress of a crystalline metal does not depend on the magnitude of the hydrostatic
stress; this is in fact exactly what is observed experimentally.

In amorphous metals, a very slight dependence of the yield stress on the hydrostatic stress is found experimentally.
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that is, there are no shear stress components,

only normal stress components. the elements

σ1, σ2, σ3 are the principal stresses. The

positions of the axes now are the principal

axes.
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It is not necessary to memorize these derivations, as a
convenient graphical method also exists for determining the
stresses in a system after a change of coordinate axes. Mohr’s
circle, introduced by Otto Mohr in the 1880s, can be used in
any loading situation, although each plane rotation must be
addressed separately.

177 6.3 Stress and strain

Figure 6.8

Mohr’s circle representation of a two-dimensional problem.

(a) (b) (c)

Figure 6.9

(a) A bone with fracture and intramedullary rod, (b) an infinitesimal element in this loading scheme, and (c) the infinitesimal

element rotated to match the plane of the crack.

Solution

σy =
−

BW

2
1
4
πd2

= −
2BW

πd2
, σx = 0, τxy = 0

σx,80◦ =
σy

2
+

−σy

2
cos 2(80◦) = −

BW

πd2
(1 − cos(160◦))

σy,80◦ =
σy

2
+

σy

2
cos 2(80◦) = −

BW

πd2
(1 + cos(160◦))

τxy,80◦ =
σy

2
sin 2(80◦) = −

BW

πd2
sin(160◦).

Use these two points to draw a circle.
Rotation of an angle 2θ in Mohr’s circle space
represents a rotation of θ in actual space. For example,
a rotation of 30◦ in actual space to reach maximum
shear stress is represented by a rotation of 60◦ in Mohr’s
circle space. Again, geometry can be used to find the
values for the normal and shear stresses after a
coordinate transformation

plot the normal
and shear stresses
on the x and y
faces as shown in
Figure.



Forces in an intramedullary rod

A tibial fracture occurs at 80◦ to the longitudinal axis of a tibia
and is repaired using an intramedullary rod as shown in
Figure.
When the person is standing on both feet, assuming her body
weight, BW, is split evenly between her right/left tibias.
What are the normal and shear forces in the intramedullary
rod in the plane of the fracture?
Also assume for this example that the rod has a diameter, d,
and that it is carrying all of the load in the tibia.
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Using Mohr’s circle to determine maximum 
shear stress 178 Elasticity

(a) (b)

Figure 6.10

(a) A microguidewire in an artery, and (b) the same guidewire under tensile loading during retraction.

Figure 6.11

Mohr’s circle representation of the stress state described in Example 6.2.

Example 6.2 Using Mohr’s circle to determine maximum shear stress

A microguidewire used in catheterization is made from a ductile metal (illustrated

schematically in Figure 6.10). Knowing that if it fails, it will fail in shear, use Mohr’s

circle to draw the coordinate system that maximizes shear stress in order to find the

weakest plane and the value for maximum shear stress.

Solution From Mohr’s circle (given in Figure 6.11),

τmax =
σ

2
=

2L

πd2
and occurs at 45◦.

A micro-guide-wire used in
catheterization is made from a
ductile metal (Figure).
Knowing that if it fails, it will
fail in shear

Use Mohr’s circle to draw the
coordinate system that
maximizes shear stress in
order to find the weakest
plane and the value for
maximum shear stress.
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(a) A microguidewire in an artery, and (b) the same guidewire under tensile loading during retraction.
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Mohr’s circle representation of the stress state described in Example 6.2.

Example 6.2 Using Mohr’s circle to determine maximum shear stress

A microguidewire used in catheterization is made from a ductile metal (illustrated

schematically in Figure 6.10). Knowing that if it fails, it will fail in shear, use Mohr’s

circle to draw the coordinate system that maximizes shear stress in order to find the

weakest plane and the value for maximum shear stress.

Solution From Mohr’s circle (given in Figure 6.11),

τmax =
σ

2
=

2L

πd2
and occurs at 45◦.

As described earlier, finding the highest stresses is
necessary when exploring failure or yield situations. 
Another way to represent this is to rotate the stress tensor
such that all of the shear stresses are eliminated and the 
stress tensor can be written as

179 6.3 Stress and strain

As described earlier, finding the highest stresses is necessary when exploring failure

or yield situations. Another way to represent this is to rotate the stress tensor such that

all of the shear stresses are eliminated and the stress tensor can be written as

σ =





σ1 0 0

0 σ2 0

0 0 σ3



 (6.24)

with σ1, σ2, and σ3 referred to as the principal stresses corresponding to principal

directions p1, p2, and p3. One method for finding the principal stresses is to take the

derivative of Equations (6.21) and (6.22) above with respect to θ and set equal to zero.

The results will give the principal stresses in two dimensions:

σ1, σ2 =
σx + σy

2
±

√

(

σx − σy

2

)2

+ τ 2
xy . (6.25)

In the coordinate transformation that results in the principal stresses, the shear stresses

are found to be zero. Conversely, if the shear stresses in a representation are zero, then

the normal stresses are the principal stresses. It may also be useful to know the direction

and value for maximum shear stress. Using a similar technique, the maximum shear

stress is found to be

τmax =

∣

∣

∣

∣

σx − σx

2

∣

∣

∣

∣

(6.26)

and the rotation necessary to achieve this is θ = 45◦. Mohr’s circle can also be used to

find the principal stresses. An example is provided here.

Example 6.3 Principal stresses in an artificial spinal disk

An infinitesimal element in an artificial spinal disk is loaded as shown in Figure 6.12

with σx = −2.2 MPa, σy = −1.1 MPa, σz = −0.58 MPa, τxy = −0.57 MPa,

τyz = −0.33 MPa, and τzx = −0.79 MPa. Use Mohr’s circle to find the principal

stresses in this situation.

Solution From Mohr’s circle as shown in Figure 6.13, the principal stresses are σ1 =

−0.25 MPa, σ2 = −0.86 MPa and σ3 = −2.77 MPa.

The eigenvalues of the stress tensor are the principal stresses and the eigenvectors are

the principal directions. Given the stress tensor in Equation (6.15), the principal stresses

can be found by solving

det[σ − λI ] = 0. (6.27)

The principal directions are then easily found by solving

[σ − λI ][p] = 0. (6.28)

with σ1, σ2, and σ3 referred to 
as the principal stresses
corresponding to principal
directions p1, p2, and p3. 



One method for finding the principal stresses is to take the 
derivative of Equations

with respect to θ and set equal to zero. The results will give
the principal stresses in two dimensions: 
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(a) (b)

Figure 6.7

(a) An infinitesimal element, (b) undergoing rotation by an angle θ .

the new coordinate system, use simple geometry to find:

σ ′
x =

σx + σy

2
+

σx − σy

2
cos 2θ + τxy sin 2θ (6.21)

σ ′
y =

σx + σy

2
−

σx − σy

2
cos 2θ − τxy sin 2θ (6.22)

τ ′
xy = −

σx − σy

2
sin 2θ + τxy cos 2θ . (6.23)

These equations give the variation of normal and shear stress in the material as a

function of the angle of rotation between the new coordinate system and the initial

coordinate system. It is not necessary to memorize these derivations, as a convenient

graphical method also exists for determining the stresses in a system after a change of

coordinate axes. Mohr’s circle, introduced by Otto Mohr in the 1880s, can be used in

any loading situation, although each plane rotation must be addressed separately. Recall

the infinitesimal element illustrated in Figure 6.7, and its coordinate transformation by

an amount θ . To show this in Mohr’s circle, plot the normal and shear stresses on the

x and y faces as shown in Figure 6.8. Use these two points to draw a circle. Rotation

of an angle 2θ in Mohr’s circle space represents a rotation of θ in actual space. For

example, a rotation of 30◦ in actual space to reach maximum shear stress is represented

by a rotation of 60◦ in Mohr’s circle space. Again, geometry can be used to find the

values for the normal and shear stresses after a coordinate transformation.

Example 6.1 Forces in an intramedullary rod

A tibial fracture occurs at 80◦ to the longitudinal axis of a tibia and is repaired using an

intramedullary rod as shown in Figure 6.9. When the person is standing on both feet,

assuming her body weight, BW, is split evenly between her right/left tibias, what are

the normal and shear forces in the intramedullary rod in the plane of the fracture? Also

assume for this example that the rod has a diameter, d, and that it is carrying all of the

load in the tibia.

179 6.3 Stress and strain

As described earlier, finding the highest stresses is necessary when exploring failure

or yield situations. Another way to represent this is to rotate the stress tensor such that

all of the shear stresses are eliminated and the stress tensor can be written as

σ =





σ1 0 0

0 σ2 0

0 0 σ3



 (6.24)

with σ1, σ2, and σ3 referred to as the principal stresses corresponding to principal

directions p1, p2, and p3. One method for finding the principal stresses is to take the

derivative of Equations (6.21) and (6.22) above with respect to θ and set equal to zero.

The results will give the principal stresses in two dimensions:

σ1, σ2 =
σx + σy

2
±

√

(

σx − σy

2

)2

+ τ 2
xy . (6.25)

In the coordinate transformation that results in the principal stresses, the shear stresses

are found to be zero. Conversely, if the shear stresses in a representation are zero, then

the normal stresses are the principal stresses. It may also be useful to know the direction

and value for maximum shear stress. Using a similar technique, the maximum shear

stress is found to be

τmax =

∣

∣

∣
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2

∣

∣
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(6.26)

and the rotation necessary to achieve this is θ = 45◦. Mohr’s circle can also be used to

find the principal stresses. An example is provided here.

Example 6.3 Principal stresses in an artificial spinal disk

An infinitesimal element in an artificial spinal disk is loaded as shown in Figure 6.12

with σx = −2.2 MPa, σy = −1.1 MPa, σz = −0.58 MPa, τxy = −0.57 MPa,

τyz = −0.33 MPa, and τzx = −0.79 MPa. Use Mohr’s circle to find the principal

stresses in this situation.

Solution From Mohr’s circle as shown in Figure 6.13, the principal stresses are σ1 =

−0.25 MPa, σ2 = −0.86 MPa and σ3 = −2.77 MPa.

The eigenvalues of the stress tensor are the principal stresses and the eigenvectors are

the principal directions. Given the stress tensor in Equation (6.15), the principal stresses

can be found by solving

det[σ − λI ] = 0. (6.27)

The principal directions are then easily found by solving

[σ − λI ][p] = 0. (6.28)

In the coordinate transformation that results in the principal
stresses, the shear stresses are found to be zero. 

Conversely, if the shear stresses in a representation are zero, 
then the normal stresses are the principal stresses. 

It may also be useful to know the direction and value for 
maximum shear stress. 
Using a similar technique, the maximum shear stress is found
to be 
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As described earlier, finding the highest stresses is necessary when exploring failure

or yield situations. Another way to represent this is to rotate the stress tensor such that

all of the shear stresses are eliminated and the stress tensor can be written as

σ =





σ1 0 0

0 σ2 0

0 0 σ3



 (6.24)

with σ1, σ2, and σ3 referred to as the principal stresses corresponding to principal

directions p1, p2, and p3. One method for finding the principal stresses is to take the

derivative of Equations (6.21) and (6.22) above with respect to θ and set equal to zero.

The results will give the principal stresses in two dimensions:

σ1, σ2 =
σx + σy

2
±

√

(

σx − σy

2

)2

+ τ 2
xy . (6.25)

In the coordinate transformation that results in the principal stresses, the shear stresses

are found to be zero. Conversely, if the shear stresses in a representation are zero, then

the normal stresses are the principal stresses. It may also be useful to know the direction

and value for maximum shear stress. Using a similar technique, the maximum shear

stress is found to be

τmax =

∣

∣

∣

∣

σx − σx

2

∣

∣

∣

∣
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and the rotation necessary to achieve this is θ = 45◦. Mohr’s circle can also be used to

find the principal stresses. An example is provided here.

Example 6.3 Principal stresses in an artificial spinal disk

An infinitesimal element in an artificial spinal disk is loaded as shown in Figure 6.12

with σx = −2.2 MPa, σy = −1.1 MPa, σz = −0.58 MPa, τxy = −0.57 MPa,

τyz = −0.33 MPa, and τzx = −0.79 MPa. Use Mohr’s circle to find the principal

stresses in this situation.

Solution From Mohr’s circle as shown in Figure 6.13, the principal stresses are σ1 =

−0.25 MPa, σ2 = −0.86 MPa and σ3 = −2.77 MPa.

The eigenvalues of the stress tensor are the principal stresses and the eigenvectors are

the principal directions. Given the stress tensor in Equation (6.15), the principal stresses

can be found by solving

det[σ − λI ] = 0. (6.27)

The principal directions are then easily found by solving

[σ − λI ][p] = 0. (6.28)

and the rotation necessary to achieve
this is θ = 45◦



Principal stresses in an artificial spinal disk 
180 Elasticity

(a) (b)

Figure 6.12

(a) An artificial intervertebral disk, and (b) the stress tensor associated with its loading.

Figure 6.13

Mohr’s circle representation of the stress state described in Example 6.3.

Example 6.4 Using eigenvalues and eigenvectors

Given the same loading scenario as in Example 6.3, use eigenvalues and eigenvectors

to find the principal stresses and principal directions. Check that the eigenvectors are

orthogonal and unit vectors.

Solution

det







−2.2 − λ −0.57 −0.79

−0.57 −1.1 − λ −0.33

−0.79 −0.33 −0.58 − λ






= 0

An infinitesimal
element in an 
artificial spinal disk 
is loaded as shown
in Figure  with 
σx = −2.2 MPa, 
σy = −1.1 MPa, 
σz = −0.58 MPa, 
τxy = −0.57 MPa,
τyz = −0.33 MPa, 
τzx = −0.79 MPa. 

Use Mohr’s circle to find the principal
stresses in this situation. 
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(a) (b)

Figure 6.12

(a) An artificial intervertebral disk, and (b) the stress tensor associated with its loading.

Figure 6.13

Mohr’s circle representation of the stress state described in Example 6.3.

Example 6.4 Using eigenvalues and eigenvectors

Given the same loading scenario as in Example 6.3, use eigenvalues and eigenvectors

to find the principal stresses and principal directions. Check that the eigenvectors are

orthogonal and unit vectors.

Solution

det







−2.2 − λ −0.57 −0.79

−0.57 −1.1 − λ −0.33

−0.79 −0.33 −0.58 − λ






= 0

From Mohr’s circle the 
principal stresses are 
σ1 = −0.25 MPa, 
σ2 = −0.86 MPa
σ3 = −2.77 MPa. 



The eigenvalues of the stress tensor are the principal stresses
and the eigenvectors are the principal directions. 

Given the stress tensor in Equation

the principal stresses can be found by solving

173 6.3 Stress and strain

values indicate compressive stress. In a simple uniaxial case shown in Figure 6.3, stress

is defined simply as

σ =
F

A0
. (6.13)

6.3.3 Stress tensor

Instead of using the object in Figure 6.4, imagine that there is an infinitesimal cube

inside of an object under loading, whose sides are parallel with the three coordinate

planes as illustrated in Figure 6.5. In this configuration, there are three normal stresses

(σx , σy , and σz) and six shear stresses (τxy = τyx , τyz = τzy , and τzx = τxz). The stress

state of this object demonstrates observer invariance – that is, it does not change when

viewed by different observers. However, the components of stress, the normal and shear

stresses that act on the orthogonal sides of the infinitesimal element, can be different

in different configurations. If this infinitesimal cube is rotated, the stresses in the new

configuration will be related to the stresses in the original configuration, but they will

generally not be of the same magnitude. This change in stresses made by changing from

one set of coordinate axes to another is known as a stress transformation.

It is common to group the values for stress together in the stress tensor, defined as

σi j , or:

σ =





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



 (6.14)

This is sometimes written as

σ =





σx τxy τxz

τyx σy τyz

τzx τzy σz



 . (6.15)

It can be shown that this tensor must be symmetric, or that τi j = τ j i . This is accomplished

by looking at each plane in turn. First, take the x-y plane, as shown in Figure 6.6. Sum

the moments around Point A, remembering that static equilibrium requires this sum to

be zero.
∑

MA = τxyh + σy
h

2
+ σx

h

2
− σy

h

2
− σx

h

2
− τyx h = 0 (6.16)

and thus

τxy = τyx . (6.17)

This can be repeated in the x-z and y-z planes to prove τzx = τxz and τyz = τzy .

When an object is under stress, this stress state can be broken into dilatational and

deviatoric components. The dilatational component is responsible for volume change,

179 6.3 Stress and strain

As described earlier, finding the highest stresses is necessary when exploring failure

or yield situations. Another way to represent this is to rotate the stress tensor such that

all of the shear stresses are eliminated and the stress tensor can be written as

σ =





σ1 0 0

0 σ2 0

0 0 σ3



 (6.24)

with σ1, σ2, and σ3 referred to as the principal stresses corresponding to principal

directions p1, p2, and p3. One method for finding the principal stresses is to take the

derivative of Equations (6.21) and (6.22) above with respect to θ and set equal to zero.

The results will give the principal stresses in two dimensions:

σ1, σ2 =
σx + σy

2
±

√

(

σx − σy

2

)2

+ τ 2
xy . (6.25)

In the coordinate transformation that results in the principal stresses, the shear stresses

are found to be zero. Conversely, if the shear stresses in a representation are zero, then

the normal stresses are the principal stresses. It may also be useful to know the direction

and value for maximum shear stress. Using a similar technique, the maximum shear

stress is found to be

τmax =

∣

∣

∣

∣

σx − σx

2

∣

∣

∣

∣

(6.26)

and the rotation necessary to achieve this is θ = 45◦. Mohr’s circle can also be used to

find the principal stresses. An example is provided here.

Example 6.3 Principal stresses in an artificial spinal disk

An infinitesimal element in an artificial spinal disk is loaded as shown in Figure 6.12

with σx = −2.2 MPa, σy = −1.1 MPa, σz = −0.58 MPa, τxy = −0.57 MPa,

τyz = −0.33 MPa, and τzx = −0.79 MPa. Use Mohr’s circle to find the principal

stresses in this situation.

Solution From Mohr’s circle as shown in Figure 6.13, the principal stresses are σ1 =

−0.25 MPa, σ2 = −0.86 MPa and σ3 = −2.77 MPa.

The eigenvalues of the stress tensor are the principal stresses and the eigenvectors are

the principal directions. Given the stress tensor in Equation (6.15), the principal stresses

can be found by solving

det[σ − λI ] = 0. (6.27)

The principal directions are then easily found by solving

[σ − λI ][p] = 0. (6.28)

AGAIN lets calculate the Principal stresses in an artificial
spinal disk 
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(a) (b)

Figure 6.12

(a) An artificial intervertebral disk, and (b) the stress tensor associated with its loading.

Figure 6.13

Mohr’s circle representation of the stress state described in Example 6.3.

Example 6.4 Using eigenvalues and eigenvectors

Given the same loading scenario as in Example 6.3, use eigenvalues and eigenvectors

to find the principal stresses and principal directions. Check that the eigenvectors are

orthogonal and unit vectors.

Solution

det







−2.2 − λ −0.57 −0.79

−0.57 −1.1 − λ −0.33

−0.79 −0.33 −0.58 − λ






= 0
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(−2.2 − λ)[(−1.1 − λ)(−0.58 − λ) − 0.332]

+ 0.57[−0.57(−0.58 − λ) + 0.33(−0.79)]

− 0.79[−0.57(−0.33) + 0.79(−1.1 − λ)] = 0

λ1 = −0.25 MPa

λ2 = −0.86 MPa (Principal stresses)

λ3 = −2.77 MPa





2.2 − λi 0.57 0.79

0.57 1.1 − λi 0.33

0.79 0.33 0.58 − λi









pi,1

pi,2

pi,3



 = 0

p1 =





−0.86

−0.36

−0.36



 , p2 =





0.39

−0.92

0.01



 , p3 =





0.34

0.13

−0.93



 (Principal directions)

Check orthogonality by verifying that p1 · p2 = p2 · p3 = p3 · p1 = 0.

Check unit length by verifying that |p1| = |p2| = |p3| = 1.

6.3.4 Constitutive behavior

During uniaxial elastic deformation of an isotropic material, the relationship between

stress and strain is linear and is known as Hooke’s Law and is given as:

σ = Eε (6.29)

E, also known as Young’s modulus or elastic modulus, is the mechanical property that

describes the ratio between stress and strain during elastic deformation. Its units are [Pa]

or [psi]. The range of values for E is quite large, from 1000 GPa for covalently bonded

solids like diamond to ≈1 MPa for soft tissues like cartilage. The theoretical value for

E was derived in Chapter 1. For most standard engineering materials, E is a material

constant, meaning that all materials with the same chemical makeup and microstructure

will have the same value for elastic modulus. In some cases, such as metals, even

different microstructures will not affect the elastic modulus. However, for polymers and

soft tissues, the measured value for E is highly dependent on test conditions such as

strain rate as discussed in Chapters 4 and 5. Thus, when using reported values for E for

these materials, it is important to note the conditions under which the tests were run and

where possible, ensure that these conditions match the conditions for use of the material.

The Poisson’s ratio, ν, defines the amount that a material contracts in the transverse

direction as a response to a normal strain. For example, if an isotropic material is

During uniaxial elastic deformation of an isotropic
material, the relationship between stress and strain
is linear and is known as Hooke’s Law and is given
as:
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Check unit length by verifying that |p1| = |p2| = |p3| = 1.

6.3.4 Constitutive behavior

During uniaxial elastic deformation of an isotropic material, the relationship between

stress and strain is linear and is known as Hooke’s Law and is given as:

σ = Eε (6.29)

E, also known as Young’s modulus or elastic modulus, is the mechanical property that

describes the ratio between stress and strain during elastic deformation. Its units are [Pa]

or [psi]. The range of values for E is quite large, from 1000 GPa for covalently bonded

solids like diamond to ≈1 MPa for soft tissues like cartilage. The theoretical value for

E was derived in Chapter 1. For most standard engineering materials, E is a material

constant, meaning that all materials with the same chemical makeup and microstructure

will have the same value for elastic modulus. In some cases, such as metals, even

different microstructures will not affect the elastic modulus. However, for polymers and

soft tissues, the measured value for E is highly dependent on test conditions such as

strain rate as discussed in Chapters 4 and 5. Thus, when using reported values for E for

these materials, it is important to note the conditions under which the tests were run and

where possible, ensure that these conditions match the conditions for use of the material.

The Poisson’s ratio, ν, defines the amount that a material contracts in the transverse

direction as a response to a normal strain. For example, if an isotropic material is

In some cases, such as metals, even different
microstructures will not affect the elastic modulus.
However, for polymers and soft tissues, the
measured value for E is highly dependent on test
conditions such as strain rate



Multiaxial loading
Uniaxial deformation is not a realistic model for many medical

device applications. For this reason, it is important to consider

how equations such as Hooke’s Law can be applied to a

multiaxial loading situation.

The principle of linear superposition, which states that for a

linear system, the overall response to two or more stimuli is

equal to the sum of responses to those stimuli individually, will

be used in this proof. In this case, this means that if the strain

responses to applied loads in the x-, y-, and z-directions are

analyzed individually, and then these responses are summed,

the result is the strain responses for an object under multiple

applied loads.
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Figure 6.14

The summation of applied stresses leading to the development of three-dimensional Hooke’s Law.

To derive three-dimensional Hooke’s Law, sum the strain contributions from each

stress:

εx =
1

E
[σx − ν(σy + σz)]

εy =
1

E
[σy − ν(σx + σz)] (6.33)

εz =
1

E
[σz − ν(σx + σy)]

Example 6.5 Constrained loading in a tibial plateau

Imagine a design for a tibial plateau that can be modeled for simplicity as shown in

Figure 6.15. It is made of UHMWPE in a constraining frame of CoCr. Given a load of

30 kN which is evenly spread across the tibial plateau, what are the stresses and strains

that develop in this implant? Use E = 1 GPa and ν = 0.4 for UHMWPE and assume

that the CoCr acts as a rigid constraint around the polymer.

Solution εx = 0 =
1

E
[σx − ν(σy + σz)]

εy = 0 =
1

E
[σy − ν(σx + σz)]

εz =
1

E
[σz − ν(σx + σy)]

Solve to get σx = σy = 16.7 MPa, εz = 0.012.



182 Elasticity

Table 6.1 Development of 3D Hooke’s Law

Strain response to:

σ x σ y σ z

εx =
1

E
σx = −νεy = −

ν

E
σy = −νεz = −

ν

E
σz

εy = −νεx = −
ν

E
σx =

1

E
σy = −νεz = −

ν

E
σz

εz = −νεx = −
ν

E
σx = −νεy = −

ν

E
σy =

1

E
σz

stretched in the z direction, it will (with few exceptions) contract in the x and y directions.

For this material, it is defined as:

ν = −
εx

εy

= −
εx

εz

. (6.30)

The Poisson’s ratio is typically between 0 and 0.5, with the value for most metals around

0.3. Post-yield, ν is close to 0.5, and deformation occurs with no change in volume. The

shear modulus, G, is the ratio between the shear stress and shear strain, analogous to the

elastic modulus.

τ = Gγ . (6.31)

The shear modulus can be written as a function of E and ν as follows:

G =
E

2(1 + ν)
. (6.32)

6.3.5 Multiaxial loading

Uniaxial deformation is not a realistic model for many medical device applications.

For this reason, it is important to consider how equations such as Hooke’s Law can be

applied to a multiaxial loading situation. The principle of linear superposition, which

states that for a linear system, the overall response to two or more stimuli is equal to the

sum of responses to those stimuli individually, will be used in this proof. In this case,

this means that if the strain responses to applied loads in the x-, y-, and z-directions

are analyzed individually, and then these responses are summed, the result is the strain

responses for an object under multiple applied loads.

Figure 6.14 shows a block under a summation of applied loads (or stresses). Table 6.1

can be used to develop three-dimensional Hooke’s Law. The strain responses are derived

either from one-dimensional Hooke’s Law (Equation 6.30) or the definition for Poisson’s

ratio (Equation 6.31).
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Figure 6.14

The summation of applied stresses leading to the development of three-dimensional Hooke’s Law.

To derive three-dimensional Hooke’s Law, sum the strain contributions from each

stress:

εx =
1

E
[σx − ν(σy + σz)]

εy =
1

E
[σy − ν(σx + σz)] (6.33)

εz =
1

E
[σz − ν(σx + σy)]

Example 6.5 Constrained loading in a tibial plateau

Imagine a design for a tibial plateau that can be modeled for simplicity as shown in

Figure 6.15. It is made of UHMWPE in a constraining frame of CoCr. Given a load of

30 kN which is evenly spread across the tibial plateau, what are the stresses and strains

that develop in this implant? Use E = 1 GPa and ν = 0.4 for UHMWPE and assume

that the CoCr acts as a rigid constraint around the polymer.

Solution εx = 0 =
1

E
[σx − ν(σy + σz)]

εy = 0 =
1

E
[σy − ν(σx + σz)]

εz =
1

E
[σz − ν(σx + σy)]

Solve to get σx = σy = 16.7 MPa, εz = 0.012.
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Figure 6.14

The summation of applied stresses leading to the development of three-dimensional Hooke’s Law.

To derive three-dimensional Hooke’s Law, sum the strain contributions from each

stress:

εx =
1

E
[σx − ν(σy + σz)]

εy =
1

E
[σy − ν(σx + σz)] (6.33)

εz =
1

E
[σz − ν(σx + σy)]

Example 6.5 Constrained loading in a tibial plateau

Imagine a design for a tibial plateau that can be modeled for simplicity as shown in

Figure 6.15. It is made of UHMWPE in a constraining frame of CoCr. Given a load of

30 kN which is evenly spread across the tibial plateau, what are the stresses and strains

that develop in this implant? Use E = 1 GPa and ν = 0.4 for UHMWPE and assume

that the CoCr acts as a rigid constraint around the polymer.

Solution εx = 0 =
1

E
[σx − ν(σy + σz)]

εy = 0 =
1

E
[σy − ν(σx + σz)]

εz =
1

E
[σz − ν(σx + σy)]

Solve to get σx = σy = 16.7 MPa, εz = 0.012.

Imagine a design for a tibial

plateau that can be modeled for 

simplicity as shown in Figure 
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(a) (b)

Figure 6.15

(a) A tibial plateau, which can be modeled by fully constrained loading as shown in (b).

6.3.6 Isotropy/anisotropy

The equations in three-dimensional Hooke’s Law assume that the material is homoge-

neous and isotropic, meaning that the deformation in response to load is invariant with

respect to direction. If a material is anisotropic, the general form of Hooke’s Law is

given as follows:

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(6.34)

Sij = Sji in the compliance matrix S. For the anisotropic case, there are 21 independent

constants needed to fully define the interactions between stress and strain. Many standard

engineering materials are considered to be isotropic. As stated earlier, the isotropic case

can be defined by two independent constants, E and ν. This special case is shown in the

matrix form as:



































εx
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εz

γyz

γzx

γxy






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






















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
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
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E
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0 0 0
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E
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. (6.35)

For simplicity, the shear modulus, G, is used instead of its representation using E

and ν.

It is made of UHMWPE in a constraining frame of CoCr. 

Given a load of 30 kN which is evenly spread across the tibial

plateau, what are the stresses and strains that develop in this

implant? Use E = 1 GPa and ν = 0.4 for UHMWPE and assume 

that the CoCr acts as a rigid constraint around the polymer. 

Constrained loading in a tibial plateau 



Isotropy/anisotropy
The equations in three-dimensional Hooke’s Law assume

that the material is homogeneous and isotropic, meaning

that the deformation in response to load is invariant with

respect to direction.

If a material is anisotropic, the general form of Hooke’s

Law is given as follows:

184 Elasticity

(a) (b)

Figure 6.15

(a) A tibial plateau, which can be modeled by fully constrained loading as shown in (b).

6.3.6 Isotropy/anisotropy

The equations in three-dimensional Hooke’s Law assume that the material is homoge-

neous and isotropic, meaning that the deformation in response to load is invariant with

respect to direction. If a material is anisotropic, the general form of Hooke’s Law is

given as follows:
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Sij = Sji in the compliance matrix S. For the anisotropic case, there are 21 independent

constants needed to fully define the interactions between stress and strain. Many standard

engineering materials are considered to be isotropic. As stated earlier, the isotropic case

can be defined by two independent constants, E and ν. This special case is shown in the

matrix form as:
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For simplicity, the shear modulus, G, is used instead of its representation using E

and ν.

Sij= Sji in the compliance matrix S. 

For the anisotropic case, there are 21 independent constants

needed to fully define the interactions between stress and 

strain. 

Many standard engineering materials are considered to be 

isotropic. 



The isotropic case can be defined by two independent

constants, E and ν.

This special case is shown in the matrix form as:
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Figure 6.15

(a) A tibial plateau, which can be modeled by fully constrained loading as shown in (b).

6.3.6 Isotropy/anisotropy
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neous and isotropic, meaning that the deformation in response to load is invariant with

respect to direction. If a material is anisotropic, the general form of Hooke’s Law is
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Sij = Sji in the compliance matrix S. For the anisotropic case, there are 21 independent

constants needed to fully define the interactions between stress and strain. Many standard

engineering materials are considered to be isotropic. As stated earlier, the isotropic case

can be defined by two independent constants, E and ν. This special case is shown in the

matrix form as:
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
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For simplicity, the shear modulus, G, is used instead of its representation using E

and ν. For simplicity, the shear modulus, G, is used instead of its
representation using E and ν. 



Two other special cases are of interest when considering

biomaterials. 

The first is orthotropy. 

An orthotropic material possesses symmetry about three

orthogonal planes, such as a composite material with fibers

of different strengths laid 90◦ to each other, as illustrated in 

Figure. 

In this case, there will be three elastic moduli, Ex, Ey, and Ez,
each associated with one plane of symmetry.
Although this example uses x, y, and z for the planes of
symmetry, the planes do not need to be tied to the coordinate
axis system.
There will also be three shear moduli, Gxy, Gyz, and Gzxand three
Poisson’s ratios, νxy, νyz, and νzx. It is important to remember
that νxy= νyxdue to symmetry, which is how the total number
of independent constants for an orthotropic material is
reduced to nine.
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y, and z for the planes of symmetry, the planes do not need to be tied to the coordinate

axis system. There will also be three shear moduli, Gxy, Gyz, and Gzx and three Poisson’s

ratios, νxy, νyz, and νzx. It is important to remember that νxy = νyx due to symmetry,
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The matrix form of Hooke’s Law for an orthotropic material is
given below: 
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and Ez, each associated with one plane of symmetry. Although this example uses x,

y, and z for the planes of symmetry, the planes do not need to be tied to the coordinate

axis system. There will also be three shear moduli, Gxy, Gyz, and Gzx and three Poisson’s
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and Ez, each associated with one plane of symmetry. Although this example uses x,
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axis system. There will also be three shear moduli, Gxy, Gyz, and Gzx and three Poisson’s

ratios, νxy, νyz, and νzx. It is important to remember that νxy = νyx due to symmetry,

which is how the total number of independent constants for an orthotropic material is
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Another special case to be considered here
is transverse isotropy.

In transverse isotropy, the mechanical
properties are the same in a single plane
(for example, the x-y plane) and different
in the z direction. An example of this is
shown in Figure.
Transversely isotropic materials have five
independent constants: in this example,
they are Exand νxy for the x-y plane, and Ez,
νxz, and Gzx for the z direction.
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The final special case to be considered here is transverse isotropy. In transverse isotropy,

the mechanical properties are the same in a single plane (for example, the x-y plane) and

different in the z direction. An example of this is shown in Figure 6.16(b). Transversely

isotropic materials have five independent constants: in this example, they are Ex and

νxy for the x-y plane, and Ez, νxz, and Gzx for the z direction. The matrix form is shown

below:
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Example 6.6 Finding strains in cortical bone

Cortical bone can be thought of as a transversely isotropic material. The compliance

matrix for dry human femur is as follows (Yoon and Katz, 1976), with values in GPa:
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.

If the femur is loaded such that it experiences 5 MPa in compressive stress along the

z-axis, what are the resulting strains?
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The bone will experience slight expansion in the x-y plane, and an even smaller

compression in the z-direction.

The matrix form is : 
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Cortical bone can be thought of as a transversely isotropic
material. The compliance matrix for dry human femur is as
follows (Yoon and Katz, 1976), with values in GPa
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νxy for the x-y plane, and Ez, νxz, and Gzx for the z direction. The matrix form is shown

below:



































εx

εy

εz

γyz

γzx

γxy



































=







































1

Ex

−
νyx

Ex

−
νzx

Ez

0 0 0

−
νxy

Ex

1

Ex

−
νzx

Ez

0 0 0

−
νxz

Ex

−
νxz

Ex

1

Ez

0 0 0

0 0 0
1

Gzx

0 0

0 0 0 0
1

Gzx

0

0 0 0 0 0
2(1 + νxy)

Ex









































































σx

σy

σz

τyz

τzx

τxy



































(6.37)

Example 6.6 Finding strains in cortical bone

Cortical bone can be thought of as a transversely isotropic material. The compliance

matrix for dry human femur is as follows (Yoon and Katz, 1976), with values in GPa:

S =



















0.053 −0.017 −0.010 0 0 0

−0.017 0.053 −0.010 0 0 0

−0.010 −0.010 0.037 0 0 0

0 0 0 0.115 0 0

0 0 0 0 0.115 0

0 0 0 0 0 0.139



















.

If the femur is loaded such that it experiences 5 MPa in compressive stress along the

z-axis, what are the resulting strains?

Solution 

































εx

εy

εz

γyz

γzx

γxy



































=



















0.053 −0.017 −0.010 0 0 0

−0.017 0.053 −0.010 0 0 0

−0.010 −0.010 0.037 0 0 0

0 0 0 0.115 0 0

0 0 0 0 0.115 0

0 0 0 0 0 0.139





















































0

0

−0.005

0

0

0



































=



































0.00005

0.00005

−0.000185

0

0

0



































The bone will experience slight expansion in the x-y plane, and an even smaller

compression in the z-direction.

If the femur is loaded such that it experiences 5 MPa in
compressive stress along the z-axis, what are the resulting
strains?



186 Elasticity

The final special case to be considered here is transverse isotropy. In transverse isotropy,

the mechanical properties are the same in a single plane (for example, the x-y plane) and

different in the z direction. An example of this is shown in Figure 6.16(b). Transversely

isotropic materials have five independent constants: in this example, they are Ex and

νxy for the x-y plane, and Ez, νxz, and Gzx for the z direction. The matrix form is shown

below:
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Example 6.6 Finding strains in cortical bone

Cortical bone can be thought of as a transversely isotropic material. The compliance

matrix for dry human femur is as follows (Yoon and Katz, 1976), with values in GPa:
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If the femur is loaded such that it experiences 5 MPa in compressive stress along the

z-axis, what are the resulting strains?
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The bone will experience slight expansion in the x-y plane, and an even smaller

compression in the z-direction.

Stress-strain curves
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Figure 6.25

Stress-strain curves for skin (left) and artery (right).

(b)(a)

Figure 6.26

(a) A beam under bending moment with (b) marked segments that are perpendicular to the axis.

moment. These long, slender rods, made of stainless steel, titanium alloys, or nickel-

titanium alloys, are used to stabilize long bones such as the femur or tibia after fracture.

The derivation for beam theory (developed by Leonhard Euler and Daniel Bernoulli in

the mid-1700s) is outlined here. Consider a horizontal prismatic beam under moment

Mz, as shown in Figure 6.26(a). Bending moment has units of [N-m] or [lb-in]. It should

be clear from the picture of this beam that the stresses which develop due to the bending

moment will be tensile on the convex side of the beam and compressive on the concave

side of the beam. The plane at which the stresses induced by Mz are zero is known as

the neutral axis.

Assume that the beam has a cross-section with a vertical axis of symmetry and con-

sider an element of the beam defined by the lines ad and bc as shown in Figure 6.26(b).

When the beam is subjected to a bending moment, these lines become a′d ′ and b′c′, as

seen in Figure 6.27. These lines remain straight and perpendicular to the beam axis. This

result, that plane sections remain plane during bending, is fundamental to the following

The stresses which develop due to the bending moment will

be tensile on the convex side of the beam and compressive

on the concave side of the beam. The plane at which the

stresses induced byMzare zero is known as the neutral axis.
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Figure 6.28

Area moments of inertia for rectangular and circular cross-sections.

The integral is the area moment of inertia, which depends only on the cross-sectional

geometry. This is normally referred to as I with a subscript referring to a specific

axis. This axis should be the neutral axis of the cross-section. Equation (6.51) can be

re-written as

κ =
Mz

E Iz

. (6.52)

Substitute Equation (6.49) into Equation (6.52) and rearrange to get the final result:

σx =
Mz y

Iz

. (6.53)

Often, the maximum stress, σ max, is the value of interest when analyzing a beam under

a bending moment because this value provides the worst-case scenario for the internal

stresses in the beam. As described earlier in the chapter, the maximum stress might also

be useful when examining failure scenarios. To find this value, simply find the maximum

value of y (sometimes this maximum value is denoted c, as below) and the equation for

bending stress becomes

σmax =
Mc

I
. (6.54)

Equations for I of selected shapes are given in Appendix A. However, two of the most

common are given here in Figure 6.28.

Example 6.8 Designing a hip stem cross-section

A designer is trying to decide between a rectangular cross-section and a circular

cross-section for a hip stem. She would like to model them using beam theory in order

I = area moment of inertia

Appendix A

Selected topics from mechanics
of materials

A.1 Properties of areas
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Areas and moments of inertia around centroidal axes for basic geometries.
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Figure 6.29

Circular and rectangular cross-sections for the hip stem described in Example 6.8.

to determine if the maximum stresses are different under a 50 N-m bending moment.

In order to keep the cross-sectional area the same, she decides to use the cross-sections

shown in Figure 6.29. Assuming they are both made of Ti-4Al-6V with E = 114 GPa,

what are the maximum stresses in each hip stem? Are there other things to consider in

selecting a cross-section beyond simply reducing stress?

Solution Using the dimensions given in the problem, Irect = 7.18 m4 and Icircle = 4.91 m4.

Substituting these values along with the bending moment and maximum distance from

the neutral axis into Equation (6.54), the result is σmax,rect = 365 MPa and

σmax,circle = 509 MPa. The maximum stress is larger in the circular cross-section.

Other things to consider in selecting a cross-sectional geometry include ease of

manufacture, reduced stress-concentrations, and stabilization inside the femur.

6.4.2 Composite beam

Finding the neutral axis of a composite beam

It may become necessary to find the stresses that develop in a composite beam under

applied bending moment, as given in Figure 6.30. This could be important in a device

Assess if the maximum stresses

are different under a 50 N-m 

bending moment.

In order to keep the cross-

sectional area the same, she

decides to use the cross-

sections shown in Figure.

Assuming they are both made of Ti-4Al-6V with E = 114

GPa, what are the maximum stresses in each hip stem?

Using the dimensions given Irect = 7.18 m4 and Icircle = 4.91 m4. 

Substituting these values along with the bending moment 

and maximum distance from the neutral axis, the result is

σmax,rect = 365 MPa and  σmax,circle = 509 MPa. 

The maximum stress is larger in the circular cross-section.

Other things to consider in selecting a cross-sectional

geometry include ease of manufacture, reduced stress-

concentrations, and stabilization inside the femur.
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Figure 6.30

A generic composite beam, used to demonstrate the method for determining the location of the neutral axis.

made up of layered materials. In this beam, it is assumed that all n sections are firmly

bonded and that the cross-section is still symmetric in the z-plane.

If the cross-section is placed in an arbitrary coordinate system as shown, use ŷ to

refer to the distance to the neutral axis of the overall beam, ȳi to represent the distance

to the centroid of the individual sections, and t to represent general vertical distance

from the point of interest to the neutral axis. To find the neutral axis, use the following

formula:

ŷ =

n
∑

i=1

Ei ȳi Ai

Ei Ai

. (6.55)

This formula gives the location of the neutral axis with respect to the arbitrary coordinate

system. The next step is to find the moment area of inertia for each section with respect

to the neutral axis. Using Ī j to represent the moment area of inertia for the section

around its own centroid, the following equation, known as the Parallel Axis Theorem,

gives the moment area of inertia around the neutral axis, Î j :

Î j = Ī j + (ȳ j − ŷ)2 A j . (6.56)

Finally, the stress induced by the bending moment within a particular section of the

composite beam is given as

σi,bending =
Mt Ei

n
∑

j=1

E j Î j

. (6.57)

it is assumed that all n sections are
firmly bonded and that the cross-
section is still symmetric in the z-
plane

yi represents the distance to the
centroid of the individual
sections, and t to represent
general vertical distance from
the point of interest to the
neutral axis.

To find the neutral axis, use the following formula:
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Figure 6.30

A generic composite beam, used to demonstrate the method for determining the location of the neutral axis.

made up of layered materials. In this beam, it is assumed that all n sections are firmly

bonded and that the cross-section is still symmetric in the z-plane.

If the cross-section is placed in an arbitrary coordinate system as shown, use ŷ to

refer to the distance to the neutral axis of the overall beam, ȳi to represent the distance

to the centroid of the individual sections, and t to represent general vertical distance

from the point of interest to the neutral axis. To find the neutral axis, use the following

formula:

ŷ =

n
∑

i=1

Ei ȳi Ai

Ei Ai

. (6.55)

This formula gives the location of the neutral axis with respect to the arbitrary coordinate

system. The next step is to find the moment area of inertia for each section with respect

to the neutral axis. Using Ī j to represent the moment area of inertia for the section

around its own centroid, the following equation, known as the Parallel Axis Theorem,

gives the moment area of inertia around the neutral axis, Î j :

Î j = Ī j + (ȳ j − ŷ)2 A j . (6.56)

Finally, the stress induced by the bending moment within a particular section of the

composite beam is given as

σi,bending =
Mt Ei

n
∑

j=1

E j Î j

. (6.57)

Using Ii to represent the moment area of inertia for the
section around its own centroid, the following equation,
known as the Parallel Axis Theorem, gives the moment area
of inertia around the neutral axis:
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Figure 6.30

A generic composite beam, used to demonstrate the method for determining the location of the neutral axis.

made up of layered materials. In this beam, it is assumed that all n sections are firmly

bonded and that the cross-section is still symmetric in the z-plane.

If the cross-section is placed in an arbitrary coordinate system as shown, use ŷ to

refer to the distance to the neutral axis of the overall beam, ȳi to represent the distance

to the centroid of the individual sections, and t to represent general vertical distance

from the point of interest to the neutral axis. To find the neutral axis, use the following

formula:

ŷ =

n
∑

i=1

Ei ȳi Ai

Ei Ai

. (6.55)

This formula gives the location of the neutral axis with respect to the arbitrary coordinate

system. The next step is to find the moment area of inertia for each section with respect

to the neutral axis. Using Ī j to represent the moment area of inertia for the section

around its own centroid, the following equation, known as the Parallel Axis Theorem,

gives the moment area of inertia around the neutral axis, Î j :

Î j = Ī j + (ȳ j − ŷ)2 A j . (6.56)

Finally, the stress induced by the bending moment within a particular section of the

composite beam is given as

σi,bending =
Mt Ei

n
∑

j=1

E j Î j

. (6.57)
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Figure 6.30

A generic composite beam, used to demonstrate the method for determining the location of the neutral axis.

made up of layered materials. In this beam, it is assumed that all n sections are firmly

bonded and that the cross-section is still symmetric in the z-plane.

If the cross-section is placed in an arbitrary coordinate system as shown, use ŷ to

refer to the distance to the neutral axis of the overall beam, ȳi to represent the distance

to the centroid of the individual sections, and t to represent general vertical distance

from the point of interest to the neutral axis. To find the neutral axis, use the following

formula:

ŷ =

n
∑

i=1

Ei ȳi Ai

Ei Ai

. (6.55)

This formula gives the location of the neutral axis with respect to the arbitrary coordinate

system. The next step is to find the moment area of inertia for each section with respect

to the neutral axis. Using Ī j to represent the moment area of inertia for the section

around its own centroid, the following equation, known as the Parallel Axis Theorem,

gives the moment area of inertia around the neutral axis, Î j :

Î j = Ī j + (ȳ j − ŷ)2 A j . (6.56)

Finally, the stress induced by the bending moment within a particular section of the

composite beam is given as

σi,bending =
Mt Ei

n
∑

j=1

E j Î j

. (6.57)

the stress induced by the bending moment within a particular
section of the composite beam is given as



Bending of a composite beam
Consider a composite beam which consists of an UHMWPE
and a Ti-6Al-4V beam perfectly bonded together for a custom
implant that requires a polymer surface on one side and a
metal surface on the other. Both beams have length and width
h = 20.0 mm and are bonded as shown in Figure.
EUHMWPE= 1 GPa and ETi-6Al-4V = 114 GPa.
What is the maximum stress in the UHMWPE beam under
bending momentM = 100.0 N-m?
What is the maximum stress in the Ti-6Al-4V beam
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Figure 6.31

A composite beam for a custom implant described in Example 6.9. The upper half is UHMWPE while the lower half is Ti-6Al-4V.

Example 6.9 Bending of a composite beam

Consider a composite beam which consists of an UHMWPE and a Ti-6Al-4V beam

perfectly bonded together for a custom implant that requires a polymer surface on one

side and a metal surface on the other. Both beams have length and width h = 20.0 mm

and are bonded as shown in Figure 6.31.

EUHMWPE = 1 GPa and ETi-6Al-4V = 114 GPa. What is the maximum stress in the

UHMWPE beam under bending moment M = 100.0 N-m? What is the maximum

stress in the Ti-6Al-4V beam?

Solution First, use Equation (6.55) to find the neutral axis.

ŷ =
E1 ȳ1 A1 + E2 ȳ2 A2

E1 A1 + E2 A2
=

E1

(

h

2

)

h2 + E2

(

−
h

2

)

h2

E1h2 + E2h2
= −9.83 mm

Substitute this value into Equation (6.57).

σUHMWPE,max =
M (h − ŷ) E1

E1

[

h
(

h3
)

12
+

(

h

2
− (ŷ)

)2

h2

]

+ E2

[

h
(

h3
)

12
+

(

−
h

2
− (ŷ)

)2

h2

]

= −1.76 MPa

σT i−6Al−4V,max =
M (−h − ŷ) E2

E1

[

h
(

h3
)

12
+

(

h

2
− (ŷ)

)2

h2

]

+ E2

[

h
(

h3
)

12
+

(

−
h

2
− (ŷ)

)2

h2

]

= −68.5 MPa.

If the composite beam is under purely axial loading, the formula for calculating stress

in a composite beam is

σi,axial =
F Ei

n
∑

j=1

E j A j

. (6.58)
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Figure 6.31

A composite beam for a custom implant described in Example 6.9. The upper half is UHMWPE while the lower half is Ti-6Al-4V.

Example 6.9 Bending of a composite beam

Consider a composite beam which consists of an UHMWPE and a Ti-6Al-4V beam

perfectly bonded together for a custom implant that requires a polymer surface on one

side and a metal surface on the other. Both beams have length and width h = 20.0 mm

and are bonded as shown in Figure 6.31.

EUHMWPE = 1 GPa and ETi-6Al-4V = 114 GPa. What is the maximum stress in the

UHMWPE beam under bending moment M = 100.0 N-m? What is the maximum

stress in the Ti-6Al-4V beam?

Solution First, use Equation (6.55) to find the neutral axis.
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=
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Substitute this value into Equation (6.57).
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= −68.5 MPa.

If the composite beam is under purely axial loading, the formula for calculating stress

in a composite beam is

σi,axial =
F Ei

n
∑

j=1

E j A j

. (6.58)



Composites
Finding upper and lower limit of E 

When compposites are composed of unidirectional fibers,

they exhibit orthotropic behavior. Of particular interest in

these cases are the upper and lower bounds for elastic

modulus.

Assume that the fibers are perfectly bonded such that there

is no delamination and that the matrix is an isotropic

material.

The total cross-sectional area will be referred to as A, while

the total cross-sectional area of the fibers is Af and the total

cross-sectional area of the matrix is Am. Thus
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(b)

(c)

(a)

Figure 6.32

(a) A composite undergoing (b) longitudinal or (c) transverse loading.

6.5 Composites

6.5.1 Finding upper and lower limit of E

Composite materials, as described in Chapter 1, are highly desired because their mechan-

ical properties can be tailored to fit their application. In medical devices, they are found

in dental fillings and are increasingly considered for orthopedic implants. When com-

posites are composed of unidirectional fibers, as shown in Figure 6.32(a), they exhibit

orthotropic behavior. Of particular interest in these cases are the upper and lower bounds

for elastic modulus.

If it is assumed that fibers are stiffer than the matrix, then intuitively it is clear that

the upper bound for the elastic modulus of the composite as a whole will be in the

direction parallel to the fiber axis and that the lower bound will be found perpendicular

to this direction. Also assume that the fibers are perfectly bonded such that there is no

delamination and that the matrix is an isotropic material. For these two derivations, the

total cross-sectional area will be referred to as A, while the total cross-sectional area of

the fibers is Af and the total cross-sectional area of the matrix is Am. Thus

A = A f + Am . (6.59)

201 6.5 Composites

When a tensile force is applied in the direction parallel to the fiber axis as shown in

Figure 6.32(b), the assumption of perfect bonding gives

ε = ε f = εm (6.60)

and the applied force will be a sum of the force in the fibers and the matrix

F = Ff + Fm . (6.61)

Substituting in Equation (6.13) gives

σ A = σ f A f + σm Am (6.62)

EupperεA = E f ε f A f + Emεm Am . (6.63)

Using Equation (6.60) and volume fraction definitions V f =
A f

A
and Vm =

Am

A
, divide

both sides of Equation (6.63) by A and find

Eupper = E f V f + Em Vm . (6.64)

This result shows that for uniaxial fibers, the upper bound for elastic modulus can be

determined through a simple rule of mixtures.

To find the lower bound, imagine transverse loading as shown in Figure 6.32(c). In

this case, the stress in the fibers and matrix must be equal to the total stress.

σ = σ f = σm . (6.65)

The total length in this direction can be written as the sum of the total lengths of the

fibers and matrix:

l = l f + lm . (6.66)

Furthermore, the total change in length in this direction can be written as the sum of the

changes in the fibers and in the matrix:

#l = #l f + #lm . (6.67)

As described earlier, the definitions for strain can be written

ε =
#l

l
ε f =

#l f

l f

εm =
#lm

lm

(6.68)

Combining Equations (6.67) and (6.68) gives

ε =
ε f l f + εmlm

l
. (6.69)

Using Equations (6.13) and (6.69) and volume fraction definitions V f =
l f

l
and Vm =

lm

l
, the following result is found:

1

Elower
=

V f

E f

+
Vm

Em

or Elower =
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Figure 6.32(b), the assumption of perfect bonding gives
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Substituting in Equation (6.13) gives
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Using Equation (6.60) and volume fraction definitions V f =
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and Vm =
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A
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both sides of Equation (6.63) by A and find

Eupper = E f V f + Em Vm . (6.64)

This result shows that for uniaxial fibers, the upper bound for elastic modulus can be

determined through a simple rule of mixtures.
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Developing optimal thicknesses in layered
devices

An engineer is designing a hydroxyapatite-coated polymer

sleeve to assist with bone ingrowth in a total joint

replacement. The cross-section of the proposed device is

shown in Figure. Although the inner and outer diameters

of the device are fixed at 6 mm and 12 mm, respectively,

the thickness of the two layers needs to be optimized such

that the overall elastic modulus of the device matches that

of bone. Using these parameters, find the optimal thickness

for each layer, using the following values: Epolymer = 10 GPa,

EHA = 27 GPa, Ebone = 17 GPa.
203 6.6 Case study: modifying material and cross-section to reduce bone absorption

Figure 6.34

The cross-section of a hydroxyapatite-coated polymer sleeve as described in Example 6.10.

The area of the polymer cross-section and the HA cross-section both depend on the

desired value, the thickness of the polymer layer, t.

Apolymer = π!(rpolymer + t)2 − r2
polymer#

AH A = π[r2
H A − (rpolymer + t)2].

Plug these into the equation for E of the device and set equal to 17 GPa. Solve for t to

find t = 2 mm. The optimal thickness of the polymer layer is 2 mm, leaving 1 mm for

the HA layer.

6.6 Case study: modifying material and cross-section to reduce
bone absorption

When considering orthopedic device design, a primary consideration is to ensure that the

bone is carrying enough load that it does not suffer from stress shielding. As discussed

in the inquiry for this chapter, stress shielding leads to bone resorption and eventual

need for revision surgery. In this case study, two factors in the design of a hip stem

will be considered: material choice and hip stem diameter. The material choices are

common for orthopedic implants: stainless steel, a CoCr alloy and a titanium alloy.

The outer diameter of the bone is assumed to be 2.5 cm, and the inner diameter of the

bone is 1.0 cm. The hip stem will have an outer diameter of 1.1 cm (d1) or 1.5 cm (d2).

Using the geometry and material properties given in Figure 6.35, the stresses in the bone

with each stem can be calculated by evaluating the stresses for an axial load of 2851 N

(4 × Body Weight for a 160 lb person) and a bending moment of 30 N-m separately and

Assume that the overall elastic modulus follows
the rule of mixtures, that is:

202 Elasticity

Figure 6.33

The difference between upper and lower bound elastic modulus for increasing fiber volume fraction in a fiber-reinforced

composite.

These upper and lower bound predictions provide a range for estimates of E in uniaxial

fiber composites. Figure 6.33 shows the range between upper and lower bound mod-

uli for increasing fiber volume fractions in a representative fiber-reinforced composite.

Short fibers, such as those found in UHMWPE or PEEK for implants, will not neces-

sarily achieve maximal values for E. For particulate reinforcement, the elastic modulus

estimate will follow the rule of mixtures. If working with more complex composites, it

may be useful to consult a text specifically on that subject for more detailed derivations

of elastic modulus estimates.

Example 6.10 Developing optimal thicknesses in layered devices

An engineer is designing a hydroxyapatite-coated polymer sleeve to assist with bone

ingrowth in a total joint replacement. The cross-section of the proposed device is

shown in Figure 6.34. Although the inner and outer diameters of the device are fixed at

6 mm and 12 mm, respectively, the thickness of the two layers needs to be optimized

such that the overall elastic modulus of the device matches that of bone. Using these

parameters, find the optimal thickness for each layer, using the following values:

Epolymer = 10 GPa, EH A = 27 GPa, Ebone = 17 GPa.

Solution Assume that the overall elastic modulus follows the rule of mixtures, that is

Edevice =
Epolymer Apolymer + EH A AH A

Apolymer + AH A

.

The area of the polymer cross-section
and the HA cross-section both depend
on the desired value, the thickness of the
polymer layer, t.
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need for revision surgery. In this case study, two factors in the design of a hip stem

will be considered: material choice and hip stem diameter. The material choices are

common for orthopedic implants: stainless steel, a CoCr alloy and a titanium alloy.

The outer diameter of the bone is assumed to be 2.5 cm, and the inner diameter of the

bone is 1.0 cm. The hip stem will have an outer diameter of 1.1 cm (d1) or 1.5 cm (d2).
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with each stem can be calculated by evaluating the stresses for an axial load of 2851 N
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Plug these into the equation for E of the device
and set equal to 17 GPa. Solve for t to find t = 2
mm. The optimal thickness of the polymer layer
is 2 mm, leaving 1 mm for the HA layer.



Modifying material and cross-section to reduce 
bone absorption

A primary consideration is to ensure that the bone is carrying

enough load that it does not suffer from stress shielding.

In this case study, two factors in the design of a hip stem will

be considered:material choice and hip stem diameter.

The materials :

CoCr alloy or Ti.

The outer diameter

of the bone is assumed

to be 2.5 cm, and the inner diameter of the bone is 1.0 cm.

The hip stem will have an outer diameter of 1.1 cm (d1) or 1.5

cm (d2).

Using the geometry and material properties given in Figure,

the stresses in the bone with each stem can be calculated by

evaluating the stresses for an axial load of 2851 N (4 × Body

Weight for a 160 lb person) and a bending moment of 30 N-m

separately and then summing them.
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Figure 6.35

A schematic representation of a hip stem fixed into a femur.

then summing them.

σbone,axial =
Ebone F

Ebone Abone + Estem Astem

σbone,bending =

Ebone M

(

dbone

2

)

Ebone Ibone + Estem Istem

Stress due to axial load [MPa]

bone alone 6.91

d1 d2

bone with SS 1.93 1.23

bone with CoCr 1.79 1.12

bone with Ti 2.62 1.78

Stress due to bending load [MPa]

bone alone 20.07

d1 d2

bone with SS 14.09 8.35

bone with CoCr 13.63 7.82

bone with Ti 15.82 10.77
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205 6.7 Summary

Total stress [MPa]

bone alone 26.98

d1 d2

bone with SS 16.02 9.58

bone with CoCr 15.43 8.94

bone with Ti 18.44 12.55

From these calculations, it is obvious that the worst-case scenario from a stress-shielding

point of view is the CoCr stem with the 1.5 cm diameter. The best-case scenario is the

titanium alloy stem with the 1.1 cm diameter, which allows the bone to experience a

stress closest to what it would experience without any stem present. A set of calculations

as quick and simple as in this analysis could help to set design parameters or guide

research directions. Using the techniques described in this chapter, a possible solution

to a well-known medical device issue was found.

6.7 Summary

The basic Hooke’s Law describes the linear relationship between stress and strain during

uniaxial testing. This assumes that the material is isotropic and homogeneous. A more

complex version can be used to describe deformations during multiaxial loading using

the compliance matrix, S. The compliance matrix describes all possible interactions

between stress and strain. Fortunately, most synthetic biomaterials and even many natural

tissues are not fully anisotropic, allowing the compliance matrix to collapse to a more

manageable number of independent constants that can be found using mechanical testing

techniques. These constants are then used for comparing and evaluating materials.

Elastic modulus, yield strength, and Poisson’s ratio are some of the most commonly

compared mechanical properties. Elastic modulus can be used as a measure of stiffness

and is a material constant for standard engineering materials. Yield strength gives

information about the transition between elastic (recoverable) deformation and plastic

(non-recoverable) deformation. Poisson’s ratio defines the deformations that occur in

directions transverse to the loaded direction.

True stress and strain are used to give a more realistic picture of deformation behavior

when the sample cross-section changes dramatically during testing. True stress and strain

can be related to engineering stress and strain. It is more common to use engineering

stress and strain particularly if small deformations are expected.

Beam theory provides a valuable model for certain loading situations in vivo. The

derivation of the beam equation is provided along with examples in which it can be

used to determine the maximum stress in a component. A method for determining the

elastic modulus of composite materials is given for simple, uniaxial fibers in an isotropic

worst-case scenario from a stress-shielding point of view is

the CoCr stem with the 1.5 cm diameter. The best-case

scenario is the titanium alloy stem with the 1.1 cm diameter,



Failure theories

How would you safely design a tibial insert of a total knee replacement

that is known to experience a complex loading state with a normal stress

component that is on the order of the uniaxial strength for this material?

The inquiry posed above represents a realistic design

challenge that one might face in the field of orthopedics.

Many of the tibial components used in total knee

arthroplasty utilize UHMWPE with a uniaxial yield stress

on the order of 20 MPa; yet, the contact pressures for many

of the clinical designs exceed this value.

In order to assess the likelihood for failure owing to yield

or plastic deformation, it is important to calculate the

effective stress that provides a scalar representation of the

multiaxial stress state acting on the implant.

It is the effective stress that must be compared to the

uniaxial yield strength as an assessment for the factor of

safety against failure. Furthermore, localized plastic

damage due to the presence of a notch or stress

concentration can serve as a nucleation site for cracks if the

component undergoes cyclic loading conditions.



In general, ductile materials yield before fracture while

brittle materials fracture before yield.

The yield strength of a material is defined as the stress at

which plastic (permanent) deformation begins. The modulus

of resilience for a material is defined as the energy that is

stored in a material until the onset of yielding.

The tensile yield strength provides the stress level at which

permanent deformation will occur in an isotropic material

subjected to a one- dimensional (axial) tensile stress.

This material property serves as an important design

parameter, as it represents the upper limit of stress that can be

applied without incurring plastic deformation to the

component.



Ductile materials generally deform through shear in response

to generalized states of stress.

Consequently the yield criteria developed for ductile metals

are based on localized maximum shear stress (planes of

maximum shear stress) or distortional energy

Henri Tresca developed the first criterion for yield in 1864 –

this theory utilizes the maximum shear stress as the

predictor of plastic deformation in metals.

The other well-known criterion was established in 1913 by

Richard von Mises, who utilized the distortional energy as a

basis for yield in ductile materials.

The Tresca and von Mises yield criteria are commonly

employed to this day.

Brittle materials, are weak in tension and their failure modes

utilize normal stresses rather than shear stresses. In brittle

materials, the generalized failure criterion is based on the

normal stress, or principal stresses, reaching the ultimate

strength of the material.
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Figure 8.3

Hypothetical yield surface for a planar (two-dimensional) stress state.

inside this surface represents elastic behavior of the material. The boundary represents

stress states at which the material has reached its yield strength and is behaving in a

plastic manner. The yield surface may change shape and size as the plastic deformation

evolves, but stress states that lie outside the yield surface are mathematically non-

permissible. For a generalized state of stress, there will be a number of yield points that

together form the yield surface for the material; Figure 8.3 illustrates a hypothetical

yield surface for a planar (two-dimensional) stress state.

The yield surface is generally represented in principal stress space or space defined

by the stress invariants. The stress invariants used to describe the yield surface are given

as:

I1 = σ1 + σ2 + σ3

J2 =
1

6
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (8.1)

J3 = det (s) = s1s2s3

where σ is the Cauchy stress (true stress), σ1, σ2, σ3 are the principal values of σ , and

s is the deviatoric part of the stress whose principal values are s1, s2, s3. These stress

invariants are utilized in the fundamental failure theories discussed below – Tresca

employs the use of the maximum shear stress, von Mises makes use of the deviatoric

part of the stress (J2 invariant), and the normal stress criteria utilize the principal normal

stresses.

8.4 Maximum shear stress (Tresca yield criterion)

The maximum shear stress criterion is founded upon the early work of Tresca, who

recognized that metals plastically deform primarily through shear processes. These shear

processes utilize dislocation slip systems to accommodate plastic deformation once the

elastic range of deformation is exhausted. This criterion is premised on the notion that

yielding (slip) occurs when the maximum shear stress reaches the yield stress determined

A yield surface is the surface within

the space of stresses that defines the

boundary between elastic and

plastic behavior for a material

The yield surface is generally represented in principal stress

space or space defined by the stress invariants. The stress

invariants used to describe the yield surface are given as:
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by the stress invariants. The stress invariants used to describe the yield surface are given

as:

I1 = σ1 + σ2 + σ3

J2 =
1

6
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (8.1)

J3 = det (s) = s1s2s3

where σ is the Cauchy stress (true stress), σ1, σ2, σ3 are the principal values of σ , and

s is the deviatoric part of the stress whose principal values are s1, s2, s3. These stress

invariants are utilized in the fundamental failure theories discussed below – Tresca

employs the use of the maximum shear stress, von Mises makes use of the deviatoric

part of the stress (J2 invariant), and the normal stress criteria utilize the principal normal

stresses.

8.4 Maximum shear stress (Tresca yield criterion)

The maximum shear stress criterion is founded upon the early work of Tresca, who

recognized that metals plastically deform primarily through shear processes. These shear

processes utilize dislocation slip systems to accommodate plastic deformation once the

elastic range of deformation is exhausted. This criterion is premised on the notion that

yielding (slip) occurs when the maximum shear stress reaches the yield stress determined

where σ is the Cauchy stress
(true stress), σ1, σ2, σ3 are the
principal values of σ , and s is
the deviatoric part of the stress
whose principal values are s1, s2,
s3.

These stress invariants are utilized in the fundamental failure

theories discussed below – Tresca employs the use of the

maximum shear stress, von Mises makes use of the deviatoric

part of the stress (J2 invariant), and the normal stress criteria

utilize the principal normal stresses.



Maximum shear stress (Tresca yield criterion) 

This criterion is based on the notion that yielding (slip)

occurs when the maximum shear stress reaches the yield stress

determined from the uniaxial tensile test246 Failure theories

Figure 8.4

Illustration shows the Mohr circle for uniaxial loading and the relationship between maximum shear stress and the principal

(normal) stress. Yielding occurs when the principal stress is greater than or equal to the yield strength measured in the tensile

test. The figure shows (a) uniaxial tension, (b) resulting equations, and (c) relationship depicted using Mohr’s circle.

from the uniaxial tensile test. The relationship between the principal stresses and planes

of maximum shear stress are readily visualized using the Mohr circle (as developed in

Chapter 6). Figure 8.4 schematically illustrates the relationship between the principal

stresses, the planes of maximum shear stress, and the uniaxial yield stress measured

from a tensile test. The planes of maximum shear stress are oriented at θ = 45◦ to

the principal stresses (recall that the Mohr circle plots shear as an angular function of

normal stress using 2θ and that maximum planes of shear stress are oriented at 90◦ to

the principal stress direction).

The Mohr circle plot for uniaxial loading shown in Figure 8.4 indicates that the

maximum shear stress occurs at the radius that is equal to one-half of the principal stress

difference. For uniaxial loading, the maximum shear stress occurs at σ y/2, and thus we

can write:

τmax =
|σ1 − 0|

2
=

σy

2
for (8.2)

σ1 = σy, σ2 = σ3 = 0

The relationship

between the

principal stresses
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angular function of normal stress using 2θ and that maximum

planes of shear stress are oriented at 90◦ to the principal stress

direction). For uniaxial loading, the maximum shear stress

occurs at σy/2, and thus we can write:
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The general three-dimensional Tresca yield criterion is

founded upon the notion that the plane of greatest shear

stress dictates the maximum overall shear stress, and is

given as:

247 8.4 Maximum shear stress (Tresca yield criterion)

Figure 8.5

Illustration of the Tresca yield criterion developed for a plane stress state. The Tresca equations (a) are employed to generate the

hexagonal yield surface (b). This surface represents the boundary between elastic behavior (within the hexagon) and the plastic

deformation (the hexagonal boundary) for a ductile material that fails through maximum shear (c). Note that the Tresca yield

surface assumes isotropic behavior.

A state of plane stress is often used to develop the well-known two-dimensional Tresca

yield surface (hexagon) that is schematically illustrated in Figure 8.5. For this biaxial

stress state (where σ3 = 0, and σo = σy = uniaxial flow or yield strength), the general

equations for maximum shear stress using the principal stress differences defined by

the Tresca yield criteria are plotted in σ 1 − σ 2 space to generate the boundary of

the yield surface. For cases where the stresses are less than the maximum shear yield

criteria, the material will be contained within the envelope and will be safe from plastic

deformation. The boundary of the yield surface (hexagon) is defined by the equations

below:

|σ1| = σy

|σ2| = σy
(8.3)

|σ1 − σ2| = σy

σy = σo

In three-dimensional space, the yield surface is a hexagonal prism with a hexagon

projected down the hydrostatic axis where σ 1 = σ 2 = σ 3 as shown in Figure 8.6. Note

that this indicates that there is no change in material yield response with the application

of a hydrostatic stress. The general three-dimensional Tresca yield criterion is founded

upon the notion that the plane of greatest shear stress dictates the maximum overall

shear stress, and is given as:

τmax = τ f =
σy

2
= MAX

{

|σ1 − σ2|
2

,
|σ2 − σ3|

2
,
|σ1 − σ3|

2

}

. (8.4)

Determining the Tresca stress in a spinal

implant
Determine the Tresca stress for the infinitesimal element in

an artificial spinal disk that is loaded as shown in Figure.

If the uniaxial yield strength of the implant material is 8

MPa, is the device safe from yielding?180 Elasticity

(a) (b)

Figure 6.12

(a) An artificial intervertebral disk, and (b) the stress tensor associated with its loading.

Figure 6.13

Mohr’s circle representation of the stress state described in Example 6.3.

Example 6.4 Using eigenvalues and eigenvectors

Given the same loading scenario as in Example 6.3, use eigenvalues and eigenvectors

to find the principal stresses and principal directions. Check that the eigenvectors are

orthogonal and unit vectors.

Solution

det







−2.2 − λ −0.57 −0.79

−0.57 −1.1 − λ −0.33

−0.79 −0.33 −0.58 − λ






= 0
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Figure 8.6

Illustration of the three-dimensional Tresca yield envelope which takes the form of a hexagonal prism that is projected down the

hydrostatic stress axis.

Example 8.1 Determining the Tresca stress in a spinal implant

Determine the Tresca stress for the infinitesimal element in an artificial spinal disk that

is loaded as shown in Example 6.3 (Figure 6.12). If the uniaxial yield strength of the

implant material is 8 MPa, is the device safe from yielding?

Solution

σx = −2.2 MPa, σy = −1.1 MPa, σz = −0.58 MPa

τxy = −0.57 MPa, τxz = −0.79 MPa, τyz = −0.33 MPa

Mohr’s circle was used in Example 6.3 to find the principal stresses:

σ1 = −0.25 MPa, σ2 = −0.86 MPa, σ3 = −2.77 MPa

Using the expression for the Tresca yield criterion (Equation 8.4), the effective Tresca

stress is:

τmax =
σy

2
= MAX

{

|σ1 − σ2|
2

,
|σ2 − σ3|

2
,
|σ1 − σ3|

2

}

= MAX

{

|−0.25 − (−0.86)|
2

,
|−0.86 − (−2.77)|

2
,
|−0.25−| (−2.77)

2

}

= MAX {0.305 MPa, 0.95 MPa, 1.26 MPa} = 1.26 MPa

σTresca = 2τmax = 2(1.26) = 2.52 MPa
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Illustration of the three-dimensional Tresca yield envelope which takes the form of a hexagonal prism that is projected down the

hydrostatic stress axis.
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stress is:
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2
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2

}

= MAX {0.305 MPa, 0.95 MPa, 1.26 MPa} = 1.26 MPa

σTresca = 2τmax = 2(1.26) = 2.52 MPa249 8.5 Maximum distortional energy

Yielding occurs when the Tresca stress reaches the uniaxial yield strength. If the

Tresca stress is less than the yield strength, then the material is safe from yield:

σTresca = σyield (Yields)

σTresca = 2.52 MPa < σyield = 8 MPa (No Yielding)

The factor of safety (FS) against yielding is defined as the ratio of the yield stress

normalized by the effective (Tresca) stress:

FS =
σyield

σTresca

=
8 MPa

2.52 MPa
= 3.17.

The factor of safety for this material utilized in the spine application is 3.

8.5 Maximum distortional energy (von Mises yield criterion)

The maximum distortional energy criterion is founded upon the early work of Huber,

von Mises, and Hencky, who utilized strain energy methods as a basis for yield in

isotropic, ductile materials. This criterion is based on the view that yielding occurs

when the maximum distortional energy associated with the combined stress state reaches

the uniaxial yield strength. The symmetric stress tensor comprises both normal stress

components and shear stress components and can be decomposed into dilatational and

distortional components (Figure 8.7). The dilatational portion of stress is responsible for

volume change and is controlled by the normal stresses (imagine a cube that becomes a

larger cube under the action of hydrostatic stresses). The distortional portion of stress

results in shape change but no volume change and is controlled by the shear stresses

(imagine a deck of cards that is sheared).

Figure 8.7

Illustration depicting the decomposition of (a) state of stress into (b) dilatational stresses and (c) distortional or deviatoric

stresses.
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Figure 8.6

Illustration of the three-dimensional Tresca yield envelope which takes the form of a hexagonal prism that is projected down the

hydrostatic stress axis.

Example 8.1 Determining the Tresca stress in a spinal implant

Determine the Tresca stress for the infinitesimal element in an artificial spinal disk that

is loaded as shown in Example 6.3 (Figure 6.12). If the uniaxial yield strength of the

implant material is 8 MPa, is the device safe from yielding?

Solution

σx = −2.2 MPa, σy = −1.1 MPa, σz = −0.58 MPa

τxy = −0.57 MPa, τxz = −0.79 MPa, τyz = −0.33 MPa

Mohr’s circle was used in Example 6.3 to find the principal stresses:

σ1 = −0.25 MPa, σ2 = −0.86 MPa, σ3 = −2.77 MPa

Using the expression for the Tresca yield criterion (Equation 8.4), the effective Tresca

stress is:
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σTresca = 2τmax = 2(1.26) = 2.52 MPa



von Mises yield criterion

Maximum distortional energy

This criterion is based on the view that yielding occurs when

the maximum distortional energy associated with the

combined stress state reaches the uniaxial yield strength.

The symmetric stress tensor comprises both normal stress

components and shear stress components and can be

decomposed into dilatational and distortional components.

The dilatational portion of stress is responsible for volume

change and is controlled by the normal stresses (imagine a

cube that becomes a larger cube under the action of

hydrostatic stresses). The distortional portion of stress results

in shape change but no volume change and is controlled by

the shear stresses (imagine a deck of cards that is sheared).
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Yielding occurs when the Tresca stress reaches the uniaxial yield strength. If the

Tresca stress is less than the yield strength, then the material is safe from yield:

σTresca = σyield (Yields)

σTresca = 2.52 MPa < σyield = 8 MPa (No Yielding)

The factor of safety (FS) against yielding is defined as the ratio of the yield stress

normalized by the effective (Tresca) stress:

FS =
σyield

σTresca

=
8 MPa

2.52 MPa
= 3.17.

The factor of safety for this material utilized in the spine application is 3.

8.5 Maximum distortional energy (von Mises yield criterion)

The maximum distortional energy criterion is founded upon the early work of Huber,

von Mises, and Hencky, who utilized strain energy methods as a basis for yield in

isotropic, ductile materials. This criterion is based on the view that yielding occurs

when the maximum distortional energy associated with the combined stress state reaches

the uniaxial yield strength. The symmetric stress tensor comprises both normal stress

components and shear stress components and can be decomposed into dilatational and

distortional components (Figure 8.7). The dilatational portion of stress is responsible for

volume change and is controlled by the normal stresses (imagine a cube that becomes a

larger cube under the action of hydrostatic stresses). The distortional portion of stress

results in shape change but no volume change and is controlled by the shear stresses

(imagine a deck of cards that is sheared).

Figure 8.7

Illustration depicting the decomposition of (a) state of stress into (b) dilatational stresses and (c) distortional or deviatoric

stresses.



251 8.5 Maximum distortional energy (von Mises yield criterion)

The yield stress measured in uniaxial tension is used to establish the failure criteria:

σ1 = σy

σ2 = σ3 = 0 (8.13)

Ud =
1 + ν

3E
σ 2

y .

Hence, the general failure criterion developed using the distortional energy is given as:

1 + ν

3E

(

σ 2
1 + σ 2

2 + σ 2
3 − σ1σ2 − σ1σ3 − σ2σ3

)

=
1 + ν

3E
σ 2

y

→ σ 2
y = σ 2

1 + σ 2
2 + σ 2

3 − σ1σ2 − σ1σ3 − σ2σ3 (8.14)

σy =
√

σ 2
1 + σ 2

2 + σ 2
3 − σ1σ2 − σ1σ3 − σ2σ3.

This failure stress is often denoted as the von Mises effective stress and can be written

also as:

σeff =
1

√
2

√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2. (8.15)

The von Mises yield criterion is sometimes termed the octahedral shear yield criterion

as it can also be derived using the planes of maximum octahedral shear stress. This

method is similar in premise to the maximum shear stress theory but instead makes use

of the octahedral shear plane (the plane that is oriented at 54.7◦ to the principal stress

and which is concomitant with the orientation of a close-packed plane (111) in an FCC

crystal structure (Chapter 2)). Again, the assumption presumes that dislocation slip is

the mechanism for plastic deformation in the system, and that the material behavior is

isotropic. Figure 8.8 shows the orientation of the octahedral shear plane with respect to

the principal stress and its location in Mohr circle space.

The shear stress on the octahedral shear plane is given as:

τoct =
1

3

√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2. (8.16)

Substituting the uniaxial yield strength for the principal stress, we can find the critical

value of octahedral shear stress resulting in plastic deformation:

τoct, f =
1

3

√

2σ 2
y (8.17)

and the same failure criterion is developed using the maximum distortional energy

condition:

1

3

√

2σ 2
y =

1

3

√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

→ σeff =
1

√
2

√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2. (8.18)

This failure stress is often denoted as the von Mises effective

stress and can be written also as: 
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2σ 2
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Figure 8.8

Schematic showing the octahedral shear plane plotted in Mohr space.

Figure 8.9

Schematic of the von Mises ellipse yield surface.

Another advantage of the von Mises yield criterion is that it can also be written in

general stress component terms:

σeff =
1

√
2

√

(σx − σy)2 + (σy − σz)2 + (σz − σx )2 + 6
(

τ 2
xy + τ 2

yz + τ 2
zx

)

. (8.19)

A state of plane stress is often used to develop the well-known two-dimensional

von Mises yield surface (ellipse) that is schematically illustrated in Figure 8.9. In this

case, the yield surface is plotted in σ 1 − σ 2 space using the general equations for the
the maximum shear stress criterion is more conservative

than the criterion using the distortional energy; however,

the von Mises yield criterion is known to better match

experimental data for many alloy systems and is commonly

employed in design for the calculation of an effective stress

for a component subjected to multiaxial loading.



Determining the von Mises effective stress in a tibial plateau 
174 Elasticity

Figure 6.5

An infinitesimal cube inside an object under loading (top), before (middle), and after (bottom) rotation.

and is sometimes referred to as the hydrostatic component, while the deviatoric compo-

nent is responsible for shape change, or distortion. The dilatational stress tensor, pδi j ,

is written as:




p 0 0

0 p 0

0 0 p



 (6.18)

This implant is made of

UHMWPE in a constraining

frame of CoCr and loaded with

a force of 30 kN that is evenly

spread across the tibial plateau.

UHMWPE has a uniaxial yield

strength of 22 MPa. Is the

device safe from yielding?

Applying the 3D Hooke’s Law
and geometric constraints
provides the stresses and
strains
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Figure 8.11

Schematic illustration of the three-dimensional von Mises yield envelope that takes the form of a cylinder oriented along the axis

of hydrostatic stress.

with a force of 30 kN that is evenly spread across the tibial plateau. UHMWPE has a

uniaxial yield strength of 22 MPa. Is the device safe from yielding?

Solution Applying the 3D Hooke’s Law and geometric constraints provides the stresses and

strains:

σx = σy = 16.7 MPa

σz = 25 MPa

τxz = τxy = τyz = 0 MPa

εx = εy = 0

εz = 0.012

The effective von Mises stress is found by employing Equation (8.19):

σeff =
1

√
2

√

(σx − σy)2 + (σy − σz)2 + (σz − σx )2 + 6
(

τ 2
xy + τ 2

yz + τ 2
zx

)

=
1

√
2

√

(16.7 − 16.7)2 + (16.7 − 25)2 + (25 − 16.7)2

=
1

√
2

√

2 (8.3)2 = 8.3 MPa
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of hydrostatic stress.
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255 8.6 Predicting yield in multiaxial loading conditions

The material is safe from yielding if the effective (von Mises) stress is less than the

uniaxial strength:

σeff < σy

8.3 MPa < 22 MPa·

The factor of safety (FS) against yielding is found by normalizing the yield strength

with the effective stress:

FS =
σy

σeff

=
22 MPa

8.3 MPa
= 2.65.

8.6 Predicting yield in multiaxial loading conditions

The primary benefit of developing a general yield criterion, either through maximum

shear stress or maximum octahedral stress, is that a scalar representation of the three-

dimensional stress state can be used in combination with the uniaxial yield strength to

predict the likelihood of failure. The factor of safety (FS) against plastic deformation

can be calculated from the ratio of the uniaxial yield strength to the effective von Mises

stress or by normalizing the uniaxial yield stress with the maximum shear stress for the

component:

FSTresca =
σy

σs

σs = MAX {|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|}
(8.21)

FSV M =
σy

σeff

.

σeff =
1

√
2

√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

In general, the factor of safety should be such that the effective stress (or maximum

shear stress) is at least a factor of 2–3 lower than the uniaxial yield strength. For safety-

critical applications, however, this is often insufficient, and factors of safety are often

extended and additional analysis pertaining to fracture, fatigue, and wear are employed

for complete structural analysis.

Multiaxial loading has an interesting result on the yield behavior of ductile materials.

It is worth exploring the effect of common loading scenarios using both the Tresca

and von Mises yield theories. An isotropic material (with anequal compressive and

tensile yield strength) subjected to any one-dimensional normal stress will plastically

deform when this stress reaches the uniaxial yield strength for the material, as shown in

Figure 8.12. Uniaxial loading is not a typical stress state found in structural medical

devices; an exception is a suture.

The primary benefit of developing a general yield criterion,

either through maximum shear stress or maximum

octahedral stress, is that a scalar representation of the three-

dimensional stress state can be used in combination with the

uniaxial yield strength to predict the likelihood of failure.

The factor of safety (FS) can be calculated from the ratio of

the uniaxial yield strength to the effective von Mises stress

In general, the factor of safety should be at least a factor of 2–

3 lower than the uniaxial yield strength. For safety-critical

applications, however, this is often insufficient, and factors of

safety are often extended and additional analysis pertaining

to fracture, fatigue, and wear are employed for complete

structural analysis.
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Figure 9.2

The stress becomes singular near the crack tip, according to the inverse root dependence expected for the use of K. Far from the

crack tip, the tensile stress approaches the far-field value σ∞. The region where K accurately describes the stress is called the

singularity dominated zone. Very near the crack tip the stress exceeds what the material can withstand, and there the material

deforms or breaks down.

have been identified so far: a singular region described by Equation (9.6), a region of

material breakdown adjacent to the crack tip, and a far field where the stress approaches

the global value.

Inspecting Equation (9.4) one sees that the stress at a sharp crack tip (ρ " a) is

proportional to the global stress and the square root of crack length, a. It can be shown

that K follows exactly the same dependence on global stress and crack length, i.e.,

K = Yσ∞
√

πa (9.7)

which it must, since it completely characterizes the magnitude of the stress singularity

near the crack tip. Equation (9.7) contains a geometric coefficient Y, which is unity

when the body surrounding the crack is infinite, and is greater for finite component

geometries. For instance, Y = 1.12 for a small planar through-crack in the edge of a

plate.

The stress intensity factor formula in Equation (9.7) is often compiled in tabular form

for experimental specimens using an alternative expression,

K = F(a/W )
P

B
√

W
(9.8)

where P is the applied load, B is the specimen thickness, and W is the effective specimen

length. The remaining material ahead of the crack tip, W − a, is called the ligament and

is also a useful quantity in fracture and crack growth experiments. The function F(a/W )

is tabulated for each specimen geometry, and is analogous to the geometric factor Y in

Equation (9.7). The polynomial F(a/W ) for the compact tension (CT) specimen of

Figure 9.3 is shown in Equation (9.9).

F
( a

W

)

=
2 + (a/W )

(1 − (a/W ))3/2
[0.866 + 4.64(a/W ) − 13.32(a/W )2

+ 14.72(a/W )3 − 5.60(a/W )4] (9.9)

K is the stress intensity factor

K is a single parameter that describes completely the severity of

the stress in the singularity region near a crack tip, which is of

primary interest in fracture mechanics.
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Figure 9.3

Compact tension (CT) specimen geometry with crack length a and specimen length W, as measured from the load line. The

specimen thickness (out of the page) is denoted B.

Example 9.1 Estimating fracture toughness from fractography of a tibial implant

Consider the tibial plateau presented in Examples 6.5 and 8.2. This implant is made of

UHMWPE in a constraining frame of CoCr and loaded with a force of 30 kN that is

evenly spread across the tibial plateau. UHMWPE has a yield strength of 22 MPa and

an elastic modulus of 1 GPa. A fractured component reveals an embedded

penny-shaped flaw that served as the initiation site for fast fracture. The diameter of

this flaw is measured to be 2mm using electron microscopy. Estimate the fracture

toughness for this material using the fractography (fracture surface image) and

knowledge of stresses on the system. State all assumptions.

Solution Applying the 3D Hooke’s Law and geometric constraints provides the stresses and

strains (Example 6.5):

σx = σy = 16.7 MPa; σz = 25 MPa τxz
= τxy

= τyz = 0 MPa

εx = εy = 0; εz = 0.012

The effective von Mises stress was found in Example 8.2: σeff = 8.3 MPa.

The fractography reveals that the radius of the flaw is 25 mm. The maximum far

field stress is 25 MPa.
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Estimating fracture toughness from 

fractography of a tibial implant
This implant is made of UHMWPE in a constraining frame of

CoCr and loaded with a force of 30 kN that is evenly spread

across the tibial plateau.

UHMWPE has a yield strength of 22 MPa and an elastic

modulus of 1 GPa.

A fractured component reveals an embedded penny-shaped

flaw that served as the initiation site for fast fracture. The

fractography reveals that the radius of the flaw is 25 µm.

The maximum far field stress is 25 MPa

Estimate the fracture toughness for this material using the

fractography (fracture surface image) and knowledge of

stresses on the system.

from previous example:

σx = σy = 16.7 MPa;      σz = 25MPa

τxz = τxy = τyz = 0 MPa

εx =εy = 0;       εz =0.012 

The effective von Mises stress was found σeff = 8.3 MPa.
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The form of the stress intensity factor for an embedded penny-shaped flaw is

estimated as (Anderson, 2004):

K I = σ∞√
πa

solving for KI provides an estimate of the fracture toughness:

K I = σ∞√
πa = 25 MPa

√
π

√

25 × 10−6(m) = 0.221 MPa
√

m.

Assumptions: It is assumed that linear elastic fracture mechanics is valid and that any

yielding in the material is small scale in comparison to the region of K-dominance. The

maximum stress applied in the quasi-static condition is the axial stress; however, the

effective stress is representative of the multiaxial loading conditions. It is assumed that

the flaw advances through mode I fracture mechanisms. Also the geometric factor is

neglected for simplicity and hence the fracture estimate is low in comparison to

published values.

9.3.3 Loading modes and mixed-mode fracture

Crack growth is most critical under the application of a tensile stress; however, cracks

may grow under shear stress or combinations of these components. Shear stresses are

common at interfaces, such as in the bond layer between implants and bone. Medical

devices often experience complicated stress states, for instance through the mechanical

interaction of components, contact stresses in total joint replacements, or multiaxial

loads caused by structural service in the skeleton. Therefore, the driving force for crack

growth under generalized states of stress is important for fracture control in load-bearing

medical devices.

Because the loading in the body is complex and medical devices are often subjected to

multiaxial stress states, it is useful to describe the behavior of cracks under complicated

global stress states. In considering general states of loading we first need to differentiate

the global loading into three principal and independent parts. These three independent

loading modes are shown in Figure 9.4.

Mode I is the crack-opening mode, where the applied global stress is perpendicular

to both the crack plane and crack front. Mode II is the shearing mode, with a global

stress resulting in shear displacement parallel to the crack plane and perpendicular to the

crack front. Mode III is the twisting (or tearing) mode, where the displacement is a shear

parallel to both the crack face and crack front. The three loading modes for cracks are

distinguished not by the quality of the singularity at the crack tip (which is common to

all cracks in LEFM) but instead by the magnitudes and distributions of the components

of stress. Thus, through superposition, the stresses can be determined individually and

then combined to give the result due to an arbitrary loading condition. In this manner,
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(a) (b)

Figure 10.1

Basic definitions of stress or strain range, stress or strain amplitude and load ratio, R, for cyclic conditions imposed using a

(a) sinusoidal waveform and (b) spectrum (variable amplitude) loading.

in Figure 10.1(a). The same terminology is utilized when the amplitude of loading is

variable and the primary difference is that the parameters are then defined for specific

intervals or cycles, Ni, of constant amplitude loading as shown in Figure 10.1(b).

In fatigue loading, the stress range is typically the dominant factor in the progression

of fatigue damage, and failure, especially in metals, and is defined as:

!σ = σmax − σmin (10.1)

and correspondingly the stress amplitude and the mean stress of the loading cycle are

defined as:

σa =
σmax − σmin

2
σm =

σmax + σmin

2
(10.2)

where σ max is the maximum stress and σ min is the minimum stress of the fatigue cycle

or load reversal. The mean stress is an important parameter in component design as

this captures the average level of stress and provides a direct measure of the nature of

the stress state. For example, the mean stress is zero for fully reversed loading, but the

average stress increases dramatically for fully tensile loading. For most materials, an

increase in mean stress for an equal stress amplitude results in a shortened fatigue life.

The ratio of the minimum stress normalized by the maximum stress is defined as the

stress ratio or R-ratio:

R =
σmin

σmax

. (10.3)

The R-ratio (R) also captures the stress state during loading. For example, in fully

reversed loading, R = −1 whereas for tensile loading, R ranges from 0 to 1(static

Let’s define the primary mechanical variables associated with

the cyclic loading of a component. These factors include

mean stress, peak stress, load ratio, waveform, frequency,

and amplitude variation (spectrum loading).

the stress range is typically the dominant factor in the

progression of fatigue damage, and failure, especially in

metals, and is defined as:

Dσ = σmax− σmin and correspondingly the stress amplitude and

themean stress of the loading cycle are

σa= (σmax− σmin)/2

σm= (σmax+ σmin)/2

The ratio of the minimum stress normalized by the maximum

stress is defined as the stress ratio or R-ratio:
R = σmin/σmax



One critical aspect of the design process is the decision as to

whether the component’s fatigue life will be dominated by the

initiation or propagation process of a critical flaw.

The total life design methodology assumes that the

component is initially free of any flaws that are sufficiently

sized for growth or ideally that the component is “defect-

free.” This methodology is based on the notion that fatigue

failure is a consequence of crack nucleation and subsequent

growth to a critical size and that the majority of the life is

spent in the nucleation (initiation) phase.

This design philosophy is distinct from the defect-tolerant

approach in which the fatigue life of a component is based on

the number of loading cycles needed to propagate an existing

crack to a critical dimension for the material.

The initial size of the flaw is assumed to correspond to the

resolution of an inspection test. The critical dimension of the

flaw is directly correlated to the fracture toughness of the

material.

The defect-tolerant philosophy is more commonly employed

in safety-critical applications such as heart valve design.



TOTAL LIFE PHILOSOPHY 

The fatigue characterization of a material based on the total

life philosophy is based on either a stress-based test that

examines the conditions for failure for a range of stress

amplitudes and mean stress, or a strain-based test that

examines the fatigue behavior under cyclic strain amplitudes.
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Figure 10.3

Schematic illustration of typical specimens utilized in total life tests: (a) un-notched rotating beam specimen, (b) notched

rotating beam specimen, (c) un-notched axial stress specimen, and (d) cantilever specimen.

critical strain or for conditions where cyclic plastic strain is expected in service (Coffin,

1954; Manson, 1954; Morrow, 1968). Strain-based tests provide insight into the low-

cycle fatigue process and often utilize notched samples to generate cyclic plastic strain

conditions in the material (Figure 10.3(b,d)). Morrow (Morrow, 1968) outlined a strain-

based testing methodology; however, cyclic plastic strains can be difficult to measure,

and much of the design for fatigue resistance is centered upon stress-based tests. The

testing methodology for the total life stress-based response of a material is provided in

the ASTM Standards E466-E468 (American Society for Testing and Materials).

As mentioned above, in the stress-based total life tests, the un-notched samples are

cycled until failure over a range of increasingly smaller values of stress amplitude to

generate an (S-N) curve as shown in Figure 10.4. Due to the statistical nature of fatigue

and the number of measurements needed to generate a S-N plot for a material, the

number of specimens needed for this type of fatigue test is extensive. For a rotating test,

a constant bending moment is applied to the specimen and cycled continuously until

failure. The number of cycles or load reversals is determined for each stress level to

generate stress (S) versus cycles to failure (Nf) data. The first test is performed just below
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Figure 10.4

Schematic of typical S-N plot on linear-logarithmic scale showing the stress amplitude (σa) and concomitant cycles to failure

for that loading range.

Figure 10.5

Schematic of typical S-N plot on linear-logarithmic scale showing the endurance limit (σe) that exists for certain metals such as

ferrous alloys (steels). For materials without an endurance limit, such as titanium alloys, the curve continues to decrease after

one million cycles and the fracture strength at 10 million cycles is often used for design purposes.

the monotonic or static strength for the material, and the subsequent tests are performed

at a continuously decreasing stress level. This methodology is continued until either a

stress level is reached for which anything below this value no longer results in failure

(endurance limit, σe) or the tests are continued until a fatigue strength (the ordinate on

the S-N plot) for a specified number of cycles is determined. Ferrous alloys (steels) have

an endurance limit that occurs at one million cycles while most other alloy systems do

not. An endurance limit is generally defined as the cyclic stress level that enables infinite

life in the material (Figure 10.5). For systems without an endurance limit, the fatigue

The endurance limit of most steels is 35–50% of the ultimate

tensile strength.

The endurance limit can be affected by several factors such as

surface finish, stress concentrations, heat treatment,

environment, and component design
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Figure 10.6

S-N fatigue data for several polymer systems. Note that PET and nylon do not have endurance limits.

strength for a given number of cycles (usually a minimum of 10 million cycles) is used

instead as a material property for component design. The endurance limit is a critical

material property for component design. The assumption is that if the device is subjected

to a stress value below its endurance limit, then the device is safe from fatigue failure. The

endurance limit of most steels is 35–50% of the ultimate tensile strength. The endurance

limit can be affected by several factors such as surface finish, stress concentrations, heat

treatment, environment, and component design (Marin, 1962). Often the component

endurance limit is taken as the measured endurance limit under idealized conditions,

and modifying factors are multiplied through to account for the various effects (Shigley

and Mischke, 1989).

The relationship between the stress amplitude and the number of cycles to failure is

known as the Basquin equation (Basquin, 1910) and is given as:

σa = σ ′
f (N f )b (10.4)

where σa is the stress amplitude, σ ′
f is the fatigue strength coefficient and is comparable

to the true fracture strength for the material, N f is the number of cycles (or load reversals)

to failure, and b is the Basquin exponent. The Basquin exponent is determined from

the slope taken from the plot of stress amplitude versus the number of cycles to failure

on a linear-log plot (Figure 10.5). The typical range of b for most metal and polymer

systems is between −0.05 and −0.10. Figure 10.6 shows the S-N plots for several

polymer systems used in medical devices. It can be seen in this figure that nylon

and polyethylene terephthalate (PET) do not exhibit an endurance limit. On the other

hand, polymers such as polyethylene (PE), polypropylene oxide (PPO), polystyrene (PS),

polytetrafluoroethylene (PTFE), polypropylene (PP), polymethylmethacrylate (PMMA),

and epoxy (EP) clearly exhibit an endurance limit below which failure does not occur

in less than 107 cycles (Pearson and Pruitt, 1999).

nylon and polyethylene terephthalate (PET) do not exhibit an
endurance limit.
On the other hand, polymers such as polyethylene (PE),
polypropylene oxide (PPO), polystyrene (PS),
polytetrafluoroethylene (PTFE), polypropylene (PP),
polymethylmethacrylate (PMMA), and epoxy (EP) clearly
exhibit an endurance limit below which failure does not occur
in less than 107cycles .

The relationship between the stress amplitude and the

number of cycles to failure is known as the Basquin

equation (Basquin, 1910) and is given as:

σa = σ′f (Nf)b

σa is the stress amplitude, σ′f is the fatigue strength

coefficient and is comparable to the true fracture strength for

the material, Nf is the number of cycles to failure, and b is

the Basquin exponent. b is between −0.05 and −0.10.
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Example 10.1 Determining the cycles to failure for a spinal implant

Consider the artificial spinal disk from Example 6.3. The stresses on the implant as

shown in Figure 6.11 are:

σx = −2.2 MPa, σy = −1.1 MPa, σz = −0.58 MPa

τxy = −0.57 MPa, τxz = −0.79 MPa, τyz = −0.33 MPa

and the principal stresses:

σ1 = −0.25 MPa, σ2 = −0.86 MPa, σ3 = −2.77 MPa

The Tresca yield criterion (Equation 8.4) was employed in Example 8.1 to determine

the effective stress on the system:

σTresca = 2.52 MPa.

Using the Basquin equation (Equation 10.4), determine the number of loading cycles

that can be sustained before failure occurs. The Basquin exponent for the material is

−0.1.

Solution Since this implant is subjected to multiaxial loads, the first task is to determine the

stress amplitude for the system. The largest stress range in this system is determined

by the principal stress difference, σ1 − σ3 = σTres = 2.52 MPa.

One can assume that the effective stress range serves as the effective stress

amplitude in this case. The Basquin exponent for the material is −0.1 and recall that

the yield strength is 8 MPa. If the yield stress is employed as the failure stress, then the

Basquin equation takes the form:

σa = σ ′
f (N f )b ⇒ 2.52 = 8(N f )−.1

N f =

(

σa

σ ′
f

)
1
b

=
(

2.52

8

)− 1
0.1

= 103,966.

Hence, for the effective stress range on the spinal implant, the number of cycles to

failure is predicted to be 103,966 loading cycles.

The use of the Basquin equation assumes that the mean stress is zero – that is, that

the specimen or component is undergoing fully reversed loading and that each cycle

represents two reversals. If the mean stress is not zero, then these effects must be

considered in predicting the life of the component. The mean stress has a dramatic effect

on the fatigue behavior of a material, and this is schematically illustrated in Figure 10.7.

As the mean stress of a fatigue cycle is increased, the number of cycles to failure and the

endurance limit (if it exists) is decreased substantially. Most alloys and polymer systems

are extremely sensitive to the mean stress of the sustained loading cycle.

The Basquin exponent for the material is − 0.1. 

Let’s determine the stress amplitude for the system. The

largest stress range in this system is determined by the

principal stress difference, σ1− σ3= σTres = 2.52 MPa.

One can assume that the effective stress range serves as the

effective stress amplitude in this case. The Basquin exponent

for the material is −0.1 and the yield strength is 8 MPa. If the

yield stress is employed as the failure stress, then the Basquin

equation takes the form:

338 Fatigue

Example 10.1 Determining the cycles to failure for a spinal implant

Consider the artificial spinal disk from Example 6.3. The stresses on the implant as

shown in Figure 6.11 are:

σx = −2.2 MPa, σy = −1.1 MPa, σz = −0.58 MPa

τxy = −0.57 MPa, τxz = −0.79 MPa, τyz = −0.33 MPa

and the principal stresses:

σ1 = −0.25 MPa, σ2 = −0.86 MPa, σ3 = −2.77 MPa

The Tresca yield criterion (Equation 8.4) was employed in Example 8.1 to determine

the effective stress on the system:

σTresca = 2.52 MPa.

Using the Basquin equation (Equation 10.4), determine the number of loading cycles

that can be sustained before failure occurs. The Basquin exponent for the material is

−0.1.

Solution Since this implant is subjected to multiaxial loads, the first task is to determine the

stress amplitude for the system. The largest stress range in this system is determined

by the principal stress difference, σ1 − σ3 = σTres = 2.52 MPa.

One can assume that the effective stress range serves as the effective stress

amplitude in this case. The Basquin exponent for the material is −0.1 and recall that

the yield strength is 8 MPa. If the yield stress is employed as the failure stress, then the

Basquin equation takes the form:

σa = σ ′
f (N f )b ⇒ 2.52 = 8(N f )−.1

N f =

(

σa

σ ′
f

)
1
b

=
(

2.52

8

)− 1
0.1

= 103,966.

Hence, for the effective stress range on the spinal implant, the number of cycles to

failure is predicted to be 103,966 loading cycles.

The use of the Basquin equation assumes that the mean stress is zero – that is, that
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considered in predicting the life of the component. The mean stress has a dramatic effect

on the fatigue behavior of a material, and this is schematically illustrated in Figure 10.7.

As the mean stress of a fatigue cycle is increased, the number of cycles to failure and the

endurance limit (if it exists) is decreased substantially. Most alloys and polymer systems

are extremely sensitive to the mean stress of the sustained loading cycle.



The use of the Basquin equation assumes that the mean stress

is zero – that is, that the specimen or component is

undergoing fully reversed loading and that each cycle

represents two reversals. If the mean stress is not zero, then

these effects must be considered in predicting the life of the

component. The mean stress has a dramatic effect on the

fatigue behavior of a material, and this is schematically

illustrated in Figure.
339 10.4 Total life philosophy

Decreasing σmean

σa, endurance

σmean
Nf (Cycles to Failure)

σ
a
 (

S
tr

e
ss

 A
m

p
lit

u
d

e
)

Safe

Figure 10.7

The effect of mean stress on the fatigue life of a material and the concomitant linearly decreasing endurance limit plotted as a

function of mean stress.
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Figure 10.8

Illustration of the Goodman relationship between endurance limit and mean stress. The dotted line that initiates at the origin (zero

mean stress) is used to determine the factor of safety for the material.

Figure 10.7 illustrates that the endurance limit decreases proportionately with increas-

ing mean stress. This behavior is commonly modeled using the Goodman line that

describes the linear proportionality between the endurance limit for a given alternating

stress and the mean stress of the loading cycle. Figure 10.8 illustrates the Goodman

relationship between endurance limit and mean stress. The dotted line that initiates at

the origin (zero mean stress) is used to determine the factor of safety for the material.

The Goodman relationship uses the intercepts on the axes to develop the linear

equation:

σa

σe

+
σm

σ f

= 1 (10.5(a))

The Palmgren-Miner accumulated damage model 
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Figure 10.9

Illustration of the concept of fractional lifetime using the number of cycles, ni, sustained at a given stress amplitude (S), as

compared to the number of cycles to failure, Ni, at that same stress amplitude. This ratio serves as a measure of damage and

provides an estimate of the fraction of lifetime used in the block of loading cycles.
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Figure 10.10

Illustration of incremental damage and Palmgren-Miner’s rule (adapted from Dowling, 2007).

stress range (Miner, 1945; Palmgren, 1924). The incremental damage, d, is defined

as:

di =
Ni

N fi

(10.6)

and the total damage, D, is defined as the summation of incremental damage:

D =
∑ Ni

N fi

. (10.7)

When the total damage sums to 1.0, then failure of the component is predicted

(Figure 10.10).
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stress range (Miner, 1945; Palmgren, 1924). The incremental damage, d, is defined

as:

di =
Ni

N fi

(10.6)

and the total damage, D, is defined as the summation of incremental damage:

D =
∑ Ni

N fi

. (10.7)

When the total damage sums to 1.0, then failure of the component is predicted

(Figure 10.10).



Fatigue life using Palmgren-Miner’s rule

Consider a metallic implant that undergoes a series of

variations in hourly loading as shown schematically in

Figure. For this loading block, the variations in load are 6

reversals at σa1= 290MPa, 10 reversals at σa2= 200MPa, and

5 reversals at σa3= 400 MPa.

The form of the Basquin equation for this alloy is

σa = 1758 (N f ) −0.098.
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stress range (Miner, 1945; Palmgren, 1924). The incremental damage, d, is defined

as:

di =
Ni

N fi

(10.6)

and the total damage, D, is defined as the summation of incremental damage:

D =
∑ Ni

N fi

. (10.7)

When the total damage sums to 1.0, then failure of the component is predicted

(Figure 10.10).
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Example 10.4 Fatigue life approximation using Palmgren-Miner’s rule for variable

amplitude loading

Consider a metallic implant that undergoes a series of variations in hourly loading as

shown schematically in Figure 10.10. For this loading block, the variations in load are

6 reversals at σ a1 = 290 MPa, 10 reversals at σ a2 = 200 MPa, and 5 reversals at σ a3 =
400 MPa. The form of the Basquin equation for this alloy is σa = 1758(N f )−0.098.

(i) How many loading blocks can be sustained before fracture?

Solution (i) To solve variable loading problems, it is easiest to use a table format for the data so

that damage increments can be readily calculated.

Stress amplitude,

σ a (MPa)

Cycles to

failure (Nf)

Cycles at this

amplitude (N)

Damage,

d = N/Nf

400 136,000 5 3.67 × 10−5

290 1,540,000 6 3.89 × 10−6

200 4.29 × 109 10 2.33 × 10−9

The total damage in one loading block is
∑

N/Nf = 4.04 × 10−5; the number of

loading blocks that can be sustained is 24,757.

(ii) Is this a sufficient number of cycles for a fracture fixation device that must last 6

months?

Solution (ii) The device offers 24,757 safe loading blocks. There are 24 hours in a day. The device

offers 1,031 days of service. This is more than sufficient to support loads for 6 months.

10.5 Strain-based loading

Strain-based tests are often utilized when the structural component is likely to experience

fluctuations in displacement or strain and are often utilized for components that are

expected to undergo localized plastic strain, as may be the case for designs with notches

or stress concentrations. The majority of strain-based fatigue tests are performed using

fully reversed applied strain conditions and are often used when materials are expected

to have some level of plastic strain in their applications. Cyclic strain data are often

represented in a manner that is analogous to the S-N characterization used in stress-

based testing. The total strain amplitude, "εa , can be divided into the elastic, "εa,el ,

and plastic, "εa,pl , strain amplitude components:

"εa = "εa,el + "εa,pl (10.8)

(i) How many loading blocks

can be sustained before

fracture?

The total damage in one loading block is ∑N/Nf= 4.04×10−5;
the number of loading blocks that can be sustained is 24,757.
(ii) Is this a sufficient number of cycles for a fracture fixation
device that must last 6 months? The device offers 24,757 safe
loading blocks. There are 24 hours in a day. The device offers
1,031 days of service. This is more than sufficient to support
loads for 6 months
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The defect-tolerant philosophy is based on the implicit

assumption that structural components are intrinsically

flawed and that the fatigue life is based on propagation of an

initial flaw to a critical size.349 10.7 Defect-tolerant philosophy

Figure 10.12

Illustration of the compact tension specimen and the associated stress fields at the crack tip.

where KI is the Mode I (opening mode) stress intensity factor. The stress intensity

parameter incorporates the boundary conditions of the cracked body and is a function

of loading, crack length, and geometry (Anderson, 2004). The stress intensity factor

can be found for a wide range of specimen types and is used to scale the effect of the

far-field load, crack length, and geometry of the flawed component. The most common

specimen type used in characterization of fatigue crack propagation resistance is the

compact tension geometry, as shown in Figure 10.12.

The applied load can be applied to a specimen in one of three primary modes,

as depicted in Figure 10.13. Mode I is the opening mode, in which the crack tip

experiences predominantly tensile stresses; Mode II is the shear mode where the crack

tip experiences primarily in-plane stresses; and Mode III is the out-of-plane shear mode

where the crack tip experiences a torsional stress state. The most conservative mode (the

harshest conditions for a propagating crack tip) is Mode I. This is the most common

mode of loading in fatigue crack propagation tests. Any loading scenario that combines

these modes of loading is termed “mixed-mode” crack propagation.

10.7.2 Fatigue crack propagation

Linear elastic fracture mechanics provides a conservative design approach in compari-

son to the total life methodology for predicting the life of a cracked structural component
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Figure 10.13

Illustration of the three primary modes of loading at a propagating crack tip.
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Illustration of linear crack growth as a function of loading cycles and how this crack velocity (slope) is used to generate data on a

da/dN versus !K plot. The data on the left are shown for a Nitinol (Ni-Ti) shape memory alloy.

under cyclic loading conditions. Although the fracture micromechanisms vary for met-

als, polymers, and ceramics, the fatigue crack propagation behaviors of these materials

share many similar attributes at the macroscopic scale. The velocity of a moving fatigue

crack subjected to constant stress amplitude loading is determined from the change in

crack length, a, as a function of the number of loading cycles, N. This velocity represents

the fatigue crack growth per loading cycle, da/dN, and is found from experimentally

generated curves where a is plotted as a function of N (Figure 10.14). For constant

amplitude loading, the rate of crack growth increases as the crack grows longer, since

the stress intensity is a function of the crack length (Equation 10.14). Fatigue crack

propagation resistance is typically presented with the crack velocity as a function of

stress intensity on a logarithmic scale.
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Figure 10.15

Illustration of the sigmoidal fatigue crack propagation plot on log-log scale. This schematic depicts the three primary regimes of

crack growth: near-threshold, linear, and fast fracture where peak intensity drives the fracture process.

Paris (Paris, 1964) suggested that the stress intensity factor range, !K = Kmax −
Kmin, which itself captures the far-field stress, crack length, and geometry, should be

the characteristic driving parameter for fatigue crack propagation. This is known as the

Paris law, and it states that da/dN scales with !K through the power law relationship:

da

d N
= C · !K m (10.15)

where C and m are material constants. The Paris equation is valid for intermediate !K

levels spanning crack propagation rates from 10−6 to 10−4 mm/cycle.

Figure 10.15 schematically illustrates the sigmoidal curve that captures the crack

growth rate as a function of stress intensity range. The plot illustrates three distinct

regions: the slow crack growth or threshold (referred to as near-threshold in figure cap-

tion) regime, the intermediate crack growth or Paris regime, and the rapid crack growth

or fast fracture regime. While the Paris regime is most often used for life prediction,

the fatigue threshold is key for designing against the inception of crack growth when

components are expected to have long service lifetimes or when intermittent inspections

may be difficult. For safe design, engineers use the fatigue threshold value for estimates

of allowable stresses that do not enable growth of a flaw. Such data, however, are difficult

to generate and are generally not available for all biomaterials used in medical implants

as the near-threshold stress intensity range is defined as a crack velocity of 10−7 m/cycle
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Illustration of the sigmoidal fatigue crack propagation plot on log-log scale. This schematic depicts the three primary regimes of

crack growth: near-threshold, linear, and fast fracture where peak intensity drives the fracture process.

Paris (Paris, 1964) suggested that the stress intensity factor range, !K = Kmax −
Kmin, which itself captures the far-field stress, crack length, and geometry, should be

the characteristic driving parameter for fatigue crack propagation. This is known as the

Paris law, and it states that da/dN scales with !K through the power law relationship:

da

d N
= C · !K m (10.15)

where C and m are material constants. The Paris equation is valid for intermediate !K

levels spanning crack propagation rates from 10−6 to 10−4 mm/cycle.

Figure 10.15 schematically illustrates the sigmoidal curve that captures the crack

growth rate as a function of stress intensity range. The plot illustrates three distinct

regions: the slow crack growth or threshold (referred to as near-threshold in figure cap-

tion) regime, the intermediate crack growth or Paris regime, and the rapid crack growth

or fast fracture regime. While the Paris regime is most often used for life prediction,

the fatigue threshold is key for designing against the inception of crack growth when

components are expected to have long service lifetimes or when intermittent inspections

may be difficult. For safe design, engineers use the fatigue threshold value for estimates

of allowable stresses that do not enable growth of a flaw. Such data, however, are difficult

to generate and are generally not available for all biomaterials used in medical implants

as the near-threshold stress intensity range is defined as a crack velocity of 10−7 m/cycle

Paris (1964) 

Initial flaw size is typically determined from non-

destructive evaluation (NDE) techniques such as

electron microscopy, X-ray spectroscopy, or ultra- sound.

In the event that no defect is found, an initial defect

whose size is the limit of resolution of the NDE method

is assumed to exist as a worst-case scenario.
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Figure 10.16

Schematic of a metallic stent used to restore blood flow in a vessel.

(10−10 mm/cycle) or less. Thus, it is more common that the linear crack growth (Paris)

regime is used as a conservative measure to predict the life of a component.

The Paris law is commonly employed for fatigue life prediction of components that

have known stress concentrations and which are used in safety-critical designs. It is

implied in this defect-tolerant approach that the device or component contains an initial

defect or crack size, ai . Initial flaw size is typically determined from non-destructive

evaluation (NDE) techniques such as electron microscopy, X-ray spectroscopy, or ultra-

sound. In the event that no defect is found, an initial defect whose size is the limit of

resolution of the NDE method is assumed to exist as a worst-case scenario. Assuming

that the fatigue loading is performed under constant stress amplitude conditions, that the

geometric factor, f(α), does not change within the limits of integration, and that fracture

occurs when the crack reaches a critical value, ac, one can integrate the Paris equation

in order to predict the number of cycles to failure (fatigue life) of the component:

N f =
2

(m − 2)C f (α)m("σ )mπm/2
·

[

1

a
(m−2)/2
i

−
1

a
(m−2)/2
c

]

for m "= 2. (10.16)

Example 10.7 Fatigue design of a Nitinol stent

Consider a stent device made of the shape memory alloy, Nitinol. The stent is used to

restore blood flow to a vessel as shown in Figure 10.16, and must withstand

physiological cyclic loads for the life of the device. The average heartbeat is 72 beats

per minute. The typical strut thickness is 500 µm.

The fatigue crack propagation constants for Nitinol (tube) are C = 2 × 10−11

(MPa
√

m)m, m = 4.2, and "Kth = 2.5 MPa
√

m as seen in Figure 10.15. The geometric

parameter, F(a/W) (note that F(a/W) is the same as F(α)) for the strut is known from

finite element analysis to be 0.624. The maximum allowable flaw size in a medical
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The typical strut thickness is 500 µm 

The fatigue crack propagation constants for Nitinol (tube) are

C = 2 × 10 −11 (MPa√m)m, m = 4.2, and DKth = 2.5 MPa√m

The geometric parameter, F(a/W) (note that F(a/W) is the same

as F(α)) for the strut is known from finite element analysis to

be 0.624. The maximum allowable flaw size in a medical grade

Nitinol alloy is 39 µm as per ASTM F2063. The physiological

stress range on the implant is 294 MPa.

In this case it is essential that any flaw present is incapable

of propagating. For this reason, the threshold stress intensity

factor is used to determine the critical flaw size that initiates

the onset of crack growth
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grade Nitinol alloy is 39 µm as per ASTM F2063. The physiological stress range on

the implant is 294 MPa.

How can the defect-tolerant approach be used to safely design a stent that will resist

fatigue crack growth and that will offer structural integrity for the life of the patient?

Solution Because of the critical nature of the application and the fact that the device undergoes

72 beats per minute for the life of the patient, it is essential that any flaw present is

incapable of propagating. For this reason, the threshold stress intensity factor is used to

determine the critical flaw size that initiates the onset of crack growth (Figure 10.15).

Using the general form of the stress intensity equation shown in Equation (10.11), we

can rearrange and solve for the critical crack length as:

!Kth = !σ
√

πa · F
( a

W

)

;

acr =
1

π

[

!K 2
th

F
(

a
W

)2
!σ 2

]

= 59 µm

Because the critical flaw size for the inception of crack growth is 59 µm and the

maximum allowable flaw size for the Nitinol alloy is 39 µm, the device is safe against

fatigue crack growth.

Example 10.8 Fatigue crack propagation in a flawed hip implant

Consider the fracture of a hip stem that was traced back to its laser etching. Years ago,

laser etching was used on the lateral side of the stem to mark a serial number. The

material removed by the laser etching is essentially a small edge-notched crack that is

1 mm deep on the side of the stem as shown in Figure 10.17. It is estimated that the

tensile bending stress on the stem is approximately 90 MPa for a typical active male

weighing 200 pounds.

The femoral stem is made of a CoCr alloy with a fracture toughness of 9.5 MPa, and

fatigue crack propagation constants C = 6 × 10−11 (MPa
√

m)m and m = 4. The form

of the stress intensity factor for a single edge-notched geometry is KI = 1.10σ
√

a
√

π .

What is the critical flaw size for this alloy? How many fatigue cycles will this system

last? Is this acceptable for a hip implant?

Solution Using the general form of the stress intensity range, we can rearrange and solve for the

critical crack length as:

!K = 1.12!σ
√

πa

acr =
1

π

[

K 2
I C

1.122!σ 2

]

= 2.8 mm.

Since the critical flaw size for the inception of crack growth is
59 µm and the maximum allowable flaw size for the Nitinol
alloy is 39 µm, the device is safe against fatigue crack growth
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Figure 10.17

Schematic of a metallic femoral stem with an embedded flaw.

The number of cycles to failure can be determined using the integration of the Paris

equation (Equation 10.16) from an initial flaw size of 1 × 10−3 m to 2.8 × 10−3 m, and

assuming that the implant will undergo 2 million cycles per year, we find that the

component will last 7 years:

N f =
2

(m − 2)C f (α)m("σ )mπm/2
·

[

1

a
(m−2)/2
i

−
1

a
(m−2)/2
c

]

=
1

6 × 10−11(1.12)4(90)4π2
·
[

1

(1 × 10−3)2
−

1

(2.8 × 10−3)2

]

= 14.2 × 106cycles = 7.1 years

The average hip implant lasts 15–20 years. The laser etching in this case results in a

fatigue life that is more than halved due to the initial stress concentration.

10.7.3 Fatigue behavior of structural materials

As with quasi-static loading there are two classifications of toughening mechanisms

that are utilized in resisting crack growth under varying load conditions. Intrinsic

Years ago, laser etching was
used on the lateral side of the

stem to mark a serial number.

The material removed by the
laser etching is essentially a

small edge-notched crack that
is 1 mm deep on the side of the

stem. It is estimated that the

tensile bending stress on the
stem is approximately 90 MPa

for a typical active male
weighing 200 pounds.

The femoral stem is made of a CoCr alloy with a fracture
toughness of 9.5 MPa, and fatigue crack propagation constants

C = 6 × 10−11 (MPa√m)m and m = 4. The form of the stress

intensity factor for a single edge-notched geometry is

KI = 1.10 σ √a√π.

What is the critical flaw size for this alloy? How many fatigue

cycles will this system last? Is this acceptable for a hip
implant?
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grade Nitinol alloy is 39 µm as per ASTM F2063. The physiological stress range on

the implant is 294 MPa.

How can the defect-tolerant approach be used to safely design a stent that will resist

fatigue crack growth and that will offer structural integrity for the life of the patient?

Solution Because of the critical nature of the application and the fact that the device undergoes

72 beats per minute for the life of the patient, it is essential that any flaw present is

incapable of propagating. For this reason, the threshold stress intensity factor is used to

determine the critical flaw size that initiates the onset of crack growth (Figure 10.15).

Using the general form of the stress intensity equation shown in Equation (10.11), we

can rearrange and solve for the critical crack length as:

!Kth = !σ
√

πa · F
( a

W

)

;

acr =
1

π

[

!K 2
th

F
(

a
W

)2
!σ 2

]

= 59 µm

Because the critical flaw size for the inception of crack growth is 59 µm and the

maximum allowable flaw size for the Nitinol alloy is 39 µm, the device is safe against

fatigue crack growth.

Example 10.8 Fatigue crack propagation in a flawed hip implant

Consider the fracture of a hip stem that was traced back to its laser etching. Years ago,

laser etching was used on the lateral side of the stem to mark a serial number. The

material removed by the laser etching is essentially a small edge-notched crack that is

1 mm deep on the side of the stem as shown in Figure 10.17. It is estimated that the

tensile bending stress on the stem is approximately 90 MPa for a typical active male

weighing 200 pounds.

The femoral stem is made of a CoCr alloy with a fracture toughness of 9.5 MPa, and

fatigue crack propagation constants C = 6 × 10−11 (MPa
√

m)m and m = 4. The form

of the stress intensity factor for a single edge-notched geometry is KI = 1.10σ
√

a
√

π .

What is the critical flaw size for this alloy? How many fatigue cycles will this system

last? Is this acceptable for a hip implant?

Solution Using the general form of the stress intensity range, we can rearrange and solve for the

critical crack length as:

!K = 1.12!σ
√

πa

acr =
1

π

[

K 2
I C

1.122!σ 2

]

= 2.8 mm.
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Figure 10.17

Schematic of a metallic femoral stem with an embedded flaw.

The number of cycles to failure can be determined using the integration of the Paris

equation (Equation 10.16) from an initial flaw size of 1 × 10−3 m to 2.8 × 10−3 m, and

assuming that the implant will undergo 2 million cycles per year, we find that the

component will last 7 years:

N f =
2

(m − 2)C f (α)m("σ )mπm/2
·

[

1

a
(m−2)/2
i

−
1

a
(m−2)/2
c

]

=
1

6 × 10−11(1.12)4(90)4π2
·
[

1

(1 × 10−3)2
−

1

(2.8 × 10−3)2

]

= 14.2 × 106cycles = 7.1 years

The average hip implant lasts 15–20 years. The laser etching in this case results in a

fatigue life that is more than halved due to the initial stress concentration.

10.7.3 Fatigue behavior of structural materials

As with quasi-static loading there are two classifications of toughening mechanisms

that are utilized in resisting crack growth under varying load conditions. Intrinsic

The average hip implant must lasts 15–20 years. The laser

etching in this case results in a fatigue life that is more than

halved due to the initial stress concentration.
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Figure 10.22

Fatigue crack growth rate as a function of stress intensity range for several medical grade alloys including stainless steel, Nitinol

(Ni-Ti), Haynes 2, pure titanium, and Ti-6Al-4V. (After Ritchie, 1999.)

For all other factors considered equal, the ratio of the lifetimes can be written as:

N f , circ

N f , rect
=

a
(m−2)/2
Rect,i

a
(m−2)/2
Circ,i

=
a2

Rect,i

a2
Circ,i

=
0.52

0.12
= 25

N f , circ = 25N f , rect.

The number of fatigue cycles that can be sustained before failure is 25 times greater in

the circular cross-section with the smaller flaw.

10.7.5 Fatigue behavior of ceramics

Ceramic systems are generally known to be highly sensitive to flaws and generally do not

have high resistance to fatigue crack propagation. The Paris regime slope, m, for many

ceramic systems is high and is often on the order of m = 50–100. Crack propagation in

ceramics is highly sensitive to Kmax, and the growth of flaws in ceramics has been shown

to proceed in a predominantly static mode (Ritchie, 1999). Because ceramics rely on

extrinsic toughening mechanisms, the length of the flaw can have a dramatic effect on

fracture resistance. Short cracks are not able to offer the same extent of resistance to

crack advance as that same material with a longer crack (wake). Hence, as discussed

Fatigue crack propagation in metals



Fatigue crack propagation in polymers

Polymers are generally known to be susceptible to creep and

strain rate effects; and thus it is important to understand the

viscoelastic nature of polymers under cyclic loading

conditions. The dissipation of energy in cyclic loading of

polymers results in heat generation; the amount of

temperature elevation depends strongly on frequency

deformation amplitude and the damping properties of the

specific polymer
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Figure 10.24

Fatigue crack growth rate as a function of stress intensity range for a range of clinically relevant formulations of UHMWPE.

Untreated controls, with no crosslinking and greatest level of crystallinity, offer the greatest resistance to fatigue crack

propagation (adapted from Atwood et al., 2009).

greatest crystallinity and least amount of crosslinking offer the best resistance to fatigue

crack propagation (Atwood et al., 2009; Rimnac and Pruitt, 2008).

10.8 Case study: fatigue fractures in trapezoidal hip stems

In the early to mid-1970s, a hip stem design known as the Trapeziodal-28TM (T-28)

was developed as an attempt to improve the stability and strength over previous stem

designs. The Trapeziodal-28TM was so named because it had a trapezoidal cross-section

in its stem and neck and its femoral head diameter was 28 mm. This hip implant design

utilized medical grade 316L stainless steel in both the wrought and lightly worked

condition, and its design helped to maximize bone cement penetration into adjacent

bone upon insertion. In the 1970s, thousands of these T-28 designs were implanted;

however, these implants failed at a rate that was four times that of other femoral stems

(Rimnac et al., 1986). Rimnac and co-workers investigated the failure mechanisms of

the T-28 design and found 21 out of 805 implanted devices exhibited fractures; 18 of

these failures occurred as fractures in the femoral stem. The 18 stem failures were noted

to generally occur in the top third (proximal region) of the femoral stem, while the

remaining failures occurred in the neck region.

All devices were examined with both optical and scanning electron microscopy. The

crack initiation sites were found to occur on the posterior corner on the medial side of the

The fatigue behavior
of polymers depends
on many factors.
In general, polymers
with higher
molecular weight,
chain entanglement
density, and
crystallinity are
more resistant to
crack propagation
while increased
crosslinking
decreases resistance
to fatigue crack
propagation
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