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Renewable bio-based polymers are one of the effective answers that the bioeconomy offers to solve the envi-
ronmental emergency connected to plastics and more specifically fossil-based plastics. Previous studies have
shown that more than 70 % of the natural capital cost associated with plastic derives from the extraction and
processing of fossil raw materials and that the price of fossil plastic would be on average 44 % higher if such
impact was fully paid by businesses. The disclosure of the hidden costs of plastics will contribute to dispelling the
myth of the expensiveness of renewable polymers. Nevertheless, the adoption of bio-based plastics in the market

must be motivated by their functional properties and not merely by their green credentials. This article highlights
some successful examples of synergies between chemistry and biotechnology in achieving a new generation of
bio-based monomers and polymers. Their success is justified by the combination of scientific advances with
positive environmental and social fallouts.

Introduction: Sustainable and performing plastics, the future is
now

The use of renewable feedstock and biomass for production of plas-
tics is not a new subject in the chemistry scenario. During the 19th and
20th centuries, manufacturing industry benefitted from a wide array of
bio-based materials obtained by processing cellulose [1], plant oil [2]
and proteins [3]. Some of them, such as Cellophane™, polyamide-11,
and Viscose™, successfully resisted the take-off of the petrochemical
industry, thanks to their competitiveness in terms of technological
properties and economic viability. When not designed for short-term
applications such as packaging, plastics are expected to substitute for
wood, glass and other heavy materials, while displaying good mechan-
ical and thermal properties, stability and durability. The huge advantage
that boosted the surge of fossil-based plastics resides in the broad variety
of monomers available from petrochemistry, which can be combined
through various chemical routes to obtain architectures that meet

specific technological demands and functional performances.

In the last decade, the bioeconomy, through a new synergy between
biotechnologies and the bio-based chemical industry, has delivered
polymeric products based on renewable feedstock. Bio-based polymers
represent an important part of the bioeconomy and in 2019 the total
production volume of bio-based polymers reached 3.8 Mt (million
tonnes), corresponding to 1% of the production volume of petrochem-
ical polymers, without including natural rubber and cellulosic fibres [4].
The increasing interest in bio-based plastics is motivated primarily by
the fact that they may contribute to a more efficient use of natural re-
sources, which is a pre-requisite for the development of a more sus-
tainable and resilient economy. Nowadays, this extremely active field of
research and innovation is mature for delivery of new polymeric prod-
ucts and solutions, which are competitive in terms of performance
beyond being sustainable. Both these claims must be justified though
technical data, certifications and standards that make the value of
bio-based plastics evident while providing transparent information on
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their environmental benefits.
Tackling plastic impact calls for systemic solutions

The global production of plastics reached ~360 Mt in 2018 [5].
Plastic is responsible for around 10 % of generated total waste and
comprises 60-90 % of marine litter, mostly through food and beverage
packaging, cigarette butts and bags. According to the United Nations
Environment Programme (UNEP), 8 Mt of plastic are poured into the
oceans each year, an equivalent to a full truckload every minute [6][7].
Marine species and humans are being harmed since the plastic waste
enters the human food chain through fish consumption [8], while the
rapid spread of microplastics has made this problem even more alarming
[9]. Because it is not effective to remove plastic waste and microplastics
once they have entered the sea, plastic pollution needs to be tackled at
its source [10].

Collecting and recycling plastics represents an answer to the problem
and a study by the Ellen MacArthur Foundation showed that “replacing
just 20 % of single-use plastic packagings with reusable alternatives
offers opportunities for economic development worth at least $10B”
[11]. Notably, in Europe, 32.5 % of the 29.1 Mt of waste plastics
collected in 2018 was recycled, while 24.9 % ended up in landfills and
the rest was incinerated [5]. However, it must be underlined that plas-
tics made from fossil fuels account for about 20 % of the total fossil oil
consumption [11], causing considerable greenhouse gases (GHG)
emissions. Analyses indicate that if plastic continues to be produced
from fossil carbon sources, it will be responsible for 15 % of the
maximum annual global carbon budget needed to limit global warming
to 2°C in 2050 [12]. Therefore, in a long-term perspective, it is neces-
sary to boost a transition to plastics obtained from non-fossil feedstock.

The hidden natural capital cost of fossil-based plastics in
numbers

A clear understanding of the environmental degradation and
resource depletion connected to plastics must rely on a quantitative and
transparent accounting of their impact on natural capital. The term
“natural capital” [13] describes “Earth’s natural assets, including soil,
air, water, and living things, existing as complex ecosystems, as well as
the related ecosystem services that human societies need in order to
survive and thrive”. Economic activities depend on these resources and
services; however, the latter are often not factored into corporate ac-
counting, and national accounts currently do not take their contribution
fully into consideration. Establishing a sound method for natural capital
accounting, with a strong focus on ecosystems and their services, is a key
objective of the EU Environment Action Programme and of the EU
Biodiversity Strategy to 2020 [13]. Through natural capital accounting,
it becomes possible to highlight the economic values of natural capital,
establishing the monetary value of goods and services provided by
ecosystems.

In 2014, UNEP published a study focused on the evaluation of the
natural capital costs of plastics, namely the environmental and social
impacts caused by the use of plastic expressed in monetary terms to
reflect the scale of the damage caused [6]. The study converted physical
quantities of plastic into monetary values, using environmental or nat-
ural capital valuation techniques [14]. These estimate the value of
environmental goods or services in the absence of a market price and
aggregate them into a single figure. As an example, by calculating the
amount of GHG caused by plastics production it is possible to ascribe a
monetary value to each tonne of GHG in relation to its impact on climate
change. Similarly, plastic waste incineration is associated with air
pollution, which can be expressed in monetary terms, thus reflecting the
scale of damage caused. On this basis, the UNEP study estimated that the
total natural capital cost of the plastic used in the consumer goods in-
dustry is over $75B per year. Such an approach translates physical im-
pacts into a monetary figure, which expresses the potential value that
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companies would have to internalise if they were held accountable for
their impacts.

Fig. 1 shows the total capital cost for some of the most relevant in-
dustrial sectors contributing to the plastic problem. The calculated costs
arise from the accounting of the tonnage of plastic used in the selected
key consumer goods sector (based on its expenditure), which gave the
plastic intensity, namely the tonnes per $1 M revenue. The natural
capital cost for a certain sector is the natural capital intensity multiplied
by the aggregate revenues and expresses “the dependency of a certain
sector on the natural capital” [6]. The plastic intensity in each sector
reflects different contributions of the three main categories of plastic
usage: i) plastic used in products; ii) plastic used as packaging; iii) plastic
used by suppliers (such as bags containing fertilizer used by farmers
supplying the food sector). It must be noted that, for the plastic used by
suppliers, the natural capital costs were not calculated, even though the
corresponding volumes were determined in order to put the first two
categories into perspective [6]. This methodological approach made it
evident that, for the food, soft drinks, retail and personal products sec-
tors, the whole contribution comes from the packaging. When consid-
ering that most types of plastic are petroleum-based products, one
significant outcome of the UNEP analysis is that, across all sectors, over
75 % of the known and quantifiable impacts associated with plastic
usage are located in the upstream portion of the supply chain, as shown
in Fig. 1. ‘Upstream’ refers to “impacts generated from the extraction of
raw materials to the manufacturing of plastic feedstock”, whereas
‘downstream’ refers to “impacts generated once the consumer has dis-
carded the product” [6]. The approach applied to the UNEP analysis
faced some limitations, as discussed by the authors [6], as downstream
impacts and plastic waste littering of the oceans are likely to be
underestimated due to the absence of robust scientific data.

The environmental impacts associated with plastic use were calcu-
lated using lifecycle analysis techniques (LCA), using official databases
as the US Toxic Release Inventory [15] and Plastics Europe eco-profiles
[16]. The impact of additives leachate from plastics was also accounted,
since there is a growing concern for their impacts on human health and
the environment [17,18]. Additives are added to plastic during their
manufacture to improve their mechanical and thermal properties and
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Fig. 1. Contribution to the natural capital cost of plastics from selected in-
dustrial sectors per year. Data taken from reference [6].
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the study calculated the amount of additives per type of plastic based on
a report of the Organisation for Economic Co-operation and Develop-
ment (OECD) [19]. According to the same report, the annual leaching
rate of additives is 0.16 % per year, which means that it would take 625
years for 100 % of the additives to be released from the plastics. Overall,
the disclosure of the natural capital costs of plastics highlighted “the
urgent need for businesses to measure, manage and disclose information
on their annual use and disposal of plastic, as many companies already
do with carbon emissions” [6].

Definitions and standards for sustainable plastics

When analysing the potential and limitations of plastics produced
from renewable feedstock, it is crucial to start from some definitions.
Acknowledging the need for common standards for bioplastics, the EC
issued a mandate to CEN (European Committee for Standardization)
[20] for the Development of European Standards for Bio-Polymers and
Bio-Lubricants in Relation to Bio-Based Product Aspects, which resulted
in a series of technical specifications and standards covering products
and sectors. The resulting CEN document EN 17228:2019 [21] discusses
the main aspects of bio-based polymers and plastics, referring to the
corresponding fundamental standards developed on these topics. It
states that the terms “biopolymers” and “bioplastics” are commonly
used to identify polymers and plastics that are either bio-based, biode-
gradable, or feature both properties. This definition is also reported by
European Bioplastics, the association representing the interests of the
bioplastics industry in Europe [22]. While these definitions are quite
widespread and used by industry, it is recognized that they are suscep-
tible to misunderstanding and thus inappropriate for standardization
purposes. When associated with plastics, the prefix “bio” can be
perceived by consumers as an indication of biodegradability or of full
natural origin. However, polymers and plastics derived from biomass
can be either biodegradable or non-biodegradable whereas there are
different fossil-based plastics that are biodegradable according to the
relevant standards (e.g. polycaprolactone). On the other hand, the
market also offers plastics made from bio-based materials which are
highly resistant to biodegradation due to the chemical nature of their
structure, such as polyethylene (PE) derived from biomass. To avoid
misleading information and confusion across the supply chain and
especially for the final consumers, the CEN document EN 17228:2019
[21] recommends that, when referring to the origin of the feedstock, the
terms bio-based polymer/plastics/plastics product must be used instead
of biopolymer/bioplastics/bioplastics product. The European standard
EN 16575:2014 [23] specifies that the term "bio-based" means "derived
from biomass" and that bio-based products (e.g. bottles, chemical in-
termediates, materials, etc.) are products which are wholly or partly
derived from biomass. Conversely, it is important to characterize the
amount of renewable carbon contained in the product by following the
recognized methodologies specified in the relevant EN documents
[24-26].

In order to provide more complete information on the environmental
impact and sustainability of bio-based products, the European Standard
EN 16760:2015 [27] specifies LCA criteria. Moreover, EN 16751:2016
[28] reports sustainability criteria by addressing environmental, social
and economic aspects and EN 16848:2016 [29] reports a template for
the transfer of information, including recovery and disposal options of
bio-based products, across the industrial chain.

Concerning the end-of-life of plastics and their biodegradability,
Table 1 reports a schematic overview of the relevant standards and
definitions as published by European Bioplastics [22]. Since biodegra-
dation does not depend on the resource basis of a material, the misuse of
bio-based plastics might lead to downstream environmental impacts
[30]1, which must be prevented through adequate and clear labelling. In
that respect, EN 16935:2017 [31] specifies the requirements for trans-
parent and non-misleading business-to-consumer communication of
characteristics of bio-based products by means of labelling and claims
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Table 1
Definitions regarding the concepts of bio-based polymers and biodegradability.
Rearranged from [22].

Bio-based (material or product) Fully or partly derived from biomass (plants).
Bio-based carbon content is the variable
describing the amount of bio-based carbon (in
relation to fossil-based carbon) contained in a
material or product and is measured via the 14C
method [24-26].

Chemical process during which
microorganisms available in the environment
convert materials into natural substances such
as water, CO, and compost (artificial additives
are not needed to accelerate degradation). This
process depends on the surrounding
environmental conditions (e.g. location or
temperature), on the material and on the
application.

Bio-based or oil-based plastics that meet
standards for biodegradability and
compostability. If a material or product is
advertised to be biodegradable, further
information about the timeframe, the level of
biodegradation, and the required surrounding
conditions should be provided and a timeframe
for biodegradation must be set in order to make
claims measurable and comparable. This is
regulated in the applicable standards.
Bioplastic that has proven its compostability
according to international standards and can
be treated in industrial composting plants (see
details above). Plastic products can provide
proof of their compostability by successfully
meeting the harmonised European standards
(ISO 17088, EN 13432 / 14995 or ASTM 6400
or 6868), a certification, and an according
label (seedling label via Vingotte or DIN
CERTCO, OK compost label via Vincotte).
Plastics to which additives have been added to
enhance the degradation, but do not meet
biodegradability and compostability
standards. Oxo-biodegradable plastic do not
fulfil the requirements of EN 13432 on
industrial compostability, and are therefore
not allowed to carry the seedling label
Polymers such as bio-based polyamides (PA),
polyesters (e.g. PTT, PBT), polyurethanes
(PUR) and polyepoxides used in technical
applications like textile fibers (seat covers,
carpets) or automotive applications (foams for
seating, casings, cables, hoses), etc. Their
operating life lasts several years (durable
plastics) and, therefore, biodegradability is not
desired.

Include starch blends made of thermo-
plastically modified starch and other
biodegradable polymers as well as polyesters
such as polylactic acid (PLA) or
polyhydroxyalkanoates (PHAs). Unlike
cellulose, materials such as regenerate-
cellulose or cellulose-acetate have been
available on an industrial scale only for the
past few years and primarily used for short-
lived products. Yet this large innovative area of
the plastics industry continues to grow due to
the introduction of new bio-based monomers
and polymers (see Tables 2-5).

Biodegradable plastics currently still made in
petrochemical production processes. Mainly
used in combination with starch or other
bioplastics because the latter improve the
biodegradability and mechanical properties.
Partially bio-based versions of these materials
are already being developed.

Biodegradation

Biodegradable plastic

Compostable plastic

Degradable or oxo-degradable
plastics

Bio-based, non-biodegradable
technical/performance

polymers

Bio-based, biodegradable
plastics

Fossil-based, biodegradable
plastics
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[32-34], which orient the consumer towards a correct management of
the plastic waste or appropriate recycling streams.

Because biodegradation occurs at different rates in soil and in water,
there is the necessity for standards which define clearly how a plastic
waste must be managed in different environments. The European stan-
dard EN 13432 “Requirements for packaging recoverable through
composting and biodegradation” [35] entails “at least 90 % disintegra-
tion after twelve weeks, 90 % biodegradation (CO2 evolvement) in six
months, and includes tests on eco-toxicity and heavy metal content”.
This is the standard for biodegradable packaging designed for treatment
in industrial composting facilities and anaerobic digestion. Another
standard, the ASTM D 6691 [36], offers a test method to assess
biodegradation in water.

Can renewable polymers mitigate the "plastic problem"?

Bio-based polymers are widely different in terms of chemical struc-
ture and biological origin [37]. The EN 17228:2019 document distin-
guishes a first group of polymers synthesized by living organisms such as
plants, algae (Table 2) [38-45] or microorganisms (natural or engi-
neered) (Table 3). After extraction and purification their initial chemical
structure is used as such (e.g. polyhydroxyalkanoate [46], polymalic
acid [47], poly-y-glutamic acid [48,49].) or slightly modified to obtain
specific functionalities (e.g. cellulose acetates) [40]. The second group
consists of materials where the chemical structure of the biomass feed-
stock is not maintained. For example, starch or cellulose can be hydro-
lysed to monomeric sugars, which are then fermented to produce
monomers for the polymerization (Table 4). That is the case of lactic
acid to produce poly(lactic acid) [50-52] or diacids and polyols to
synthetize polyesters [53-68]. It is also possible to use low molecular
weight biomass feedstock, for which the conversion of ricinoleic acid
from castor oil in bio-based polyamides is the most relevant example
[69-71]. All these polymers are bio-based, because the original feed-
stock comes from biomass, but they are non-natural polymers, i.e. they
are not extracted from a plant or a bacterium.

When taking into account both the origin of the polymer (i.e.
biomass or fossil feedstock) and their biodegradability, we can broadly
recognize the following groups:

1 “fully or partly bio-based plastics that are not biodegradable, such as
bio-based PE [72], polypropylene (PP) [73] and poly(ethylene
terephthalate) (PET) [54-56] andbio-based technical performance
polymers such as poly(trimethylene terephthalate) (PTT) [53] or
thermoplastic polyester elastomers (TPC-ET)”;

2 “plastics that are both bio-based (partly or fully) and biodegradable,
such as poly(L-lactide) (PLA) [50], poly(hydroxyalkanoates) (PHA)
[46] or poly(1,4-butylene succinate) (PBS)” [57-59]1;

3 “plastics that are based on fossil resources and are biodegradable,
such as poly(1,4-butylene adipate-co-1,4-butylene terephthalate)
(PBAT)” [67].

Some of these are well-established commercial products, such as PLA
[50], while other polymers have been developed only on demonstration
scale but are already considered promising innovative replacements for
some fossil-based plastics massively employed in multiple sectors and
applications. For instance, polyesters deriving from bio-based 2,5-furan-
dicarboxylic acid (FDCA) [65,66] display properties comparable to PET
[52]. Many other bio-based polymers have found practical industrial
applications because of their technological properties, such as the light
weight of poly(methyl methacrylate) that, combined with resistance,
makes this polymer of interest for the automotive sector [74,75]. The
ethylene propylene diene monomer is used to produce chlorine-free
alternatives to synthetic rubber in technical clothing [76], whereas ap-
plications of bio-based polyurethanes encompass paints and powder
coatings as well as medical devices and biodegradable scaffolds for tis-
sue regeneration [77-79]. Poly(furfuryl alcohol) [80] is used in the
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Naturally biosynthesized biopolymers

derivatives.

and their

chemically modified

Chemical
classification

Polymer

Properties and
applications

Ref.

Polyisoprene
(terpenes)

Polysaccharides

Polyphenols

Natural rubber

Starch based polymers;
thermoplastic starch -TS

Cellulose based
polymers:

Cellulose acetate
Cellulose nitrate
Acetylphthalylcellulose

Chitosan

Lignin based polymers

Waterproof items,
engineering
applications in
antiseismic buildings
or offshore
installations for oil
extraction,
Component of
biodegradable and
biocompostable
plastics.

Applications in
textiles, cigarette
filters, surface
coatings, ink additive,
photographic
negatives, motion
picture film,
microfilm, microfiche,
membranes for water
desalinization.
Chemical
modifications
decrease the
biodegradation of
cellulose although
derivatives are
attacked by both
aerobic and anaerobic
microorganisms.
Obtained from
deacetylation of
chitin. Biodegradable,
non-toxic,
bacteriostatic and
fungistatic with wide
application in the
pharmaceutical field.
Industrially applied as
carrier for enzyme
immobilization.
Because of its aromatic
and phenolic
components, lignin
itself is used in
polymer blends as
compatibilizer,
plasticizer,
hydrophobizing agent
or as a natural
antioxidant in active
packaging. Employed
in flame retardants,
optical modifiers,
stabilizers. Lignin-
based polyols, reacted
with diisocyanates, are
used as drop-in
replacement of fossil
polyols in
polyurethane foams
for their flame-
retardant properties.

[38]

[39]

[40,41]

[42]
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Table 3
Bio-engineered polymers bio-synthesized by microorganisms and plants.

Chemical Ref.

classification

Polymer Properties and applications

Biodegradable and
compostable. Chain length
determines the flexibility
of PHA: short chain
butyrate provides rigidity,
with Ty, of 160 °C, whereas
longer carbon chains
confers Ty, below 145 °C.
Sensitivity to thermal
degradation makes its
processing challenging.
Fields of application
include agriculture,
packaging, biomedical
sector.

Linear anionic polyester
composed of 1-malic acid
monomers, with potential
applications as drug
carriers, surgical suture,
and biodegradable plastics.
Water-soluble, anionic,
biodegradable, edible.
Applications in foods,
pharmaceuticals,
healthcare, cosmetics,
water treatment, curable
adhesives.

Polyhydroxy alkanoates -
PHAs:
poly(3-hydroxybutyrate)
and poly(3-
hydroxybutyrate -co-3-
hydroxy-hexanoate)

[46]

Polyesters

Polymalic acid [47]

[48,

Polyamides 49]

Poly-y-glutamic acid - PGA

fabrication of nanoporous carbon structures for molecular sieve adsor-
bents and as a component for electrochemical and electronic devices,
while different bio-based polymers, such as acrylonitrile butadiene
styrene (ABS), are of interest for their flame-retardant properties [81,
82]. New super-adsorbent bio-based materials have been produced
through the polycondensation of unsaturated monomers as acrylic [83,
84] and itaconic acids [85] and their biodegradability has been
controlled by tuning the crosslinking of chains.

Bio-based polymers, referred to as ‘drop-in’ polymers, are made from
renewable resources, but their chemical and physical properties remain
identical to their fossil counterparts. This is the case for the commodity
bio-based PE [72], PP [73] and PVC (polyvinyl chloride) [86] made
from bio-ethanol. Drop-in polymers contribute to the reduction of the
carbon footprint of plastics and can also enter the established recycling
streams.

There is a debate around the environmental superiority of these
polymers and on their potential impacts on biodiversity loss, water
consumption and fertiliser use. Most lifecycle analyses show that bio-
based plastics are better than their oil-based equivalents in aspects
such as GHG emissions and fossil fuel consumption [86], but not auto-
matically for other impacts, such as eutrophication [87]. In addition,
like biofuels, some bio-based plastics require land for their production,
which raises concerns over the competition with food cultivation [88].
Previous studies on the impact of biofuels showed that 92 % of all global
arable land is used for food and animal feed production, 6% for indus-
trial materials and 2% for biofuels [89]. Concerning bio-based plastics
[90], recent analyses indicate that 5Mt biomass are needed for the
worldwide production of 3.6 Mt of bio-based polymers [4], corre-
sponding to the exploitation of roughly 0.02 % of global agricultural
areas [91]. According to European Bioplastics [91], the use of renewable
resources is the key for increasing resource efficiency by the means of:
“i) resources being cultivated on (at least) annual basis; ii) full valor-
isation of biomass according to a cascade use; iii) reduction of the carbon
footprint and greenhouse emissions; iv) saving and substituting fossil
resources step by step”. Nowadays, economic viability and
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Bio-based synthetic polymers obtained from bio-based monomers or a combi-
nation of bio- and fossil-based monomers.

Polymer

Properties and applications

Ref.

Poly(L-lactide) -PLLA

Poly(trimethylene
terephthalate) -PTT*

Poly(ethylene terephthalate)-
PET*

Poly(1,4-butylene succinate) -
PBS

Poly(ethylene succinate) - PES

Poly(ethylene furanoate) -
PEF

Poly(trimethylene furanoate)
- PTF

Poly(butylene furanoate) -
PBF

Poly(1,4-butylene adipate-co-
1,4-butylene terephthalate)
- PBAT

Unsaturated polyester resins -
UPR

Polyamides containing four
carbons - 4C PAs: 4; 4.6 and
4.10

Polyamides with longer
chains. PAs: 6.10; 10.10; 11
and 12

Polyester. Thermoplastic. Processable
by extrusion, injection molding, blow
molding. Degradable by hydrolysis
rather than microbial attack.
Industrially compostable.
Crystallinity can be controlled by co-
polymerization of selected ratios of 1-
to p-stereoisomers of lactic acid or
lactide. Mechanical, thermal and
barrier properties justify applications
in food packaging. Used for medical
applications and drug delivery
because of its biocompatibility.
Polyester. Same properties as fossil-
based PTT. Scarcely biodegradable.
Semi crystalline thermoplastic, easily
molded or thermoformed and spun
into fibres. Good tensile and flexural
strength, excellent flow and surface
finish. Used in textiles and
engineering applications (automotive
parts, mobile phone housings.
Polyester. Same properties as the
fossil-based PET. High-performance
plastic used for engineering
applications, fibres, films, bottles.
Polyester. Biodegradable in soil and
biocompostable. Its T, of 115 °C and
tensile strength of 30-35 MPa make
PBS suitable for applications in
packaging as an alternative to
polyolefins.

Moderately biodegradable. Good
oxygen barrier and elongation
properties. Used for film applications.
Polyester. Durable, good oxygen
barrier. Ty, of 211 °C and Ty of 86 °C.
Suitable for packaging, in the food
and beverage industry.

Polyester. Not biodegradable. T, of
172°C, Tg of 57 °C, good oxygen
barrier properties. Employed in light
weighting packaging.

Polyester. Ty, of 172°C, Ty of 44 °C.
Potential replacer of PET and PBT.
Polyester. Biodegradable. Used in
blends with PLA and fibers due to low
thermo-mechanical properties.
Obtained from fossil feedstock or bio-
tereftalic acid

Properties varies according the
percentage of unsaturated diacid (e.g.
itaconic acid) and the curing
procedure. Applied in waterborne UV-
curable coatings for wood and
flooring industry.

Not biodegradable. 4C PAs match
properties of fossil-based PAs 6 and
6.6, such as thermal durability and
mechanical strength, with a Tm above
250 °C. All 4C PAs have higher
dielectric strength and higher
retention of tensile properties as
compared to PA 6.6. PA 4.10 has low
moisture uptake. Applications range
from water management to cable
coating, food contact products and
automotive.

Long chain carbon monomers confer
flexibility to these polymers, which
find application in fuel lines in cars,
offshore pipelines, gas distribution
piping systems, electronics, sports

[50-52]

[53]

[54-56]1]

[60,61]

[62,63]

[64]

[65,66]

[671

[68]

[69,70]

[711

(continued on next page)
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Table 4 (continued)

Polymer Properties and applications Ref. Polymer Properties and applications Ref.
equipment, furniture and automobile itaconic acid gives glass-ionomer
components. dental cement.
Polyethylene — PE* Polyolefin. Same properties of fossil- [72] Polyvinyl chloride — PVC* Not biodegradable and poorly [86]
(from bio-ethanol) based PE. Not biodegradable, chemically degradable. Same
recyclable through dedicated properties as fossil-based PVC. Used in
infrastructures. Thermoplastic. High construction profile applications,
Density PE (more crystalline) finds bottles and non-food packaging.
applications in construction sector. When made more flexible by the
Low Density Polyethylene is used in addition of plasticizers, it is used in
packaging. Ultrahigh Molecular electrical cable insulation, imitation
Weight Polyethylene has applications leather, flooring and as rubber
in medical devices and bulletproof replacer.
vests.
Polypropylene - PP* Polyolefin. Same properties as the [731
fossil PP. Not biodegradable, non- environmental sustainability are boosting innovation towards second
polar. Partially crystalline generation plastics, namely produced from agricultural by-products or
thermoplastic with low density. Used . . . .
in a large variety of applications and residues, which do not compete with the food chain [92]. Nevertheless,
in packaging. the ultimate drivers for the adoption of bio-based plastics reside in their
Poly(methyl methacrylate)— Not biodegradable. Lightweight [74,75] functionalities and performance.
PMMA material used as glass replacement in
::St;;EZ?‘SOfs:;?easnemmof and UV Chemistry and biotechnology alliance towards new engineering
Ethylene propylene diene Not biodegradable. Good resistance to [76] appllcatlons of bio-based p01ymers
monomer — EPDM hot water and polar solvents but
(synthetic rubber) poorly resistant to aromatic and Designing and synthesizing novel polymers endowed with unprece-
aliphatic hydrocarbons. Chlorine-free dented properties requires a portfolio of both chemical and biotechno-
synthetic rubber used for technical . . o .
clothing, elastomers with shock logical tools. In many cases, the highly optimized chemical routes
absorption. Ozone and thermal developed in the last century for the production of the known plastics
resistant. Electrical insulation are inadequate to tackle the new challenges because the bio-based
PrOII’_erti_eS- Used also for automotive products stem from structurally different chemical platforms. The
applications. .. s 1 . 1
Polyurethanes -PURs Produced through the reaction of a [77-79] ublqu1tous. presence of oxygen in lignocellulosic biomass and sugars has
diisocyanate with a polyol. Microbial been considered a major drawback for the development of bio-based
degradation depends on the chemical substitutes of the seven fundamental chemicals at the basis of the
structure. Often blended with petrochemical industry, namely ethylene, propylene, butadiene (ole-
polyethers to increase flexibility or fins), benzene, toluene, xylenes (aromatics) and methane [93].
extensibility. Used as de-halogenated . . .
flame retardant foams, paints, powder Blo—bésed mOnomers can be .chemlcally. modlﬁe.d. to crefite further
coatings, medical devices (blood chemical variety and complexity, conferring specific functional prop-
contacting applications). erties to the final polymeric product (Table 5). Furthermore, research in
Biodegradable polyurethane scaffolds metabolic engineering has enabled the production of new bio-based
have been used in tissue regeneration. monomers with tailored chemical structures at industrial scale, as for
Poly(furfuryl alcohol) - PFA Not biodegradable. Synthesized from [80] .
bio-based furfuryl alcohol (FA) 1,4-butanediol [94].
deriving from sugars. Used in the In the case of PHAs, these linear biodegradable and biocompatible
fabrication of nanoporous carbons polyesters are bio- synthesized by many bacteria and archaea [92] from
structures for molecular sieve limited medium components, with properties tuneable by means of
adsorbents, membranes and as a metabolic engineering that alter monomer composition and molecular
component for electrochemical and
electronic devices. weights [95]. Currently, PHAs with desired thermal and mechanical
Acrylonitrile butadiene Obtained from butadiene rubber [81,82] properties are already applied in packaging, agricultural, and medical
styrene - ABS dispersed in a matrix of styrene- sectors (Table 3). Moreover, the structures of the enzymes falling under
acrylonitrile copolymer. Not the class of PHA synthases have been solved, enabling the elucidation of
biodegradable. Thermoplastic, used to . . . .
make light, rigid, moulded products the polymerization mechanism and paving the way for the use of
such as pipes, automotive parts. Used non-natural substrates [96]. Although there are still some bottlenecks
also for its flame retardant properties. for the large scale production of PHAs connected to the high costs of
Polyacrylic superabsorbent Its high swelling capacity is tuneable  [83,84] production, in 2019 the global estimated market of PHAs was calculated
polymers - PA-SA by controlling the degree of at $57 M [97], boosted by the successful use of biorefinery and agri-
crosslinking. Its biodegradation in soil . A X
can be improved under conditions cultural by-products and industrial wastes as fermentation feedstock
that maximize solubilisation. Find that contribute to mitigate the costs [98,99]. As government regulations
applications in personal disposable against single use plastics become more and more stringent, the
]::'Ii';r: i:;i‘;;:s’ such diapers and increasing demand for biodegradable plastics is expected to boost the
Poly(itaconic acid) - PIA Due to the presence of a vinyl moiety, [85] PHAs market up to $98 M by 2024 [971.

itaconic acid is structurally similar to
acrylic and methacrylic acid,
providing a suitable bio-based
alternative to poly(meth)acrylates via
radical polymerization to yield poly
(itaconic acid) (PIA). Applications
include fibers, coatings, adhesives,
thickeners, binders. As co-monomer
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New synergies between chemistry and biotechnology enable the full
exploitation of the chemical complexity of biogenic feedstock, since
renewable monomers are obtained through chemical transformation of
natural substrates or modification of bio-based monomers produced by
fermentation [100]. New monomers have been designed and developed
either biotechnologically [101,102] or chemically [103-107] or by a
combination of the two approaches [108-111], with the aim of
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Table 5
New bio-based monomers and chemical strategies for expanding the engineering applications of bio-based polymers.
Building blocks Structural evolution Targeted performance Ref.
and monomers
Aromatic lignin 2,4-, 2,5-, and 2,6-pyridinedicarboxylic acid obtained by re-routing the New bio-based aromatic / apliphatic polyesters obtainable via [101,
derivatives lignin degradation pathways of Rhodococcus jostii RHA1 enzymatic polycondensation with Mn around 14000 Da 102]
Ricinoleic acid Confers biocidal activity to poly(hexamethylene succinate) modified at Antimicrobial activity. [103]
the chain ends. Imidazolium salt was anchored on C = C bond of
ricinoleic acid to improve biocidal activity.
Terpenes Pinene transformed into pinocarvone, which contains a reactive exo- High molecular weight plytherpenes with excellent thermal properties  [104]
methylene group exploitable for radical polymerization (Tg > 160 C). Polymerization of pinene would require low
temperatures (—70 °C) unviable for industrial purposes.
Branched chains of polyamide 4. M'oderation of rigidity. Increased MW. Improved mechanical properties [105]
without decreasing Tp,.
Amides {(4,40-diyl-o-truxillic acid dimethyl ester) 4,40-diacetamido-
a-truxillamide}, obtained from bio-based 4-aminophenylalanine, UV High-performance biobased polyamide with Ty >250°C [106]
coupled with cinnamic acid
Isosorbide Confers rigidity Ir}creasing th'e.rmos and mechanical properties while preserving the [107]
biodegradability.
Phenyl-substituted lactide synthesized by cyclic dimerization of bio- Overcoming low T, and low transparency of PLA by inserting
Modified lactides based mandelic acid to obtain mandelide (meso stereoisomer), which is ~ hydrophobic bulky side chains. [108]
for i d polymerized via ring opening polymerization (ROP) Polymandelide has Ty> 100 °C and is less biodegradable than PLLA.
or improve . ) ) - .
PLAs Norbornene-substituted lactide obtained by brominating the bio-based
lactide. Elimination and Diels Alder reactions yield the norbornene Polymers have Tg> 190 °C and narrow polydispersity. [109]
lactide used in ring-opening metathesis polymerization.
As co-monomer in polyesters of 2,5-furandicarboxylic acid-increases
rigidity, confers mechanical properties comparable to PET and
Cyclic diols Bio-based 1,4-cyclohexanedimethanol (CHDM) is obtainable from improves barrier properties. Its polycondensation requires temperature [110]
renewable terephthalic acid. around 240—280 °C due to the high boiling point but such
temperatures promote its decomposition. Mild enzymatic
polycondensation overcomes this drawback.
The aromatic ring confers liquid crystalline properties to polyesters.
. . . The bio-based liquid crystal polymers exhibits remarkable properties [111,
Phenols #hydroxycinnamic acid (4HCA) (strength =63 MPa, Young’s modulus = 16 GPa, maximum softening 112]
temperature = 169 °C [
Modifying soft properties of linear poly(succinates)s by introducing
aromatic furan moieties. The corresponding polyesters poly(butylene
succinate-co-butylene furandicarboxylate)s (PBSF) have Mw from 39
Succinic acid Polyesters obtained by co-polymerization of succinic acid with furan 000 to 89 000 g/mol 'and display excellent 'thermal stablllty'. Their
derivatives dicarboxylic acid (FDCA) structure an'd properties 'can be tuned ranging from crystalline [113]
polymers with good tensile modulus (360-1800 MPa) and strength
(20-35 MPa) to nearly amorphous polymer of low Tg and high
elongation (~600%), so that they may find applications in
thermoplastics as well as elastomers or impact modifiers.
o Nucleophilic aromatic substitut%on polymerization of 2,5- b.is(4- Bio-based poly(thioether ketone) (PEEK) with Tm >300°C,
Furan derivatives fluorobenzoyl)furan (BFBF) derived from FDCA and potassium salts of s [114]
P comparable to fossil-based PEEK
aromatic bisphenols
Functionalization of the unsaturated double bond of dimethylitaconate Imprf)s‘/e the stability of 1taccfn1c detrlvatlve monomers toward common
by thia-Michael addition reaction using 1-octanethiol. conditions of polycondensation (high temperatures and metal-based [115]
catalysts)
Itaconic acid Post-polymerization modification of vinyl group of poly(itaconate) via Amine-triggered degradable materials; oligoesters displaying amine [116,
- Michael addition of primary amines. functionalities for biomolecules anchoring or covalent crosslinking. 11711
derivatives . i . . .
Michael additions of proline, cysteine and other S-containing [118,
nucleophiles to vinyl moiety of poly(itaconate)s. .. . e . 119]
Michae[; addition ofy C-nucle):)phirl)esy(acetylacetone and dimethyl Addition of pendants to polyester chain. Modifying polymer properties. 0]

malonate) to vinyl moiety of poly(itaconate)s.

expanding the structure and function of bio-based polymers (Table 5).
Particular attention has been paid to aromatic building blocks
[112-115] and, in general, to structures conferring rigidity and
improved thermal and mechanical properties over polyesters. In other
cases, the objective was to insert reactive chemical functionalities into
the polymer chains to enable post-polymerization modifications, as with
polyesters of itaconic acid (IA) [116-120]. IA is produced via fermen-
tation of Aspergillus terreus [121] with a production level of 80 g L 'and
a worldwide industrial annual production of 80,000 tons/year and a
price of about $2 /kg [122,123]. Standard batch fermentations of
A. terreus reported in the literature indicate a maximum volumetric
productivity of 0.6 g L™  h™! after 100 h and an IA yield of 0.35 g per g
glucose [124]. Notably, chemical synthesis by thermal decarboxylation
of citric acid proved to be economically unviable, although known since
1837 [121].

IA presents two carboxylic groups and a double bond so that it can
undergo both radical polymerization and also polycondensation. Its
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structural similarity to acrylic and methacrylic acid makes IA a suitable
bio-based alternative to these fossil-based monomers (Table 4). The
synthesis of poly(itaconic acid) (PIA) is feasible, by reacting its vinyl
moiety via radical polymerization of neutralized IA with quantitative
yields and molar mass from 1-20kg/mol [124]. PIAs find uses as
components of cleansing agents and shampoos, or as material for drug
delivery applications. Alkylated IA derivatives are polymerized to yield
polymers applied as plastics, adhesives, elastomers and coatings. Some
IA copolymers with acrylic acid and other unsaturated monomers find
application as synthetic fibres, coatings, thickeners, binders and
glass-ionomer dental cement that contains a copolymer of IA with
acrylic acid. IA in concentrations of 1-5 % is utilized as a co-monomer of
rubber-like resins and for the synthesis of bio-based epoxy resins. On the
other hand, polyesters of IA do not yet have industrial application,
because the conventional operational conditions required for chemical
polycondensation (T > 150 °C) lead very easily to the cross-reactivity of
the vinyl moiety (Ordelt saturation, isomerization of the C—C bond and
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cross-linking) [117,120]. The radical reactions can be avoided using
inhibitors whereas the prevention of Ordelt saturation appears more
challenging, although mild enzymatic polycondensations [126,127]
have been reported to yield pre-polymers bearing intact vinyl moieties
available for post polymerization modifications (Table 5) [117,128].

The new wave of bio-based aromatic polyesters: PEF and other
furan-based polymers

Poly(ethylene 2,5-furanoate), frequently abbreviated as PEF, is an
aromatic polyester that can be produced by polycondensation of 2,5-fur-
andicarboxylic acid (FDCA) and ethylene glycol (EG) (Fig. 2, A), two
monomers that can be easily produced from biomass [100]. PEF has
been known since the 1950s, but has gained renewed attention only
recently as a potential alternative to the fossil-based PET, and in 2004
the US Department of Energy included FDCA on a list of potential sub-
stitutes for terephtalic acid (TA) [129]. Nowadays the glycol component
(EG) of PET is bio-based and various technologies have been reported for
the exploitation of renewable feedstock to produce bio-based TA, also
starting from furfural and FDCA [130,131]. Nevertheless, PEF has the
potential to become a 100 % bio-based alternative to PET, hence
contributing to the replacement of the 15 Mt of PET bottles produced
worldwide, which cause 440-520 PJ of NREU and 20-35 Mt of CO,
equivalents of GHG emissions [132].

When compared with PET, FDCA-based polyesters are not only more
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Fig. 2. Novel bio-based aromatic alternatives to FDCA for the synthesis of
aromatic-aliphatic polyesters. A: polymerization of FDCA with various length
diols; B: polymerization of furan diol with various length diesters; C: furan
diacid derivatives (2,4- and 3,4-disubstitited furan); D: lignin-derived mono-
mers (2,5- and 2,4- disubstituted pyridine) [142].
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sustainable but also exhibit improved gas barrier properties for Oy (10x
higher) [133], CO5 (6-19x more) [134] and water vapour (2—5x higher)
[135], making them promising candidates for packaging applications
such as bottles, films and food trays. PEF offers also high mechanical
strength (T of PEF=86 °C vs Ty of PET=74 °C; T, of PEF=235°C vs T,
of PET =265 °C) [136,137], suitable for applications including textiles,
carpets, electronic materials and automotive parts.

Finally, in the context of a circular economy and closure of the car-
bon cycle, PEF has another major advantage compared to PET: its
enzymatic degradability [138]. A cutinase from Humicola insolens was
used to fully hydrolyse PEF thin films into water soluble monomers and
oligomers in 72h [139]. Indeed, when analysing the properties of PET
and PEF having the same degree of crystallinity, PEF is found to be more
susceptible to hydrolytic enzymatic attack and its degradability is less
affected by the increase of crystallinity as compared to PET [140].

Despite all the positive environmental features and physico-chemical
performance of PEF, the transition from the well-established petrol-
based PET to the biomass-derived PEF appears to be less smooth than
researchers would it like to be. Both the conversion of biomass to FDCA
and its polymerization to PEF are still challenging, although recent in-
vestigations at laboratory scale tackled these problems and achieved
excellent results. A group at Ruhr University Bochum has developed a
new, low-cost nickel boride-based catalyst for the conversion of 5-
hydroxymethyl-furfural (HMF) to FDCA while an enzyme toolbox was
developed for the synthesis of 2,5-diformylfuran (DFF), 5-hydroxy-
methyl-2-furancarboxylic acid (HMFCA), 5-formyl-2-furancarboxylic
acid (FFCA) and FDCA with good yields from HMF via selective oxida-
tion [141]. Such a catalyst contains no rare or precious metals, and is
economically affordable and readily available for the production of
FDCA with yields >98 % in 30 min with negligible side products [142].

Coming to the synthesis of PEF, conventional polycondensation re-
mains a challenge since the time-intensive reaction leads to degradation
and undesirable discolouration of the reaction products. This can be
easily avoided by switching from traditional chemo-catalysis to a
milder, more environmentally friendly biocatalytic approach, which,
however, has severe limitations due to cost and scalability of the enzy-
matic reaction [143,144]. These bottlenecks were overcome by syn-
thesizing bottle-grade PEF (M,> 30kg/ mol, conversion >95 %,
colour-free products) via ring-opening polymerisation from cyclic PEF
oligomers. The reaction led to the desired molecular masses within a few
minutes without accumulation of by-products derived from FDCA
degradation [145].

Novel bio-based aromatic alternatives

The industrial production of FDCA and PEF motivated the scientific
community to intensify research aiming at novel bio-based aromatic
polymers. Initially the studies focused attention on the substitution of
the diol component of PEF (EG) with glycols and diamines having longer
chain length (C3-Cy2) (Fig. 2A). Synthetic strategies based on traditional
chemo-catalysis but also enzymatic synthesis led to polymers with
various crystallization and thermal degradation behaviours [146,147].
Other strategies included the introduction of rigidity into the polymeric
chain by using cyclic co-monomers such as 1,4-cyclohexanedimethanol
[148], or by replacing conventional FDCA with 3,4-FDCA and 2,4-FDCA
(Fig. 2B). Other studies assessed the effects of the different isomers on
the final properties of polyesters [149] and explored the possible
improvement of the gas barrier properties of the material by substituting
FDCA with its thiophene counterpart, the 2,5-thiophenedicarboxylic
acid [150].

More recently, pyridine-derived monomers were used to replace the
furan ring. The 2,4-pyridinedicarboxylic and the 2,5-pyridinedicarbox-
ylic acids (Fig. 2D) derive from lignin by rerouting the Rhodococcus
jostii (RHA1) p-keto-adipate pathway used for the aromatic lignin
breakdown [101]. A third pyridine derivative, 2,6-pyridinedicarboxylic
acid, which comprises 5-15 % of the dry weight of some bacterial
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spores, can likewise be considered as a naturally occurring compound
[152]. The use of the above-mentioned pyridine diacids in combination
with aliphatic diols having a C4-Cg carbon chain length was investigated
for the synthesis of polyesters catalysed by CalB (Lipase B from Candida
antarctica). The similarity of the pyridinedicarboxylic acids (PDCAs) to
the FDCA and TA monomers would suggest that they might offer
increased rigidity if incorporated into a polymer yet retaining a poten-
tially interesting pyridine functionality which may affect the stack-
ing/crystallization behaviour of the final product [102]. A last relevant
example of an alternative building block is the 2,5-bis(hydroxymethyl)
furan, a rigid diol that was enzymatically polymerized with diesters
having various carbon chain lengths (C4-C12) (Fig. 2B). The incorpora-
tion of an increasing number of methylene units into the polyester chain
resulted in an enhanced degree of crystallinity, higher crystallization
rate, T, AHm and also increased thermal stability [154].

Performance and sustainability in practice: bio-based composite
membranes and mulching films for agriculture

A special case of biodegradable plastics are those designed for an in-
soil final destination. This is the case of fibre-reinforced composites,
geomembranes and biodegradable mulching films (Table 6). The field
performance of such materials is equivalent to that of traditional plastics
films and composites but, in contrast to their non-biodegradable alter-
natives, they can be incorporated in the environment at the end of their
usage. In Europe, the agricultural plastic films market size reaches
approximately over 780 Ktons per year [155]. Mulch films represent
about 80 Ktons/year and are used on the main vegetable crops (zucchini,
tomatoes, peppers, lettuce, etc.). Traditional plastic mulch films are
made of LDPE (low density polyethylene) and need to be removed and
properly disposed of at the end of their use, to prevent dispersion of
plastic into the environment. These operations represent costs, which
are highly dependent on the type of crop, soil, and agronomical tech-
nique, use of the film in open fields or greenhouses and the thickness of
the film. Conventional mulch films are generally recognized to have
significant agronomical advantages including: i) increasing the yield
and improving the quality of crops; ii) weed control; iii) reduction in use
of irrigation water (up to 30 %, compared to bare soil) and pesticides; iv)
enhancing early crop production; v) increasing the temperature and
moisture in the soil [156]. Collecting the used plastic films and recycling
them at the end of their use is challenging because mulch films are
highly contaminated with soil, sand, and organic material, which can
reach up to 50-75 % of the initial weight, making the mechanical
recycling difficult and economically unviable [156]. Fig. 3 shows the

Table 6

End-bioproducts for agricultural and forest applications registered in GreenPla
(Japan BioPlastics Association, JBPA 2016; www.jbpaweb.net, modified by the
authors).

Product Type Bioplastic Material Share

(%)

Mulching film PBAT, PBSA, PBS, BS-LA copolymer, PBLDA, TP 51
Starch, PCL, PLA

Film for fumigation PBAT 3
Sheet/Forestry films ~ PBAT, PCL 12
Band, Tapes, Ties PBAT, PBSA, PBS, PLA 12
Floating cover PLA 1
Nets PBA, PLA 4
Yarn, Rope PBS, PBA, PLA, 3
Pots/Planters PBSA, PBS, PBLDA

Other products (e.g. PBSA, PBS, BS-LA, PLA 10

clips)

PBLDA: Co-polymer of butanediol with long chain dicarboxylic acids; PBAT :
Polybutylene adipate/terephthalate; PBSA :Polybutylene succinate adipate; PBS
:Polybutylene succinate; BS-LA copolymer: Butyl succinate/polylactic acid; PBS:
Poly(1,4-butylene succinate; PCL: polycaprolactone; PLA: polylactic acid; TP
starch: thermoplastic starch.
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collection rate in percentage of the overall quantity of plastic films used
in the European agricultural market. According to the data from the
European Organization for Agricultural Plastic Environment, in 2014
only about 32 % of the used agricultural plastic was properly collected
and disposed of (Fig. 3) [5].

Occasionally, in some areas where plastic films are not properly
collected and recycled, it may happen that they are disposed of by
burning directly in the field or in uncontrolled landfills leading to
environmental concerns [157]. Ineffective management practices of the
plastic waste cause hazards linked to the plastic residues remaining in
the soil which, due to their accumulation year after year, can lead to
changes in the characteristics of the soil and, conversely, to a reduction
in crop yields [158]. Studies carried out in China, especially in the
Xinjiang Autonomous Region, revealed the effect of residuals of plastic
mulch films in the soil, evaluating their impact on soil fertility and on
agronomical activities. The plastic residues appeared to be responsible
of the damage of the soil structure and the decrease of its ventilation,
resulting in poor moisture retention and limited migration of water in
the soil, with a consequent general decrease of the soil quality [30,159].
In that respect, biodegradable materials for agriculture, such as biode-
gradable mulch films, but also silage films, pots, threads, can prevent the
production of waste and/or enter the recovery stream for bio-waste to
yield compost that brings organic matter the to the soil, closing the
carbon cycle.

Biodegradable mulch films have been commercially available on the
market since the early 2000s and have been tested in fields and suc-
cessfully used by growers. They proved to have agronomical perfor-
mance similar to traditional materials in terms of quantity and quality of
crop yields for the main vegetal crops, as well as the same level of
weeding effect and they can be placed in the field by the same type of
machines used for conventional plastic mulches. Furthermore, biode-
gradable mulches can be used for some crops where plastic mulches
cannot generally be employed, mainly due to the impossibility of
removing them fully at the end of the crop cycle (e.g. for new vine
plantations, or cotton) or when the mechanical harvesting is not feasible
(e.g. processing tomatoes). Technical results have been widely pub-
lished, and some examples are reported in the following bibliography
[160,161].

The market share of biodegradable mulch film accounts for about 5%
of the total for plastic mulches [162], with Italy, France, Germany,
Benelux and Spain as the primary users. This estimate does not take into
account fragmentable mulches (both oxo and/or photo), which do not
meet the requirements of the international standards on compostability
and biodegradability of plastic materials (see Table 1). At the beginning
of 2018, CEN published the European standard EN 17033: 2018 for
biodegradable mulches [163], which constitutes the European reference
for the definition of the characteristics of biodegradation,
non-ecotoxicity, mechanical and optical performance of biodegradable
sheets and constituents. Thus, it represents a key document to differ-
entiate the actually biodegradable materials from the oxo-
photo-degradable ones, such as the non-biodegradable polyethylene,
regardless it is bio-based or derives from fossil feedstock. The EN 17033
standard specifies the methods of analysis and the criteria relating to
biodegradation, ecotoxicology, tensile and optical properties that
biodegradable sheets must have. The CEN TC / 249 / WG7 working
group (relating to plastics) referred to both the pre-existing "OK Biode-
gradable Soil" program (Vincotte, now TUV) and the most recent Italian
UNI 11495 standard to develop the biodegradation criteria in soil.
Accordingly, sheets must have a minimum biodegradation of 90 %,
within 24 months, measured as the release of CO2 followed by a
biodegradation test conducted in soil at room temperature according to
the standard ISO 17556 method. At present, biodegradable mulch films
represent the main application of biodegradable polymers in the agri-
cultural sector.
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Fig. 3. Disposal of used agricultural plastic in EU. Adapted from http://www.plastiques-agricoles.com/ape-europe-missions/agricultural-plastics-european-regul

ation.

Conclusions

Environmental and sustainability motivations boosted the develop-
ment of a first wave of renewable polymers and plastics that in some
cases found their position in the market with difficulties because they
had to compete with highly optimized and standardized fossil-based
products. Looking beyond the so called “drop-in” renewable polymers,
there is a wealth of chemical and biotechnological knowledge that is
fertilizing the polymer sector while boosting the delivery of a new
generation of advanced engineered polymers obtainable from renewable
feedstock. Being aware that in Europe more than 1.45 million people are
working in 62,000 (mainly) small and medium sized companies creating
an annual turnover above €350B [7], innovating the polymer sectors
appears as both an obligation and an opportunity for economic and
social development. The bioeconomy, through the integration of
biotechnology, chemistry, and bio-based industry, enables the decou-
pling of plastic production from fossil feedstock. This transition will be
accelerated not only by supporting research and innovation but also by
dispelling the myth of the high costs of renewable and bio-based poly-
mers, through the disclosure and open discussion of the real costs and
impact of fossil plastics.
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