

ii)

Determinare:

a) La costante elastica *k* della molla:

grandezze date, e

appropriate

UNIVERSITÀ DEGLI STUDI DI TRIESTE

Corso di Laurea in Scienze e Tecnologie Biologiche A.A. 2017/2018 – Corso di Fisica

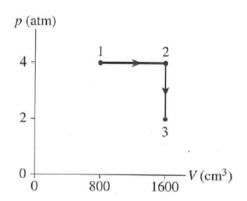
Prova Scritta - Appello Straordinario - 29.03.2018

CognomeNome

Istruzioni: I problemi vanno dapprima svolti per esteso nei fogli protocollo a quadretti.

(ove possibile) la grandezza incognita richiesta espressa simbolicamente in funzione delle

il corrispondente risultato numerico, con il corretto numero di cifre significative e le unità di misura


Successivamente, per ciascuna domanda, si richiede si riportare negli appositi spazi su questo foglio:

1)	100 blocchi identici di massa m sono posizionati lungo una linea retta su una superficie orizzontale liscia e ciascun blocco è collegato al blocco precendete mediante una corda priva di massa. Il primo blocco è tirato da una forza orizzontale F_a orientata lungo la stessa linea retta su cui giace la fila dei blocchi, di intensità $F_a = 200$ N. Trascurando l'attrito, calcolare:				
	a) il modulo della tensione T_{99} che collega l'ultimo blocco al penultimo:				
	i) <i>T</i> ₉₉ =		ii) T	ii) <i>T</i> 99 =	
	b) il modulo della tensione T_{58} che collega il cinquantanovesimo blocco al cinquantottesimo:				
	i) <i>T</i> ₅₈ =		_ ii) <i>T</i> .	58 =	
2)	Un cubo di titanio (densità $\rho = 4.51$ g/cm ³) di lato $l = 3.2$ cm viene sospeso ad una molla il cui allungamentall'equilibrio è $x = 7.4$ mm rispetto alla molla indeformata [Figg. (a) e (b)]. Successivamente il cub sempre sospeso alla molla, viene completamente immerso in acqua [Fig. (c)].				
		mol <u>la</u> (a) indeformata	(b)	(c)	

b) L'allungamento x' che presenta la molla, all'equilibrio, quando il corpo è immerso in acqua:

ii) *k* = _____

ii) x' = _____

a) il lavoro L compiuto dal gas contro le forze esterne (o dalle forze esterne sul gas - specificare):

i)
$$L =$$

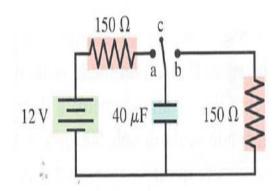
b) il calore Q assorbito (o ceduto - specificare) dal gas:

i)
$$O_{I} =$$

ii)
$$Q_I =$$

c) la variazione di energia interna ΔE_{int} :

i)
$$\Delta E_{int} =$$


ii)
$$\Delta E_{int} =$$

d) la variazione di entropia ΔS :

4) Si consideri il circuito in figura. Il condensatore da $C=40~\mu F$ è inizialmente scarico e l'interruttore, nella posizione c, impedisce il passaggio di corrente su tutti i rami del circuito.

L'interruttore viene quindi commutato nella posizione a per $\Delta t = 10$ ms; subito dopo viene commutato nella posizione b per un analogo intervallo $\Delta t = 10$ ms, ed infine viene riportato nella posizione c.

Si calcolino la carica Q e la differenza di potenziale finale ΔV presenti tra le armature del condensatore al termine delle operazioni descritte.

i)
$$\Delta V =$$
