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Agenda

• Basic introduction to different fuel cell technologies
• Describe main components of a Galvani and Electrolytic cell
• Basic fuel cell thermodynamics and performance
• Describe main voltage losses affecting the fuel cell

Good references:
• Fuel cell handbook https://www.netl.doe.gov/sites/default/files/netl-file/FCHandbook7.pdf
• Fuel cell fundamentals by Ryan O'Hayre, Suk-Won Cha, Whitney Colella, and Fritz B. Prinz
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Chemical reaction vs electrochemical reaction

• A chemical reaction is a process in which reactants rearrange in the products
• Electrochemical reaction is characterized by a transfer of electrons, in other words, some substances 

will gain electrons and some will lose them.  This class of reactions it is also called redox.
• Oxidation

It is called Oxidation because the reactant looses electrons
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑅𝑅−

• Reduction
In a reduction process the reactants acquire an electron 

𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑅𝑅− → 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

SOURCE: http://www.chem1.com/acad/webtext/elchem/ec-1.html



Galvanic Cells: A simple fuel cell 

• A galvanic cell (or voltaic cell) transforms the energy 
in the reactants generating an electrical current or 
electromotive force

• The electrolytic cell convert the electrical current into 
chemical energy (i.e. gasses)

• In both cases there is a redox reaction involved, 
however it operates in the opposite direction.

• A cell consists of:
2 electrodes: they collect the electrons
Electrolyte: it transport charges (protons; anions)

https://chem.libretexts.org/Core/Analytical_Chemistry/Electrochemistry/Electrolytic_Cells



Electric double layer

• A phenomena that happen at the electrode/electrolyte interface
• Transition region between 2 phases in which there is an 

imbalance of charges which strongly interact.
• It is the area of the electrode where electrochemical reaction 

occurs like for instance a metal immersed in a solution. It will be a 
thin layer between the metal and the solution.

• We should remind that in nature a bulk is characterized by 
neutral charged unless electrically perturbed

SOURCE: Wikipedia Larryisgood



Fuel cell basic configuration

Source: Wikipedia

From 
http://ncert.nic.in/ncerts/l/lech103.pdf

What will be the overall cell potential?

http://ncert.nic.in/ncerts/l/lech103.pdf


Fuel cell types

Fuel cell are divided according to electrolyte material
Note the different ions crossing the electrolyte, different temperature of operations and material.

There are 5 main fuel cell types.
1. Phosphoric acid fuel cell (PAFC)
2. Polymer electrolyte membrane fuel cell (PEMFC)
3. Alkaline fuel cell (AFC)
4. Molten carbonate fuel cell (MCFC)
5. Solid-oxide fuel cell (SOFC)

PS the classification of FC is provided in Chapter 8 of Fuel cell fundamentals



Classification of Fuel cells

Fuel cell Fundamentals
Chapter 13 - Fuel Cell System Design



Summary of electrochemical reaction if different type of Fuel cell

• The table from the US department of 
Energy provide a comparison 
between different type of fuel cells

From 
https://web.archive.org/web/20130301120203/http://www1.eere.energy
.gov/hydrogenandfuelcells/fuelcells/pdfs/fc_comparison_chart.pdf

https://web.archive.org/web/20130301120203/http:/www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/fc_comparison_chart.pdf


Stationary Fuel Cell Power Systems

Fuel Cell Energy 
2 MW MCFC Siemens-Westinghouse 

100kW SOFC

UTC Fuel Cells 
200kW PAFC

Ballard 250kW 
PEFC

Plug Power 7kW 
Residential PEFC

Plug Power 10 kW 
Residential unit

Breakthrough Technologies Institute:  www.fuelcells.org



Fuel cell system
In the car

https://ssl.toyota.com/mirai/fcv.html

https://ssl.toyota.com/mirai/fcv.html


Fuel cell system
In the car

Source: Recent Advances in Fuel Cell Electric Vehicle 
Technologies of Hyundai ECS transaction



The  FC reac t i ons  a re :
Anode : H 2 → 2H + +  2e -

Ca thode : ½ O 2 +  2H + +  2e - → H 2O
Overa l l : H 2 +  ½ O 2 → H 2O

The  s tandard  f ree  energy   o f  an  e lec t rochemica l  reac t i on  

∆𝑮𝑮 = −𝒏𝒏𝒏𝒏𝑬𝑬 =  2  mo l e− ∕mol reac tan t  *96485  C∕mol *  1 .23  V  =  −237000  J ∕mol

𝐸𝐸 : Revers ib le  po ten t i a l  a t  equ i l i b r i um o r  i dea l  po ten t ia l  1 .23V
𝐹𝐹 :  Fa raday cons tan t ( i . e .  magn i tude  o f  the  e lec t r i c  charge  fo r  mo les  o f  e lec t rons )
𝑅𝑅 :  n r o f  e lec t rons  exchanged  i n  the  e lec t rochemica l  reac t i on  H 2 +  ½ O 2 → H 2O

Gibbs free energy and voltage



Relationship between Gibbs Free energy and equilibrium

• Fo r  a  genera l  reac t i on  𝑅𝑅𝑎𝑎 + 𝑏𝑏𝑏𝑏 → 𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑑𝑑 t he  equ i l i b r ium cons tan t  i s  de f i ned :

𝑲𝑲 = [𝑪𝑪 ]𝒄𝒄 [𝑫𝑫 ]𝒅𝒅

[𝑨𝑨 ]𝒂𝒂 [𝑩𝑩 ]𝒃𝒃

• Where  A ;B ;C ;D  a re  the  concen t ra t i ons  and a ;b ;c ;d a re  the  s to i ch iomet r i c  coe f f i c ien t  o f  the  
reac t i on

• The  re la t i onsh ip  be tween  the  eq cons tan t  and  the  G ibbs  f ree  energy  o f  reac t i on  i s  g i ven  
be low:

∆𝑮𝑮 = −𝑹𝑹𝑹𝑹𝑹𝑹𝒏𝒏 𝑲𝑲



• The  re la t i onsh ip  accoun ts  fo r  the  e f fec t  o f  p ressure  and  tempera tu re  when  ca l cu la t ing  the  
ce l l  e lec t r i ca l  po ten t ia l  𝐸𝐸

• 𝐸𝐸 ∘ rep resen ts  the  i dea l  s tandard  po ten t i a l  a t  s tandard  cond i t ion
• I f  p ressure  and  tempera tu re  o f  the  reac tan ts  H2  and  O2  i s  i nc reased the  equ i l i b r ium 

po ten t i a l  E  w i l l  a l so  i nc reases .
• For  a  ce l l  reac t i on  𝐻𝐻2 + 𝑂𝑂2 → 𝐻𝐻2𝑂𝑂 t he  Nerns t  eq i s :

𝑬𝑬 = 𝑬𝑬∘ +
𝑹𝑹𝑹𝑹
𝒏𝒏𝒏𝒏

𝐥𝐥𝐥𝐥
𝑷𝑷𝑯𝑯𝟐𝟐 ⋅ 𝑷𝑷𝑶𝑶𝟐𝟐

⁄𝟏𝟏 𝟐𝟐

𝑷𝑷𝑯𝑯𝟐𝟐𝑶𝑶

Nernst Equation



We can  assume the  fue l  ce l l  cu rve  as  
the  a lgebra ic  sum o f  the  reve rs ib le  ce l l  
vo l tage  

Fuel cell performance

Fuel cell Fundamentals



Activation overvoltage
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Can you come with an example 
of Activation energy?



Rate of the electrochemical reaction

• Reactions happen spontaneously when the reactants 
free energy is larger than products free energy

• The activation energy is represented by the energy 
“barrier” that the reaction has to overcome to convert 
reactants into products. 

• The activation energy limits the rate of reaction

Source: Fuel cell fundamentals Chapter 3



• In the forward reaction, hydrogen releases one 
electron the metal catalyst (i.e. platinum)

• In the backward reaction, the hydrogen ion 
gain an electron from the metal. 

• At equilibrium both this reactions must balance; 
although both reactions are taking place the net 
rate is 0

J: net reaction rate 
C_R/P: reactant/product surface concentration
f_1/2: decay rate to product/reactant (i.e. likelihood that the reaction will 
convert to product/reactant)

Net rate of reaction

Source: Fuel cell fundamentals Chapter 3

𝐽𝐽 = 𝑐𝑐𝑅𝑅∗𝑓𝑓1𝑅𝑅−𝛥𝛥 ⁄𝐺𝐺1 𝑅𝑅𝑇𝑇 − 𝑐𝑐𝑃𝑃∗𝑓𝑓2𝑅𝑅−𝛥𝛥 ⁄𝐺𝐺2 𝑅𝑅𝑇𝑇

Forward reaction Backward reaction 𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑂𝑂𝑃𝑃𝑅𝑅:𝑀𝑀 ⋅⋅⋅ 𝐻𝐻 → 𝑀𝑀 + 𝑅𝑅− + 𝐻𝐻+

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑂𝑂𝑃𝑃𝑅𝑅: 𝑀𝑀 + 𝑅𝑅− + 𝐻𝐻+ → 𝑀𝑀 ⋅⋅⋅ 𝐻𝐻
Chemisorbed
Hydrogen



Net rate of reaction

• We can restate the rate of reaction as a function of ΔG of 
reaction

• The activation barrier for the overall reaction can be 
calculated as the difference between the activation barrier 
for forward an backward reaction.

• Therefore 𝛥𝛥𝐺𝐺2 can be expressed as a function of 𝛥𝛥𝐺𝐺𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎
and 𝛥𝛥𝐺𝐺1

• At equilibrium the reaction rate of reaction is 0
Source: Fuel cell fundamentals Chapter 3

𝐽𝐽 = 𝑐𝑐𝑅𝑅∗𝑓𝑓1𝑅𝑅−𝛥𝛥 ⁄𝐺𝐺1 𝑅𝑅𝑇𝑇 − 𝑐𝑐𝑃𝑃∗𝑓𝑓2𝑅𝑅−𝛥𝛥 ⁄𝐺𝐺2 𝑅𝑅𝑇𝑇

Forward reaction Backward reaction

𝛥𝛥𝐺𝐺𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛥𝛥𝐺𝐺1 − 𝛥𝛥𝐺𝐺2

𝐽𝐽 = 𝑐𝑐𝑅𝑅∗𝑓𝑓1𝑅𝑅−𝛥𝛥 ⁄𝐺𝐺1 𝑅𝑅𝑇𝑇 − 𝑐𝑐𝑃𝑃∗𝑓𝑓2𝑅𝑅−(𝛥𝛥𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝛥𝛥 ⁄𝐺𝐺1) 𝑅𝑅𝑇𝑇

𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑂𝑂𝑃𝑃𝑅𝑅:𝑀𝑀 ⋅⋅⋅ 𝐻𝐻 → 𝑀𝑀 + 𝑅𝑅− + 𝐻𝐻+

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑂𝑂𝑃𝑃𝑅𝑅: 𝑀𝑀 + 𝑅𝑅− + 𝐻𝐻+ → 𝑀𝑀 ⋅⋅⋅ 𝐻𝐻
Chemisorbed
Hydrogen

𝐽𝐽 = 0



Potential of reaction at equilibrium in a fuel cell

• In a fuel cell we have 2 electrodes, electrochemical 
reactions occurs both at anode and cathode, hence 
generating 2 electrical potentials.

• The overall cell voltage, 𝐸𝐸0, will be the sum of the 2 
electrode potentials.

Source: Fuel cell fundamentals Chapter 3

𝐸𝐸0 = ∆𝜙𝜙 𝐴𝐴𝑐𝑐𝑜𝑜𝐴𝐴𝑟𝑟 + ∆𝜙𝜙 𝐶𝐶𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝐴𝐴𝑟𝑟



Butler Volmer equation

• Current density and reaction rate are related by the 
relationship:

• The current density is defined as (Butler Volmer eq.):

• η: activation voltage loss
• n: number of electron transferred by the electrochemical reaction
• α: charge transfer coefficient ( proportional to the energy “barrier”)
• 𝑐𝑐𝑅𝑅∗, 𝑐𝑐𝑃𝑃∗: actual reactant and product concentration
• 𝑐𝑐𝑃𝑃0∗, 𝑐𝑐𝑃𝑃0∗ : reference reactant and product concentration
• j0 :  reference current density

• Current density increases exponentially with activation 
overvoltage Source: Fuel cell fundamentals Chapter 3

𝑗𝑗 = 𝑅𝑅𝐹𝐹𝐽𝐽

𝑗𝑗 = 𝑗𝑗0
𝑐𝑐𝑅𝑅∗

𝑐𝑐𝑅𝑅0∗
𝑅𝑅 )𝛼𝛼𝑐𝑐𝛼𝛼 ⁄𝜂𝜂 (𝑅𝑅𝑇𝑇 −

𝑐𝑐𝑃𝑃∗

𝑐𝑐𝑃𝑃0∗
𝑅𝑅 )−(1−𝛼𝛼)𝑐𝑐𝛼𝛼 ⁄𝜂𝜂 (𝑅𝑅𝑇𝑇

Lower case Capital case 



Butler Volmer equation

• Based on this equation we can say that there are different 
ways increase cell performance.
• Increase reactant concentration (e.g. increase reactant 

flow rate and pressure)
• Reduce the activation barrier (e.g. better catalyst 

material)
• Increase temperature ( i.e. higher temperature will cause 

a larger moments in the gas and a higher probability to 
engage in reactions )

• Increase the reaction sites ( i.e. more sites available for 
electrochemical reactions)

Source: Fuel cell fundamentals Chapter 3

𝑗𝑗 = 𝑗𝑗0
𝑐𝑐𝑅𝑅∗

𝑐𝑐𝑅𝑅0∗
𝑅𝑅 )𝛼𝛼𝑐𝑐𝛼𝛼 ⁄𝜂𝜂 (𝑅𝑅𝑇𝑇 −

𝑐𝑐𝑃𝑃∗

𝑐𝑐𝑃𝑃0∗
𝑅𝑅 )−(1−𝛼𝛼)𝑐𝑐𝛼𝛼 ⁄𝜂𝜂 (𝑅𝑅𝑇𝑇



Tafel equation

• If voltage is larger than 50-mV the forward reactions 
in the Bulter Volmer equation dominate, so that the 
rate of reverse reaction is negligible

• We can rewrite the current density as:

• We can rewrite the equation solving for the 
activation voltage loss (TAFEL EQUATION)

Source: Fuel cell fundamentals Chapter 3

𝑗𝑗 = 𝑗𝑗0
𝑐𝑐𝑅𝑅∗

𝑐𝑐𝑅𝑅0∗
𝑅𝑅 )𝛼𝛼𝑐𝑐𝛼𝛼 ⁄𝜂𝜂 (𝑅𝑅𝑇𝑇 −

𝑐𝑐𝑃𝑃∗

𝑐𝑐𝑃𝑃0∗
𝑅𝑅 )−(1−𝛼𝛼)𝑐𝑐𝛼𝛼 ⁄𝜂𝜂 (𝑅𝑅𝑇𝑇

≅ 1 = 0

𝑗𝑗 = 𝑗𝑗0𝑅𝑅 )𝛼𝛼𝑐𝑐𝛼𝛼 ⁄𝜂𝜂 (𝑅𝑅𝑇𝑇

𝜂𝜂𝐴𝐴𝑎𝑎𝑎𝑎 = −
𝑅𝑅𝑅𝑅
𝛼𝛼𝑅𝑅𝐹𝐹 ln𝑗𝑗0 +

𝑅𝑅𝑅𝑅
𝛼𝛼𝑅𝑅𝐹𝐹 ln𝑗𝑗

Const Tafel slope



Ohmic overvoltage
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Fuel cell charge transport

• The current density can be related to charge transport via a 
relationship with voltage and conductivity, 𝜎𝜎

• We can deduce the voltage as a function of current and resistance:

Source: Fuel cell fundamentals Chapter 4

𝑗𝑗 = 𝜎𝜎
𝑅𝑅𝑑𝑑
𝑅𝑅𝑂𝑂

𝑗𝑗 = 𝜎𝜎
𝑑𝑑
𝐿𝐿

𝑑𝑑 = 𝑗𝑗
𝐿𝐿
𝜎𝜎 = 𝑂𝑂

𝐿𝐿
𝑎𝑎𝜎𝜎 = 𝑂𝑂𝑅𝑅

𝑂𝑂 = 𝑗𝑗𝑎𝑎 𝑅𝑅: 𝑃𝑃𝑅𝑅𝑅𝑅𝑂𝑂𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅



Charge transport

• Charge transport is linear and is evident in the electrolyte 
where there is a reduction of voltage from anode to cathode 
due to resistance of the electrolyte to the hydrogen ion

Source: Fuel cell fundamentals Chapter 3

𝜂𝜂𝑂𝑂𝑜𝑜𝑜 = 𝑗𝑗 · 𝑎𝑎𝐴𝐴𝑅𝑅

𝜂𝜂𝑂𝑂𝑜𝑜𝑜 = 𝑂𝑂 · 𝑅𝑅𝑂𝑂𝑜𝑜𝑜 = 𝑂𝑂(𝑅𝑅𝐸𝐸𝐸𝐸𝑟𝑟𝑎𝑎 + 𝑅𝑅𝐼𝐼𝑜𝑜𝑐𝑐𝐼𝐼𝑎𝑎)

𝑅𝑅𝐼𝐼𝑜𝑜𝑐𝑐𝐼𝐼𝑎𝑎 ≫ 𝑅𝑅𝐸𝐸𝐸𝐸𝑟𝑟𝑎𝑎

𝑎𝑎𝐴𝐴𝑅𝑅: Area specific resistance [𝛺𝛺 ⋅ 𝑅𝑅𝑚𝑚2]

𝑎𝑎𝐴𝐴𝑅𝑅 = 𝑎𝑎𝛼𝛼𝐶𝐶𝑅𝑅𝑂𝑂𝑜𝑜𝑜𝐼𝐼𝑎𝑎 =
𝐿𝐿
𝜎𝜎



Charge transfer

• Resistances in different stacked components can be 
summed

• The electrolyte accounts for most of the resistance
• Charge transfer reduces cell voltage

Source: Fuel cell fundamentals Chapter 4



Concentration overvoltage
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Mass transport in FC

Combination of:
(1) Nerstian losses: Due to depletion of reactants (and their activity) 
in the channel 

(2) Reaction losses: Activation losses increases due depletion of 
reactants (JR reduces along the gas diffusion layer)

𝐸𝐸 = 𝐸𝐸0 −
𝑅𝑅𝑅𝑅
2𝐹𝐹

ln
𝑅𝑅𝐻𝐻2𝑂𝑂

𝑅𝑅𝐻𝐻2𝑅𝑅𝑂𝑂2
⁄1 2

Source: Fuel cell fundamentals



Gas depletion along the channel

• Reactants are consumed along the channel
• In the right figure we consider mass transport by diffusion along 

the GDL and convection along the channel

• The oxygen mass flux is depending on current density produced 
at the fuel cell electrolyte (Faraday Law):

• Oxygen gas consumed by the electrochemical reaction has to be 
provided by diffusion across  the gdl (Fick law):

• Convective mass transport across the channel Source: Fuel cell fundamentals

1
2𝐻𝐻2⇔𝐻𝐻+ + 𝑅𝑅−

𝐻𝐻+ + 𝑅𝑅− +
1
4𝑂𝑂2⇔𝐻𝐻2𝑂𝑂

𝐽𝐽𝑂𝑂2𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑂𝑂2
𝑗𝑗(𝑂𝑂)
4𝐹𝐹

𝐽𝐽𝑂𝑂2
𝐷𝐷𝐼𝐼𝐷𝐷𝐷𝐷 = −𝑑𝑑𝑂𝑂2

𝐸𝐸𝐷𝐷𝐷𝐷 𝜌𝜌𝑂𝑂2𝐶𝐶 − 𝜌𝜌𝑂𝑂2𝐸𝐸

𝐻𝐻𝐸𝐸

𝐽𝐽𝑂𝑂2𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐽𝐽𝑂𝑂2𝐷𝐷𝐼𝐼𝛼𝛼𝛼𝛼 = 𝐽𝐽𝑂𝑂2𝐶𝐶𝑂𝑂𝑅𝑅𝐶𝐶Steady state

𝐽𝐽𝑂𝑂2𝐶𝐶𝑜𝑜𝑐𝑐𝐶𝐶 = −ℎ𝑜𝑜 𝜌𝜌𝑂𝑂2𝐸𝐸 − �𝜌𝜌𝑂𝑂2𝐶𝐶𝑜𝑎𝑎𝑐𝑐𝑐𝑐𝑟𝑟𝐸𝐸



Limiting current density

• When reactants concentration drops to is very low, current cannot produced. 
We call this instance “Limit current density”:

• In a fuel cell where hydrogen and oxygen are the reactants

The conversion rate is 0  

𝑗𝑗𝐿𝐿 = 𝑅𝑅𝐹𝐹𝑑𝑑𝑟𝑟𝐷𝐷𝐷𝐷
𝑐𝑐𝑅𝑅0

𝛿𝛿 Gas diffusion layer thickness

Source: Fuel cell fundamentals



Power  =  I *V

Fuel cell power

From: Fuel cell fundamentals, Chapt.1



Cell performance

From: Fuel cell fundamentals, Chapt.1

Under  l oad  a dec rease o f ce l l vo l tage is ex i r i ence

𝑽𝑽 = 𝑬𝑬 − 𝜼𝜼𝒂𝒂𝒄𝒄𝒂𝒂 − 𝜼𝜼𝒐𝒐𝒐𝒐𝒐𝒐 − 𝜼𝜼𝒄𝒄𝒐𝒐𝒏𝒏𝒄𝒄

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎 :Act iva t ion  overvo l tage  due  to  k ine t i cs  o f  
reac t i on .  I t  occu r  a t  a l l  cu r ren t  dens i t ies  bu t  a re  
dominan t  a t  l ow cu r ren t  dens i t y  and  a re  assoc ia ted  
w i th  s lugg ish  e lec t rode  reac t i on  k ine t i cs
𝜂𝜂𝑜𝑜𝑜𝑜𝑜 :Ohmic res is tance  due  to  Ohmic res i s tance.  
res i s tances  to  charge  conduc t ion  th rough  the  va r i ous  
ce l l  componen ts  demons t ra te  a  l i near  dependence  
w i th  cu r ren t .
𝜂𝜂𝑎𝑎𝑜𝑜𝑐𝑐𝑎𝑎 :  due  to  mass  t ranspor t .  The  ce l l  i s  essen t i a l l y  
“ s ta rved”  o f  reac tan ts  as  they canno t  be  supp l ied  a t  
the  ra te  a t  wh ich  the  e lec t rode  reac t i ons  demand .

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎

𝜂𝜂𝑜𝑜𝑜𝑜𝑜 𝜂𝜂𝑎𝑎𝑜𝑜𝑐𝑐𝑎𝑎

O
ve

rp
ot

en
tia

l[
V]

Current density [C/cm2]



Thanks for your attention



Cel l  vo l tage  can  be  expressed  a  d i f f e rence be tween open  c i r cu i t  vo l tage  and  vo l tage  l osses :

The  open  c i r cu i t  vo l tage  can  be  expressed  us ing  the  Nenrs t Equa t i on :

The  ac t i va t ion  l osses  can  be  expressed  us ing  the  Ta fe l equa t i on :

𝛼𝛼 :  S immet ry fac to r  ( I t  measure  the  d i rec t i on  o f  the  reac t i on )
𝑂𝑂 𝑜𝑜 :  exchance cur ren t  dens i t y  (Ma te r i a l  pa ramete r  wh ich  depend  the  ab i l i t y  o f  the  ce l l  t o  
exchange  cu r ren t )

Simple mathematical model of a Fuel Cell in Matlab

𝑑𝑑𝐶𝐶𝑟𝑟𝐸𝐸𝐸𝐸 = 𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 − 𝑑𝑑𝐸𝐸𝑜𝑜𝑙𝑙𝑙𝑙

𝑑𝑑𝑂𝑂𝐶𝐶𝐶𝐶 = 𝑑𝑑Re𝐶𝐶 =
−𝛥𝛥𝐺𝐺°
𝑅𝑅 𝑟𝑟𝐹𝐹

+
𝑅𝑅𝑅𝑅𝛼𝛼𝐶𝐶
𝑅𝑅 𝑟𝑟𝐹𝐹

ln
𝑃𝑃
𝐻𝐻2

𝑃𝑃𝑂𝑂2

𝑃𝑃𝐻𝐻2𝑂𝑂𝑆𝑆𝑎𝑎𝑎𝑎

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑅𝑅𝑅𝑅
𝛼𝛼𝑅𝑅𝑟𝑟𝐹𝐹

⋅ ln
𝑂𝑂
𝑂𝑂𝑜𝑜

= −
𝑅𝑅𝑅𝑅
𝛼𝛼𝑅𝑅𝑟𝑟𝐹𝐹

⋅ ln𝑂𝑂𝑜𝑜
𝐶𝐶𝑜𝑜𝑐𝑐𝑙𝑙𝑎𝑎

+
𝑅𝑅𝑅𝑅
𝛼𝛼𝑅𝑅𝑟𝑟𝐹𝐹

⋅ ln 𝑂𝑂

𝑇𝑇𝑎𝑎𝐷𝐷𝑟𝑟𝐸𝐸 𝑆𝑆𝐸𝐸𝑜𝑜𝑆𝑆𝑟𝑟



The  Ohmic losses  a re  depend ing  on  Ohmic res i s tance  𝑅𝑅𝑜𝑜𝑜𝑜𝑜

The  Ohmic losses  a re  func t i on  o f  the  L im i t i ng  cu r ren t  dens i t y  wh ich  i s  the  max  cu r ren t  a  fue l  
ce l l  can  exchange

Simple mathematical model of a Fuel Cell in Matlab

𝜂𝜂𝑜𝑜𝑜𝑜𝑜 = 𝑂𝑂 ⋅ 𝑅𝑅𝑜𝑜𝑜𝑜𝑜

𝜂𝜂𝑎𝑎𝑜𝑜𝑐𝑐𝑎𝑎 =
𝑅𝑅𝑅𝑅

𝛼𝛼𝑅𝑅 𝑟𝑟𝐹𝐹
ln

𝑗𝑗𝐿𝐿
𝑗𝑗𝐿𝐿 − 𝑗𝑗



Matlab model (1)

clc;
close all;
clear all;

%Fuel cell reaction H2 + 0.5*O2 => H2O Gibbs Free energy [Source FC Explained fig2.4]

%Liquid H2O
T_tab_liq = [25 80];
T_ql = 25:5:80;
DeltaG_tabl = [-247.2 -228.2]; %kJ/mol
DeltaGl = interp1(T_tab_liq,DeltaG_tabl,T_ql); %kJ/mol
%Gas H2O
T_tabg = [100 200 400 600 800 1000];
T_qg = 100:10:1000;
DeltaG_tabg = [-225.2 -220.4 -210.3 -199.6 -188.6 -177.4]; %kJ/mol
DeltaGg = interp1(T_tabg,DeltaG_tabg,T_qg); %kJ/mol

DeltaG0 = interp1(T_tab_liq,DeltaG_tabl,70)*1000; %[J/mol of H2] standard Gibbs free energy of reaction with liquid water as bioproduct at 
70C
Tcell = 70+273.15; %[k] Cell temperature
n = 2; %[-] Number of electrons involved in the electrochemical reaction
F = 96485; %[C] Charge of 1 mole of electrones
R = 8.314; %[J/mol] Universal gas constant

P_an = 101325; %[Pa] Anode pressure
P_cat = 101325; %[Pa] Cathode press

P_sat = exp(23.1963-3816.44./(Tcell-46.13)); % [Pa] Saturation pressure of water vapor
p_H2 = (P_an-P_sat)/P_an; %[-] H2 partial pressure with RH100%
p_O2 = (P_cat-P_sat)*0.21/P_cat; %[-] O2 partial pressure
p_H2O = 1; %Water partial pressure assuming liquid water



Matlab model (2)
j_cell = 0.01:0.01:1;  %[A/cm^2] Cell current density
%Reversible voltage [V]
E = -DeltaG0/(n*F);
%Open circuit voltage (OCV)
p_RATIO = (p_H2*p_O2^0.5)/p_H2O;
Vocv = E + (R*Tcell)/(n*F)*log(p_RATIO);  %[V] open circuit voltage
%Activation overvoltage
alpha = 0.2;  %[-] Simmetry factor
j_0 = 0.01;    %[-] 
S_Tafel = (R*Tcell)/(alpha*n*F);%Tafel slope
Vact = S_Tafel*log((j_cell)/j_0);%[V]
%Ohmic overvoltage
ASR = 0.1; %[Ohm*cm^2]
Vohm = j_cell*ASR;%[V]
%Concentration overvoltage
c = 0.032;
j_cell_L = 1;%[A/cm^2]
Vcon = c*log(j_cell_L./(j_cell_L-j_cell));%[V]
%Cell voltage
V = Vocv-Vact-Vohm-Vcon;%[V]
A_cell = 10*10;%cm2
ncell = 50;
P_cellcm2 = j_cell.*V;
I_cell = j_cell*A_cell;
V_stack = A_cell*ncell*V;
P_cell = A_cell*j_cell.*V;
P_stack = P_cell*ncell;

%Plotting results
figure(1)
plot(j_cell,V,j_cell,Vact,j_cell,Vohm,j_cell,Vcon,j_cell,P_cellcm2),legend('Vcell','Vact','Vohm','Vcon','P_cell')
xlabel('Current Density [A/cm2]')
ylabel('Voltage [volt]  // Power [watt]')
figure(2)
plot(T_ql,DeltaGl,T_qg,DeltaGg),legend('DeltaG(g)','DeltaG(l)')
xlabel('Temperature [degreeC]')
ylabel('DeltaG')
figure(3)
plot(I_cell,V_stack,I_cell,P_stack),legend('V_{stack}','P_{stack}')
xlabel('Current [A]')
ylabel('Voltage [volt] (Blue) // Power [watt] (red)')
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