Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
Il Semestre 2020

Lecture 1: Introduction and Course Logistic

Course Logistics
Timing
e Laura: Wed & Fri 11-13:00, (sometimes Mon), aula 5A
* Some seminars

Course Website
Moodle

Teams

What is a Cyber-Physical System?

A CPS is a mechanism that is controlled or monitored by computer-
based algorithms, tightly integrated with the Internet and its users.

Physical = physical device or system + environment
Cyber = computational + communicational

Computation Communication

Control

Medical Device

! Continous
Glucose Sensor

u Control — Algorithm

/ \\
”~

Pacemaker
leads

http://jaime-dulceguerrero.com/el-pancreas-artificial-mi-opinion/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Transportation

© Siemens

Lighting Control @ @ Automatic Notification

R —— S $ Monitoring & Control
Tempurature Control u E :
e Security & Alarm

oo
oottt

(]
Motion Detector @& @ D D Local Server
O

oo

And many other applications...

* Robotics

* Critical Infrastructures
* Industrial Control

* Manufactering

* Agricolture

What is a Cyber-Physical System?

A CPS is a mechanism that is controlled or monitored by computer-based
algorithms, tightly integrated with the Internet and its users.

Physical = physical device or system + environment Computation Communication
Cyber = computational + communicational

Control

Coined in 2006 by Helen Gill (National Science Foundation)

The important part in CPS is the conjunction/intersection between the
computing part and physical dynamics

What is a Cyber-Physical System?

In cyber-physical systems, physical and software components are
deeply intertwined, each operating on different spatial and temporal
scale, exhibiting multiple and distinct behavioral modalities, and
interacting with each other in a lot of ways that change with context.

CPS combines elements of cybernetics, mechatronics, control theory,
process science, embedded systems, distributed control, and more
recently communication.

s the Field of Cyber-Physical Systems New?

* Hybrid Systems: are a mathematical abstraction, CPS are real-world
objects.

 Embedded Systems: are computational system embedded in a physical
system. Any CPS contains an embedded system.

* Real-time Systems: must respond to external changes within certain
timing constraints. Control systems can have or not real-time constraints.

* Other related disciplines: reliability, multi-agent system, mechanotronics,
control theory, robotics, Internet of Things (loT).

The challenges of working
In @ multidisciplinary area

a Snake!

It’'sa The challenges of working
Small Computer In @ multidisciplinary area

/f,“&
A

.

SN

It’s

Connected Industrial [It y
S
2 System
Y i Big Complex
‘ System
-

Advanced
Manufacturing

Example Structure of a CPS

SJOSUaS

/ Cyber part \

(Computational Platform)

/
/ Physical part X

(Plant)

S101enloy

Example Structure of a CPS

(

Cyber part
(DeC|5|on Maker)

pt

ntrolled system

// Physical part
(Co

)
\
)

Networked \k

Internet of Things

Model-based Design Approach

* * " «~
n * 5 " " '*’ 3 ﬂ.

Model My = —r 'M; o
Different models of computation

Equation-based model

Abstraction)
“physical modeling” Concept of Time <
C

Networking

Physical system (the plant) s computation)

Courtesy: D. Broman EECS 149/249A, UC Berkeley: 30

Model-based Design Approach

* MBD when used for designing embedded software! has 4 main steps
1. Model the physical components/environment (also known as a plant model)
2. Analyze the plant, and synthesize/design the control-software at a high-level
3. Co-Simulate the plant and control-software
4. Automatically generate code from the control-software model for deployment

 MBD languages are often visual and block-diagram based, e.g. Simulink

—_—) / > —
\ § N -

>

[1] Nicolescu, Gabriela; Mosterman, Pieter J., eds. (2010). Model-Based Design for Embedded Systems.
Computational Analysis, Synthesis, and Design of Dynamic Systems. 1. Boca Raton: CRC Press.

Are we safe ?

-
ABBOTT ADDRES
CARDIAC DEVICE

by Tara Seals May 4, 2018, 3:27 pm

About 350,000 implantable defilibrators are up for a firmware update, to address
potentially life-threatening vulnerabilities.

Abbott (formerly St. Jude Medical) has released another upgrade to the firmware
installed on certain implantable cardioverter defibrillator (ICD) or cardiac
resynchronization therapy defibrillator (CRT-D) devices. The update will strengthen the
devices' protection against unauthorized access, as the provider said in a statement on
its website: “It is intended to prevent anyone other than your doctor from changing
your device settings.”

https://threatpost.co

The patch is part a planned series of updates that
P partap P m/abbott-addresses-

began with pacemakers, programmers and

remote monitoring systems in 2017, following life-threatening-flaw-
2016 claims by researchers that the then-St. Jude’s in-a-half-million-
cardiac implant ecosystem was rife with pacemakers/131709/

cybersecurity flaws that could result in
“catastrophic results.”

Vehicle safety notices - Prestige
models among carsrecalled in
April

A number of Britain's biggest car makers issued vehicle safety recalls in the last
month, covering issues from minor missing pieces of trim to engine and steering
failure.

Audi, BMW, Lexus, Porsche and Hyundai were among manufacturers to issue
mandatory recalls for their cars.

https://inews.co.uk/essentials/lifestyle/cars/car-
news/vehicle-safety-recalls-notices-prestige-cars-
recalled-april/

Some tragic accidents

Tesla driver dies in first fatal crash while
using autopilot mode

The autopilot sensors on the Model S failed to distinguish a white
tractor-trailer crossing the highway against a bright sky

The first known death caused by a self-driving car was disclosed by Tesla Motors
on Thursday, a development that is sure to cause consumers to second-guess the
trust they put in the booming autonomous vehicle industry.

The 7 May accident occurred in Williston, Florida, after the driver, Joshua Brown,
40, of Ohio put his Model S into Tesla’s autopilot mode, which is able to control
the car during highway driving.

Against a bright spring sky, the car’s sensors system failed to distinguish a large
white 18-wheel truck and trailer crossing the highway, Tesla said. The car
attempted to drive full speed under the trailer, “with the bottom of the trailer
impacting the windshield of the Model S”, Tesla said in a blogpost.

Uber Self-Driving Car 'Detected' Pedestrian Killed
In Crash, But Decided It Didn't Need To Stop:
Report

Ryan Felton
UBER v

Like other autonomous vehicle systems, Uber’s software has the ability to ignore
“false positives,” or objects in its path that wouldn’t actually be a problem for the
vehicle, such as a plastic bag floating over a road. In this case, Uber executives
believe the company’s system was tuned so that it reacted less to such objects. But
the tuning went too far, and the car didn’t react fast enough, one of these people

said.

https://jalopnik.com/uber-self-driving-car-detected- 19
pedestrian-killed-in-cra-1825834016

Reachability

Stability

Real-Time Temporal Properties

Unsafe
States

f

08}

0.6

0.4}

Initial
States

0.2}

0.2

0.4

-0.6

-0.8

Formal Reasoning

Whenever the UAV reaches an Upside-
Down configuration, it must reach an
upright mode within 2 seconds.

Formal Methods

Mathematical, Algorithmic techniques for modeling, design, analysis
— Specification: WHAT the system must/must not do
— Verification: WHY it meets the spec (or not)

— Synthesis: HOW it meets the spec (correct-by-construction design)

Requirement-Driven Design

Create

Requirements

Requirements formally capture what it means for a system to operate correctly in its operating
environment

Requirement-Driven Design

Exhaustive verification of CPS is increasingly intractable:

= Openness, environmental change

Uncertainty, spatial distribution

= Emergent behaviors resulting from the local interactions are not
predictable by the analysis of system’s individual parts

= (lassic state-space explosion problem

How to ensure safety-critical requirements in CPS ?

Course Objectives

* Gain basic familiarity with CPS topics
Challenge Problems/Case studies

* “Model-Based” Software Development Paradigm for CPS
Developing models for physical components (+ software + communication)

* Writing checkable requirements and tests

* Reinforcement Learning for CPS Safety Engineering?

Course Overview

1. Intro to CPS and application domains with example (e.g. Medical
CPS, energy CPS, transportation CPS)

2. Modeling formalism: ODE systems, Timed Automata, hybrid and
switching systems, Stochastic Hybrid Automata, Markov Decision
Process (MDP).

3. Verification\Monitoring: temporal logic and automata, Model
Checking , Run-time Verification, Reachability Analysis, Test
Generation, Falsification

4. Reinforcement Learning for CPS (and formal methods)

Books

* Principles of Cyber-Physical Systems, Rajeev Alur, MIT Press, 2015

* Introduction to Embedded Systems: A CPS approach
Free at: https://ptolemy.berkeley.edu/books/leeseshia/

* Principle of Model Cheking, Baier, Katoen, MIT Press, 2008

e Reinforcement Learning, An Introduction, RS Sutton, AG Barton,
Cambridge, 2011

Grading

Project with a practice development of a CPS application, verification of formal
requirements and falsification or test generation experiments

Matlab/Simulink (simulation) model of a CPS application

Can also develop model in Python or Java if that is the preferred language (will require
additional work for handling requirements but | can help you!)

Hypro (Toolbox for the Reachability Analysis of Hybrid Systems)

Open to other software solution

Oral exam with presentation of the Project

