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Seismic sources - 2

Elastodynamic theorems
- unicity
- reciprocity (Betti)
- Elastodynamic Green Function
- representation

Equivalent body forces
- shear dislocation
- density of moment tensor
- moment tensor for point sources
- double couple
- scalar moment

Body forces



Kinematic model - Tohoku
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Body forces

Kinematic fault slip models
constrained by GPS measurements
and teleseismic P-waveforms.

Estimated fault slip (left) and
predicted vertical seafloor
displacements (right) are shown for
the two-plane (top) and one-plane
(bottom) kinematic models. Dip
angles and depth are given in the
northeast corner of each fault
plane. White contours indicate
temporal evolution of the rupture
front, with time in seconds. The
yellow star shows the epicenter
used for each inversion. The
respective moment rate functions
are plotted in the insets.

Simons et al., 2011. Science, vol. 332 no. 6036 pp.
1421-1425




Equivalent Forces: concepts

The observable seismic radiation is through energy release as the fault surface

moves: formation and propagation of a crack. This complex dynamical problem can
be studied by kinematical equivalent approaches.
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The scope is to develop a representation of the displacement generated in an
elastic body in terms of the quantities that originated it: body forces and
applied tractions and displacements over the surface of the body.

The actual slip process will be described by superposition of equivalent body
forces acting in space (over a fault) and time (rise time).
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Fundamental papers

©®Maruyama T. (1963). On the force equivalents of dynamical elastic
dislocations with reference to the earthquake mechanism. Bulletin of the
Earthquake Research Institute 41: 467-486.

©Burridge R. and Knopoff L. (1964). Body force equivalents for seismic
dislocations. Bulletin of the Seismological Society of America 54: 1875-
1878.

"An explicit expression is derived for the body force to be
applied in the absence of a dislocation, which produces
radiation identical to that of the dislocation. This equivalent
force depends only upon the source and the elastic
properties of the medium in the immediate vicinity of the
source and not upon the proximity of any reflecting
surfaces. The theory is developed for dislocations in an
anisotropic inhomogeneous medium; in the examples isotropy
is assumed. For displacement dislocation faults, the double
couple is an exact equivalent body force.”

Leon Knopoff
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Fundamental papers

Pujol J. (2003): The body force equivalent to an earthquake: a tutorial.
Seism. Res. Lett. 74, 163-168.

“During the 19505 another theoretical tool was brought to bear, namely dislocation theory. This theory originated in the

work of a number of Italian mathematicians, particularly Volterra, who used the word “distorsione”. “Dislocation” is Love's
translation (Love, 1927). A dislocation can be visualized through the following thought experiment, based on Steketee
(1958). Consider a cut made over a surface > within an elastic body. After the cut has been made there are two surfaces,
indicated with 2+ and 2—, which will be deformed differently by application of some force distribution.

If the combined system of forces is in static equilibrium, then the body will remain in the original equilibrium state. The
result of this operation is a discontinuity in the displacement across =, known as a dislocation, which is accommodated by
deformation within the body. This description should be compared to our model for a tectonic earthquake, which is
represented by slip on a fault plane. When an earthquake occurs, the two sides of the fault suffer a sudden relative
displacement with respect to each other, and this discontinuity in the displacement across the fault is the source of the
displacement elsewhere in the medium.

The debate ended when Maruyama (1963), Haskell (1964) and Burridge and Knopoff (1964) demonstrated that the body
force equivalent was a double couple. In the three cases the derivations were based on a number of results derived in the
context of theoretical elasticity and wave propagation. However, while the first two authors addressed the case of
homogeneous isotropic media, what distinguishes Burridge and Knopoffs paper is its generality, as their results apply to
heterogeneous anisotropic media”.

Love, A., 1927. A treatise on the mathematical theory of elasticity, Cambridge University Press (Reprinted by Dover, New York, 1944.)
Stauder, W., 1962, The focal mechanism of earthquakes, in H. Landsberg and J. Van Mieghem, Eds., Advances in Geophysics 9, Academic Press, 1-76.
Steketee, J., 1958. Some geophysical applications of the elasticity theory of dislocations, Can. J. Phys. 36, 1168-1198.
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Elastodynamic basic theorems

Considering an elastic body of volume V and surface S, the application of a system
of body forces (fi), as well as the application of tractions, will generate a
displacement field that is constrained to satisfy the equations of motion:

Jo .
pi =f +—=Ff +0

I I axJ JJ

The equation can be written also, using the vector differential operator

(L(u)) = pl. — O, = pu. — (Cijkluk,l ),J-

L(W-F

that is the inhomogeneous version respect to L(u)=0
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Uniqueness theorem

Uniqueness theorem: the displacement field, u=u(x,t), is
uniquely deftermined, affer time t, by:

a) initial values of displacement and velocities (at t,) in all V;
b) body forces and heat inV, after t,;
c) tractions over any part S, of S, after t,;

d) displacement over S, of S, with S,+S,=S, after t,.

Proof: Suppose there are two (u; and u,) and consider the
difference: it will be O...
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Reciprocity theorem - 1

Consider a pair of solutions for the displacement through an elastic body V and
look for relationships between them...

u is due to body forces f, boundary conditions on S and initial conditions at t=0; v
is due to body forces g and other boundary and initial conditions; the two

tractions on surfaces normal to n being respectively T(u,n) and T(v,n). Using the
equations of motion and the divergence theorem one has the first form of

reciprocity theorem (Betti theorem):

TI1( - pa) - vav + [[ 7 (un) - vas =
N HJ(Q PV) udV+” (v n) uds
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Reciprocity theorem - 2

Note that Bettis theorem does not involve initial conditions for u or v, and it is

true even if the quantities (u, du/dt, T(u,n)) and (v, dv/dt, T(v,n)) are evaluated at
different times, e.g. at t and -t. Integrating over (0,z) and assuming a quiescent

past (i.e. u=du/dt=v=dv/dt=0 for t<0), one obtains:

oo

[ dt[[]{ulx. 1) g(x,T— 1) = v(x,T— 1) - f(x,1){dV =

—O00

~+o0

— J df” {v(x,’c 1) T (u(x, 1), n) —u(x,t)-T (V(X,T - 1), n)}dS

—00
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Greens function

Green's function (GF) is a basic solution to a linear
differential equation, a building block that can be used to
construct many useful solutions.

If one considers a linear differential equation written as:

L(x)u(x)=Ff(x)

where L(x) is a linear, self-adjoint differential operator,
u(x) is the unknown function, and f(x) is a known non-
homogeneous term, the GF is a solution of:

L(X):S(X-S)

G(x.s
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Why GF is important?

If such a function G can be found for the operator L, then if we multiply the
second equation for the Green's function by f(s), and then perform an integration
in the s variable, we obftain:

[Lx)G(x, s)f(s)ds = [ 8(x — s)f(s)ds = (x) = Lu(x)
L[ G(x, s)f(s)ds = Lu(x)

u(x) = | G(x, s)f(s)ds

Thus, we can obtain the function u(x) through the knowledge of the

Green's function and the source term. This process has resulted from the
linearity of the operator L. See Linear System Theory (i.e. impulse response)
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Elastodynamic GF

The displacement from the simplest source, unidirectional unit impulse, is the

Elastodynamic Green's function.

If the unit impulse is applied at x={ and t=t and in the n-direction, the i-th
component of displacement at (x,t) is G, (x,1;¢,7).

This tensor depends on both receiver and source coordinates and satisfies,
throughout V, the equations:

( G )
— SinS (X — C)S(f — T) | ai \Cijkl axkln
J

azc-:'in
ot?

P

J

The initial conditions for G, (x,t;¢,t), and its time derivative, are that they are

O for t<t and x#{, and, fo be uniquely specified, it remains to state the
boundary conditions on S (for example if it is rigid or free).
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Greens function

If the boundary conditions are independent of time, then G will depend on time
only via the combination t-t.

If G satisfies homogeneous boundary conditions on S, reciprocity theorem can be
used to obtain relations for source and receiver positions.

Considering G, (x,t;¢,1u) and G, (x,1;¢2,-12) one has:
G, (Eat+12;8,1) = G, (L. t—T1:€2,-72), and if 1=12=0
G, (£2,1;4,0) = G (¢,1:€2,0), thus a spatial reciprocity, and if =0

G, (¢2,12;4,1) = G, (¢,—11:€2,-12) thus a space-time reciprocity.
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Representation theorem - 1st

Using Bettis theorem with a Green function for the displacement field, i.e. due to

gi(x,1)=8. 8(x-£)3(t), we obtain a representation for the other :

u (x,1) = Tdrﬂjf(& 1)G_(&,t - 1;%,0)dV(E) +

++jw dt[[ {6, (&t - 1ix,0)T, (u(€ 1), v) +
—:(g, tie, VG, (Et—-Tix, O)} ds(&)

That states how the displacement u at a certain point is given by contributions

due to force f throughout V, traction T and u itself on S.
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Representation theorem - 1st

un(x,’r) = HJ FP * andv + H(TP % an —uc. VvV *G | S
\Y S

schematically, the displacement field at a point of the volume V with surface S is
given by:

©) a volume integral over the body forces f convolved with the EGF;

©) a surface integral over the tractions T convolved with the EGF;

) a surface integral over a quantity convolved with the spatial
derivative of the EGF.
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Internal sources & faults

OExternal sources (e.g. atmospheric storms, ocean waves, meteorite impacts) can be
described by time-dependent stress perturbations of the surface of the Earth.

OFor internal sources, like earthquakes or underground explosions, the analytical
framework is difficult to develop since the equation of elastic motion are no more valid
throughout the whole Earth, since discontinuities are present.

O A volume source is an event associated with an internal volume, such as a sudden

expansion throughout a volumetric source. A faulting source is an event associated
with an internal surface, such as slip across a fracture plane.

OA unified treatment of both kind of sources is possible, the common link being the
concept of an internal surface across which discontinuities can occur in
displacement or in stress.

O The surface is usually considered as external toV, but it is useful to include two
adjacent internal surfaces, being the opposite faces of a buried fault  S+X'+X”. The
fault plane (%) is described by its normal v(E) over X.
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FIGURE 3.1

A finite elastic body, with volume V and external surface S, and an internal surface ¥ (modeling
a buried fault) across which discontinuities may arise. That is, displacements on the ¥~ side of =
may differ from displacements on the X% side of ¥. The normal to ¥ is v (pointing from X~ to
1), and the displacement discontinuity is denoted by [u(&, 7)] for £ on X, with square brackets
referring to the difference u(¢, 7)|v+ — u(€, 7)|x-. In general, a similar difference may be formed
for the tractions (due to external applied forces on ), but for spontaneous rupture the tractions must
be continuous, and then [T(u, v)] =0.

From Chapter 3 of Quantitative Seismology by Aki & Richards, (2002)
https://www.ldeo.columbia.edu/ ~richards/Aki_Richards.html
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Representation theorem - 2nd

If slip occurs across = the displacement field is discontinuous there, but equations
of motion are satisfied throughout the interior of the surface S+>'+>". Assuming

that u and G satisfy homogeneous conditions on S (that is no more of direct
interest):

oo

a,(x,1) = | dt[[f (16 _(x,t-1in,0[dV(n) +

—C0

+T dr|| {—an(x, t-18,0)| T (u(E, 1), v) |+
+[u(&h]c,.v, 06, (x.t - 1:£,0) / %, | d=(E)

upq J

Where square brackets are used for the difference between values on =t and >-;
n is a general position within V and £ a general position on X .
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Representation theorem - 3rd

In the case of a shear dislocation, tractions across = are continuous and,
neglecting body forces, one has that only the third right term remains; thus
displacement on the fault determines the displacement everywhere. Using the

delta function derivative one can write:

G (x,t-T1;E,0) p
np _ _ .
%, - - J J _Sanq (n - &G, (x,t - 1:m,0)dV(n)

obtaining the body-force equivalent to a displacement discontinuity:

o0

u (x,1) = J d’CJ_” F;“](n, T)an(x, t —1;m,0)dV

—C0

, 9®M-8)
an

F[u](n'T) B H [u (8. T)] g

q
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Representation theorem

0 0 =[] <6 av+ [[(-[1 ]+6, []} .G, |

the displacement field at a point of the volume V with surface S is given by:

@a volume integral over the body forces f convolved with the EGF;

@ a surface integral over the discontinuity of tractions T across a surface
convolved with the EGF;

@ a surface integral over a quantity, depending on the discontinuity of
displacements, convolved with the spatial derivative of the EGF.

Neglecting the physical body forces (e.g. gravity), and considering a
pure shear dislocation, the remaining term can be represented as the
result of an equivalent body force:

un(x' 1.) - JJJ FpEu]* andv FIEU] - _J.J. |:ui:|ciquvj BBTSdZ
" q

)Y
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Moment density tensor

Using the convolution symbol, the representation theorem for a shear dislocation
becomes:

u(x,1) = H [u, ]C.JquJ % aac;:" dx

Where the derivative can be thought as the equivalent of having a single couple (for

example (p,q) , with arm in th éq direction) on X at £ with strength [u]cupqu, the

integral represents the effect of a sum of couples distributed over Z. For 3
components of force and 3 possible arm directions there are 9 generalized couples.

Defining the moment density tensor, one has:

dG_
m =[ule v u (x,t) = ”mpq* Bipdz
)

P9 ijpq J
9
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Moment tensor

For an isotropic solid, and for slip parallel fo = at £ one has respectively:

m . = kvk[uk]épq + u(vp[uq] + vq[up]) m = u(vp[uq] + vq[up])

And if the source can be considered a point-source (for wavelengths greater than fault
dimensions), the contributions from different surface elements can be considered in

phase. Thus for an effective point source, one can define the moment tensor:
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Moment tensor decomposition

The moment tensor is symmetric (thus the roles of u and v can be interchanged

without affecting the displacement field, leading to the fault plane-auxiliary plane
ambiguity), and it can be diagonalized and decomposed in an isotropic and deviatoric

part: \
M0 0 () o
Mpq = O M, O =§ 0] tr(M)
\ O 0 M, ) . O 0

(M )
o [ M 0 o0
0 +f 0 M, O
tr(M) 0 0 M

For a shear dislocation, the equivalent point force is a double-couple, since internal
faulting implies that the total force fI and its total moment are null. The seismic

moment has a null trace and one of the eigenvalues is O.

(M0 0
Mpq(doublecouple) =l 0 0 O
K O 0 —M

0

\

J

with M = WA[U]

M, is called seismic moment, a scalar quantity related to the area of the fault and to

the slip, averaged over the fault plane.
Body forces




Moment tensor components

1

ISR
\7:_,,

(1,2) (1,3)

(2,2) (2,3)

(3,2) 3.3)

1 1

The nine possible couples that are required fo obtfain equivalent forces
for a generally oriented displacement discontinuity in anisotropic media.
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Point sources can
be described by
the seismic
moment ftensor

Mpq, whose
elements have
clear physical

meaning of forces
acting on
particular planes.




Moment tensor and fault vectors

The orthogonal eigenvectors to the above eigenvalues give the directions of the

principal axes: b, corresponding fo eigenvalue O, gives the null-axis, t,

corresponding to the positive eigenvalue, gives the tension axis (T) and p gives

the pressure axis (P) of the fensor.

They are related to the u and v vector, defining respectively the slip vector and
the fault plane:

Body forces
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Moment tensor and fault plane solution

Body forces

Uu=-

[\ VR

u]{cos hcosd + cosOsinAsin cb]
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cos A sin(® — cos O sinA cos (l)]
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[u]

—sind sin k) e

Figure 4.2-2: Fault geometry used in earthquake studies.
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Moment tensor and fault plane solution

The slip vector and the fault normal can be expresses in terms of
strike (¢), dip (8) and rake()):

( (

U] (coskcos¢ + cos d sinA sin ¢) e (— sin d sin cl)) e
u=+ [u] (cos A sin® — cos 6 sin A cos (1)) éy =4 (— sin & cos (1)) éy
U (— sind sin k)éz (— oS S)éz

Then the Cartesian components of the simmetric moment fensor can be written as:

= —M, (sinBcos A sin20 + sin23 sin A sin’ q>) M = M, (sin6cos Asin2d + 0.5sin2d sin A sin 2(1))

Xy

XZ

M
M, = M, (sinScosksin 20 — sin2d sin A cos’ q)) M =-M, (cosScoskcos¢ + cos 28 sinA sin (|))
M_= M, (sin 20 sin k) M =-M, (cosScosksinq) — €0S 20 sin A cos (|))

Yz
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Angle and axis conventions

Convention for
naming blocks,
fault plane,
and slip
vector, i.e.
strike, dip and
rake

Footwall

Hanging wall

Double Principle
Couple Axes
! Force system or a double

couple in the xz-plane

Xs
.
\ / T and P axes are the

directions of maximum
positive or negative first
P break.

i

/
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Moment tensor components

Figure 4.4-1: Equivalent body forces for a single force, single couple, and
double couple.
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A particular case

The fault X lies in the plane ¢;=0, and then v,;=1, v;=v,=0; for a pure shear

dislocation mechanism in the ¢, direction, one has: [u,]=[u;]=0.

The body force equivalent in general is:

i) = [l 0]e,0, 20D

on

q
and becomes:

y d6(n — §)
F(n, 7) = - L [[uED]ec,. i;lnq S dg, dt,

FIGURE 3.2
A fault surface X within an isotropic medium is shown lying in the ¢; = O plane. Slip is presumed to

take place in the ¢,-direction across ¥, as shown by the heavy arrows. Motion on the side £ (i.e.,
& =0%) is along the direction of ¢, increasing, and on the side T~ is along &, decreasing.
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A particular case: body force equivalent

In isotropic media, the constitutive relation establishes that all c13pq vanish

except C;3)3=C 33 =K

ad(n,)
on

f9m, ) = = | (&, 1) [ud(n, - €)3(n, - €,) dg, dg,
fin,1)=0

i, 1) = - [[[u (&) |u

3

dd(n, - ¢))
an,

6(n, — ¢,)8(n,) dS, dc,

and after integration:

03
f9(n,7) = - u(n,7) |u ai]m)
fin,1)=0

ol u (n,
in g = - LAV

an,
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A particular case - 1st bf

The first one represents a system of single couples distributed over the fault
plane: forces in the +-n, direction, arm along n; direction and moment along 7,

direction:

Body forces

ad(n,)
on,

f(n, 1) = = [[ | u (&, 7) [ud(n, - &)3(n, - €,) d, dg,

+,,3 *'Js

(@) (b)

UK * P

Jy

() e __L1_y

FIGURE 3.3

Interpretive diagrams for the first component, f, of the body-force equivalent to fault slip of the
type shown in Figure 3.2. (a) The spike (—38(75),0,0) is plotted against 7,. (That is, a spike in
the —n,-direction, acting at n, = 0.) (b) The derivative ((—8 /9n3)8(n3), 0, 0) is plotted against 7.
The body force (f;, 0, 0) is proportional to this quantity (see equation (3.11)). (¢) Heavy arrows show
the distribution of f, over the £ side of £ and over the £~ side (broken arrows). This is the body-
force component that would intuitively be expected in any body-force model of the motions shown
in Figure 3.2.




A particular case - 1st bf moment

Since faulting, within V, is an internal process, the total force due to any flul and
the total moment about any fixed point must be O:

J]] £'(n, 1)av(n) = || 8(n - &)dS(n) = 0

The total moment of this force component alone does not vanish, actually the
moment about the 7, axis is:

J{ n.fdV = —Jﬂ Ut Y 3221:) dn dn dn, = Lf ulu 1d=

that averaged over the fault plane gives

U<u>A

along the direction of 7, increasing
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A particular case - 2nd bf moment

20(n. —
f9m, 7 = =[] u (&0 |u (?;n =) s(n, - ,)5(n,) de. de, ol
. e
I[u,}
/’\ o, N

Y

The total moment of this force

component about the 7, axis is: ’

(C) YYYVYYYY

-”] T]1 aM[UI] 8(1’]3)dnldnzdﬂrb ~ _.” l'L[u1]dz

anl

FIGURE 3.4

Interpretive diagrams for the third com-
ponent, f5, of the body-force equivalent
to fault slip [«,] . (a) An assumed vari-
ation of slip [u,] with ,, at fixed 7,
and 7. (b) The corresponding deriva-
tive 8 [u,] /3n,. (¢) The distribution of
single forces f; with varying 7, (see
equation (3.12)). This distribution will
clearly yield a net couple, with moment
in the —n,-direction.

that averaged over the fault plane gives again M(U)A along the direction of 7,

decreasing. Thus the total moment is null!
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A particular case - double couple

The force equivalents to a given fault slip are not unique:

%,
o) = [l v, o = [futude| S s T o

G G, (x,’r—r,§+8§3,0)—6n1 (x,’r—r,i— 8§3,O) 0
dg, - 2¢ A

G, G, (x,1L - T,& + e&l,o) -G | (x,’r - 1,8 — eil,o)
dg, 2¢

& 4

,€ >0

1}

!

@) - T - & FIGURE 3.5
The radiation from these two
distributions is the same as

Double couple distribution! & 4 the radiation from slip on a

» fault. In this sense, these two

single-couple distributions,

taken together, are equivalent

to fault slip. Note that there
& is no net couple, and no net

®) ¥ force, acting on any element of
area in the fault plane ({; =0).

i
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A particular case - other system

The force equivalents to a given fault slip are not unique:

0G BG a[u 1]

u (X 1') — J.J[ ]C|Jpqvj * agnp d '”u [ ]* E) 8&1 Gn3/

dX

¢ 4

FIGURE 3.6

Another force system that is
equivalent to fault slip (compare
with Fig. 3.5). (a) and (b) here
®) ¢ constitute a single-couple plus
single-force system, which has
zero total couple and zero total

force for the whole fault surface.
But individual elements of area

are acted on by a couple and a

force.

The body force equivalent is unique, but force/(unit area) on a finite fault is not: the
dynamic process cannot be studied with the radiation by individual elements!

Body forces



A particular case - Far Source

If we are in the FAR SOURCE condition (at distances greater than the fault
dimension), and for periods longer than the slip duration:

95 95
90, 7) = - [0, ] 2 = -, 501)301,) 2 e
M, an,
fin,1)=0
o u (M, 1) |u(n) 05
f(n, 1) = - [ul na; ]u L 6(n,) = -M_ a:]l) &(n,)d(n, JH(t)

obtaining the double-couple point source equivalent to fault slip!
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A particular case - moment tensor

/
(0 0 pluE)] 0 0 M,
m = 0 0 0 M= 0 0 O
uu (€, 0 0 My, 0 O
\ J \
1 (. _aa
[ule, ( 0 t = ﬁ(ez + [u]ex)
9=0°, 5=0°,2°=0° u=1 O v={ 0 | b=(e, x[ule,)=1[ue,
0 e 1 (, - )
- Pp=—F(e, —lule
Double Principle L \/g
Couple Axes
:3 3 X, re.Fer.red to ( M 0 0
\ /T principal axes 0
B S . == M=| 0 0 O
/ / \P k O 0 —M
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