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Seismic sources - 2

Elastodynamic Green function
- scalar problem
- Lame theorem

- EGF in homogeneous media
- near and far field

- EGF for double couple in homogeneous media
- near, intermediate and far field

- EGF for double couple in heterogeneous media
- surface waves in the far field
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Greens function

Green's function is a basic solution to a linear differential
equation, a building block that can be used to construct
many useful solutions.

If one considers a linear differential equation written as:

L(x)u(x)=F(x)

where L(x) is a linear, self-adjoint differential operator,
u(x) is the unknown function, and f(x) is a known non-
homogeneous term, the GF is a solution of:

L(x)hux,8)=5(x-5)

G(x,s)
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Why GF is important?

If such a function G can be found for the operator L, then if we multiply the
second equation for the Green's function by f(s), and then perform an
intfegration in the s variable, we obtain:

[Lx)G(x, s)f(s)ds = [ 8(x — s)f(s)ds = (x) = Lu(x)
L[ G(x, s)f(s)ds = Lu(x)

u(x) = | G(x, s)f(s)ds

Thus, we can obtain the function u(x) through the knowledge of the

Green's function and the source term. This process has resulted from the
linearity of the operator L. See Linear System Theory (i.e. impulse response)
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Inhomogeneous wave equation

Let us consider the simplest inhomogeneous scalar problem, i.e. a
spherically symmeftric one, to avoid the directionality of the source:

L(u) = G — c®Au = 3(x)d(t)

Figure 4.4-7: Modeling an explosive source as a triple force dipole.
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Inhomogeneous wave equation

Let us consider the simplest inhomogeneous scalar problem, i.e. a
spherically symmetric one, to avoid the directionality of the source:

L(u) = G — c®Au = 3(x)d(t)

and let us look for the solution, whose spatial dependence can be only

on u=u(r,t)=u(lxl,t); expressing the Laplacian in spherical coordinates,
one has that everywhere, except at r=0, u=f(t-r/c)/r is the general
solution. At t=0, we have the Poisson equation:

Au = 6()2() whose solution is:  u = o(x)

C 4mct

1 o(t-r/c)

4T1CE r

and the rapidly varying function depends, at any position, only on the
arrival time, and its shape is the same in time as the time function at
the source term.

Thus, the general solution is: u(r, '|') =
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Properties of the solution

1) If L(u) = d(x - C)o(t — 1)
- P | 3(t--|x - ¢ /c)
4TIC ‘x - C‘
2) If L(u) = 8(x - )f(1)
then ur )= L T 4/c)
4c’ ‘x - C‘

d(x, )

3) If the source is extended through a volume V:  L(u) =

then u(r,t) = 2 J J J
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Helmholtz theorem

Any vector field u=u(x) may be separated into scalar and vector potentials

Greens function

Uu=VP+V XY

Brief proof: since it is possible to solve the Poisson equation:

VW = u
WG =] ij’ g‘

then the identity
A=VV.-VXVx

tells us that

=V - W ¥Y=-VxW




Lame theorem

The problem is to find solutions to the elastodynamic equation
pu = F+(k + Zu)V(V -u) — UV x (V x u)

for an isotropic and homogeneous elastic space,
in terms of soluble equations.

If the body terms and initial conditions can be expressed as:
f=VD® + VX ¥; ulx,0=VA+V xB; u(x,0=VC+V xD
with V-=0V-B=0;V-D=0
then two potentials exist with the following properties:
u=Vo+VxyV- -y =0;
b o

6= L+ otag; i = — + BAy
P P
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Solutions for elastodynamic GF

Let us consider for example that
f =X (H(x)x =V® +V xW¥

then we can build:

( A

X (t
W(x,+)=—VXW= o1 0,21 91
4TT \ 8x3r

szr)
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Solutions for elastodynamic GF

and we have to a) solve the wave equation for the Lame potentials of

body force and then b) to calculate the displacement.

After some heavy algebra (Stokes, 1849), generalizing from the X;

direction and using direction cosines (yi=xi/r=ar/dx;)
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ui=XO(1') x Gij=
” _ 5 |k )
L (3yiyj 36”) J ™ (t-t)dt+
g 47'5[)‘)(‘ ‘x‘/oc )
AN
' 4Tpor’ ‘x‘ Xo(t o &
+ (3yiyj - SU) X (1._ H)
4rtp P’ ‘x‘ > B
o J
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Near field term

The near-field expression of the point force delta function GF is:

uNF - (3YIYJ B 6” ) . e a) Near Field Time Functions
| 4TTP |
Dl r r r ro
9 3 (1-" — )H(.I-" - )-(1-" — )H(.I-" — ) + 1/ B-1/ ¢t - ) B V... S
Pl o o 3 B
N\ 1 0
1] 1 1 oY -
2 H(.I-— L )— ~ H(.I-— L ) . 1/r2term
)| oL oL B B ) 1o 1/ |

and the response has a static (time-independent)
component that corresponds to a permanent deformation
of the medium, both in radial and transverse directions.
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Far field term

The far-field expressions of the point force delta function GF are
characterized by:

1) decay as 1/r;
2) are made of P and S waves;

3) the displacement waveform is proportional to the applied force at
the retarded time;

4) have a radiation pattern u';F oc Y I”YJ.=COSG
FF ’
Ug | o< =7, =Sin0
Amplitude { Q-
P by Far Field Time Functions \ o / /} H \‘n
] Do
Tice rfﬁ,
- N N s
} £y
up ug
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GF for moment tensor

We can calculate the radiation pattern from a point source with an arbitrary
moment tensor by noting that Greens function for a couple is just the spatial

derivative of Greens function for a point force, so that the displacement field
from a moment tensor Mpq is just:

dG_
u = Mpq g an,q lim AIqF o
Al —0
F %00
(N A
= : J ’chq(i'-’C)d’H Near field term
\475[)‘)(‘ ‘x‘/oc )
[ UF ‘ ‘ IF ‘X‘\ Intermediate field
+ 2 N\ (1‘- —)- 2 M (1" — ) term
4mpor” ‘x‘ % 4mpPp? ‘x‘ BJ
f o ‘X‘ FF ‘X‘ A
+ P___M (+-1)- = (t-) Far field term
énpoc:‘"x‘ T« 4RpB3‘X‘ P ’
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GF for double couple

An important case to consider in detail is the radiation pattern expected when the

source is a double-couple. The result for a moment time function Mo(t) is:

ANF ‘X‘/B
u= : J. ™ O(’r-r)dr+
4mp ‘x |

x‘/oc

term

§ - ,\
\ANF = 9sin20cosdr — 6 (coszecos¢9 — cos0 sin ¢¢D
§ AT = 4sin20cosor — 2 (coszecoscbé — cos6 sin ¢‘T’)

AISF = —3sin20cosor + 3 (coszecosd)é — cosH sin ¢‘T’
e - )

A, = sin2Bcosor

FF_ 0 — in O

| AT = cos26c0s08 — cos sin o
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NF DC (static) Radiation pattern

u= M, (°°) _ANF IR N Ay + A;F_ =
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Figure 7: Near-field Static Displacement Field From a Point Double Couple
Source (¢ = 0 plane); o = 3Y/2, 3 =1, r = 0.1, 0.15, 0.20, 0.25, p = 1/4m,
M, = 1; self-scaled displacements




Coseismic deformation

L’Aquila (Italy) earthquake, Mw 6.3.
Horizontal and Vertical surface displacement from INSAR Data
(assuming horizontal displacement is perpendicular to the fault strike ~N48W).
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Coseismic displacements, seafloor topography, and plates around Japan. Red
and orange arrows indicate onshore and offshore horizontal displacement
vectors. Triangles and squares indicate pressure gauges and GPS/acoustic
stations, respectively. Onshore uplifts are expressed by color scales and
contours taken at 20-cm intervals. Offshore uplifts are indicated by color within
triangles and squares. White line with triangles shows the Japan trench.
Mechanisms of the M9 2011 Tohoku-oki earthquake and the three largest
aftershocks are shown. The epicenter of the mainshock is represented by a
black dot connected with the mechanism. Star in inset is the epicenter of the
mainshock. PAC Pacific plate, EUR Eurasian plate, PHS Philippine Sea plate.
Hashima et al. Earth, Planets and Space (2016) 68:159
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FF DC Radiation pattern

FIGURE 4.5

Diagrams for the radiation
pattern of the radial com-
ponent of displacement due
to a double couple, i.c.,
sin 26 cos ¢ T. (a) The lobes
are a locus of points having a
distance from the origin that
is proportional to sin 26. The
diagram is for a plane of con-
stant azimuth, and the pair of
arrows at the center denotes
the shear dislocation. Note
the alternating quadrants of
inward and outward direc-
tions. In terms of far-field
P-wave displacement, plus
signs denote outward dis-
placement (if My(t — r/c)
is positive), and minus signs
denote inward displacement.
(b) View of the radiatiou pat-
tern over a sphere centered
on the origin. Plus and minus
signs of various sizes denote
variation (with 9, ¢) of out-
ward and inward motions.
The fault plane and the aux-
iliary plane are nodal liues
(on which sin 26 cos ¢ = 0).
An equal-area projection has
been used (see Fig. 4.17).
Point P marks the pressure
axis, and T the tension axis.
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FIGURE 4.6

Diagrams for the radiation pattern of the transverse component of displacement due to a double
couple, i.e., cos 26 cos ¢ 6 — cos 0 sin ¢ &) (a) The four-lobed pattern in plane {¢ =0,¢ =n}.
The central pair of arrows shows the sense of shear dislocation, and arrows imposed on each lobe
show the direction of particle displacement associated with the lobe. If applied to the far-field S-
wave displacement, it is assumed that Mo(t — r/B) is positive. (b) Off the two planes 6 = /2 and
{¢p =0,¢ =n}, the $ component is nonzero, hence (a) is of limited use. This diagram is a view of
the radiation pattern over a whole sphere centered on the origin, and arrows (with varying size and
direction) in the spherical surface denote the variation (with 6, ¢) of the transverse motions. There
are no nodal lines (where there is zero motion), but nodal points do occur. Note that the nodal point
for transverse motion at (6, ¢) = (45°,0) is a maximum in the radiation pattern for longitudinal
motion (Fig. 4.5b). But the maximum transverse motion (e.g., at 8 = 0) occurs on a nodal line for
the longitudinal motion. The stereographic projection has been used (see Fig. 4.16). It is a conformal
projection, meaning that it preserves the angles at which curves intersect and the shapes of small
regions, but it does not preserve relative areas.




