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Seismic sources - 3

Focal mechanisms
- faulting and radiation pattern
- fault mechanism
- decomposition of moment tensor
- basic fault plane solutions
- faults and plates

Haskell model
- far field for an extended source
- directivity
- source spectra
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Equivalent Forces: concepts

The observable seismic radiation is through energy release as the fault surface

moves: formation and propagation of a crack. This complex dynamical problem can
be studied by kinematical equivalent approaches.
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The scope is to develop a representation of the displacement generated in an
elastic body in terms of the quantities that originated it: body forces and
applied tractions and displacements over the surface of the body.

The actual slip process will be described by superposition of equivalent body
forces acting in space (over a fault) and time (rise time).
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Moment tensor

For an isotropic solid, and for slip parallel fo = at £ one has respectively:

m . = kvk[uk]épq + u(vp[uq] + vq[up]) m = u(vp[uq] + vq[up])

And if the source can be considered a point-source (for wavelengths greater than fault
dimensions), the contributions from different surface elements can be considered in

phase. Thus for an effective point source, one can define the moment tensor:
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A particular case - moment tensor
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GF for moment tensor

We can calculate the radiation pattern from a point source with an arbitrary
moment tensor by noting that Greens function for a couple is just the spatial

derivative of Greens function for a point force, so that the displacement field
from a moment tensor Mpq is just:
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Faulting and Seismograms

©The nature of faulting affects the amplitudes and
shapes of seismic waves (this allows us to use
seismograms to study the faulting).

©We call the variation in wave amplitude, due to
the source, with direction (i.e. angular) the

radiation pattern.
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Far field for a point DC point source

From the representation theorem we have: u (x,t)=M_*G

Pq np.q

that, in the far field and in a spherical coordinate system becomes:
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and both P and S radiation fields are proportional fo the
time derivative of the moment function (moment rate). If

the moment function is a ramp of duration < (rise time),
the propagating disturbance in the far-field will be a

boxcar, with the same duration, and whose amplitude is
varying depending on the radiation pattern.

Focal mechanisms
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FIGURE 8.21 Far-field P- and S-wave
displacements are proportional to M(t), the
time derivative of the moment function M(t) =
pA(t)D(t). Simple step and ramp moment
functions generate far-field impulses or boxcar
ground motions.




P-waves RP

: Body-wave radiation patterns for a double couple source.
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P-wave radiation amplitude patterns:
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M(t — r/a) = source time function

P waves

M is the time derivative of the
seismic moment function,

M(t) = uD(1)5(¢)
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D(t) = slip history
S(t) = fault area history
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S-waves RP

ire 4.2-6: Body-wave radiation patterns for a double couple source.

S-wave radiation amplitude patterns: X,
A
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S waves

Why are S waves usually larger
than P waves?

These equations predict an
average ratio of about

o>/ B> or about 5.
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P&S waves RP

Figure 4.2-7: P and S radiation amplitude patterns.
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Radiation Patterns in 3D

Radiation Patterns of P and S waves
for a 45° Dipping Fault with a Strike Due North

http://demonstrations.wolfram.com/RadiationPatternForDoubleCoupleEarthquakeSources/
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http://demonstrations.wolfram.com/RadiationPatternForDoubleCoupleEarthquakeSources/

Radiation from shear dislocation
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a) Coordinates parallel or
perpendicular fo fault plane
with one axis along the slip
direction.

b) radiation pattern in x-z
plane

c) 3-D variation of P
amplitude and polarity of
wavefront from a shear
dislocation




Double Couple radiation pattern - P waves

(@)

(b)
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Radiation pattern of the radial displacement
component (P-wave) due to a double-couple
source:

a) for a plane of constant azimuth (with lobe
amplitudes proportional to sin26). The pair of
arrows at the center denotes the shear
dislocation.

b) over the focal sphere centered on the
origin. Plus and minus signs of various sizes
denote amplitude variation (with 6 and ¢ ) of
outward and inward directed motions. The fault
plane and auxiliary plane are nodal lines on
which cosy sin20 = O.

Note the alternating quadrants of inward and
outward directions.




Double Couple radiation pattern - S waves

0 = 90°

0 = 180°
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i = 90°

(b)
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Radiation pattern of the transverse displacement
component (S-wave) due to a double-couple source:

a) in the plane { ¢ = 0, ¢ = 1 }.

Arrows imposed on each lobe show the direction of
particle displacement; the pair of arrows in a) at the
center denotes the shear dislocation

b) over a sphere centered on the origin. Arrows with
varying size and direction indicate the variation of the
transverse motions with 6 and ¢ . There are no nodal
lines but only nodal points where there is zero motion.

Note that the nodal point for transverse motion at (6,
¢ ) = (45°, 0°) at T is a maximum in the pattern for
longitudinal motion while the maximum transverse
motion (e.g. at 6 = 0) occurs on a nodal line for the
longitudinal motion.




Seismic “Beach Balls”

 We use the radiation patterns of P-waves to construct a graphical
representation of earthquake faulting geometry.

e The symbols are called "Focal Mechanisms” or "Beach Balls”, and they
contain information on the fault orientation and the direction of slip.

e They are:
 Graphical shorthand for a specific faulting process (strike, dip, slip)
e Projections of a sphere onto a circle (the lower focal hemisphere)
* Representations of the first motion of seismic waves.

 When mapping the focal sphere to a circle (beachball) two things
happen:

e Lines (vectors) become points
e Planes become curved lines

Focal mechanisms



Representing a Plane

Intersection of a
hemisphere and plane
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Two steps to understanding

1) The stereographic projection

2) The geometry of first motions and how this is used

to define fault motion.
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Stereonets

OA template
called a
stereonet is

used to plot
data.

@Example -
plotting planes
(e.g. faults)

Source:USGS
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Stereonets
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©Example - pitch
(or rake) of a line
on a plane (e.g.
the slip direction
on a fault)
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Source:USGS
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Stereonet

Figure 4.2-9: Stereonet used to display a hemisphere on a flat surface.




Stereonet - Dip

Figure 4.2-10: Example of three planes on a stereonet.
North
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Stereonet - Plane

Figure 4.2-11: Example of plotting a plane on a stereonet.
N45°E

First draw a plane
with a dip of 60°E
and a strike of 0°.
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Stereonet - Planes

Figure 4.2-12: Example of plotting perpendicular planes on a stereonet.
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Stereonet - Rays
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plotting lines
(e.g. ray paths)
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Stereonet - Rays

Focal mechanisms



Focal sphere

In order to simplify the analysis, the concept of the "focal sphere” is introduced. The
focal sphere is an imaginary sphere drawn around the source region enclosing the fault.
If we know the earthquake location and local Earth structure, we can trace rays from the
source region to the stations and find the ray take-off angle at the source to a given

station. Figure 4.2-8: Cartoon of the focal sphere.
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Lower
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Take-off angle

At a given source-receiver, the distance can be determined and from this T and the slope (p) can be
found from the travel time tables. For example, the Jeffreys-Bullen travel fime tables can be used to

obtain p and from this the take-off angle i.

Focal mechanisms

Table 4.2-1: P wave take-off angles for a surface focus earthquake.

Distance (°)

Take-off angle (°)

Distance (°)

Take-off angle (°)

Distance (°)

Take-off angle (°)
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Radiation from shear dislocation
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First motion of P waves at
seismometers in various
directions.

The polarities of the observed
motion is used to determine the
point source characteristics.

Beachballs always have two
curved lines separating the
quadrants, i.e. they show two
planes. But there is only one
fault plane and the other is
called the auxiliary plane.
Seismologists cannot tell which
is which from seismograms
alone, so we always show both of
the possible solutions.



Manual determination of focal mechanism

To obtain a fault plane solution basically three

steps are required:

1. Calculating the positions of the
penetration points of the seismic rays
through the focal sphere which are
defined by the ray azimuth and the take-
off angle of the ray from the source.

2. Marking these penetration points through
the upper or lower hemisphere in a
horizontal (stereographic) projection
sphere using different symbols for
compressional and dilatational first
arrivals.

3. Partitioning the projection of the lower
focal sphere by two perpendicular great
circles which separate all (or at least
most) of the + and - arrivals in different
quadrants.

S
Note: A* = 180° - A when the center of the net lies in the tension (+) quadrant (i.e., event
with thrust component) or A* = -A when the center of the net lies in the pressure quadrant
(i.e., event with normal faul‘rmpg codmjgonen’r. P1, P2 and P3 are the poles (i.e., 90° off) of FP1,
an

FP2 and EP, respectively. are the penetration points (poles) of the pressure and
tension axes, respectively, through the focal sphere. + and - signs mark the quadrants with
compressional and dilatational P-wave first motions.

http://demonstrations.wolfram.com/EarthquakeFocalMechanism/
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http://demonstrations.wolfram.com/EarthquakeFocalMechanism/

Fault types and focal mechanisms
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The Principal Mechanisms

Reverse Normal Strike-Slip
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FM & stress axes

Figure 4.2-16: Relation between fault planes and stress axes.

T T
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quadrant p Dilatational
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To obtain P and T axes:

45° Dipping normal p
On the meridian connecting
the poles, the points
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nodal planes are the

P and T axes
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Focal Mechanisms - Examples

Figure 4.2-17: Examples of focal mechanisms and first motions.

Thrust faulting, Vanuatu Islands, July 3, 1985
Location: 17.2°S, 167.8°E. Depth: 30 km
Strike: 352°, Dip: 26°, Slip: 97°
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Double couple RP & surface waves

Figure 4.3-12: Surface wave amplitude radiation patterns for several focal
mechanisms.
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Focal mechanisms



FM & Moment tensor

Figure 4.4-6: Selected moment tensors and their associated focal mechanisms.
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Faults and Plates

The style of faulting tells us something
about the forces acting in a particular
part of Earth.

Along plate boundaries, faulting reflects the
motion of plates.
- Divergent Boundary = Normal Faulting
- Convergent Boundary = Reverse Faulting
- Transform Boundary = Strike-Slip Faulting

Focal mechanisms



Where are the Normal Faults?
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Where are the Reverse Faults?
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Where are the Transform Faults?

Focal mechanisms



Example: East Africa

Focal mechanisms
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Faulting

»+ So far we have talked about the faulting of
shallow earthquakes, which are well explained by

plate tectonics.

- What about the faulting style of deep
earthquakes ?

» Do similar principles hold true?

Focal mechanisms



Faulting

©®We sometimes see “normal” faulting at depths of
100 Km or so in subduction zones:

* * Y Earths surface

The slab can break / *
under the extensional *

bending stresses. *

Focal mechanisms



Faulting

®We sometimes see "reverse” faulting for the deepest
earthquakes at about 600 km depth:

Earth's surface

670 km Discontinuity

Focal mechanisms



