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Introduction to Linear Systems, Part 1: The Time

Domain

Our primary goal in this course is to understand methods of analyzing temporal
and spatial series, especially as applied to linear systems, both in continuous and
sampled (discrete) time, and to demonstrate applications to important problems
in geophysics and other physical sciences. Much of the demonstration and home-
work in this course will be done using Matlab. You are thus encouraged to demo
and/or refamiliarize yourself with this package at the earliest opportunity. Mat-
lab is also available in a student version that you may wish to procure for your
personal PC or other computer. There is also a Matlab primer on the class web
page .

We will be primarily concerned with an important class of physical situations
which can be adequately characterized by linear systems. A linear system is any
functional transformation, φ, which converts some input signal, x(t) to an output
signal, y(t)

y(t) = φ[x(t)] (1)

and which follows the principles of superposition

φ[x(t) + y(t)] = φ[x(t)] + φ[y(t)] (2)

and amplitude scaling
φ[αx(t)] = αφ[x(t)] (3)

where α is a scalar. Note that for positive integer values of α (3) is equivalent
to (2). (3) also implies that the output of the system is zero when there is no
input

φ[0] = 0 . (4)

Many of the phenomena which we wish to study in geophysics are linear,
often because we study very weak signals (e.g., small gravity variations, seismic
disturbances far away from the source; effects due to small fluctuations in the
magnetic field) and the linear approximation is valid because the system is not
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perturbed very far from equilibrium. Examples where linearity does not hold
up are generally instances of large amplitude (e.g., high strain elastic waves
near an underground nuclear explosion or earthquake; ocean waves breaking at
a shoreline). In these cases the physics of the problem depends strongly on the
amplitude of the perturbation, so that superposition (2) and scaling (3) do not
hold, and probably aren’t even acceptable approximations.

Many physical systems are also time-invariant, i.e., φ is not a function of t
(in some cases we look for time variation, for example, earthquake prediction
researchers hope that this is not the case for some aspect of the earth response
over short time intervals). In general, we will be primarily concerned with time-
invariant systems.

A linear system is said to be causal if the output at some time t0 depends
only on values of the input for t ≤ t0. Note that all physical processes are causal
(acausal systems propagate information backwards in time!) It is easy, however,
to mathematically construct non-causal mathematical systems, and they may
be useful in processing stored information. Also keep in mind that physical
spatial phenomena (e.g. spatial filters) need not obey “causality” constraints.

A linear system is said to be stable if every bounded (in amplitude) input
produces a bounded output. While obvious for physical systems (which will
eventually become non-linear rather than produce infinite responses) this can an
important consideration in mathematical models of active systems (i.e., systems
that have feedback).

The simple rules defining linear systems provide profound and very useful
constraints on the mathematical characterization of the system. Most remark-
ably, they lead to an elegant, tractable, and very useful set of analysis tools,
embodied in Fourier Theory for describing linear systems in the complementary
domains of time and frequency.

It may at first appear remarkable that the input to output transformation
of any linear, time-invariant system can be characterized by a basic integral
relation (a convolution). To derive this result straightforwardly, we must first
define the Dirac delta or impulse function. This function is discontinuous; it
is nonzero only at one value of its argument, where it is infinite. The trick to
making the delta function rigorously mathematically useful is to define it as a
limiting set of functions so that the area of the function remains finite. One
definition (e.g., Bracewell) is:

δ(t) = lim
τ→0

τ−1Π(t/τ) (5)

where τ−1Π(t/τ) is the unit-area rectangle or boxcar function of height τ−1

and width τ . The limit of 5 as τ approaches zero is an infinite narrow function
centered on t = 0, with unit area. It can be shown that one need not start
with the rectangle function to obtain the same functional limit, we could just
as easily have considered a limit of any set of unit-area functions (e.g., an ap-
propriately scaled set of Gaussian envelopes). Although the delta function may
seem outrageously artificial, it actually has a plethora of uses in characterizing
physical and theoretical systems.
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The usefulness of δ(t) in our time domain context here largely arises from
its sifting property, whereby it can retrieve a functional value at a particular
argument from witin an integration:∫ b

a

f(t)δ(t− t0)dt = f(t0) (6)

= f(t0) a ≤ t0 ≤ b (7)

= 0 elsewhere (8)

for any f(t) continuous at finite t = t0.
The delta function is one of several related discontinuous functions which

will be of use to us. Another is the step function

H(t− t0) =
∫ t

−∞
δ(τ − t0)dτ (9)

which is 0 for t < t0, 1 for t > t0, and takes a discontinuous step at t = t0. The
step function is a useful mathematical construction fo “turning on” a system at
t = t0.

We can also define the boxcar function, Π(t), and sign function, sgn(t), in
terms of H(t), as

Π(t) = H(t + 1/2)−H(t− 1/2) . (10)

sgn(t) =
|t|
t

= 2H(t)− 1 . (11)

sgn(t) is also sometimes referred to as the signum function.
The impulse response of a system is the output produced by an impulse

input
h(t) = φ[δ(t)] . (12)

We will now show the important result that the response of a linear, time-
invariant system to an arbitrary input is characterizable in a simple manner
(via a convolution integral) in terms of its impulse response. First, note that
any input signal, f(t), can be written as a summation of impulse functions
(because of the sifting property of the delta function)

f(t) =
∫ ∞
−∞

f(τ)δ(t − τ) dτ (13)

Thus, for a general linear system characterized by an operator, φ, the response,
g(t), to an arbitrary input, f(t), is just that operator acting on (13)

g(t) = φ

[∫ ∞
−∞

f(τ)δ(t − τ)dτ

]
(14)

or, from the definition of the integral,

g(t) = φ[ lim
∆τ→0

∞∑
n=−∞

f(τn)δ(t− τn)∆τ ] . (15)
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Because φ characterizes a linear process, we can move it inside of the summation
using the scaling relation (3), where the f(τn) are now weights

g(t) = lim
∆τ→0

∞∑
n=−∞

f(τn)φ[δ(t − τn)]∆τ . (16)

Now note that (16) defines the integral

g(t) =
∫ ∞
−∞

f(τ)φ(t − τ)dτ (17)

which is the convolution of f(t) and φ(t), often written in shorthand as

g(t) = f(t) ∗ φ(t) . (18)

Thus, convolution of a general input signal with an appropriate impulse
response exactly describes the corresponding output signal for any linear phys-
ical process. An important observation along these lines is that a convolution
describes the smearing action of a linear measurement tool of limited resolv-
ing power. A moment’s reflection reveals that a measurement apparatus which
records signals from the outside world exactly would need to have a delta func-
tion impulse response (so that its output exactly matched the signal in the
external world). This should be clear once one realizes that that (13) is itself
a convolution, as convolution with a delta function simply returns the input
signal, shifted in time (delayed or advanced) by the delta function’s origin time

f(t) ∗ δ(t− t0) =
∫ ∞
−∞

f(τ)δ(t − t0 − τ) dτ = f(t− t0) . (19)

As all functions can be thought of as continuous integral superpositions of
delta functions, it is clear that a necessary and sufficient condition for system
stability is that the impulse response be bounded for all t.

Convolution with a step function∫ ∞
−∞

f(τ)H(t − τ) dτ =
∫ ∞
−∞

f(τ)
∫ t

−∞
δ(ξ − τ)dξ dτ (20)

=
∫ ∞
−∞

∫ t

−∞
f(τ)δ(ξ − τ)dξ dτ (21)

=
∫ t

−∞

∫ ∞
−∞

f(τ)δ(ξ − τ) dτdξ =
∫ t

−∞
f(τ) dτ (22)

is the definite integral of f from t = −∞ up to time t. Thus, while convolution
with a delta function returns the system impulse response, convolution with a
step function performs operation of definite integration.

δ(t) can usefully be regarded as the time derivative of H(t). The significance
of convolution with the time derivative of δ(t) is left as an exercise.
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Another useful function that we will use is the sampling function or Bracewell’s
shah function:

rΠΠ(rt) =
∞∑

n=−∞
rδ(rt − n) . (23)

Multiplication by ΠΠ(rt) produces a time-continuous representation of a sampled
time series, with nonzero impulse values at t = (..., −2/r, −1/r, 0, 1/r, 2/r, ...),
which are scaled by the values of the function at those points. r is referred to as
the sampling rate (the multiplicative factor of r is required to maintain unit-area
delta functions). Such sampled time series (not necessarily in one dimension,
but frequently in 2 or more dimensions, and usually uniformly sampled in time
or space) make up the vast majority of geophysical and many other types of
scientific data.

Time domain interpretation of convolution. A way to develop an intuitive
feel for convolution is to graphically examine the operation of the convolution
integral

c(t) = f1(t) ∗ f2(t) =
∫ ∞
−∞

f1(τ)f2(t− τ) dτ . (24)

The procedure is as follows:

1. Plot both f1(τ) and f2(t− τ) on the τ -axis. Note that this operation flips
the function f2(τ) about the τ -axis and shifts it by an amount t (which is
the independent variable of the output function c(t)).

2. Visualize that as t advances, f2(t− τ) slides along the τ -axis.

3. For each t, the convolution integral (24) is just the area under the product
of the two functions, f1(τ) and f2(t− τ).

As a simple example, consider the convolution of Π(t) and the truncated
exponential e−tH(t).

c(t) =
∫ ∞
−∞

Π(τ)H(t − τ)e−(t−τ) dτ . (25)

Because of the discontinuities in Π(t), the solution is most easily found by
examining three cases:

• Case (a) t ≤ − 1/2

The functions do not overlap, so c(t) = 0 here.

• Case (b) −1/2 ≤ t ≤ 1/2

Here, the sliding exponential partially overlaps the boxcar function. The
appropriate integral is

c(t) =
∫ t

−1/2

1 · e−(t−τ) dτ = 1− e−(t+1/2) . (26)
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Figure 1: Convolution Example

• Case (c) t ≥ 1/2

For this range of t, the sliding exponential completely overlaps the boxcar
function and the integral is

c(t) =
∫ 1/2

−1/2

1 · e−(t−τ) dτ = e−(t−1/2) − e−(t+1/2) . (27)

The result of this convolution is plotted in Figure 1.
Note that we could have equivalently written the convolution as

c(t) =
∫ ∞
−∞

Π(t− τ)H(τ)e−τ dτ (28)
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and obtained the same answer with somewhat different integrals. A more effi-
cient and elegant way of evaluating convolutions will become apparent after we
learn how to examine functions in the frequency domain, rather than the time
domain.

Autocorrelation and crosscorrelation. Several additional integral operations,
closely related to convolution, are commonly used in time series analysis. Au-
tocorrelation is similar to autoconvolution

f(t) ∗ f(t) =
∫ ∞
−∞

f(τ)f(t− τ) dτ (29)

except that one of the functional components in the τ -domain is not reversed.
The autocorrelation of a real function, f(t), is thus

A(t) =
∫ ∞
−∞

f(ξ)f(ξ − t) dξ =
∫ −∞
∞

f(ξ − t)f(ξ) (−dξ) (30)

which is, if we let ξ − t = −τ ,

=
∫ ∞
−∞

f(−τ)f(t− τ) dτ = f(−t) ∗ f(t) = f(t) ∗ f(−t) . (31)

If f(t) is symmetric in time (an even function; f(t) = f(−t)), then the auto-
convolution and autocorrelation are equal. Also, because the autocorrelation
integral (31) is unchanged when we interchange ±t, we see that any autocorre-
lation must be an even function.

It is often convenient to divide (31) by the signal energy to obtain a normal-
ized form for the autocorrelation

a(t) =
A(t)∫∞

−∞ f2(τ) dτ
(32)

which has a value that is bounded on the interval [−1, 1]. Note that for (32)
and (31) to converge, the signal energy

E = A(0) =
∫ ∞
−∞

f2(τ) dτ (33)

must be finite. It is thus necessary for f2(t) to have finite area (zero mean is
not sufficient).

The crosscorrelation of two functions, f1(t) and f2(t) (often referred to sim-
ply as the correlation) is

C(t) =
∫ ∞
−∞

f1(τ)f2(τ − t)dτ =
∫ ∞
−∞

f1(τ + t)f2(τ)dτ ≡ f1(t) ? f2(t) (34)

If (34) is divided by the cross-signal energy we have a normalized version of the
crosscorrelation

c(t) =
C(t)∫∞

−∞ f1(τ)f2(τ)dτ
. (35)
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The autocorrelation and correlation operations have important applications
in power spectra, coherency, signal detection and timing, and array processing.

Correlations and Crosscorrelations in Matlab. Matlab has built in convolu-
tion conv, and crosscorrelation (xcorr) functions. The numerical part of Mat-
lab, of course, only operates on finite time series (or sampled) representations
of functions stored as vectors or arrays of numbers which hopefully adequately
represent a continuous function in nature (we will examine the issues associated
with sampled functions in much detail later in the course.). The conv function
thus calculates a sample-by-sample moving dot-product rather than an integral.
You are encouraged to experiment with these and other Matlab functions at the
earliest opportunity (e.g., try to reproduce the example of Figure 1). Note that
if you have two Matlab time series, a1 and a2, which are of length n1 and n2

samples, respectively, then the convolution output from conv, a1 ∗ a2 will be of
length (n1 + n2 + 1).
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