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Considering an elastic body of volume V and surface S, the application of body

forces, as well as the application of tractions, will generate a displacement field
that is constrained to satisfy the equations of motion:

JG .
pu-:f.I 'J:fi+6i-.

I I axJ JJ

The equation for elastic displacement can be written also using the vector

differential operator, (L(w)). = pd; - (CijklukJ) =pl, -0,
as: &

L(u)=0 homogeneous
L(u)=Ff inhomogeneous
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Isotropic medium 53

And for an isotropic medium, in absence of body forces, the equations of motion
become:

(L)), =pu; - 82 (AU, S +u(u; +9u;)) =0

J

i.e. a linear system of three differential equations with three unknowns: the
components of the displacement vector, whose coefficients depend upon the
elastic parameters of the material. It is not possible to find the analytic
solution for this system of equations, therefore it is necessary to add further
approximations, chosen according to the adopted resolving method. Two ways
can be followed:

a) an exact definition of the medium is given, and a direct numerical
infegration technique is used to solve the set of differential equations;

b) exact analytical techniques are applied to an approximated model of the
medium that may have the elastic parameters varying along one or more
directions of heterogeneity.
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1D heterogeneity 53

) Let us consider a halfspace in a system of Cartesian coordinates with the vertical
z axis positive downward and the free surface, where vertical stresses (oxz, 0yz, 0zz)
are null, is defined by the plane z=0.

&) Let us assume that p, A and u are piecewise continuous functions of z, that
displacement and stress components are continuous along z, and that body wave
velocities, a and p, assume their largest value, aq and pH, when z=H, remaining
constant for greater depths.

If the parameters depend only upon the vertical coordinate, the equations become:

pu= (k+u)V(V~u)+uV2u+%(iV -u)+3—i[(V~i)u+V(i-u)]

we can consider solutions of having the form of plane harmonic waves propagating
along the positive x axis:

U(X,t) - F(Z )ei((DT—kx)
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Apparent horizontal (phase) velocity
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Wave

vecror

Wave front

Kk, = ksin() = oSN _ ©

(04 C
Remember: when c is less then the
: 1 1
k, =kcos(i) = \k* - ki = “’\/[Oj —[C]‘ = w\/[;]l -1=ksra  body wave velocity k; is imaginary and
represent inhomogeneous waves, i.e.
waves exponentially decaying or

increasing with depth;
examples are Rayleigh waves in a
JZ =2 [C]Z—l =K, I,

k. =ksin(i)=o3n0_ ©
B C

k, = kcos(i)= e —KZ = m\/(éT_(l

3 homogenous halfspace, or Love waves

in low velocity layer over a
homogeneous halfspace

C C

In current terminology, k, is k
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P-SV problem

We have to solve two independent eigenvalue problems for the three components of
the vector F=(Fx,Fy,F;). The first one describes the motion in the plane (x,z), i.e., P-SV
waves and it has the form:

d| dF, . .~ oF
— X _ikuF, |- ikA —2+|0p—k*(A+2u)|F, =0
S| W~ IkuF, |- ikA =+ ofp— k(A +2u) F,
J| oF, ... | . oF
—| (A+2u) —2—ikAF, |- iku —=+|o’p—ku|F,=0
oo (A +2w) = =ik, |-k =+ [0~ K F,
and must be solved with the free surface boundary conditionat z=0
o, = (k+2u)%lzzz—ikkFX -0
Oy, = _H aaFZZ o Ikqu_ . =0
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SH problem
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The second eigenvalue problem describes the case when the particle motion is
limited to the y-axis, and determines phase velocity and amplitude of SH waves.
It has the (Sturm-Liouville) form:

0
0z

/aF\

\ 9Z |

(0°p—ku)F, =

0

and must be solved with the free surface boundary conditionat z= 0
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d0Z
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(& Layered halfspace
' Y p
Let us now assume that the vertical heterogeneity in the halfspace is modelled
with a series of N-1 homogeneous flat layers, parallel to the free surface,
overlying a homogeneous halfspace.
Let pm. dn, Pm, and dm, respectively be the density, P-wave and S-wave

velocities, and the thickness of the m-th layer.
Furthermore, let us define:

\/(CJ‘I if c>o _<\[gj—1 if c>B..

o
om r'Bm_
. c . . C .
\—| \/1—[06]t if c<o, \—| \[1_(1%]2 if c<B,,
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Love (SH) problem

The SH solutions (displacement and stress) for the m-th layer are:

UX:UZ:O
(s, —ikrgz " tikrgz) L i(ot—kx)
uy—(vme b py e )e
ou . | |
. 1 _k " k _k
Gy =1 ikt Vi
Z

where vy’ and v "are constants.

Given the sign conventions adopted, the term in v’ represents a plane wave
whose direction of propagation makes an angle cot™'rgm with the +z direction
when rpm is real, and a wave propagating in the +x direction with amplitude
diminishing exponentially in the +z direction when rem is imaginary. Similarly
the term in v'' represents a plane wave making the same angle with the
direction -z when rpm is real and a wave propagating in the +x direction with
amplitude increasing in the +z direction when rpnm is imaginary.
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Love (SH) problem
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the term in v' represents a plane wave
whose direction of propagation makes an
angle cot™rpm with the +z direction when
rem is real (a),

and a wave propagating in the +x
direction with amplitude diminishing
exponentially in the +z direction when
rem iS imaginary (b).

Similarly the term in v'' represents a
plane wave making the same angle with
the direction -z when rpn is real (¢)
and a wave propagating in the +x
direction with amplitude increasing in
the +z direction

when rpm is imaginary d).




Love (SH) problem

Consider the m-th layer and the (m-1)

interface, set temporarily as the origin of Liy \ k(Y "
the coordinate system. It is convenient to ? =1 (V mt V m)
use [(duy/dt)/cl=ikuy instead of /-1
displacement, to deal with adimensional (Gzy] _ ikumPB (V"m_ V'm)
quantities. m-1 "
m-1, z=0
m, z=dm
uy =ik(v,+ v',,)cosQ,, —K(V', - V},)SIinQ
C A m m m m m m Qm:kr'bmdm

(Gzy)m =KL,y (V' + V)SinQ, +iku,re (V' - Vi, )cosQ,,
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Love layer matrix

1D Halfspace

cosQ,,
a, =
I Ll SINQ,,
uy]
c m—1
Zy)m—l_




Love dispersion equation

remembering that the boundary conditions of a) surface waves and b) the
free surface implies that vy"=0 and 02(z=0)=0, we have that:

Ay +Ugry Ay =0

The left-hand side is the dispersion function for Love modes (SH waves),
where A,; and Ay are elements of the matrix A.

The couples (w,c) for which the dispersion function is equal to zero are its
roots and represent the eigenvalues of the problem.

Eigenvalues, according to the number of zeroes of the corresponding
eigenfunctions, uy(z,w,c) and o0,,(z,w.c),
can be subdivided in the dispersion curve of the fundamental mode (which has

no nodal planes), of the first higher mode (having one nodal plane), of the
second higher mode and so on.

Once the phase velocity c is determined, we can compute analytically the group
velocity using the implicit functions theory, and the eigenfunctions.
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Rayleigh (P-SV) problem

The P-SV solutions (displacement and stress) for the m-th layer can be found
combining dilatational and rotational potentials:

ou

u - ik " ik i(wt—kx)
= X Z — IKlomZ HKrgmZ | /(O
A = dz  OX = (Ane ™ + A e
8 _ 1 aux auz _ (8' e—ikr'Bmz ‘|‘8" e+ikrﬁmz)ei(m’r—kx)
m 2Loz oxJ \" m

where An', Ay, 8’ and 8" are constants.

Given the sign conventions adopted, the term in An' represents a plane wave
whose direction of propagation makes an angle cot™ram with the +z direction
when rqm is real, and a wave propagating in the +x direction with amplitude
diminishing exponentially in the +z direction when ram is imaginary. Similarly the
term in An" represents a plane wave making the same angle with the direction -z
when ran is real and a wave propagating in the +x direction with amplitude
increasing in the +z direction when ram is imaginary.

The same considerations can be applied to the terms in 8 and 0", substituting
Fam With rpm.
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Rayleigh (P-SV) problem

The P-SV solutions (displacement and stress) components can be written as:

2
vl )ZB (“)
§)
! :_0‘5«
Z (DZ
2 aZA B aZ \|
= P O + 2B — 2 2 >
Gzz pm\am m+ B Z[BX ) [az )
w2 (@A) gl(@s ) (s
:2 2 { m |_ m |(|>
O = 2| = 2 (axaz)+m2_[ax2j (822 ]

Starting with the free surface condition (0:2(z=0)=0:x(z=0)=0), iterating the
continuity boundary conditions at every interface, and applying the condition of
no radiation in the final halfspace, one can build up the dispersion function
whose roots are the eigenvalues associated with the Rayleigh modes.

NS

\

\ .
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GF for heterogeneous halfspace

The GF, at a large distance, will consist entirely of surface waves propagating

outward from the sourc

e.

(e o)

6i.% =D 6L (%,%;1)

m=1
for Love (L) modes (m):

- N N\ o
y e 374 gk |(RPy (h,0)) (RCG (z,0))

i () = V8w | VX | Afc VI, | AVl
N AN AT UG A O T

propagation source receiver
and Rayleigh (R) modes (m): g « . - \
T e—i37t/4 e—ikmx (Rpi (hs’(D)) (RCﬁ( (Z,(D))

i (@)= V8mw | VX | Afe VI, | AVI
N AN m m m X m m )

1D Halfspace




4.

RP for heterogeneous halfspace

%
|}

.

&

A%

where x, is the source-receiver distance; c is the phase velocity, v is the group
velocity (c, v are calculated for the m-th Love or Rayleigh mode, at frequency w, and

thus are the "eigenvalues”); I is the energy integral, RP is the radiation pattern and
RC is the receiver factor (calculated for the m-th Love or Rayleigh mode, at
frequency w, and thus are connected to the “eigenvectors” (Fx,F,.F)):

RPM-R

RPIRRCTR =

(

Ci =F'(h,,o)

\

[ F"(h,,0)F™(z,0)cos%

sinfd  -sindcoso O
-singcos¢  cos’9 O F7(z,m)
0 0 0 )

F2(hg,0)F7(z,w)sinpcosd  -iF(h,,0)F( zwcosq>

F'(hg,0)F7 (z,0)sinocosd  F'(h,,0)F7(z,0)sin®d  -iF)(h,,®)F(z,0)sing

1D Halfspace

iR (hs,0)F7 (z,0)cos0

iFZ(h,,0)F;(z,w)sing F(h,,0)F}(z,0)
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The source is introduced in the medium by representing
the (planar) fault

Seismic source in a layered halfspace @

as a discontinuity in the displacement field (shear
dislocation), and thus it is equivalent to a double-couple.
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GF for DC in heterogeneous halfspace

4.

If the surface waves are excited by a double-couple, and we are in the
far-field:

for Love (L) modes (m):

< oi3n/A kX (Xan (hs,w)) (Fy (Z,(D))

L _
xzoo—_ 8t /X 4c.v. I v. T
UY(',) Z\/ \/7 m'm—m m=—m

m=1

and Rayleigh (R) modes (m):

i o i31/4 oiknx (xi(hs,o))) (Fx (Z,O)))
el \/8750) \/; \/CmeIm \/VmIm
S e it/ ik (Xm(hs,(n)) (F,(z,0))
el \/87'5(1) \/7 \/Cm m \/VmIm

Us(X,Z,0)=

us(X,2,m) =
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RP for DC in heterogeneous halfspace

where, y, the radiation pattern represents the azimuthal dependence of the

excitation factor:

¥, =1(d,, sinp+d,, cosp)+d,, sin2ep+d, coLo
Yr =y +i(d; SiNp+d,, cosp)+d;, Sin2p+d,; COLe

d, = G(h,) cosh sind
d,, =-G(h,) sin\ cos26
d,, = %V(hs) SINA sin20
d, = V(h,) cosA sind

—

(xr (h.))

1D Halfspace

where ¢ is the angle between the strike 1 S

of the fault and the direction obtained %= EB(hs) SINA sinZo
connecting the epicenter with the d,, =—C(h,) sinA cos25
station, measured anticlockwise, 8 is d,; =—C(hn.) cosA cosd
:rl:z dip angle and A is the rake angle, d.= A(h,)cosh sind

dy = —%A(hs) SiM. sin25

__F.*khy)
A= F.©)

B2(h,) |F, *(h,) 2 o,*h)
B(h)=—-3-4 S X s/ _ zz s
") ( 20| F.0)  p(h) o?(h) F.0)e
1 o,(h)

C(h,)=-
* uh)F,0)/ ( R )
1 o,*h) h 09
G(hS)__u(hs) F O)c Xm ( S? )
V(h,)= o) F)

F,0)c F,0)k




Double couple RP & surface waves @

Love Rayleigh

———

vertical strike-slip.-

45° dipping strike-slip:

45° dipping oblique slip::

45° dip-slip (thrust)-

45° dip-slip (normal):: -

(xn (@) (xn(h.0)

<

vertical dip-slip:

wCos s
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Depth [km]

Methodology - Modal Summation Technique

@ Example of quantities associated with a structure

Cm mrn \/V

Structure: svalp
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Depth [km]

Methodology - Modal Summation Technique

Modes: 4- 4 Freq: 2.000- 2.000 End: 0 (svalp.spr)

Rayleigh Eigenfunctions

. Eigenfu nCtiOnS 15 0 S 0 5 10 15

0 0
ST 415
Modes: 4- 4 Freq: 1.500- 1.500 End: 0 (svalp.spr)
Rayleigh Eigenfunctions
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0 LI T T T 0 —
. ! e
2 10 | 4 10
=
o
a
5F 5
15 F 4 15
10 F 10
4 20 | 4 20
dispersed
15 | 15 0 10
Vp - Vs [km/s]
N\
not dispersed
20 | 4 20
u/w(0) ——
Vp : !
) L — 25 dispersed
0 2 4 6 8 10 P
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Methodology - Modal summation

@ Source definition and radiation pattern

Love Rayleigh

vertical strike-slip

—

45° dipping strike-slip

45° dipping oblique slip

45° dip-slip (thrust)

45° dip-slip (normal)

<

vertical dip-slip

eCoa s,



Methodology - Modal Summation Technique

. . ] = B34 gk (1 (hy,0)) (F, (20))
@ Synthetic seismograms o) = 2 R Jadn YVl

> g3/ gk (g (hy)) (Fi (20))

e 020) = o e e o T, T

> et gk (i (hy)) (F, (20))

U (X,2,0) = Y, —=— o
Radial Velocity Vertical Velocity Transverse Velocity m=1 877:@ '\/7 Cmvml m le m
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\\\\\\\\\\\
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Methodology - Modal Summation Technique

. . . oo e—|37r/4 e—lk X (%m(hs’w)) (F (Z,(D))
@ Synthetic seismograms R e N v I T

> g3/ gk (g (hy)) (Fi (20))

e e N A R A

> et gk (i (hy)) (F, (20))

@® Parametric tests

R
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Regional Scale - Modal Summation Technique

@ Earthquake scenarios for single events

s14f1tra.amx s14f1rad.amx

\ (cm/s%2 . y ’
o ’ ° o V (cm/s)
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Regional Scale - Modal Summation Technique

46°

@ Earthquake scenarios
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Source - Models

Point source ~ L
approximation | w5 —

D
>
2

Focal mechanism and radiation pattern

3.5
e A —180°
, s "\/\\\x_ﬁj Az=180 |
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(%] . .
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, (N Az=90" |
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2-dimensional final slip distribution over a source rectangle



