
Chapter 1

A�ne algebraic sets and Zariski

topology.

1.1 Introduction

The aim of this course is to introduce the notion of algebraic variety in the classical sense,

over a field K.

Roughly speaking, algebraic varieties are sets of solutions of a system of algebraic equa-

tions, i.e. equations given by polynomials. The natural space where to look at these solutions

seems to be the a�ne space, but one realizes that the projective ambient is more convenient.

On one hand the projective space extends the a�ne space and includes it naturally, on the

other hand the projective ambient allows to prove more general and complete results.

After introducing the notions of a�ne and projective varieties, we will study the notion of

dimension. Then we will introduce two kinds of transformations of algebraic varieties: regular

and rational maps. They give rise to two types of equivalence or isomorphism: biregular

isomorphism and birational equivalence, and therefore to two classification problems.

In this course we will see many examples of varieties, and of regular and rational maps.

In particular we will see some classes of varieties related to the notion of tensor (without

symmetries, symmetric, skew-symmetric); they are much studied because of many recent

applications in fields as control theory, signal transmission, etc. We will see also examples of

rational and unirational varieties, hopefully this will give a taste of the modern classification

problems. We will then study the notions of tangent space, and of smoothness.
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Classical algebraic geometry is the basis and gives the motivations for modern algebraic

geometry: from schemes, introduced by Grothendieck in the sixties of last century, to the

stacks, due to Mumford and Artin. All these notions are strongly based on commutative

algebra, i.e. the theory of commutative rings, in particular polynomial rings and their

quotients, local rings, and homological algebra.

The reference books I’ve chosen, all of which have become classics, have di↵erent flavours:

the book [S] of Šafarevič is complete and precise, and contains almost all algebraic notions

needed; Harris’ book [jH] has a more geometric flavour, proofs are not complete but there

are many many examples and ideas; Harthshorne’s book [rH], the “Bible” of algebraic ge-

ometry since its appearance, treats classical varieties quickly in the first chapter, then moves

to modern language, but always with an eye to classical problems. Further bibliographic

references will be recommended later, for particular topics or as in-depth reading.

Notation. The ideal generated by a set S will be denoted by hSi.

1.2 A�ne and projective spaces.

In this first section, we begin by fixing the ambient in which we will work: the a�ne and

the projective space over any field K. In particular we recall some basic facts about the

projective space.

Let K be a field. For us the a�ne space of dimension n over K will simply be the set

Kn : on it, the additive group of Kn acts naturally by translation. The a�ne space will be

denoted by An

K or simply An. So the points of An

K are n�tuples (a1, . . . , an), where ai 2 K

for i = 1, . . . , n.

Let V be aK�vector space of dimension n+1. Let V ⇤ = V \{0} be the subset of non–zero

vectors. The following relation in V ⇤ is an equivalence relation (relation of proportionality):

v ⇠ v0 if and only if 9� 6= 0,� 2 K, such that v0 = �v.

The quotient set V ⇤/⇠ is called the projective space associated to V and is denoted by

P(V ). The points of P(V ) are the lines in V (through the origin) deprived of the origin. In

particular, P(Kn+1) is denoted by Pn

K (or simply Pn) and called the numerical projective

n-space. By definition, the dimension of P(V ) is equal to dimV � 1.

There is a canonical surjection p : V ⇤
! P(V ) which maps a vector v to its equiv-

alence class [v]. If (x0, . . . , xn) 2 (Kn+1)⇤, we will denote the corresponding point of
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Pn by [x0, . . . , xn]. Another notation, used for instance in [S], is (x0 : . . . : xn). So

[x0, . . . , xn]=[x0

0, . . . , x
0

n] if and only if 9� 2 K⇤ such that x0

0 = �x0, . . . , x0

n = �xn.

If we fix a basis e0, . . . , en of V , then there is an associated system of homogeneous

coordinates in V , in the following way: if v = x0e0 + . . . + xnen, then x0, . . . , xn are called

homogeneous coordinates of the corresponding point P =[v]= p(v) in P(V ). We also write

P [x0, . . . , xn]. Note that homogeneous coordinates of a point P are not uniquely determined

by P , but are defined only up to multiplication by a non–zero constant. If dimV = n+ 1, a

system of homogeneous coordinates allows to define a bijection

P(V ) �! Pn

P = [v] �! [x0, . . . , xn]

where v = x0e0 + . . .+ xnen.

The points E0[1, 0, . . . , 0], . . . , En[0, 0, . . . , 1] are called fundamental points, and U [1, . . . , 1]

unit point of the given system of coordinates.

A projective (or linear) subspace of P(V ) is a subset of the form P(W ), where W ⇢ V is

a vector subspace of V .

If W,U are vector subspaces of V , the following Grassmann relation holds:

dimU + dimW = dim(U \W ) + dim(U +W ).

From this relation, observing that P(U \W ) = P(U) \ P(W ), we get in P(V ):

dimP(U) + dimP(W ) = dim(P(U) \ P(W )) + dimP(U +W ).

Note that P(U+W ) is the minimal linear subspace of P(V ) containing both P(U) and P(W ):

it is denoted P(U) + P(W ).

Example 1.2.1. Let V = K3
, P(V ) = P2

, U,W ⇢ K3
subspaces of dimension 2. Then

P(U),P(V ) are lines in the projective plane. There are two cases:

(i) U = W = U +W = U \W ;

(ii) U 6= W , dimU \W = 1, U +W = K3
.

In case (i) the two lines in P2
coincide; in case (ii) P(U) \ P(W ) = P(U \W ) = [v], if

v 6= 0 is a vector generating U \W. Observe that never P(U) \ P(W ) = ;.

What are the possible reciprocal positions of two lines in P3
? Of two planes? Of a line

and a plane?
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Let T ⇢ P(V ) be a non–empty set. The linear span hT i of T is the intersection of the

projective subspaces of P(V ) containing T , i.e. the minimum subspace containing T .

For example, assume that T = {P1, . . . , Pt} is a finite set, and that v1, . . . , vt are vectors

such that P1 = [v1], . . . , Pt = [vt]. Then hP1, . . . , Pti = P(W ), where W is the vector subspace

of V generated by v1, . . . , vt.

So dimhP1, . . . , Pti  t�1 and equality holds if and only if v1, . . . , vt are linearly indepen-

dent; in this case, also the points P1, . . . , Pt are called linearly independent. In particular, if

t = 2, two points are linearly independent if they generate a line; if t = 3, three points are

linearly independent if they generate a plane, etc. It is clear that, if P1, . . . , Pt are linearly

independent, then t  n+1, and any subset of {P1, . . . , Pt} is formed by linearly independent

points.

Definition 1.2.2 (Points in general position in Pn). P1, . . . , Pt are said to be in general

position if either t  n+1 and they are linearly independent, or t > n+1 and they are n+1

by n+ 1 linearly independent.

Proposition 1.2.3. The fundamental points E0, . . . , En and the unit point U of a sys-

tem of homogeneous coordinates on Pn
are n + 2 points in general position. Conversely, if

P0, . . . , Pn, Pn+1 are n + 2 points in general position, then there exists a system of homo-

geneous coordinates in which P0, . . . , Pn are the fundamental points and Pn+1 is the unit

point.

Proof. The proof is linear algebra. If e0, . . . , en is a basis, then clearly the n + 1 vectors

e0, . . . , êi, . . . , en, e0 + · · ·+ en are linearly independent: this proves the first claim. To prove

the second claim, we fix vectors v0, . . . , vn+1 such that Pi = [vi] for all i. So v0, . . . , vn is a

basis and there exist �0, . . . ,�n in K such that vn+1 = �0v0 + · · ·+ �nvn. The assumption of

general position easily implies that �0, . . . ,�n are all di↵erent from 0, hence �0v0, . . . ,�nvn
is a new basis such [�ivi] = Pi and Pn+1 is the corresponding unit point. ⇤

1.3 Embedding of the a�ne space in the projective

space

Let a system of homogeneous coordinates be fixed in Pn. We introduce the subspaces H0 =

hE1, . . . , Eni, H1 = hE0, E2, . . . , Eni, . . . , Hn = hE0, . . . , En�1i: they are n + 1 hyperplanes in

Pn (subspaces of codimension 1). Note that Hi is defined by the equation xi = 0. These

hyperplanes are called the fundamental hyperplanes.
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Let Ui = Pn
\Hi = {P [x0, . . . , xn] | xi 6= 0}. Note that Pn = U0 [ U1 [ . . . [ Un, because

no point in Pn has all coordinates equal to zero.

There is a map '0 : U0 �! An(= Kn) defined by

'0([x0, . . . , xn]) =
�x1

x0

, . . . ,
xn

x0

�
.

'0 is bijective and the inverse map is j0 : An
�! U0 such that j0(y1, . . . , yn) = [1, y1, . . . , yn].

So '0 and j0 establish a bijection between the a�ne space An and the subset U0 of the

projective space Pn. Similarly, there are maps 'i and ji for any i = 1, . . . , n, that establish

bijections between An and Ui. So Pn is covered by n+1 subsets, each one in natural bijection

with An.

There is a natural way of thinking of Pn as a completion of An; this is done by identifying

An with Ui via 'i, and by interpreting the points of Hi(= Pn
\Ui) as points at infinity of An,

or directions in An. We do this explicity for i = 0. First of all we identify An with U0 via '0

and j0. So if P [a0, . . . , an] 2 Pn, either a0 6= 0 and P 2 An, or a0 = 0 and P [0, a1, . . . , an] /2 An.

Then we consider in An the line L, passing through O(0, . . . , 0) and of direction given by the

vector (a1, . . . , an). The following are parametric equations of L:
8
>>><

>>>:

x1 = a1t

x2 = a2t

. . . . . .

xn = ant

with t 2 K. The points of L are identified (via j0) with the points of U0 with homogeneous

coordinates x0, . . . , xn given by: 8
>>><

>>>:

x0 = 1

x1 = a1t

x2 = a2t

. . . . . .

or equivalently, if t 6= 0, by: 8
>>><

>>>:

x0 =
1
t

x1 = a1

x2 = a2

. . . . . .

Now, roughly speaking, if t tends to infinity, this point “tends” to P [0, a1, . . . , an]. Clearly

this is not a rigorous argument, but just a hint to the intuition.

In this way Pn can be interpreted as An with the points at infinity added, each point at

infinity corresponding to one direction in An.
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Exercises 1.3.1. Let V be a vector space of finite dimension over a field K. Let V̌ denote

the dual of V , i.e. the space of linear forms (or functionals) on V . Prove that P(V̌ ) can be

put in bijection with the set of the hyperplanes of P(V ) (hint: the kernel of a non-zero linear

form on V is a subvector space of V of codimension one). P(V̌ ) is the dual projective space.

1.4 Algebraic sets.

Roughly speaking, algebraic subsets of the a�ne or of the projective space are sets of solutions

of systems of algebraic equations, i.e. common roots of sets of polynomials.

Examples of algebraic sets are: linear subspaces of both the a�ne and the projective

space, plane algebraic curves, quadrics, graphs of polynomials functions, . . .

Algebraic geometry is the branch of mathematics which studies algebraic sets (and their

generalizations). Our first aim is to give a formal definition of algebraic sets in the a�ne

space.

1.4.1 A�ne algebraic sets

LetK[x1, . . . , xn] be the polynomial ring in n variables over the fieldK. If P (a1, . . . , an) 2 An,

and F = F (x1, . . . , xn) 2 K[x1, . . . , xn], we can consider the value of F at P , i.e. F (P ) =

F (a1, . . . , an) 2 K. We say that P is a zero of F if F (P ) = 0.

For example the points P1(1, 0), P2(�1, 0), P3(0, 1) are zeros of F = x2
1 +x2

2 � 1 over any

field. If G = x2
1 + x2

2 + 1 then G has no zeros in A2
R, but does have zeros in A2

C.

Definition 1.4.1. A subset X of An

K
is an a�ne algebraic set, or an a�ne variety, if X is

the set of common zeros of a family of polynomials of K[x1, . . . , xn].

Remark. In some texts the term “variety” is reserved to the a�ne algebraic sets which are

irreducible. The notion of irreducible algebraic set will be introduced in Chapter 6.

X is an a�ne algebraic set means that there exists a subset S ⇢ K[x1, . . . , xn] such that

X = {P 2 An
| F (P ) = 0 8 F 2 S}.

In this case X is called the zero set of S and is denoted by V (S) (or in some books Z(S),

e.g. this is the notation of Hartshorne’s book [rH]). In particular, if S = {F}, then V (S)

will be denoted simply by V (F ).

Example 1.4.2. 1. S = K[x1, . . . , xn]: then V (S) = ;, because S contains non–zero

constants.
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2. S = {0}: then V (S) = An.

3. S = {xy � 1} : then V (xy � 1) is a hyperbola in the a�ne plane.

4. If S ⇢ T , then V (S) � V (T ).

5. V (F1, . . . , Fr) = V (F1) \ . . . \ V (Fr).

Let S ⇢ K[x1, . . . , xn] be a set of polynomials, let ↵ := hSi be the ideal generated by S.

Recall that ↵ = {finite sums of products of the form HF where F 2 S, H 2 K[x1, . . . , xn]}.

Proposition 1.4.3. Let ↵ = hSi. Then V (S) = V (↵).

Proof. From S ⇢ ↵ it follows that V (S) � V (↵).

Conversely, if P 2 V (S), let G =
P

i
HiFi be a polynomial of ↵ (Fi 2 S 8 i). Then

G(P ) = (
P

HiFi)(P ) =
P

Hi(P )Fi(P ) = 0. ⇤

Proposition 1.4.3 is important in view of the following:

Theorem 1.4.4 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then the polynomial

ring R[x] is Noetherian.

Proof. Assume by contradiction that R[x] is not Noetherian. Let I ⇢ R[x] be a non-finitely

generated ideal. Let f1 2 I be a non-zero polynomial of minimum degree. We define by

induction a sequence {fk}k2N of polynomials as follows: if fk (k � 1) has already been

chosen, let fk+1 be a polynomial of minimum degree in I \ hf1, . . . , fki. Let nk be the degree

of fk, and let ak be its leading coe�cient. Note that, due to the choice of fk, the chain of

the degrees is increasing: n1  n2  . . ..

We will prove now that ha1i ⇢ ha1, a2i ⇢ . . . is a chain of ideals, that does not become sta-

tionary: this will give the required contradiction. Indeed, if ha1, . . . , ari = ha1, . . . , ar, ar+1i

for some r, then ar+1 =
P

r

i=1 biai, for suitable bi 2 R. In this case, we consider the poly-

nomial g := fr+1 �
P

r

i=1 bix
nr+1�nifi: g belongs to I, but g /2 hf1, . . . , fri, and its degree is

strictly lower than the degree of fr+1: contradiction. ⇤

Corollary 1.4.5. Any a�ne algebraic set X ⇢ An
is the zero set of a finite number of

polynomials, i.e. there exist F1, . . . , Fr 2 K[x1, . . . , xn] such that X = V (F1, . . . , Fr).

Note that V (F1, . . . , Fr) = V (F1)\. . .\V (Fr), so every algebraic set is a finite intersection

of algebraic sets of the form V (F ), i.e. zeros of a unique polynomial F . If F = 0, then

V (0) = An; if F = c 2 K \ {0}, then V (c) = ;; if deg F > 0, then V (F ) is called a

hypersurface.
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1.4.2 The Zariski topology on the a�ne space

Proposition 1.4.6. The a�ne algebraic sets of An
satisfy the axioms of the closed sets of

a topology, called the Zariski topology.

Proof. It is enough to check that finite unions and arbitrary intersections of algebraic sets

are again algebraic sets.

Let V (↵), V (�) be two algebraic sets, with ↵, � ideals of K[x1, . . . , xn]. We recall that

the product ideal of ↵ and � is

↵� = {

X

finite

aibi | ai 2 ↵, bi 2 �}.

Then V (↵) [ V (�) = V (↵ \ �) = V (↵�). Indeed: ↵� ⇢ ↵ \ � so V (↵ \ �) ⇢ V (↵�), and

both ↵\� ⇢ ↵ and ↵\� ⇢ � so V (↵)[V (�) ⇢ V (↵\�). Assume now that P 2 V (↵�) and

P /2 V (↵): hence 9F 2 ↵ such that F (P ) 6= 0; on the other hand, if G 2 � then FG 2 ↵�

so (FG)(P ) = 0 = F (P )G(P ), which implies G(P ) = 0.

Let V (↵i), i 2 I, be a family of algebraic sets, ↵i ⇢ K[x1, . . . , xn]. Then \i2IV (↵i) =

V (
P

i2I
↵i), where

P
i2I

↵i is the sum ideal of ↵0

is. Indeed ↵i ⇢
P

i2I
↵i 8i, hence V (

P
i
↵i) ⇢

V (↵i) 8i and V (
P

i
↵i) ⇢ \iV (↵i). Conversely, if P 2 V (↵i) 8i, and F 2

P
i
↵i, then

F =
P

i
Fi; therefore F (P ) =

P
Fi(P ) = 0. ⇤

Example 1.4.7. 0. Every point of An is closed in the Zariski topology, indeed A =

(a1, . . . , an) = V (x1 � a1, . . . , xn � an).

1. The Zariski topology on the a�ne line A1.

Let us recall that the polynomial ring K[x] in one variable is a PID (principal ideal

domain), so every ideal I ⇢ K[x] is of the form I = hF i. Hence every closed subset of A1

is of the form X = V (F ), the set of zeros of a unique polynomial F (x). If F = 0, then

V (F ) = A1, if F = c 2 K⇤, then V (F ) = ;, if degF = d > 0, then F can be decomposed

in linear factors in the polynomial ring over the algebraic closure of K; it follows that V (F )

has at most d points.

We conclude that the closed sets in the Zariski topology of A1 are: A1, ; and the finite

sets.

2. If K = R or C, then the Zariski topology and the Euclidean topology on An

K
can be

compared, and it results that the Zariski topology is coarser. Indeed every open set in the

Zariski topology is open also in the usual topology. Let X = V (F1, . . . , Fr) be a closed set

in the Zariski topology, and U := An
\X; if P 2 U , then 9 Fi such that Fi(P ) 6= 0, so there

exists an open neighbourhood of P in the usual topology in which Fi does not vanish.
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Conversely, there exist closed sets in the usual topology which are not Zariski closed, for

example the balls. The first case, of an interval in the real a�ne line, follows from part 1.

1.4.3 Projective algebraic sets

We want to define now the projective algebraic sets, or projective varieties, in Pn.

The idea is the same as in the a�ne space: a projective variety is the set of solutions

of a system of polynomial equations. The di↵erence is that a point in the projective space

does not have a well defined set of coordinates: homogeneous coordinates are defined only

up to proportionality. So it may happen that, given a polynomial F and a point P 2 Pn

with homogeneous coordinates [x0, . . . , xn], the n-tuple x0, . . . , xn is a zero of F , but other

proportional n-tuples of the form [�x0, . . . ,�xn] are not.

To give a good definition, we have to consider only homogeneous polynomials, because

for them the problem does not occur. Otherwise, to say that a point p 2 Pn is a zero

of a polynomial F , we must ask that it annihilates F for each choice of its homogeneous

coordinates.

Let’s now formalize what I have anticipated.

Let K[x0, x1, . . . , xn] be the polynomial ring in n + 1 variables. If we fix a polynomial

G(x0, x1, . . . , xn) 2 K[x0, x1, . . . , xn] and a point P [a0, a1, . . . , an] 2 Pn, then, in general,

G(a0, . . . , an) 6= G(�a0, . . . ,�an),

so the value of G at P cannot be defined.

Example 1.4.8. Let G = x1 + x0x1 + x2
2 , P [0, 1, 2] = [0, 2, 4] 2 P2

R. So G(0, 1, 2) = 1 + 4 6=

G(0, 2, 4) = 2+16. But if Q = [1, 0, 0] = [�, 0, 0], then G(1, 0, 0) = G(�, 0, 0) = 0 for each �.

Definition 1.4.9 (Homogeneous polynomials). Let G 2 K[x0, x1, . . . , xn]: G is homogeneous

of degree d, or G is a form of degree d, if G is a linear combination of monomials of degree

d.

Lemma 1.4.10. If G is homogeneous of degree d, G 2 K[x0, x1, . . . , xn], and t is a new

variable, then G(tx0, . . . , txn) = tdG(x0, . . . , xn).

Proof. It is enough to prove the equality for monomials, i.e. for

G = axi0
0 x

i1
1 . . . xin

n with i0 + i1 + · · ·+ in = d :

G(tx0, . . . , txn) = a(tx0)i0(tx1)i1 . . . (txn)in = ati0+i1+···+inxi0
0 x

i1
1 . . . xin

n =

= tdG(x0, . . . , xn). ⇤
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Definition 1.4.11. Let G be a homogeneous polynomial of K[x0, x1, . . . , xn]. A point

P [a0, . . . , an] 2 Pn is a zero of G if G(a0, . . . , an) = 0. In this case we write G(P ) = 0.

Note that by Lemma 1.4.10 if G(a0, . . . , an) = 0, then

G(�a0, . . . ,�an) = �degGG(a0, . . . , an) = 0

for every choice of � 2 K⇤. (Remind: K⇤ denotes K \ {0}.)

Definition 1.4.12. A subset Z of Pn is a projective algebraic set, or a projective variety, if

Z is the set of common zeros of a set of homogeneous polynomials of K[x0, x1, . . . , xn].

If T ⇢ K[x0, x1, . . . , xn] is any subset formed by homogeneous polynomials, then the

corresponding algebraic set will be denoted by VP (T ).

1.5 Graded rings and homogeneous ideals

We want now to give an interpretation of projective varieties as sets of zeros of ideals, as we

did in the a�ne case, see Proposition 1.4.3. But of course the ideal generated by a family of

homogeneous polynomials contains also polynomials that are not homogeneous.

Let ↵ = hT i be the ideal generated by the polynomials of T , all assumed to be homoge-

neous. For any F 2 ↵, there is en expression F =
P

i
HiFi, Fi 2 T .

So if P [a0, . . . , an] 2 VP (T ), then

F (a0, . . . , an) =
X

Hi(a0, . . . , an)Fi(a0, . . . , an) = 0

for any choice of coordinates of P , regardless if F is homogeneous or not. We say that P is

a projective zero of F .

We want to formalize this situation in the context of the graded rings, of which the

polynomial rings are a prototype. In particular in a graded ring there will be a situation

similar to the following one: if F is a polynomial, then F can be written in a unique way

as a sum of homogeneous polynomials, called the homogeneous components of F : F =

F0 + F1 + · · ·+ Fd, where, for any index i, either the degree of Fi is equal to i, or Fi = 0.

We give the following definition:
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Definition 1.5.1. Let A be a ring (as usual assumed to be commutative with unit). A is

called a graded ring over Z if there exists a family of additive subgroups of A, {Ai}i2Z, such

that:

(i) A = �i2ZAi; and

(ii) AiAj ⇢ Ai+j for any pair of indices.

The elements of Ai are called homogeneous of degree i, and Ai is the homogeneous com-

ponent of A of degree i. Condition (i) regards the additive structure of A; it means that

any element a of A has a unique finite expression a = ⌃i2Zai, finite sum of homogeneous

elements. Condition (ii) regards the multiplicative structure: a product of homogeneous

elements is homogeneous of degree the sum of the degrees. Notice that 0 belongs to all

homogeneous components of A.

The standard example of graded ring is the polynomial ring with coe�cients in a ring R.

R is the homogeneous component of degree 0, the variables have all degree 1. In this case

the homogeneous components of negative degrees are all zero.

Proposition 1.5.2 (Proposition - Definition of homogeneous ideal). Let I ⇢ A be an ideal

of a graded ring. I is called homogeneous if the following equivalent conditions are fulfilled:

(i) I is generated by homogeneous elements (this means: there is a system of generators

formed by homogeneous elements);

(ii) I = �k2Z(I \ Ak), i.e. if F = ⌃k2ZFk 2 I, then all homogeneous components Fk of F

belong to I.

Proof of the equivalence. “ (ii))(i)”: given a system of generators of I, write each of them as

sum of its homogeneous components: Fi = ⌃k2ZFik. Then a set of homogeneous generators

of I is formed by all the elements Fik.

“ (i))(ii)”: let I be generated by a family of homogeneous elements {G↵}, with degG↵ =

d↵. If F 2 I, then F is a combination of the elements G↵ with suitable coe�cients H↵; write

each H↵ as sum of its homogeneous components: H↵ = ⌃H↵k. Note that the product H↵kG↵

is homogeneous of degree k+d↵. By the unicity of the expression of F as sum of homogeneous

elements, it follows that all of them are combinations of the generators {G↵} and therefore

they belong to I. ⇤

Let I ⇢ K[x0, x1, . . . , xn] be a homogeneous ideal. Note that, by the noetherianity, I

admits a finite set of homogeneous generators.
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Let P [a0, . . . , an] 2 Pn. If F 2 I, F = F0 + · · · + Fd, then F0 2 I, . . . , Fd 2 I. We say

that P is a zero of I if P is a projective zero of any polynomial of I or, equivalently, of

any homogeneous polynomial of I. This also means that P is a zero of any homogeneous

polynomial of a set generating I. The set of zeros of I will be denoted VP (I): all projective

algebraic subsets of Pn are of this form.

As in the a�ne case, the projective algebraic subsets of Pn satisfy the axioms of the

closed sets of a topology, called the Zariski topology of Pn. This time the empty set can be

expressed as VP (1), as well as VP (x0, . . . , xn): indeed the n-tuple [0, ..., 0] is not a point of

Pn. As for the other axioms of closed sets, the idea is always the same: the equations of the

intersection of a family of algebraic sets are the union of all the equations, while the union

of two algebraic sets X and Y is defined by all the possible products of two equations, one

of X and the other of Y .

From the point of view of ideals, it is useful to make the following remark, whose proof

follows from Proposition 1.5.2. Let I, J be homogeneous ideals of K[x0, x1, . . . , xn]. Then I+

J , IJ and I\J are homogeneous ideals. Indeed both I and J are generated by homogeneous

polynomials, I + J is generated by the union of all of them, IJ is generated by products of

two of them, one in I and the other in J , so in both cases by homogeneous polynomials. For

I \ J it is enough to use Proposition 1.5.2 (ii).

Note that also all subsets of An and Pn have a structure of topological space, with the

induced topology, which is still called the Zariski topology.

Exercises 1.5.3. 1. Let F 2 K[x1, . . . , xn] be a non–constant polynomial. The set An
\

V (F ) will be denoted An

F
. Prove that {An

F
| F 2 K[x1, . . . , xn] \K} is a topology basis

for the Zariski topology.

2. Let B ⇢ Rn be a ball. Prove that B is not Zariski closed.

3. Prove that the map ' : A1
! A3 defined by t ! (t, t2, t3) is a homeomorphism between

A1 and its image, for the Zariski topology.

4. Let X ⇢ A2
R be the graph of the map R ! R such that x ! sin x. Is X closed in the

Zariski topology? (hint: intersect X with a line....)
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