Corso di Oncologia Molecolare

AA 2020-2021

HALLMARK del cancro #1:

L'ACQUISIZIONE DELL'INDIPENDENZA DAI SEGNALI PROLIFERATIVI

Le mutazioni driver conferiscono VANTAGGI SELETTIVI alterando il bilancio tra proliferazione/sopravvivenza e morte/senescenza/differenzia mento

L'indipendenza proliferativa può dipendere da alterazioni a carico di diverse pathways

- RISPOSTA AI FATTORI MITOGENI
- TRANSIZIONE G1/S DEL CICLO CELLULARE

Geni del cancro che hanno un impatto sull'indipendenza dai segnali proliferativi

Oncogeni: promuovono la proliferazione e la staminalità, inibiscono il differenziamento

(e.g. RAS, Raf, Myc, PI3K, beta-catenina, cycD1)

Oncosoppressori:	
gatekeepers:	Inibiscono la proliferazione, promuovono il differenziamento (e.g. pRB, APC, PTEN)

Regolazione del ciclo cellulare da stimoli extracellulari

Figure 8.35 The Biology of Cancer (© Garland Science 2007)

Circuiti molecolari che regolano la risposta ai fattori mitogeni

Circuiti molecolari che regolano la risposta ai fattori mitogeni

Esempi di mutazioni driver nelle vie di trasduzione attivate in risposta a GF

Attivazione dei recettori tirosina chinasici (RTK)

FIGURA 10.13

Modalità di attivazione dei recettori di membrana dotati di attività tirosina chinasica. Il legame del fattore di crescita induce la dimerizzazione del recettore e la sua transfosforilazione (cioè i due dimeri recettoriali si fosforilano a vicenda). Molecole segnale citoplasmatiche che contengono domini capaci di riconoscere la tirosina fosforilata possono quindi legarsi al recettore attivato e iniziare la trasduzione del segnale. Y: tirosina; P: fosfato.

I recettori RTK legano specifici fattori di crescita su diverse cellule bersaglio

Table 5.2 Tyrosine kinase GF receptors altered in human tumors^a

Name of receptor	Main ligand	Type of alteration	Types of tumor
EGF-R/ErbB1	EGF, TGF-α	overexpression	non-small cell lung cancer; breast, head and neck, stomach, colorectal, esophageal, prostate, bladder, renal, pancreatic, and ovarian carcinomas; glioblastoma
EGF-R/ErbB1		truncation of ectodomain	glioblastoma, lung and breast carcinomas
ErbB2/HER2/Neu	NRG, EGF	overexpression	30% of breast adenocarcinomas
ErbB3, 4	various	overexpression	oral squamous cell carcinoma
Flt-3	FL	tandem duplication	acute myelogenous leukemia
Kit	SCF	amino acid substitutions	gastrointestinal stromal tumor
Ret		fusion with other proteins, point mutations	papillary thyroid carcinomas, multiple endocrine neoplasias 2A and 2B
FGF-R3	FGF	overexpression; amino acid substitutions	multiple myeloma, bladder and cervical carcinomas

^aSee also Figure 5.17.

RTK della famiglia del EGFR

Sovraespressione di HER1/EGFR in tumori H&N, colorectal, NSLC, stomach...

W. Bou-Assaly, and S. Mukherji AJNR Am J Neuroradiol 2010;31:626-627

W. Bou-Assaly, and S. Mukherji AJNR Am J Neuroradiol 2010;31:626-627

Sovraespressione di HER-2/Neu nel 30% dei BC

HER-2 si trova sovraespresso nel 30% dei BC

Sovraespressione di HER-2 correla con prognosi negativa nel BC

Cetuximab: mAb che blocca EGFR

W. Bou-Assaly, and S. Mukherji AJNR Am J Neuroradiol

Meccanismi di attivazione di proto-oncogeni

Her2-Neu, ErbB, Ras, Raf

Figure 25-16 Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company

Terapie basate su inibitori farmacologici degli RTK

Terapie basate sull'inibizione delle pathway RTK

Molecular Cell Biology, Sixth Edition © 2008 W.H. Freeman and Company

Figure 16-20 part 2 Molecular Cell Biology, Sixth Edition © 2008 W. H. Freeman and Company

© 2008 W. H. Freeman and Company

La GTPasi Ras è un nodo cruciale nelle pathways di trasduzione dei segnali mitogenici

Ras signaling pathways

Figure 6.14 The Biology of Cancer (© Garland Science 2007)

30

Ras è un gene frequentemente mutato in molti tumori umani

Primary tissue	HRAS				KRAS		NRAS			Pan-Ras
	+	n	%	+	n	%	+	n	%	%
Adrenal gland	1	135	<1%	1	210	<1%	7	170	4%	5%
Autonomic ganglia	0	63	0%	2	63	3%	7	102	7%	10%
Biliary tract	0	151	0%	460	1,471	31%	3	213	1%	33% <
Bone	3	147	2%	2	165	1%	0	143	0%	3%
Breast	5	542	<1%	20	544	4%	7	330	2%	7%
Central nervous system	0	942	0%	8	1,032	<1%	8	995	<1%	2%
Cervix	23	264	9%	46	637	7%	2	132	2%	17%
Endometrium	3	291	1%	298	2,108	14%	1	279	<1%	16%
Hematopoietic/lymphoid	8	3,074	<1%	277	5,757	5%	877	8,540	10%	15%
Kidney	1	273	<1%	4	617	<1%	2	435	<1%	1%
Large intestine	2	617	<1%	9,671	29,183	33%	26	1,056	3%	36% 1
Liver	0	270	0%	21	450	5%	8	310	3%	7%
Lung	9	1,957	<1%	2,533	14,632	17%	26	2,678	1%	19% 1
Esophagus	2	161	1%	13	359	4%	0	161	0%	5%
Ovary	0	94	0%	406	2,934	14%	5	111	5%	18%
Pancreas	0	221	0%	3,127	5,169	61%	5	248	2%	63%
Prostate	29	500	6%	82	1,024	8%	8	530	2%	15%
Salivary gland	24	161	15%	5	170	3%	0	45	0%	18%
Skin	120	1,940	6%	38	1,405	3%	858	4,742	18%	27% 📢
Small intestine	0	5	0%	62	316	20%	0	5	0%	20%
Stomach	14	384	4%	163	2,571	6%	5	215	2%	12%
Testis	5	130	4%	17	432	4%	8	283	3%	11%
Thymus	1	46	2%	4	186	2%	0	46	0%	4%
Thyroid	117	3,601	3%	137	4,628	3%	312	4,126	8%	14%
Upper aerodigestive tract	101	1,083	9%	52	1,535	3%	24	807	3%	16%
Urinary tract	138	1,242	11%	29	591	5%	9	398	2%	18%
Total	606	18,294	3%	17,478	78,189	22%	2,208	27,100	8%	16%

Most cancer types favor mutation of a single isoform (typically K-Ras). Data are collated from COSMIC v52 release. +, the number of tumors observed with the mutant Ras; n, the number of unique samples screened.

Weinberg The Biology of Cancer, 3rd edition

Le mutazioni di Ras riducono l'attenuazione della pathway mitogenica riducendo l'attività GTP-asica

Prior I A et al. Cancer Res 2012;72:2457-2467

Le mutazioni di Ras riducono l'attenuazione della pathway mitogenica riducendo l'attività GTP-asica

Le proteine Ras GAP sono oncosoppressori

Function of the monomeric Ras G protein in cell signal transduction.

NF1 (neurofibromin): An important tumor suppressor in familial and sporadic cancers

neurofibromatosis: familial cancer syndrome Benign neurofibromas (peripheral neural system) that occasionally may progress into neurofibrosarcomas + risk of other cancer types

DAB2IP: A tumor and metastasis suppressor that functions by concurrently regulating different oncogenic pathways

RASAL2: another tumor and metastasis suppressor

p120 RAS GAP and RASAL1: mutated in some cancers

Eventi che promuovono la proliferazione cellulare nei tumori

Attivazione delle RTK pathways nel cancro e terapie mirate

Mabs

Trastuzumab Inibitori delle tirosina chinasi EGFR inhibitors: Erlotinib Gefitinib Block ATP-binding site

Meccanismi di resistenza a questi agenti dipendono da mutazioni a carico dei recettori stessi e/o di componenti a valle nelle pathways di risposta ai GF e.g. Ras, Raf, PI3K, PTEN

Le mutazioni di Ras che ne inibiscono l'attività GTPasica riducono l'attenuazione dei segnali mitogeni

Ras FTI inhibitors

Nell'uomo, Ras è modificato anche dall'enzima **geranil-geranil-transferasi**. L'utilizzo di **GGTI** è promettente perchè blocca anche l'attivazione di altre GTPasi di membrana tra cui RhoA

Ras downstream signaling pathways

Mutazioni della chinasi B-RAF si osservano in ~ 50% dei melanomi cutanei

Inibitori della chinasi RAF (Vemurafenib, Sorafenib, Dabrafenib)

Adapted from Chapman PB et al. Proc ASCO 2011; Abstract LBA4.

NB Sorafenib è un multikinase inhibitor

Ras downstream signaling pathways

