
Chapter 2

Examples of algebraic varieties.

2.1 Points

In the Zariski topology both in An and in Pn all points are closed. If P (a1, . . . , an) 2 An,

then P = V (x1 � a1, . . . , xn � an). But in the projective space, if P [a0, . . . , an] 2 Pn, the

equations are di↵erent: P = VP (aixj � ajxi)i,j=0,...,n. In this way the polynomials defining P

as closed set are homogeneous. They can be seen as minors of order 2 of the matrix
 
a0 a1 . . . an

x0 x1 . . . xn

!

with entries in K[x0, x1, . . . , xn]. This expresses the fact that x0, . . . , xn are proportional to

a0, . . . , an. Equations of the form VP (x0 � a0, . . . , xn � an) don’t make sense.

2.2 A�ne and projective linear subspaces.

Generalizing the previous example, the linear subspaces, both in the a�ne and in the projec-

tive case, are examples of algebraic sets. As it is well known, they are defined by equations

of degree 1.

2.3 Hypersurfaces

An a�ne hypersurface is an a�ne variety of the form V (F ), the set of zeros of a unique

polynomial F of positive degree. Similarly, in the projective space, a projective hypersurface

is of the form VP (G), where G 2 K[x0, x1, . . . , xn] is a homogeneous non-constant polynomial.
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Examples of hypersurfaces are the curves in the a�ne or projective plane, and the surfaces

in a space of dimension 3, as for instance the quadrics.

Let us recall that the polynomial ring K[x1, . . . , xn] is a UFD (unique factorization do-

main), i.e., every non-constant polynomial F can be expressed in a unique way (up to the

order and up to units) as F = F r1
1 F r2

2 . . . F rs
s , where F1, . . . , Fs are irreducible and two by

two distinct polynomials, and ri � 1 for any i = 1, . . . , s. Hence the hypersurface of An

defined by F is

X := V (F ) = V (F r1
1 F r2

2 . . . F rs
s ) = V (F1F2 . . . Fs) = V (F1) [ V (F2) [ · · · [ V (Fs).

The equation F1F2 . . . Fs = 0 is called the reduced equation of X. Note that F1F2 . . . Fs

generates the radical
p
F . If s = 1, X is called an irreducible hypersurface; by definition its

degree is the degree of its reduced equation. Therefore, any hypersurface is a finite union of

irreducible hypersurfaces.

Assume now that Z = VP (G), with G 2 K[x0, x1, . . . , xn], G homogeneous, is a projective

hypersurface. Exercise 3 asks to prove that the irreducible factors of G are homogeneous.

Therefore, as in the a�ne case, each projective hypersurface Z has a reduced equation (whose

degree is, by definition, the degree of Z) and Z is a finite union of irreducible hypersurfaces.

If the field K is algebraically closed, the degree of a projective hypersurface has the

following important geometrical meaning.

Proposition 2.3.1. Let K be an algebraically closed field. Let Z ⇢ Pn
be a projective

hypersurface of degree d. Then any line in Pn
, not contained in Z, meets Z at exactly d

points, counting multiplicities.

In the proof we will see what we mean by saying “ counting multiplicity”.

Proof. Let G be the reduced equation of Z and L ⇢ Pn be any line.

We fix two points on L: A = [a0, . . . , an], B = [b0, . . . , bn]. So L admits parametric

equations of the form 8
>>><

>>>:

x0 = �a0 + µb0
x1 = �a1 + µb1
. . .

xn = �an + µbn

The points of Z \ L are obtained from the homogeneous pairs [�, µ] which are solutions

of the equation G(�a0+µb0, . . . ,�an+µbn) = 0. If L ⇢ Z, then this equation is an identity.
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Otherwise, G(�a0+µb0, . . . ,�an+µbn) is a non-zero homogeneous polynomial of degree d in

the two variables �, µ. Since K is algebraically closed, it can be factorized in linear factors:

G(�a0 + µb0, . . . ,�an + µbn) = (µ1�� �1µ)
d1(µ2�� �2µ)

d2 . . . (µr�� �rµ)
dr

with d1+d2+ . . .+dr = d. Every factor corresponds to a point in Z \L, to be counted with

the same multiplicity as the corresponding factor.

⇤

If K is not algebraically closed, considering the algebraic closure of K and using Propo-

sition 2.3.1, we get that d is an upper bound on the number of points of Z \ L.

2.4 Product of a�ne spaces

Let An, Am be two a�ne spaces over the field K. The cartesian product An
⇥Am is the set

of pairs (P,Q), P 2 An, Q 2 Am: it is in natural bijection with An+m via the map

' : An
⇥ Am

�! An+m

such that '((a1, . . . , an), (b1, . . . , bm)) = (a1, . . . , an, b1, . . . , bm).

From now on we will always identify An
⇥ Am with An+m. Therefore we have two

topologies on An
⇥ Am: the Zariski topology of An+m and the product topology of the

Zariski topologies of An and Am.

Proposition 2.4.1. The Zariski topology is strictly finer than the product topology.

Proof. Let us first observe that, if X = V (↵) ⇢ An, ↵ ⇢ K[x1, . . . , xn] and Y = V (�) ⇢ Am,

� ⇢ K[y1, . . . , ym], then X ⇥ Y ⇢ An
⇥ Am is Zariski closed, precisely X ⇥ Y = V (↵ [ �)

where the union is made in the polynomial ring in n+m variables K[x1, . . . , xn, y1, . . . , ym].

Now we consider U = An
\X and V = Am

\ Y , open subsets of An and Am in the Zariski

topology. Then U ⇥ V = An
⇥ Am

\ ((An
⇥ Y ) [ (X ⇥ Am)): this is a set-theoretical fact

that holds true in general. So it is open in An
⇥ Am in the Zariski topology.

Conversely, we give an example to prove that the two topologies are di↵erent. Precisely

we show that A1
⇥A1 = A2 contains some subsets which are Zariski open, but are not open

in the product topology.

The proper open subsets in the product topology are of the form A1
⇥A1

\{ finite unions

of “ vertical” and “ horizontal” lines}. See the figure.
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Let X = A2
\ V (x � y): it is Zariski open but does not contain any non-empty subset

of the above form, so it is not open in the product topology. There are similar examples in

An
⇥ Am for any n,m. ⇤

Note that there is no similar construction for Pn
⇥ Pm. We will see in Chapter 13.1 that

there is an injective map, the Segre map, of Pn
⇥ Pm to the projective space of dimension

(n + 1)(m + 1) � 1, whose image is a projective variety. This allows to give a geometric

structure to the product of projective spaces . We see here only the first case.

2.5 P1
⇥ P1

The cartesian product P1
⇥P1 is simply a set, but we are going to define an injective map �

from P1
⇥ P1 to P3, whose image will be a projective variety: it will be identified with our

product, and this will allow to interpret P1
⇥ P1 as a projective variety.

The map � is defined in the following way: �([x0, x1], [y0, y1]) = [x0y0, x0y1, x1y0, x1y1].

Using coordinates z0, ..., z3 in P3, � is defined parametrically by

8
>>>>><

>>>>>:

z0 = x0y0

z1 = x0y1

z2 = x1y0

z3 = x1y1

It is easy to observe that � is a well–defined map: the image is never [0, 0, 0, 0], and

depends uniquely on the pair of points and not on the choice of their coordinates. Moreover

� is injective. Assume that �([x0, x1], [y0, y1]) = �([x0

0, x
0

1], [y
0

0, y
0

1]). Then there exists a

non-zero constant � such that 8
>>>>><

>>>>>:

x0y0 = �x0

0y
0

0

x0y1 = �x0

0y
0

1

x1y0 = �x0

1y
0

0

x1y1 = �x0

1y
0

1

Now, if y0 6= 0, then x0 = (�y00/y0)x
0

0 and x1 = (�y00/y0)x
0

1; if y1 6= 0, then x0 = (�y01/y1)x
0

0

and x1 = (�y01/y1)x
0

1; in both cases [x0, x1] = [x0

0, x
0

1]. Similarly one proves that [y0, y1] =

[y00, y
0

1].

Let ⌃ denote the image �(P1
⇥ P1). It is the quadric of equation z0z3 � z1z2 = 0; in-

deed, on one hand it is clear that �(P1
⇥ P1) ⇢ VP (z0z3 � z1z2); conversely, assume that

20



z0z3 = z1z2 and z0 6= 0. Then, multiplying all coordinates by z0, we get: [z0, z1, z2, z3] =

[z20 , z0z1, z0z2, z0z3]; by assumption this coincides with [z20 , z0z1, z0z2, z1z2], and is therefore

equal to �([z0, z2], [z0, z1]). If z0 = 0, the argument is similar, using another non-zero coor-

dinate.

The map � is called the Segre map and ⌃ the Segre variety. The name comes from the

Italian mathematician Corrado Segre (Torino, 1863–1924), the “father” of the Italian school

of algebraic geometry.

2.6 Embedding of An in Pn.

We will see now how to unify the two notions introduced so far of a�ne and projective

variety. Precisely, after identifying An with the open subset U0 ⇢ Pn (or with any Ui) (as

in Section 1.3), we will prove that the Zariski topology on An coincides with the topology

induced by the Zariski topology on Pn.

Let Hi be the hyperplane of Pn of equation xi = 0, i = 0, . . . , n; it is closed in the

Zariski topology, and its complementar set Ui is open. So we have an open covering of Pn:

Pn = U0 [ U1 [ · · · [ Un. Let us recall that for any i there is a bijection 'i : Ui ! An such

that 'i([x0, . . . , xi, . . . , xn]) = (x0
xi
, . . . , 1̂, . . . , xn

xi
). The inverse map is ji : An

! Ui such that

ji(y1, . . . , yn) = [y1, . . . , 1, . . . , yn].

Proposition 2.6.1. The map 'i is a homeomorphism, for i = 0, . . . , n.

Proof. Assume i = 0 (the other cases are similar).

We introduce two maps:

(i) dehomogeneization of polynomials with respect to x0.

It is a map a : K[x0, x1, . . . , xn] ! K[y1, . . . , yn] such that

a(F (x0, . . . , xn)) =
aF (y1, . . . , yn) := F (1, y1, . . . , yn).

Note that a is a ring homomorphism.

(ii) homogeneization of polynomials with respect to x0.

It is a map h : K[y1, . . . , yn] ! K[x0, x1, . . . , xn] defined by

h(G(y1, . . . , yn)) =
hG(x0, . . . , xn) := xdegG

0 G(
x1

x0

, . . . ,
xn

x0

).

21



hG is always a homogeneous polynomial of the same degree as G. The map h is clearly not

a ring homomorphism. Note that always a(hG) = G but in general h(aF ) 6= F ; what we can

say is that, if F (x0, . . . , xn) is homogeneous, then there exists r � 0 such that F = xr

0(
h(aF )).

Let X ⇢ U0 be closed in the topology induced by the Zariski topology of the projective

space, i.e. X = U0 \ VP (I) where I is a homogeneous ideal of K[x0, x1, . . . , xn]. Define aI =

{
aF | F 2 I}: it is an ideal of K[y1, . . . , yn] (because a is a ring homomorphism). We prove

that '0(X) = V (aI). Indeed, let P [x0, . . . , xn] be a point of U0; then '0(P ) = (x1
x0
, . . . , xn

x0
) 2

'0(X) () P [x0, . . . , xn] = [1, x1
x0
, . . . , xn

x0
] 2 X = VP (I) () F (1, x1

x0
, . . . , xn

x0
) = 0 8

aF 2

aI () '0(P ) 2 V (aI).

Conversely: let Y = V (↵) be a Zariski closed subset of An, where ↵ is an ideal of

K[y1, . . . , yn]. Let h↵ be the homogeneous ideal of K[x0, x1, . . . , xn] generated by the set

{
hG | G 2 ↵}. We prove that '�1

0 (Y ) = VP (h↵) \ U0. Indeed [1, x0, . . . , xn] 2 '�1
0 (Y ) ()

(x1, . . . , xn) 2 Y () G(x1, . . . , xn) = hG(1, x1, . . . , xn) = 0 8 G 2 ↵ () [1, x1, . . . , xn] 2

VP (h↵). ⇤

From now on we will often identify An with U0 via '0 (and similarly with Ui via 'i). So

if P [x0, . . . , xn] 2 U0, we will refer to x0, . . . , xn as the homogeneous coordinates of P and to
x1
x0
, . . . , xn

x0
as the non–homogeneous or a�ne coordinates of P .

Exercises 2.6.2. It will be useful to remember that any algebraically closed field is infinite.

1. Assume that K is an algebraically closed field.

a) Prove that, if n � 1, then in An

K
the complementar set of any hypersurface has

infinitely many points.

b) Prove that, if n � 2, then also any hypersurface has infinitely many points.

2. Prove that the Zariski topology on An is T1.

3. Let F 2 K[x0, x1, . . . , xn] be a homogeneous polynomial. Check that its irreducible

factors are homogeneous. (Hint: prove that a product of two polynomials not both

homogeneous is not homogeneous.)

Solution of Exercise 1.

Let the hypersurface in question be defined by F (x1, . . . , xn) = 0, F non constant. We

can assume that the variable xn occurs in F . So we have an expression

F = f0 + f1xn + · · ·+ fdx
d

n
,
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with fi 2 K[x1, . . . , xn�1] 8i, d > 0 and fd 6= 0.

a) For this first part it is enough to assume that K is an infinite field. We proceed by

induction on the number of variables. If n = 1, the statement is true because K is infinite.

Let n > 1: by the inductive assumption, there exist infinitely many (a1, . . . , an�1) 2 Kn�1

such that fd(a1, . . . , an�1) 6= 0. Then for any such (n� 1)-tuple F (a1, . . . , an�1, xn) is a non-

zero polynomial of degree d > 0 in K[xn]: it has finitely many zeros, so there are infinitely

many an 2 K such that F (a1, . . . , an�1, an) 6= 0.

b) As in a), there exist infinitely many (a1, . . . , an�1) 2 Kn�1 such that fd(a1, . . . , an�1) 6=

0. Since K is algebraically closed, for each of these (a1, . . . , an�1) there is at least one an 2 K

such that F (a1, . . . , an�1, an) = 0.
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Chapter 3

The ideal of an algebraic set and the

Hilbert Nullstellensatz.

3.1 The ideal of an algebraic set

Let X ⇢ An be an a�ne variety, X = V (↵), where ↵ ⇢ K[x1, . . . , xn] is an ideal.

The ideal ↵ defining X is not unique. We have already made this observation in the case

of the hypersurfaces (Section 2.3). For another example, let O = {(0, 0)} ⇢ A2 be the origin;

then O = V (x1, x2) = V (x2
1 , x2) = V (x2

1 , x
3
2) = V (x2

1 , x1x2, x2
2) = . . . Nevertheless, there is

an ideal we can canonically associate to X: the biggest one among the ideals defining it.

We give the following definition:

Definition 3.1.1. Let Y ⇢ An be any set. The ideal of Y is

I(Y ) = {F 2 K[x1, . . . , xn] | F (P ) = 0 for any P 2 Y } = {F 2 K[x1, . . . , xn] | Y ⇢ V (F )} :

it is the set of all polynomials vanishing on Y . Note that I(Y ) is in fact an ideal, because

the sum of two polynomials vanishing along Y also vanishes along Y , and the product of

any polynomial by a polynomial vanishing along Y again vanishes along Y .

Example 3.1.2. Maximal ideal of a point. If P (a1, . . . , an) is a point, then I(P ) =

hx1 � a1, . . . , xn � ani. Indeed all the polynomials of hx1 � a1, . . . , xn � ani vanish on P , and

moreover it is a maximal ideal.

The fact that hx1�a1, . . . , xn�ani is maximal can be understood looking at the quotient

ring K[x1, . . . , xn]/hx1 � a1, . . . , xn � ani: the idea is that in the quotient the variables

x1, . . . , xn are replaced by the constants a1, . . . , an, so it has to be K[a1, . . . , an] = K. Since

the quotient is a field, the ideal is maximal.
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Another proof of the maximality of hx1 � a1, . . . , xn � ani can be given by exploiting the

expansion in power series around a := (a1, . . . , an) of any polynomial F (x1, . . . , xn). I first

recall that this expansion is possible for polynomials over any field, without involving any

di↵erentiation process, but using only the formal definition of derivative for polynomials.

See for instance [W], pp. 21-23.

The proof goes as follows. Assume that F (a1, . . . , an) = 0 and use the Taylor expansion:

F (x1, . . . , xn) = F (a) +
nX

i=1

(xi � ai)Fxi(a) +
nX

i,j=1

(xi � ai)(xj � aj)Fxixj(a) + . . .

It follows that F 2 hx1 � a1, . . . , xn � ani.

Remark 1. The following relations follow immediately by the definition:

(i) if Y ⇢ Y 0, then I(Y ) � I(Y 0);

(ii) I(Y [ Y 0) = I(Y ) \ I(Y 0);

(iii) I(Y \ Y 0) � I(Y ) + I(Y 0).

In the projective ambient, we have an analogous situation.

Definition 3.1.3. If Z ⇢ Pn is any set, the homogeneous ideal of Z is, by definition, the

homogeneous ideal of K[x0, x1, . . . , xn] generated by the set

{G 2 K[x0, x1, . . . , xn] | G is homogeneous and VP (G) � Z}.

It is denoted Ih(Z).

Relations similar to (i),(ii),(iii) of Remark 1 are satisfied. Ih(Z) is also the set of poly-

nomials F (x0, . . . , xn) such that every point of Z is a projective zero of F .

If X = V (↵) we want to understand the relation between ↵ and I(X). Let ↵ ⇢

K[x1, . . . , xn] be an ideal. Let
p
↵ denote the radical of ↵:

p
↵ =: {F 2 K[x1, . . . , xn] | 9r � 1 s.t. F r

2 ↵}.

Note that
p
↵ is an ideal (why?) and that always ↵ ⇢

p
↵; if equality holds, then ↵ is called

a radical ideal.

Proposition 3.1.4. The ideal of a subset of the a�ne space is radical. More precisely:

1. for any X ⇢ An
, I(X) is a radical ideal;
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2. for any Z ⇢ Pn
, Ih(Z) is a homogeneous radical ideal.

Proof. 1. If F 2
p

I(X), let r � 1 such that F r
2 I(X): if P 2 X, then (F r)(P ) = 0 =

(F (P ))r in the base field K. Therefore F (P ) = 0.

2. is similar, taking into account that Ih(Z) is a homogeneous ideal (see Exercise 6).

⇤

We can interpret I as a map from P(An), the power set of the a�ne space, to P(K[x1, . . . , xn]),

the power set of the polynomial ring. On the other hand, V can be seen as a map in the

opposite sense. We have:

Proposition 3.1.5. Let ↵ ⇢ K[x1, . . . , xn] be an ideal, let Y ⇢ An
be any subset. Then:

(i) ↵ ⇢ I(V (↵));

(ii) Y ⇢ V (I(Y ));

(iii) V (I(Y )) = Y : the closure of Y in the Zariski topology of An
.

Proof. (i) If F 2 ↵ and P 2 V (↵), then F (P ) = 0, so F 2 I(V (↵)).

(ii) If P 2 Y and F 2 I(Y ), then F (P ) = 0, so P 2 V (I(Y )).

(iii) Taking closures in (ii), we get: Y ⇢ V (I(Y )) = V (I(Y )), because it is already closed.

Conversely, let X = V (�) be any closed set containing Y : X = V (�) � Y . Then

I(Y ) � I(V (�)) � � by (i); we apply V again: V (�) = X � V (I(Y )) so any closed

set containing Y contains V (I(Y )) so Y � V (I(Y )).

⇤

Similar properties relate homogeneous ideals of K[x0, x1, . . . , xn] and subsets of Pn; in

particular, if Z ⇢ Pn, then VP (Ih(Z)) = Z, the closure of Z in the Zariski topology of Pn. In

the projective case, one has to take care of the fact that any homogeneous ideal is generated

by the set of its homogeneous elements, and so, to prove an inclusion between homogeneous

ideals, it is enough to check it on the homogeneous elements.

3.2 Nullstellensatz

There is no characterization of I(V (↵)) in general. We can only say that it is a radical ideal

containing ↵, so it contains also
p
↵. To characterise I(V (↵)) we have to put the properties

of the base field K into play.
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The following celebrated theorem gives the answer for algebraically closed fields.

Theorem 3.2.1 (Hilbert’s Nullstellensatz - Theorem of zeros). Let K be an alge-

braically closed field. Let ↵ ⇢ K[x1, . . . , xn] be an ideal. Then I(V (↵)) =
p
↵.

Remark 2. The assumption on K is necessary. Let me recall that K is algebraically closed

if any non–constant polynomial of K[x] has at least one root in K, or, equivalently, if any

irreducible polynomial of K[x] has degree 1. So if K is not algebraically closed, there exists

an irreducible polynomial F 2 K[x] of degree d > 1. Therefore F has no zeros in K, hence

V (F ) ⇢ A1
K

is empty. So I(V (F )) = I(;) = {G 2 K[x] | ; ⇢ V (G)} = K[x]. But hF i is a

maximal ideal in K[x], and hF i ⇢
p

hF i. If hF i 6=
p

hF i, by the maximality
p

hF i = h1i,

so 9r � 1 such that 1r = 1 2 hF i, which is false. Hence
p
hF i = hF i 6= K[x] = I(V (F )).

We will deduce the proof of Hilbert Nullstellensatz, after several steps, from another very

important theorem, known as “Emmy Noether normalization Lemma”.

We start with some definitions.

Let K ⇢ E be fields, K subfield of E. Let {zi}i2I be a family of elements of E.

Definition 3.2.2. The family {zi}i2I is algebraically free over K or, equivalently, the el-

ements zi’s are algebraically independent over K if there is no non–zero polynomial F 2

K[xi]i2I , the polynomial ring in a set of variables indexed on I, that vanishes in the elements

of the family {zi}.

For example: if the family consists of only one element z, {z} is algebraically free over K

if and only if z is transcendental over K. The family {⇡,
p
⇡} is not algebraically free over

Q: it satisfies the non–trivial relation x2
1 � x2 = 0.

By convention, the empty family is free over any field K.

Let S be the set of the families of elements of E, that are algebraically free over K. S

is a non–empty set, partially ordered by inclusion and inductive. By Zorn’s lemma, S has

maximal elements, i.e. algebraically free families that do not remain free if any element of

E is added. Any such maximal algebraically free family is called a transcendence basis of

E over K. It can be proved that, if B,B0 are two transcendence bases, then they have the

same cardinality, called the transcendence degree of E over K. It is denoted tr.d.E/K.

Definition 3.2.3. A K–algebra is a ring A containing (a subfield isomorphic to) K.
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Let y1, . . . , yn be elements of E: the K–algebra generated by y1, . . . , yn is, by definition,

the minimum subring of E containing K, y1, . . . , yn: it is denoted K[y1, . . . , yn] and its ele-

ments are polynomials in the elements y1, . . . , yn with coe�cients in K. Its quotient field

K(y1, . . . , yn) is the minimum subfield of E containing K, y1, . . . , yn.

A finitely generated K–algebra A is a K–algebra containing finitely many elements

y1, . . . , yn such that A = K[y1, . . . , yn].

Given elements y1, . . . , yn in an extension E ofK, we can consider the evaluation homo-

morphism from the polynomial ring in n variables to the K-algebra generated by y1, . . . , yn

' : K[x1, . . . , xn] ! K[y1, . . . , yn] such that F (x1, . . . , xn) ! F (y1, . . . , yn). (3.1)

The kernel of ' is formed by the polynomials vanishing at the n-tuple (y1, . . . , yn). Therefore

' is injective if and only if y1, . . . , yn are algebraically independent over K, if and only if

' gives an isomorphism between the K-algebra K[y1, . . . , yn] and the polynomial ring in n

variables.

Remark 3. A K-algebra A is finitely generated if and only if A is isomorphic to a quo-

tient of a polynomial ring in finitely many variables over K. Indeed, if A = K[y1, . . . , yn],

considering the evaluation map ' (3.1), from the homomorphism theorem it follows that

A ' K[x1, . . . , xn]/ ker'. Conversely, given a quotient A = K[x1, . . . , xn]/↵, let ⇠ = [xi] be

the equivalence class of the variable xi in A. Then any element of A can be written as a

polynomial F (⇠1, . . . , ⇠n), therefore A is the K-algebra generated by ⇠1, . . . , ⇠n.

Proposition 3.2.4. K(y1, . . . , yn) has a transcendence basis over K contained in the set

{y1, . . . , yn}.

Proof. Let S be the set of all subfamilies of {y1, . . . , yn} formed by algebraically independent

elements: S is a finite set so it has maximal elements with respect to the inclusion. We can

assume that {y1, . . . , yr} is such a maximal family. Then yr+1, . . . , yn are all algebraic over

K(y1, . . . , yr) so K(y1, . . . , yn) is an algebraic extension of K(y1, . . . , yr). If z 2 K(y1, . . . , yn)

is any element, then z is algebraic over K(y1, . . . , yr), so the family {y1, . . . , yr, z} is not

algebraically free. ⇤

Corollary 3.2.5. tr.d.K(y1, . . . , yn)/K  n.

Let now A ⇢ B be rings, A a subring of B.
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Definition 3.2.6. Let b 2 B: b is integral over A if it is a root of a monic polynomial of

A[x], i.e., there exist a1, . . . , an 2 A such that

bn + a1b
n�1 + a2b

n�2 + · · ·+ an = 0.

Such a relation is called an integral equation, or an equation of integral dependence, for b

over A.

Note that, if A is a field, then b is integral over A if and only if b is algebraic over A.

Definition 3.2.7. B is called integral over A, or, B is an integral extension of A, if any

b 2 B is integral over A.

We can state now the

Theorem 3.2.8. Normalization Lemma. Let A be a finitely generated K–algebra and an

integral domain. Let r := tr.d.K(y1, . . . , yn)/K. Then there exist elements z1, . . . , zr 2 A,

algebraically independent over K, such that A is integral over K[z1, . . . , zr].

Proof. We postpone the proof to Chapter 4 . ⇤

We start now the proof of the Nullstellensatz.

1st Step.

Let K be an algebraically closed field, let M ⇢ K[x1, . . . , xn] be a maximal ideal. Then,

there exist a1, . . . , an 2 K such that M = hx1 � a1, . . . , xn � ani.

Proof. Let K 0 be the quotient ring K[x1, . . . , xn]/M: it is a field because M is maximal, and

it is a K–algebra finitely generated by the residues in K 0 of x1, . . . , xn. By the Normalization

Lemma, there exist z1, . . . , zr 2 K 0, algebraically independent overK, such thatK 0 is integral

over A := K[z1, . . . , zr]. We claim that A is a field: let f 2 A, f 6= 0; f 2 K 0 so there exists

f�1
2 K 0, and f�1 is integral over A; we fix an integral equation for f�1 over A:

(f�1)s + as�1(f
�1)s�1 + · · ·+ a0 = 0

where a0, . . . , as�1 2 A. We multiply this equation by f s�1:

f�1 + as�1 + · · ·+ a0f
s�1 = 0

hence f�1
2 A. So A is both a field and a polynomial ring over K, so r = 0 and A = K.

Therefore K 0 is an algebraic extension of K, which is algebraically closed, so K 0
' K. Let
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us fix an isomorphism  : K 0 = K[x1, . . . , xn]/M
⇠

�!K and let p : K[x1, . . . , xn] ! K 0 =

K[x1, . . . , xn]/M be the canonical epimorphism.

Let ai =  (p(xi)), i = 1, . . . , n. The kernel of  � p is M, and xi � ai 2 ker( � p) for any

i. So hx1 � a1, . . . , xn � ani ⇢ ker( � p) = M. Since hx1 � a1, . . . , xn � ani is maximal (see

Example 3.1.2), we conclude the proof of the 1st Step.

2nd Step (Weak Nullstellensatz).

Let K be an algebraically closed field, let ↵ ( K[x1, . . . , xn] be a proper ideal. Then

V (↵) 6= ; i.e. the polynomials of ↵ have at least one common zero in An

K
.

Proof. Since ↵ is proper, there exists a maximal ideal M containing ↵. Then V (↵) � V (M).

By 1st Step, M = hx1�a1, . . . , xn�ani, so V (M) = {P} with P (a1, . . . , an), hence P 2 V (↵).

For any maximal ideal containing ↵ we get a point in V (↵).

3rd Step (Rabinowitch method or Rabinowitch trick).

Let K be an algebraically closed field: we will prove that I(V (↵)) ⇢
p
↵. Since the

reverse inclusion always holds, this will conclude the proof.

Let F 2 I(V (↵)), F 6= 0 (if F = 0 the conclusion is clear, because each ideal contains

0), and let ↵ = hG1, . . . , Gri. The assumption on F means: if P is a point such that

G1(P ) = · · · = Gr(P ) = 0, then F (P ) = 0. The Rabinowitch trick consists in introducing an

extra variable, and then specializing it. Let us consider the polynomial ring in n+1 variables

K[x1, . . . , xn+1] and let � be the ideal � = hG1, . . . , Gr, xn+1F � 1i: clearly by assumption �

has no zeros in An+1, hence, by Step 2, 1 2 �, i.e. there exist H1, . . . , Hr+1 2 K[x1, . . . , xn+1]

such that

1 = H1G1 + · · ·+HrGr +Hr+1(xn+1F � 1).

This is an equality of polynomials, so equality still holds if we give to some of the variables

a special value. In particular we can specialize the new variable xn+1 replacing it with 1
F
.

More formally, we introduce the K-homomorphism  : K[x1, . . . , xn+1] ! K(x1, . . . , xn)

defined by H(x1, . . . , xn+1) ! H(x1, . . . , xn,
1
F
).

The polynomials G1, . . . , Gr do not contain xn+1 so  (Gi) = Gi 8 i = 1, . . . , r. Moreover

 (xn+1F � 1) = 0,  (1) = 1. Therefore

1 =  (H1G1 + · · ·+HrGr +Hr+1(xn+1F � 1)) =  (H1)G1 + · · ·+  (Hr)Gr

where  (Hi) is a rational function with denominator a power of F . By multiplying this

relation by a common denominator, that is a power of F , we get an expression of the form:

Fm = H 0

1G1 + · · ·+H 0

rGr,
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so F 2
p
↵. ⇤

Corollary 3.2.9. Let K be an algebraically closed field.

1. There is a bijection between the algebraic subsets of An
and the radical ideals of

K[x1, . . . , xn]. The bijection is given by ↵ ! V (↵) and X ! I(X). In fact, if X

is closed in the Zariski topology, then V (I(X)) = X; if ↵ is a radical ideal, then

I(V (↵)) = ↵.

2. Let X, Y ⇢ An
be Zariski closed sets. Then

(i) I(X \ Y ) =
p

I(X) + I(Y );

(ii) I(X [ Y ) = I(X) \ I(Y ) =
p

I(X)I(Y ).

3. The points of a hypersurface determine its reduced equation.

Proof. 1. is clear. 2. follows from next Lemma 3.2.10, using the Nullstellensatz. To prove

3., assume that F,G are square-free polynomials in K[x1 . . . , xn] such that V (F ) = V (G).

Notice that if F is square-free, the hF i =
p
F . By the Nullstellensatz it follows that

p
F =

I(V (F )) = I(V (G)) =
p
G, so hF i = hGi, which means that F,G di↵er at most by units. ⇤

Lemma 3.2.10. Let ↵, � be ideals of K[x1, . . . , xn]. Then

a)

pp
↵ =

p
↵;

b)
p
↵ + � =

pp
↵ +

p
�;

c)
p
↵ \ � =

p
↵� =

p
↵ \

p
�.

Proof. a) if F 2

pp
↵, there exists r � 1 such that F r

2
p
↵, hence there exists s � 1

such that F rs
2 ↵.

b) ↵ ⇢
p
↵, � ⇢

p
� imply ↵ + � ⇢

p
↵ +

p
� hence

p
↵ + � ⇢

pp
↵ +

p
�.

Conversely, ↵ ⇢ ↵ + �, � ⇢ ↵ + � imply
p
↵ ⇢

p
↵ + �,

p
� ⇢

p
↵ + �, hence

p
↵ +

p
� ⇢

p
↵ + � so

pp
↵ +

p
� ⇢

pp
↵ + � =

p
↵ + �.

c) ↵� ⇢ ↵ \ � ⇢ ↵ (resp. ⇢ �) therefore
p
↵� ⇢

p
↵ \ � ⇢

p
↵ \

p
�. If F 2

p
↵ \

p
�,

then F r
2 ↵, F s

2 � for suitable r, s � 1, hence F r+s
2 ↵�, so F 2

p
↵�.

⇤

Part 2.(i) of Corollary 3.2.9 implies that I(X\Y ) = I(X)+I(Y ) if and only if I(X)+I(Y )

is a radical ideal (see Remark 1 (iii)).
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Remark 4. The weak form of the Nullstellensatz says that a system of algebraic equations

has at least one solution over an algebraically closed field if, and only if, the ideal generated

by the corresponding polynomials is proper, or, equivalently, if it is impossible to find a linear

combination of them, with coe�cients in the polynomial ring, equal to the constant 1. The

proof of Nullstellensatz we have given is not constructive, in the sense that, given polynomials

F1, . . . , Fr, it does not say how to check if 1 belongs or not to the ideal hF1, . . . , Fri.

The problem of making the proof constructive is connected to the more general “ ideal

membership problem”, which asks, given an ideal ↵ ⇢ K[x1 . . . , xn] and a polynomial G 2

K[x1 . . . , xn], to decide if G 2 ↵ or not.

Answers to these problems can be given with the tools of computational algebra, in partic-

ular using the theory of Gröbner bases. There are e↵ective versions of the Nullstellensatz that

allow to bound the degrees of the coe�cients in a possible expression 1 = H1F1+ · · ·+HrFr,

depending on the degrees of F1, . . . , Fr, and hence to reduce the question to a problem in

linear algebra.

3.3 Homogeneous Nullstellensatz

Wemove now to the projective space. There exist proper homogeneous ideals ofK[x0, x1, . . . , xn]

without zeros in Pn, even assuming K algebraically closed: for example the maximal ideal

hx0, x1, . . . , xni. For such an ideal I, the Nullstellensatz fails, indeed Ih(VP (I)) = Ih(;) =

K[x0, . . . , xn], but
p
I 6= K]x0, . . . , xn], because 1 2 I if and only if 1 2

p
I.

The following characterization holds:

Proposition 3.3.1. Let K be an algebraically closed field and let I be a homogeneous ideal

of K[x0, x1, . . . , xn].

The following are equivalent:

(i) VP (I) = ;;

(ii) either I = K[x0, x1, . . . , xn] or
p
I = hx0, x1, . . . , xni;

(iii) there exists d � 1 such that I � K[x0, x1, . . . , xn]d, the homogeneous component of

K[x0, x1, . . . , xn] of degree d.

Proof. (i))(ii) Let p : An+1
� {0} ! Pn be the canonical surjection. We have: VP (I) =

p(V (I) � {0}), where V (I) ⇢ An+1. So if VP (I) = ;, then either V (I) = ; or V (I) = {0}.

If V (I) = ; then I(V (I)) = I(;) = K[x0, x1, . . . , xn]; if V (I) = {0}, then I(V (I)) =

hx0, x1, . . . , xni =
p
I by the Nullstellensatz.
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(ii))(iii) Let
p
I = K[x0, x1, . . . , xn], then 1 2

p
I so 1r = 1 2 I(r � 1). If

p
I =

hx0, x1, . . . , xni, then for any variable xk there exists an index ik � 1 such that xik
k

2 I. If

d � i0 + i1 + · · ·+ in � n, then any monomial of degree d is in I, so K[x0, x1, . . . , xn]d ⇢ I.

(iii))(i) because no point in Pn has all coordinates equal to 0. ⇤

Theorem 3.3.2. Let K be an algebraically closed field and I be a homogeneous ideal of

K[x0, x1, . . . , xn]. If F is a homogeneous non–constant polynomial such that VP (F ) � VP (I)

(i.e. F vanishes on VP (I), or F 2 Ih(VP (I))), then F 2
p
I.

Proof. We have p(V (I) � {0}) = VP (I) ⇢ VP (F ). Since F is non–constant, we have also

V (F ) = p�1(VP (F )) [ {0}, so V (F ) � V (I); by the Nullstellensatz I(V (I)) =
p
I �

I(V (F )) =
p

(F ) 3 F . ⇤

Corollary 3.3.3 (homogeneous Nullstellensatz). Let I be a homogeneous ideal of K[x0, x1, . . . , xn]

such that VP (I) 6= ;, K algebraically closed. Then
p
I = Ih(VP (I)).

Definition 3.3.4. A homogeneous ideal of K[x0, x1, . . . , xn] such that
p
I = hx0, x1, . . . , xni

is called irrelevant.

Corollary 3.3.5. Let K be an algebraically closed field. There is a bijection between the set

of projective algebraic subsets of Pn
and the set of radical homogeneous non–irrelevant ideals

of K[x0, x1, . . . , xn].

Remark. Let X ⇢ Pn be an algebraic set, X 6= ;. The a�ne cone of X, denoted by

C(X), is the following subset of An+1: C(X) = p�1(X)[{0}, where p : (Kn+1)⇤ ! Pn is the

canonical projection (see Section 1.2). If X = VP (F1, . . . , Fr), with F1, . . . , Fr homogeneous,

then C(X) = V (F1, . . . , Fr). By the Nullstellensatz, if K is algebraically closed, I(C(X)) =

Ih(X).

Exercises 3.3.6. 1. Give a non-trivial example of an ideal ↵ of K[x1, . . . , xn] such that

↵ 6=
p
↵.

2. Let K be an algebraically closed with char K 6= 2. Show that the following closed

subsets of the a�ne plane are such that equality does not hold in the relation I(Y \

Y 0) � I(Y ) + I(Y 0): Y = V (x2 + y2 � 1) and Y 0 = V (y � 1).

3. Let ↵ ⇢ K[x1, . . . , xn] be an ideal. Prove that ↵ =
p
↵ if and only if the quotient ring

K[x1, . . . , xn]/↵ does not contain any non–zero nilpotent.
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4. Consider Z ⇢ Q. Prove that if an element y 2 Q is integral over Z, then y 2 Z. (Hint:
fixed y = a/b 2 Q integral over Z, write an integral equation for y, then use the unique

factorization in Z.)

5. Let us recall that a prime ideal of a ring R is an ideal P such that a 62 P , b 62 P implies

ab 62 P . Prove that any prime ideal is a radical ideal.

6. * Let I be a homogeneous ideal of K[x1, . . . , xn] satisfying the following condition: if F

is a homogeneous polynomial such that F r
2 I for some positive integer r, then F 2 I.

Prove that I is a radical ideal. (Hint: take F non homogeneous such that for some

r � 1 F r
2 I, then use induction on the number of non-zero homogeneous components

of F to prove that F 2 I.)
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