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Abstract: 

In 1897, Pieter Zeeman observed the splitting of the atomic spectrum of cadmium (Cd) 
from one main line to three lines. Such a splitting of lines is called the normal Zeeman 
effect. According to the oscillation model by Hendrik Lorentz, the Zeeman splitting arises 
from the oscillation of charged particles in atoms. The discovery of the Zeeman effect 
indicates that the charged particles are electrons. In 1897 - 1899, J.J. (Joseph John) 
Thomson independently found the existence of electrons from his explorations on the 
properties of cathode rays.  

There are few atoms showing the normal Zeeman effect. In contrast, many atoms shows 
anomalous Zeeman effects. For the spectra of sodium (Na). for example, there are two D-
lines (yellow) in the absence of the magnetic field. When the magnetic field is applied, each 
line is split into four and six lines, respectively. Although Zeeman himself observed the 
spectra of Na, he could not find the splitting of the D lines in the presence of the magnetic 
field because of the low resolution of his spectrometer. The electron configuration of Na is 
similar to that of hydrogen. There is one electron outside the closed shell. Instead, he chose 
Cd for his experiment and found the normal Zeeman effect (three lines). In the electron 
configuration of Cd, there are two electrons outside the closed shell. The three lines 
observed in Cd was successfully explained in terms of the Lorentz theory. It seems that the 
choice of Cd by Zeeman is fortunate to the development of atomic physics. If Zeeman 
found the anomalous Zeeman effect in Na by using spectrometer with much higher 
resolution, Lorentz might have some difficulty in explaining such a complicated 
phenomenon. In fact, only the quantum mechanics can explain the normal Zeeman effect, 
the anomalous Zeeman effect, and the Paschen-Back effect (Zeeman effect in an extremely 
large magnetic field). Here we note that the Fabry-Perot interferometer (which is used for 
the measurement of Zeeman effect in our laboratory ), designed in 1899 by C. Fabry and A. 
Perot, represents a significant improvement over the Michelson interferometer. 

In our Advanced laboratory [Senior Laboratory (Phys.427, Phys.429) and Graduate 
Laboratory (Phys.527)], students (both undergraduate and graduate students) are supposed 
to do the experiment for the Zeeman splitting of mercury (Hg), using an equipment 
consisting of magnetic field, Hg light source, polarizer, Fabry-Perot Etalon, CCD camera, 
and computer. The normal Zeeman splitting is observed in Hg. The electron configuration 
of Hg is similar to that of Cd, where two electrons are outside the closed shell. The 



introduction of such new techniques may lead to clear visualization of the Zeeman effect in 
the laboratory class.  

In this lecture note, we present both classical and quantum mechanical theories on the 
Zeeman effect. (1) Lorenz theory, (2) the Zeeman effect of Na using quantum mechanics, 
(3) the Zeeman effect of Cd and Hg. These notes will be helpful to understanding the 
Zeeman effect from a view point of quantum mechanics. "The atomic spectra are sort of 
voices which can be heard from the quantum world." 
 
_________________________________________________________________________ 
Pieter Zeeman (25 May 1865 – 9 October 1943) was a Dutch physicist who shared the 
1902 Nobel Prize in Physics with Hendrik Lorentz for his discovery of the Zeeman effect. 
 

 
http://en.wikipedia.org/wiki/Pieter_Zeeman 
_________________________________________________________________________ 
Hendrik Antoon Lorentz (18 July 1853 – 4 February 1928) was a Dutch physicist who 
shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and 
theoretical explanation of the Zeeman effect. He also derived the transformation equations 
subsequently used by Albert Einstein to describe space and time. 



 
http://en.wikipedia.org/wiki/Hendrik_Lorentz 
 
_________________________________________________________________________ 
Sir Joseph John "J. J." Thomson, OM, FRS (18 December 1856 – 30 August 1940) was 
a British physicist and Nobel laureate. He is credited for the discovery of the electron and 
of isotopes, and the invention of the mass spectrometer. Thomson was awarded the 1906 
Nobel Prize in Physics for the discovery of the electron and for his work on the conduction 
of electricity in gases. 
 

 
 
http://en.wikipedia.org/wiki/J._J._Thomson 
_________________________________________________________________________ 
1. Normal Zeeman effect 



The explanation for the atomic spectra is due to the oscillation of charged particles 
inside atoms. These was no positive evidence that the particle should be an electron. The 
experimental evidence for the atomic spectra due to an electron was found by Pieter 
Zeeman in 1897. He observed splitting of Cd lines into three components (normal Zeeman 
effect) when an external magnetic field B is applied. He showed that the angular frequency 
of these lines are given by 
 

0  , L  0 ,  L  0 , 

 

where 0 is the angular frequency in the absence of B. The angular frequency L  is given 

by 
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where - e is the charge of electron (we assume that e>0) and m is the mass of electron. 

In 1897, Hendrik Lorentz presented a theoretical interpretation for the observation by 
Zeeman. The Zeeman effect is the splitting of the energy levels of an atom when it is placed 
in an external magnetic field. The splitting occurs because of the interaction of the 

magnetic moment  of the atom with the magnetic field B slightly shifts the energy of the 
atomic levels by an amount, 
 

Bμ E . 

 

The magnetic moment L of electron can be expressed by 
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where L is the orbital angular momentum, B is the Bohr magneton of electron, and   is 
the Planck's constant, 
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Fig.1 Schematic diagram. B = 0. 

 
Fig.2 Schematic diagram, where a magnetic field is applied along the z axis. 
 
2. Oscillation model of Lorentz 

We consider a particular orbit, in which the particle is rotating around the z axis with 

angular frequency ±0, where +0 indicates the counterclockwise (CCW) rotation, and -0 
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indicates clockwise (CW) rotation. If we view the atoms in the z direction, we will obtain 
light that is circularly polarized with the electric vector rotating in the same direction as the 
electron. 
 

 
Fig.3 
 

If we view it normal to the z axis, the electric field that reaches us will depend only on 
the projection of the electron motion on the axis normal to the viewing. The projection of 
circular motions on such an axis is simple harmonic motion. So that the light viewed in a 
direction parallel to the plane of motion will be polarized in a direction normal to the 
direction of viewing and parallel to the plane of electron motion. 
 
 

 
 
Fig4 Viewed from the z axis. B = 0. There are two modes (circularly polarized, xy 

plane).  
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Fig.5 Viewed from the x-y plane. B = 0. There are three modes at  = 0. 2 modes 

(linearly polalized, xy plane) and 1 mode (linearly polarized, z axis). 
 
_______________________________________________________________________ 
(b) Magnetic field along the z axis: B ≠ 0. 

In the presence of an external magnetic field along the z axis, the components of the 
motion in the z direction are left unchanged, while the components of motion in the xy 
plane are altered. Those atoms with counterclockwise orbits will have their frequencies of 

rotation in the xy plane increased by L , while clockwise orbits will have their frequencies 

decreased by L , where  
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with 
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Fig.6 Schematic diagram for the classical explanation of the normal Zeeman effect. 
 

When viewed along the z axis (the direction of the magnetic field), the radiated line will 
therefore split into two lines, with opposite circular polarization. The electrons moving in 
the z direction cannot radiate in the z direction; as a result, there will be no undeviated lines 
in the light emitted in the z direction. 
 

 
 
Fig.7 Viewed from the z axis. B ≠ 0. 
 

If the atom is viewed normal to the z direction, then there will be undeviated line, 
produced by electrons which move in the z direction. This will be polarized in the z 
direction. The components of electron motion in the xy plane will produce two deviated 
lines, each linearly polarized in a direction normal to z.  
 

 
 
Fig8 Viewed from the xy plane. 
 

3. Rotating reference frame 
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Fig.9 x1 = m1. x2 = m2. x1' = m1'. x2 = m2'. Note that OP  is fixed. The relation 
between {e1, e2} and {e1', e2'}. 

 

We consider the two coordinate systems. 
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with 
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where  is the angle between e1 and e1'. In the matrix form, we get 
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Now we consider the equation of motion for electron (mass m and charge -e), 
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This equation can be rewritten as 
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in the new reference frame (X, Y). Here we assume that 
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where  is constant,   , and 0  Then we have 
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When we put 
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These lead to 
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can be obtained as 
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The time dependence of z is given by 
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These results indicates that the electron motion of the (X, Y) plane is exactly the same as 
that in the absence of the magnetic field (This is called the Larmor's theorem). 
 
((Larmor's theorem)) 

The theorem that for a system of charged particles, all having the same ratio of charge 
to mass, moving in a central field of force, the motion in a uniform magnetic field B is, to 
first order in B, the same as a possible motion in the absence of B except for the 
superposition of a common precession of angular frequency equal to the Larmor frequency.  

 
Fig.10 ParametricPlot of {X-, Y-} and {X+, Y+}, where p is chosen appropriately. 
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4. Linear combination of modes 
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Then we have 
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For simplicity we use a parameter p defined by 
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5. Simulation (Mathematica) 
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Fig.11 (a) Plot of {x, y} with p = 5. Moving transversely to the field, the x and y 
motions will take the form of rosettes. This is the same type motion as one 
encounters in the Faraday effect. 

 

 
 
Fig.11 (b) Plot of {x,y} with p = 10. 
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Fig.11 (c) p = 20 
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Fig.11 (d) p = 50 

 
 
Fig.11 (e) p = 100 
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6. Physics constants for the calculation of the Zeeman effect. 
cgs units (from NIST Fundamental Physical constants) 
http://physics.nist.gov/cuu/Constants/ 
 

Bohr magneton: B = 9.27400915 x 10-21 emu;  emu = erg/Oe. 
 
Speed of light:  c = 2.99792 x 1010 cm/s 
 
Planck's constant   = 1.054571628 x 10-27 erg s. 
 
mass of electron me = 9.10938215 x 10-28 g 
 
charge of electron e = 4.80321 x 10-10 esu 
 
eV    eV = 1.60218 x 10-12 erg 
 
______________________________________________________________________ 
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7. Separation of 3p and 3s energy levels in Na 



 
Fig.12 Energy levels of Na with and without spin-orbit interaction. The 3P level is 

slightly different from the 3S level. The 3P level is split into 3 2P3/2 (4 
degeneracies) and 3 2P1/2 (3 degeneracies) due to the spin-orbit interaction. 

 
The well known bright doublet which is responsible for the bright yellow light from a 

sodium lamp may be used to demonstrate several of the influences which cause splitting of 
the emission lines of atomic spectra. The transition which gives rise to the doublet is from 
the 3p to the 3s level, levels which would be the same in the hydrogen atom. The fact that 
the 3s (orbital quantum number l = 0) is lower than the 3p (l = 1) is a good example of the 
dependence of atomic energy levels on angular momentum. The 3s electron penetrates the 
1s shell more and is less effectively shielded than the 3p electron, so the 3s level is lower 
(more tightly bound). The fact that there is a doublet shows the smaller dependence of the 
atomic energy levels on the total angular momentum . The 3p level is split into states with 
total angular momentum j = 3/2 and j = 1/2 by the magnetic energy of the electron spin in 

n=3, { = 1, s = 12
3P

n=3, { = 0, s = 12
3S

Spin-orbit interaction

3 2 P12

3 2 P32
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the presence of the internal magnetic field caused by the orbital motion. This effect is called 
the spin-orbit effect. In the presence of an additional externally applied magnetic field, 
these levels are further split by the magnetic interaction, showing dependence of the 
energies on the z-component of the total angular momentum. This splitting gives the 
Zeeman effect for sodium. 

When the wavefunctions for electrons with different orbital quantum numbers are 
examined, it is found that there is a different amount of penetration into the region occupied 
by the 1s electrons. This penetration of the shielding 1s electrons exposes them to more of 
the influence of the nucleus and causes them to be more tightly bound, lowering their 
associated energy states. In the case of Na with two filled shells, the 3s electron penetrates 
the inner shielding shells more than the 3p and is significantly lower in energy. 
 

8. The states of 3 2S1/2 , 3 2P3/2, and 3 2P1/2 in Na 

The electron configuration of Na is given by 
 

Na: (1s)2(2s)2(2p)6(3s) 
 
The inner 10 electrons can be visualized to form a spherically symmetrical electron cloud. 
We are interested in the excitation of the 11-th electron from 3s to a possible higher state. 
 
(a) The 3s state 

For the electron with 3s state (l = 0, s = 1/2),  
 

D0 x D1/2 = D1/2 

 

Thus we have j = 1/2 (the degeneracy 2). The state is described by 3 2S1/2 (or simply 2S1/2). 

Here we use the notation of n 2S+1Lj where n is the principal quantum number, s is the spin 
number, l is the orbital angular momentum, and j is the resultant angular momentum. 
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Clebsch-Gordan coefficients. 
 
(b) The 3p state 

For the electron with 3p state (l = 1, s = 1/2), we have 
 

D1 x D1/2 = D3/2 + D1/2 

 
Thus we have j = 3/2 (the degeneracy 4) and j = 1/2 (degeneracy 2). These states are 

described by 3 2P3/2 (j = 3/2) and 3 2P1/2 (j = 1/2). 
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Fig.14 mj ,
2

3
 . (l = 1). The recursion relation to obtain the Clebsch-Gordan 

coefficients. 
 
The Clebsch-Gordon coefficients can be calculated using the Mathematica. 
 

(i) For j = 3/2 (3 2P3/2), 
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Fig.15 mj ,
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 . l = 1. The recursion relation to obtain the Clebsch-Gordon 

coefficients. 
 

(ii) For j = 1/2 (3 2P1/2), 

 

2/1,1
3

2
2/1,0

3

1
2/1,2/1  slsl mmmmmj  

 

2/1,0
3

1
2/1,1

3

2
2/1,2/1  slsl mmmmmj  

 
(c) g factors 
 

The Lande g-factor is defined by 
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(see the Appendix) 
 
Table 
 

Term  j l S gJ 
 

3 2P3/2  3/2 1 1/2 4/3 

 

3 2P1/2  1/2 1 1/2 2/3 

 

3 2S1/2  1/2 0 1/2 2 

 
________________________________________________________________________ 
 

 
 
Fig.16 Schematic diagram of energy levels in Na (n = 3) with and without magnetic 

field B. The splitting of energy levels occurs due to the spin-orbit interaction 
and the Zeeman effect. 
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The wavelength of sodium D lines is given by 
 

 = 589.6 nm (3 3P1/2 - 3 3S1/2). 

 

 = 589.0 nm (3 3P3/2 - 3 3S1/2). 

 

The sodium D lines correspond to the 3p  3s transition. In the absence of a magnetic field 

B, the spin orbit interaction splits the upper 3p state into 3 2P3/2 and 3 2P1/2 terms separated 

by 17 cm-1. The lower 3 2S1/2 has no spin-orbit interaction.  

 
9. Quantum mechanics for system with one electron 
(a) Spin orbit interaction 

The spin-orbit interaction serves to remove the l degeneracy of the eigenenergies of 
hydrogen atom. If the spin-orbit interaction is neglected, energies are dependent only on n 
(principal quantum number). In the presence of spin-orbit interaction (n, l, s = 1/2; j, m) are 
good quantum numbers. Energies are dependent only on (n, l, j). 

We introduce a new Hamiltonian given by 
 

ˆ H  ˆ H 0  ˆ H LS , 

 
ˆ J  ˆ L  ˆ S , 
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The Hamiltonian ˆ H 0  commutes with all the components of ˆ L  and ˆ S . 
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Thus we conclude that 
 

  is the simultaneous eigenket of the mutually commuting observables{ ˆ H 0 , ˆ L 2 , ˆ S 2 , ˆ J 2 , 

and ˆ J z }. 
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We consider the hydrogen atom problem with the spin orbit interaction. The eigenket  is 

expressed by mjsln ,;,, . The angular part of this eigenket is  
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The spin-orbit interaction is given by 
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(a) For j = l +1/2, 
 



 
 

Fig.17 mlj ,
2

1
 . The recursion relation to obtain the Clebsch-Gordan 

coefficients. 
 

mljEmljH LSLS ,2/1,2/1ˆ  , 

 
with 
 

lllllELS
22

2
]4/3)1()2/3)(2/1[(

2



 . 

 
We note that 
 

J-
m+12,12m-12,12

m-12,-12 m+12,-12

m



2/1,2/1
12

2/1

2/1,2/1
12

2/1
,2/1













sl

sl

mmm
l

ml

mmm
l

ml
mlj

 

 

The expectation values of ˆ L z  and ˆ S z  are obtained as follows. 
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Then we have 
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(b) For j = l -1/2 
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In summary, the energy shift due to the spin-orbit interaction is given by 
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under the basis of mlj ,2/1  and mlj ,2/1 , 
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(b) Zeeman effect in a system with a single electron such as Na 

The magnetic moment is given by a sum of the orbital magnetic moment and spin 
magnetic moment as 
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for B//z. We now calculate 
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Noting that 
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Note that 
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Then the matrix elements of BLS HH ˆˆ   in the basis { mlj ,2/1 , mlj ,2/1 } can 

be obtained as 
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for the same l and m. The eigenvalues of this matrix are given by 
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10. Zeeman effect in Na 

We now consider the D lines of Na. 
 



 
 
Fig.19 Energy levels for Na in the presence of weak magnetic field. In the presence 

of a strong magnetic field, the states 2/1,2/3  mj  in 3 2/3
2P  

2/1,2/1  mj  in 3 2/1
2P are no loner eigenstate. The appropriate linear 

combination of 2/1,2/3  mj  in 3 2/3
2P  and 2/1,2/1  mj  in 3

2/1
2P  for the same m (= ±1/2) becomes eigenstates of BLS HH ˆˆ  . 

 
(a) l = 1 
 

The mixed state of 2/3
23 P  (j = 3/2, l = 1, s = 1/2), and 2/1

23 P  (j = 1/2, l = 1, s = 1/2) is 

the eigenstate. 
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with m = ±1/2, where the factors 4/3 and 2/3 of the Zeeman terms correspond to the g 

factors for 2/3
2P  and 2/1

2P , respectively. The eigenvalue can be obtained from the 

eigenvalue problem for the (2 x 2) matrix. We get 
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3
)ˆˆ( 2  mjBmjHH BBLS 

 , 

 
with 
 

BpEE B


2
2

)3( 2
5   , 

 
for m = 3/2,  
 
and  
 

2

3
,

2

3
)2

2
(

2

3
,

2

3
)ˆˆ( 2  mjBmjHH BBLS 


, 

 
with 
 

BpEE B


2
2

)3( 2
3   , 



 
for m = -3/2. 
 
(b) j = 1/2, l = 0, s = 1/2 
 

2

1
,2/1  mj  is the eigenket of BLS HH ˆˆ  , 

 
with the eigenvalue 
 

BmsEmE B2)3()(1  , 

 

for 
2

1
m . 

 
11. Paschen-Back effect in Na 

The Paschen-Back effect is the splitting of atomic energy levels in the presence of a 
strong magnetic field. This effect is the strong-field limit of the Zeeman effect. The effect 
was named after the German physicists Friedrich Paschen and Ernst E. A. Back. 

In the limit of strong magnetic field B, the energy levels of Na are strongly dependent 
on the magnetic field, and are given by  
 

BsEmE B )3()
2

1
(1 , 

 

BsEmE B )3()
2

1
(1 , 

 

4
)3()

2

1
(

2

2


 pEmE , 

 

BpEmE B



4

)3()
2

1
(

2

2


, 

 

BpEE B


2
2

)3( 2
3   , 

 



BpEmE B



4

)3()
2

1
(

2

4


,
 

 

4
)3()

2

1
(

2

4


 pEmE , 

 

BpEE B


2
2

)3( 2
5   . 

 
((Mathematica)) 
We use  

B = 1, 1  

E(3p) - E(3s)=  -7.  = 1. 
 
for the calculation using the Mathematica. 
 

 
 
Fig.20 Splitting of energy levels of Na in a magnetic field B (anomalous Zeeman 

effect). 
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Fig.22 Paschen-Back effect. Zeeman splitting in the very large magnetic field for 

Na. 
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12. Paschen-Back effect in Na; quantum mechanical treatment 
Suppose that an extremely strong magnetic field is applied for the case of Na. The 

Zeeman term of the Hamiltonian is much significant compared to the spin-orbit interaction. 
in this case, the Hamiltonian H is simply given by 
 

BSLH zz
B

B )ˆ2ˆ(ˆ 



 

 
in the presence of the magnetic field along the z axis. 
 
(1) 3p states 
 

l = 1, s = 1/2. 
 

pslslBpslB mmmmBmmH
33

,)2(,ˆ    

 

psl mm
3

,  is the eigenket of BĤ  with the eigenvalue )2( slB mmB  . 

 

psl mm
3

,   (ml = 1, 0, -1, ms = 1/2, -1/2). 

 
(2) 3s states 
 

l = 0, s = 1/2. 
 

sslslBsslB mmmmBmmH
33

,)2(,ˆ    

 

ssl mm
3

,  is the eigenket of BĤ  with the eigenvalue )2( slB mmB  . 

 

ssl mm
3

,   (ml = 0, ms = 1/2, -1/2). 

 
In the extremely high magnetic fields, the energy levels of 3s and 3p states split into five 

levels. The difference between adjacent energy levels is the same and is equal to BB. 
_______________________________________________________________ 
Table 
 



Energy (BB)   Eigenkets 

2   
p3

2/1,1  

1   
p3

2/1,0  
s3

2/1,0  

0   
p3

2/1,1   
p3

2/1,1  

-1   
p3

2/1,0   
s3

2/1,0   

-2   
p3

2/1,1   

 

 
 

Fig. The level splitting of Na for the Pashen-Back effect. 
psl mm

3
,  is the 

eigenket for 3p states (6, states; ml = 1, 0, -1, ms = 1/2, -1/2). 
ssl mm

3
,  is the 

eigenket for 3s states (2 states; ml = 0, ms = 1/2, -1/2).  
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13. Zeeman splitting in Cd 

The electron configuration of Cd is given by (Kr) 4d10 5s2. This is similar to the outer 
electron configuration of He but also of Hg. 
 
(a) 5s5s 
 

D0 x D0 = D0   l = 0 

-1, -
1
2
>3 p

0, -
1
2
>3 p, 0, -

1
2
>3 s,

1, -
1
2
>3 p, -1,

1
2
>3 p

0,
1
2
>3 p, 0,

1
2
>3 s

1,
1
2
>3 p

-2mBB

-mBB

0

mBB

2mBB



 
D1/2 x D1/2 = D1 + D0  s = 1, s = 0 

 
 

l = 0 and s = 1 
D0 x D1 = D1  j = 1 
      5 3S1 

 
l = 0 and s = 0 

D0 x D0 = D0  j = 0 
      5 1S0 

 
 
(b) 5s5p 
 

D1 x D0 = D1   l = 1 
D1/2 x D1/2 = D1 + D0  s = 1, s = 0 

 
l = 1 and s = 1 

D1 x D1 = D2 + D1  + D0 
 
j = 2     5 3P2 
j=1     5 3P1 
j = 0     5 3P0 

 
l = 1 and s = 0 

D1 x D0 = D1    j = 1 
5 1P1  (g = 1) 

 
(c) 5s5d 
 

D2 x D0 = D2   l = 2 
D1/2 x D1/2 = D1 + D0  s = 1, s = 0 

 
l = 2 and s = 1 

D2 x D1 = D3 + D2 + D1 
 
j = 3     5 3D3 



j = 2     5 3D2 
j = 1     5 3D1 

 
l = 2 and s = 0 

D2 x D0 = D2    j = 2 
      5 1D2  (g = 1) 

 
 

 
 
Fig.23 Schematic diagram for the Zeeman splitting in Cd. 643.8 nm. g = 1 for 5 1D2 

(j = 2, l = 2, s = 0) and 5 1P1 (j = 1, l = 1, s = 0). 
 
 
We can observe the normal Zeeman effect in the red spectral line of Cd (643.8 nm). It 
corresponds to the transition 
 

5 1D2 (j = 2, l = 2, s = 0) → 5 1P1 (j = 1, l = 1, s = 0).  
 
In the presence of the magnetic field, the 5 1D2 level splits into 5 Zeeman components and 
the 5 1P1 level splits into 3 Zeeman component. The optical transitions between these levels 

643.8 nm Dm=-1 Dm=0 Dm=1

m=2
m=1
m=0
m=-1
m=-2

m=1
m=0
m=-1

5 1 P1

5 1 D2



are only possible in the form of electrical dipole radiation. The following selection rules 
apply for the magnetic quantum number m of the states involved; 
 

1m   for  components, 
 

0m   for  components, 
 
Thus we observe three spectral lines 
 
________________________________________________________________________ 
14. Energy levels in Hg: system with two electrons 

The neutral mercury (Hg) atom in its ground state has 80 electrons in the configuration 
1s22s22p63s23p63d104s24p64d104f145s25p65d106s2 in which the n = 1, 2, 3, 4, and 5 electrons form 
an inert core for two 6s valence electrons. The optical emission spectrum of Hg results from 
transitions of the two valence electrons between various excited two-electron 
configurations. The Hg spectrum therefore has many features in common with the two-
electron helium system.  
 

J
S L12   

 
Orbital angular momentum 
 

Dl1 x D1/2 = Dl1+l2 +..... + D|l1-l2| 
 
Spin: 
 

D1/2 x D1/2 = D1 + D0 
 
(a) 6s6s 
 

l = 0 and l = 0→ D0 x D0 = D0 
 

l = 0 and s = 1 
 

D0 x D1 = D1 

j = 1   6 3S1 
 



l = 0 and s = 0 
 

D0 x D0 = D0 

j = 0   6 1S0 
 
(b) 6s6p 
 

l = 0 and l = 1→ D0 x D1 = D1 
 

l = 1 and s = 1 
 

D1 x D1 = D2 + D1 + D0 
 

j = 2   6 3P2     (g = 3/2). 
j = 1   6 3P1 
j = 0   6 3P0 

 
l = 1 and s = 0 

 
D1 x D0 = D1 

j = 1   6 1P1 
 
(c) 6s6d 
 

l = 0 and l = 2→ D0 x D2 = D2 
 

l = 2 and s = 1 
 

D2 x D1 = D3 + D2 + D1 
 

j = 3   6 3D3 
j = 2   6 3D2 
j = 1   6 3D1 

 
l = 2 and s = 0 

D2 x D0 = D2 

j = 2   6 1D2 
 



(d) 6s7s 
 

l = 0 and l = 0→ D0 x D0 = D0 
 

l = 0 and s = 1 
 

D0 x D1 = D1 

 
j = 1   7 3S1   (g = 2) 

 
l = 0 and s = 0 

D0 x D0 = D0 

 
j = 0   7 1S0 

 
(e) 6s7p 
 

l = 0 and l = 1→ D0 x D1 = D1 
 

l = 1 and s = 1 
 

D1 x D1 = D2 + D1 + D0 

 
j= 2   7 3P2 
j = 1   7 3P1 
j = 0   7 3P0 

 
l = 1 and s = 0 

D1 x D0 = D1 

j = 1   7 1P1 
 
(f) 6s7d 
 

l = 0 and l = 2→ D0 x D2 = D2 
 

l = 2 and s = 1 
 

D2 x D1 = D3 + D2 + D2 



 
j = 3   7 3D3 
j = 2   7 3D2 
j = 1   7 3D1 

 
l = 2 and s = 0 

D2 x D0 = D2 

j = 2   7 1D1 
 
_________________________________________________________________________ 
15. Zeeman splitting in Hg 
 

 
 
Fig.24 Schematic diagram for the Zeeman splitting in Hg. 546.07 nm (Green line). 

7 3S1 (6s7s). 6 3P2 (6s6p). 7 3S1 (j = 1, l = 0, s = 1) and 6 3P2 (j = 2, l = 1, s = 
1). 

 
The Hg green line corresponds to the transition from 7 3S1 to 6 3P2.  
 
The state of the 7 3S1 level is described by 

Dm=0Dm=-1 Dm=1

m=2
m=1
m=0
m=-1
m=-2

m=1
m=0
m=-1

6 3 P2

7 3S1 g=2

g=
3
2



 

22 ,1 mj    (j2= 1, s2= 1, l2 = 0, g2= 2) 

 
with m2 = 1, 0, and -1. The state of 6 3P2 level is described by 
 

11 ,2 mj    (j1 = 2, s1= 1, l1= 1, g1= 3/2) 

 

with m1 = 2, 1, 0, -1, and -2. According to the selection rule (m = 1, 0, and -1), there are 9 
lines. 
 

m = ±1 (6 lines):   lines. 
 

m = 0 (3 lines):   lines. 
 
16. Evaluation of observed wavelenghts 
 

BmgEE B 22202  ,   for 7 3S1 level 

 
BmgEE B 12101     for 6 3P2 level 

 
The energy separation is given by 
 

)( 1122
0

121212 gmgmBEEEE B    

 
 
with 
 

12 mmm   = -1, 0, or 1. 

 
m2 =1, 0, -1. m1 = 2, 1, 0, -1, -2. 

 
g2=2  g1 = 3/2 

 
Here we note that 
 



12
12 

c
hE  ,  

0
12

0
12 

c
hE   

 
Then we have 
 

)(
2

1
)

11
( 11220

1212

12
0

12
0

1212

gmgmB
c B 


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


 
 

 
or 
 

  )(
2

1
112220

12

12
0

1212

12
0

12 gmgmB
c B 




 







 

 
or 
 

  )
2

3
2(

2

1
1220

12

12 mmB
c B 

 





 

 
where 
 

51066865.4
2

1 Bc


 
 (Oe-1cm-1) 

 
and 
 

0
12  = 546.07 nm (Green) 

 
We note that 
 

f(m1, m2) = )
2

3
2( 12 mm   

takes discrete values of 3/2, 1, 1/2, 0, -1/2, -1, and -3/2. 
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APPENDIX 
A. Fundamentals of quantum mechanics 
A1. Orbital angular momentum and its magnetic moment of one electron 
 

 
Fig.A1 Orbital (circular) motion of electron with mass m and a charge –e. The 

direction of orbital angular momentum L is perpendicular to the plane of 
the motion (x-y plane). 

 
The orbital angular momentum of an electron (charge –e and mass m) L is defined by 

 

)( vrprL m , or mvrLz  . 

 
According to the de Broglie relation, we have 
 

nhr
h

rp  


 2)2( , 

 



where p (= mv) is the momentum (

h

p  ), n is integer, h is the Planck constant, and  is 

the wavelength.  
 

 
 
Fig.A2 Acceptable wave on the ring (circular orbit). The circumference should be 

equal to the integer n (=1, 2, 3,…) times the de Broglie wavelength . The 
picture of fitting the de Broglie waves onto a circle makes clear the reason 
why the orbital angular momentum is quantized. Only integral numbers of 
wavelengths can be fitted. Otherwise, there would be destructive 
interference between waves on successive cycles of the ring. 

 
Then the angular momentum Lz is described by 
 

n
nh

mvrprLz 
2

. 

 
The magnetic moment of the electron is given by 
 

AI
cz  1

 , 

 

where c is the velocity of light, A = r2 is the area of the electron orbit, and I is the current 
due to the circular motion of the electron. Note that the direction of the current is opposite 



to that of the velocity because of the negative charge of the electron. The current I is given 
by 
 

r

ev

vr

e

T

e
I

 2)/2(
 , 

 
where T is the period of the circular motion. Then the magnetic moment is derived as 
 

z
Bz

zz L
L

mc

e
L

mc

e

c

evr
AI

c 

   
222

1
 (e > 0), 

 

where B (=
mc

e

2


) is the Bohr magneton. B = 9.27400915 x 10-21 emu. emu=erg/Oe. Since 

nLz , the magnitude of orbital magnetic moment is nB. 

 
A.2 Spin angular momentum and its magnetic moment 

The spin magnetic moment is given by 
 

Sμ


B
S

2
 , 

 
where S is the spin angular momentum. 
In quantum mechanics, the above equation is described by 
 

SB ˆ2
ˆ



  , 

 

using operators (Dirac). When ̂
2

ˆ 
S , we have  ˆˆ B . The spin angular momentum 

is described by the Pauli matrices (operators) 
 

xxS ̂
2

ˆ 
 , yyS ̂

2
ˆ 
 zzS ̂

2
ˆ 
 . 

 
Using the basis, 
 













0

1
, 










1

0
. 

 
we have 
 











01

10
ˆ x , 







 


0

0
ˆ

i

i
y , 











10

01
ˆ z . 

 
The commutation relations are valid; 
 

zyx i ˆ2]ˆ,ˆ[  , xzy i ˆ2]ˆ,ˆ[  , yxz i ˆ2]ˆ,ˆ[  . 

 
The resultant magnetic moment of an electron is given by 
 

)2( SLμ 


B . 

 
A.3. Magnetic moment of atom 

We consider an isolated atom with incomplete shell of electrons. The orbital angular 
momentum L and spin angular momentum S are given by 
 

...321  LLLL , ...321  SSSS  

 
The total angular momentum J is defined by 
 

SLJ  . 
 

The total magnetic moment  is given by 
 

)2( SLμ 


B . 

 
The Landé g-factor is defined by 
 

Jμ


BJ
J

g 
 , 



 
where  

 
Fig.A3 Basic classical vector model of orbital angular momentum (L), spin 

angular momentum (S), orbital magnetic moment (L), and spin magnetic 

moment (S). J (= L + S) is the total angular momentum. J is the 

component of the total magnetic moment (L + S) along the direction (-J).  

 
Suppose that 
 

 LJL a  and  SJS b 



where a and b are constants, and the vectors S  and L  are perpendicular to J. 

Here we have the relation 1 ba , and 0  SL . The values of a and b are determined 

as follows. 
 

2J

LJ 
a , 

2J

SJ 
b . 

 
Here we note that 

22
)(

222222
22 SLJSLJ

SSLSSSLSJ





 , 

or 

)]1()1()1([
22
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


 SSLLJJ
SLJ

SJ , 

using the average in quantum mechanics. The total magnetic moment  is  

)]2()2[()2(   SLbaBB JSLμ



. 

Thus we have 

JJJμ


BJBB
J

g
bba


 )1()2( , 

with 

)1(2

)1()1(

2

3
11 2 





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JJ

LLSS
bgJ J

SJ
. 

 
((Note)) 
The spin component is given by 
 

  SJSJS )1( Jgb , 

 
with 1 Jgb . The de Gennes factor is defined by 

 



)1()1(
)1( 2

2

22




JJg
g

J
J



J
. 

In ions with strong spin-orbit coupling the spin is not a good quantum number, but rather 
the total angular momentum , J = L+S. The spin operator is described by 

JS )1(  Jg . 

 

A.4 Spin-orbit interaction in an electron around the nucleus 
The electron has an orbital motion around the nucleus. This also implies that the 

nucleus has an orbital motion around the electron. The motion of nucleus produces an 
orbital current. From the Biot-Savart’s law, it generates a magnetic field on the electron. 
 

 

Fig.A4 Simple model for the spin-orbit interaction. The orbital current due to the 
circular motion of the nucleus (with velocity vN and charge Ze) produces 
an magnetic field at the center where the electron is located. 

 
The current I due to the movement of nucleus (charge Ze, e>0) is given by 
 

NZeId vl  , 

 

where Nv is the velocity of the nucleus and Ndt

d
v

l
 . Note that 

 

NZe
dt

d
qd

t

q
Id v

l
ll 




 . 

 



The effective magnetic field at the electron at the origin is 
 

3
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1
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d

c

I
eff

rl
B


 , ev vN  , 

 
where v is the velocity of the electron. Then we have 
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Since rr 1 , effB can be rewritten as 
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
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or 
 

z
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c
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eerere
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22223
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
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The Coulomb potential energy is given by 
 

Vc(r)  
Ze2

r
, 

dVc(r)

dr


Ze2

r2 . 

 
Thus we have 
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L
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r
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mrvZe
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Zemrv
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eeeB

)(11
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2

2
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2

3




. 

 
or 
 

zz
c

eff L
dr
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rmce
eB

)(11
 , 



 

where Lz is the z-component of the orbital angular momentum, mvrLz  . 

The spin magnetic moment is given by 
 

Sμ


B
s




2
. 

 
The Zeeman energy is given by 
 

)(
)(1

2

1

)(112

2

1

2

1
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LSLS

LSBμ
















 



dr

rdV

rcm
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rdV

rmce
H

c

cB
effsLS


 

 
((Thomas correction)) 
Thomas factor 1/2, which represents an additional relativistic effect due to the acceleration 
of the electron. The electron spin, magnetic moment, and spin-orbit interaction can be 
derived directly from the Dirac relativistic electron theory. The Thomas factor is built in the 
expression. 
 

LS  LSH , 

 
with 
 

av

c

rmc

e
Z
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rcm 3

2

22

1

2

1)(1

2

1






 . 

 
When we use the formula 
 

)1)(2/1(3
0

4

3
3




lllan

Z
r , 

 

the spin-orbit interaction constant  is described by 
 

)1)(2/1(2)1)(2/1(2 642
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3
0
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





lllnc

Zme

lllancm

Ze


 , 



 
where 

2

2

0 me
a


  = 0.52917720859 Å. 

 (Bohr radius) (from NIST physics constants) 
 
The energy level (negative) is given by 
 

0
2

22

2

4

2

2

22
||

an

eZme

n

Z
En 


. 

 

The ratio nE/2  is 

 

)1)(2/1(

1)(

)1)(2/1( 2

2

222
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





llln

Z

lllnc

Ze

En





, 

 
with 
 


 

e2

c


1

137.037
. 

 
((Note)) For l = 0 the spin-orbit interaction vanishes and therefore  = 0 in this case. 
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B. Paschen-Back effect in Na 
Mathematica calculation 



 
 

 
 
C. Zeeman splitting for Na 

Here we discuss the eigenvalue problem in more detail. 

Calculation of Matrix element for the Zeeman effect

Eigenvalue problem for the Zeeman effect

Clear"Global`";

M1   —2

2
l  B B m 1 

1

2 l  1
, 

B B l  122  m2

2 l  1
,

 B B l  122  m2

2 l  1
, 

 —2

2
l  1  B B m 1 

1

2 l  1
;

eq1  EigensystemM1  Simplify;

The eigenvalues; 

1  eq11, 1

B m B 
 —2

4


1

4
4 B2 B2  8 B m B  —2    2 l 2 —4

2  eq11, 2
1

4
4 B m B   —2  4 B2 B2  8 B m B  —2    2 l 2 —4

The eigenvectors:

1  eq12, 1

 2 B 1  4 l  4 l2  4 m2 B

4 B m B  1  2 l 1  2 l  —2  4 B2 B2  8 B m B  —2    2 l 2 —4
, 1

1  eq12, 2  FullSimplify

 2 B 1  2 l2  4 m2 B

4 B m B  1  2 l 1  2 l  —2  4 B2 B2  8 B m B  —2    2 l 2 —4
, 1



 
j = 3/2, l = 1, s = 1/2 
Clebsch-Gordan coefficient 
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3
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3
lmlmj  

 
____________________________________________________________________ 
j = 1/2, l = 1, s = 1/2 
Clebsch-Gordan coefficient; 
 

 0,1
3

1
1,1

3

2

2

1
,

2

1
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2
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Note that 
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
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The Hamiltonian is expressed by 
 

BSLH zz
BB )2()(

2
)2( 222 



 SLJBSLSL . 

 

We need to calculate mjH ,  with j = 1/2 ( 2/1m ) and j = 3/2 (m = ±3/2, ±1/2).  
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Then we have 
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From this, we find that 
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There are two subspaces of the matrices for the basis of {
2

1
,

2

3
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2

1
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1
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2

3
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1
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2

1
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(ii) For the basis of {
2

1
,

2

3
 mj , 

2

1
,

2

1
 mj } 

Clear"Global`";

m  12;

M1 

 —2

2
 B B 4 m

3
 B B

3
9
4
 m2

 B B
3

9
4
 m2  —2  B B 4 m

3

;

eq1  EigensystemM1  Simplify

 1
12

8 B B  3  —2  32 B2 B2  81 2 —4 ,

1
12

8 B B  3  —2  32 B2 B2  81 2 —4 ,

9  —2  32 B2 B2  81 2 —4

4 2 B B
, 1,  9  —2  32 B2 B2  81 2 —4

4 2 B B
, 1

E1  eq11, 1  Series, B, 0, 3 &  Simplify,   0, —  0 &

 —2 
2 B B

3


4 B2 B2

27  —2  OB4

E2  eq11, 2  Series, B, 0, 3 &  Simplify,   0, —  0 &
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2


2 B B
3


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1  eq12, 1  Series, B, 0, 3 &  Simplify,   0, —  0 &
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9  —2 
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2  eq12, 2  Series, B, 0, 3 &  Simplify,   0, —  0 &
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Clear"Global`";

m  12;

M1 
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2
 B B 4 m

3
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3
9
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9
4
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3

;

eq1  EigensystemM1  Simplify

 1
12

8 B B  3  —2  32 B2 B2  81 2 —4 ,

1
12

8 B B  3  —2  32 B2 B2  81 2 —4 ,

9  —2  32 B2 B2  81 2 —4

4 2 B B
, 1,  9  —2  32 B2 B2  81 2 —4

4 2 B B
, 1

E1  eq11, 1  Series, B, 0, 3 &  Simplify,   0, —  0 &

 —2 
2 B B

3


4 B2 B2

27  —2  OB4

E2  eq11, 2  Series, B, 0, 3 &  Simplify,   0, —  0 &

 —2

2


2 B B
3


4 B2 B2

27  —2  OB4

1  eq12, 1  Series, B, 0, 3 &  Simplify,   0, —  0 &

2 2 B B

9  —2 
16  2 B3 B3

729 3 —6  OB4, 1

2  eq12, 2  Series, B, 0, 3 &  Simplify,   0, —  0 &

 9  —2
2  2 B B


2  2 B B

9  —2 
16 2 B3 B3

729 3 —6  OB4, 1


