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Abstract:

In 1897, Pieter Zeeman observed the splitting of the atomic spectrum of cadmium (Cd)
from one main line to three lines. Such a splitting of lines is called the normal Zeeman
effect. According to the oscillation model by Hendrik Lorentz, the Zeeman splitting arises
from the oscillation of charged particles in atoms. The discovery of the Zeeman effect
indicates that the charged particles are electrons. In 1897 - 1899, J.J. (Joseph John)
Thomson independently found the existence of electrons from his explorations on the
properties of cathode rays.

There are few atoms showing the normal Zeeman effect. In contrast, many atoms shows
anomalous Zeeman effects. For the spectra of sodium (Na). for example, there are two D-
lines (yellow) in the absence of the magnetic field. When the magnetic field is applied, each
line is split into four and six lines, respectively. Although Zeeman himself observed the
spectra of Na, he could not find the splitting of the D lines in the presence of the magnetic
field because of the low resolution of his spectrometer. The electron configuration of Na is
similar to that of hydrogen. There is one electron outside the closed shell. Instead, he chose
Cd for his experiment and found the normal Zeeman effect (three lines). In the electron
configuration of Cd, there are two electrons outside the closed shell. The three lines
observed in Cd was successfully explained in terms of the Lorentz theory. It seems that the
choice of Cd by Zeeman is fortunate to the development of atomic physics. If Zeeman
found the anomalous Zeeman effect in Na by using spectrometer with much higher
resolution, Lorentz might have some difficulty in explaining such a complicated
phenomenon. In fact, only the quantum mechanics can explain the normal Zeeman effect,
the anomalous Zeeman effect, and the Paschen-Back effect (Zeeman effect in an extremely
large magnetic field). Here we note that the Fabry-Perot interferometer (which is used for
the measurement of Zeeman effect in our laboratory ), designed in 1899 by C. Fabry and A.
Perot, represents a significant improvement over the Michelson interferometer.

In our Advanced laboratory [Senior Laboratory (Phys.427, Phys.429) and Graduate
Laboratory (Phys.527)], students (both undergraduate and graduate students) are supposed
to do the experiment for the Zeeman splitting of mercury (Hg), using an equipment
consisting of magnetic field, Hg light source, polarizer, Fabry-Perot Etalon, CCD camera,
and computer. The normal Zeeman splitting is observed in Hg. The electron configuration
of Hg is similar to that of Cd, where two electrons are outside the closed shell. The



introduction of such new techniques may lead to clear visualization of the Zeeman effect in
the laboratory class.

In this lecture note, we present both classical and quantum mechanical theories on the
Zeeman effect. (1) Lorenz theory, (2) the Zeeman effect of Na using quantum mechanics,
(3) the Zeeman effect of Cd and Hg. These notes will be helpful to understanding the
Zeeman effect from a view point of quantum mechanics. "The atomic spectra are sort of
voices which can be heard from the quantum world."

Pieter Zeeman (25 May 1865 — 9 October 1943) was a Dutch physicist who shared the
1902 Nobel Prize in Physics with Hendrik Lorentz for his discovery of the Zeeman effect.

http://en.wikipedia.org/wiki/Pieter Zeeman

Hendrik Antoon Lorentz (18 July 1853 — 4 February 1928) was a Dutch physicist who
shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and
theoretical explanation of the Zeeman effect. He also derived the transformation equations
subsequently used by Albert Einstein to describe space and time.



http://en.wikipedia.org/wiki/Hendrik Lorentz

Sir Joseph John "J. J." Thomson, OM, FRS (18 December 1856 — 30 August 1940) was
a British physicist and Nobel laureate. He is credited for the discovery of the electron and
of isotopes, and the invention of the mass spectrometer. Thomson was awarded the 1906
Nobel Prize in Physics for the discovery of the electron and for his work on the conduction
of electricity in gases.

http://en.wikipedia.org/wiki/J. J. Thomson

1. Normal Zeeman effect



The explanation for the atomic spectra is due to the oscillation of charged particles
inside atoms. These was no positive evidence that the particle should be an electron. The
experimental evidence for the atomic spectra due to an electron was found by Pieter
Zeeman in 1897. He observed splitting of Cd lines into three components (normal Zeeman
effect) when an external magnetic field B is applied. He showed that the angular frequency
of these lines are given by

0= w,, ®=w,+0, 0=~ o

where ay is the angular frequency in the absence of B. The angular frequency o, is given
by
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where - e is the charge of electron (we assume that €>0) and m is the mass of electron.

In 1897, Hendrik Lorentz presented a theoretical interpretation for the observation by
Zeeman. The Zeeman effect is the splitting of the energy levels of an atom when it is placed
in an external magnetic field. The splitting occurs because of the interaction of the

magnetic moment u of the atom with the magnetic field B slightly shifts the energy of the
atomic levels by an amount,

AE=—n-B.

The magnetic moment g of electron can be expressed by

where L is the orbital angular momentum, g5 is the Bohr magneton of electron, and 7 is
the Planck's constant,
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Fig.2 Schematic diagram, where a magnetic field is applied along the z axis.
2. Oscillation model of Lorentz

We consider a particular orbit, in which the particle is rotating around the z axis with
angular frequency +ax, where +ay indicates the counterclockwise (CCW) rotation, and -ax



indicates clockwise (CW) rotation. If we view the atoms in the z direction, we will obtain
light that is circularly polarized with the electric vector rotating in the same direction as the
electron.

CCW Wy CwW —wy

Fig.3

If we view it normal to the z axis, the electric field that reaches us will depend only on
the projection of the electron motion on the axis normal to the viewing. The projection of
circular motions on such an axis is simple harmonic motion. So that the light viewed in a
direction parallel to the plane of motion will be polarized in a direction normal to the
direction of viewing and parallel to the plane of electron motion.

Viewed from the z axis (B = 0)

Circulary polarized [2 modes (x—y plane)]

A
>
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Fig4 Viewed from the z axis. B = (. There are two modes (circularly polarized, Xy

plane).



Viewed from the x—y plane

Linearly polarized [1 mode (z), 2 mode (x—y plane)]
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Fig.5 Viewed from the x-y plane. B = 0. There are three modes at ® = ay. 2 modes
(linearly polalized, Xy plane) and 1 mode (linearly polarized, z axis).

(b) Magnetic field along the z axis: B #0.

In the presence of an external magnetic field along the z axis, the components of the
motion in the z direction are left unchanged, while the components of motion in the Xy
plane are altered. Those atoms with counterclockwise orbits will have their frequencies of
rotation in the Xy plane increased by @, , while clockwise orbits will have their frequencies

decreased by @, , where
o,
W, = 7°
with
_€eB

— (Larmor angular frequency).
mc

c
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Fig.6 Schematic diagram for the classical explanation of the normal Zeeman effect.

When viewed along the z axis (the direction of the magnetic field), the radiated line will
therefore split into two lines, with opposite circular polarization. The electrons moving in
the z direction cannot radiate in the z direction; as a result, there will be no undeviated lines
in the light emitted in the z direction.

Viewed from the z axis

No linearly polarized (z)

Circulary polarized (x—y) Circulary polarized (x—y)

wWH)—wL wy wo+wL
Fig.7 Viewed from the z axis. B # 0.
If the atom is viewed normal to the z direction, then there will be undeviated line,
produced by electrons which move in the z direction. This will be polarized in the z
direction. The components of electron motion in the xy plane will produce two deviated

lines, each linearly polarized in a direction normal to z.

Viewed from the xy plane

Linearly polarized (xy) Linearly polarized (xy)
Linearly pplarized (z)

wWy—wL Wy wWot+wL B

Fig8 Viewed from the Xy plane.

3. Rotating reference frame
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Fig.9 X1 =M. Xo = My. X;' = m;". Xo = m,". Note that OP is fixed. The relation
between {e, e;} and {e,', &,'}.

We consider the two coordinate systems.

Xe, + ye, = Xe,'+Ye,',

with

X =(Xe,'+Ye,")-e, = X cosd —Y sind

y =(Xe,'+Ye,")-e, = Xsin@ +Y cosd

where @is the angle between e, and €;'. In the matrix form, we get



X cos@d —sinfd 0\ X
y|=|sinfd cos@ OfY
z 0 0 1NZ

b

Now we consider the equation of motion for electron (mass m and charge -e),
.. 2 e .
mr = -ma, r ——(r xB)
C

or

.. e . eB . . . A

r= —a)ozr —-—(rxB)= —a)ozr -—(rxz)= —a)ozr -, (rxz)

mc mcC

or

. 2 .
X+ @, X=—m,y
y+a)02y:a)c)'(

I+@,'2=0
This equation can be rewritten as

0 =—sinO[—(w, —20)X +{w,” + (o, - 0)O)Y +Y +6X}]
+cos¢9[Y(a)c -20)+ {a)o2 + (o, —0)0X + X —6Y}]

0 =cosO[—(w, —20)X +{w,” + (@, — 0)O}Y +Y +6X}]
+sinO[Y (@, —20) + {w,” + (o, - )} X + X —6Y}]

in the new reference frame (X, Y). Here we assume that

0=ot

9

where wis constant, & = @, and 6 =0 Then we have



0 =—sinf[—(w, —20)X +{w, + (o, - 0)o}Y +Y}]

+cosO[Y (o, —20) +{w,” + (o, — @)D} X + X}]

and
0=cosd[—(w, - 20)X + {a)o2 + (0, — )oY +Y}]
+sinO[Y (o, - 20) + {w,” + (@, — @)} X + X}]
When we put
a)C
w = 7 = CI)L
we get
0 =—sin&[(w,” + %a)cz)Y +Y]
, 1, .
+ cos (o, +ch )X + X]
and
, 1, ..
0 =cosO[(w, +ch Y +Y]
. , 1, .
+sinf[(w, +Za)C )X + X]
These lead to
X+Q*X =0
Y+QY =0

where



since a)o2 >> TC The solution of these equation, defined by

2

%(X +1Y) :_a)oz(x +iY),

can be obtained as
X +iY =Ce'™ +C e’ .
The time dependence of z is given by
z=Ce'" +C,e .
When

1 iwyt
X, +iY, =

>

we have

X, = cos(m,t)

Y, =sin(wt)

When

X_+iY_ =g

2

we have

X_ = COS(—a)Ot) = COS(CUOt)

Y_ =sin(-aw,t) = —sin(m,t)



These results indicates that the electron motion of the (X, Y) plane is exactly the same as
that in the absence of the magnetic field (This is called the Larmor's theorem).

((Larmor's theorem))

The theorem that for a system of charged particles, all having the same ratio of charge
to mass, moving in a central field of force, the motion in a uniform magnetic field B is, to
first order in B, the same as a possible motion in the absence of B except for the
superposition of a common precession of angular frequency equal to the Larmor frequency.

Y

Fig.10 ParametricPlot of {X,, Y.} and {X., Y+}, where p is chosen appropriately.



4. Linear combination of modes
X, = X, cos(&t) -y, sin(ﬂt)
= cos(a,t) cos( ©1) — sin(w,t) s1n(—t)
= cos(wpt +—* 5 t) = cos(apt + o t)
y, =X s1n( 1) +Y, cos( 1)

= cos(aw,t) sin(jt) + sin(aw,t) cos(%t)

=sin(o,t + o t)
and
X = X_ cos( 1) -Y_ sm( 1)

= cos(a)ot)cos( 1) + sin(a,t) s1n(—t)

= cos(w,t — jt) = cos(—apt + o t)

y. =X_ sin(ﬂt) +Y. cos(&t)
= cos(a)ot)sm( 1) — sm(a)ot)cos( 1)

=sin(-ot + — 5 t) = —sin(ot — o t)

Then we have

1 1
X=—(X, +X)=—
S X ) =7
1 1. .
y = E(y+ +y )= 5[s1n(a)0t + o t) —sin(w,t

[cos(a,t + o 1) + cos(am,t — @ t)] = cos(am,t) cos(a,t)

— o t)] =sin(a,t)cos(at)



X, =cos[(@, + o )t]=cos[(I1 + lp)@]
X_ = cos[(-w, + o )t] = cos[(—1 + ip)@]
y, =sin[(@, + o )t] =sin[(1 + lp)@]

y_ =sin[(-®, + o )t] =sin[(-1 + lp)é?]

For simplicity we use a parameter p defined by

a,
— 0
p= .
(O}

5. Simulation (Mathematica)




Fig.11 (a) Plot of {x, y} with p = 5. Moving transversely to the field, the X and y
motions will take the form of rosettes. This is the same type motion as one
encounters in the Faraday effect.
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Fig.11 (b) Plot of {x,y} with p = 10.









6. Physics constants for the calculation of the Zeeman effect.
cgs units (from NIST Fundamental Physical constants)
http://physics.nist.gov/cuu/Constants/

Bohr magneton: s =9.27400915 x 107" emu; emu = erg/Oe.
Speed of light: €=2.99792 x 10" cm/s

Planck's constant h =1.054571628 x 107 erg s.

mass of electron m. =9.10938215x 10 g

charge of electron e =4.80321 x 10"° esu

eV eV =1.60218 x 10" erg

8 _ 578838 x 107 (1/0¢)
eV

Mo _466865x107° [1/(Oe cm)]
27hC

7. Separation of 3p and 3s energy levels in Na



Spin—orbit interaction

3%P3p
=3 0=1s=1p/  leep
7 e
ER(0+1)/2
 3%Pip
n=3,{=0,s=1/2
3S
Fig.12 Energy levels of Na with and without spin-orbit interaction. The 3P level is

slightly different from the 3S level. The 3P level is split into 3 2P3/2 (4
degeneracies) and 3 *Py, (3 degeneracies) due to the spin-orbit interaction.

The well known bright doublet which is responsible for the bright yellow light from a
sodium lamp may be used to demonstrate several of the influences which cause splitting of
the emission lines of atomic spectra. The transition which gives rise to the doublet is from
the 3p to the 3s level, levels which would be the same in the hydrogen atom. The fact that
the 3s (orbital quantum number | = 0) is lower than the 3p (I = 1) is a good example of the
dependence of atomic energy levels on angular momentum. The 3s electron penetrates the
1s shell more and is less effectively shielded than the 3p electron, so the 3s level is lower
(more tightly bound). The fact that there is a doublet shows the smaller dependence of the
atomic energy levels on the total angular momentum . The 3p level is split into states with
total angular momentum j = 3/2 and j = 1/2 by the magnetic energy of the electron spin in



the presence of the internal magnetic field caused by the orbital motion. This effect is called
the spin-orbit effect. In the presence of an additional externally applied magnetic field,
these levels are further split by the magnetic interaction, showing dependence of the
energies on the z-component of the total angular momentum. This splitting gives the
Zeeman effect for sodium.

When the wavefunctions for electrons with different orbital quantum numbers are
examined, it is found that there is a different amount of penetration into the region occupied
by the Is electrons. This penetration of the shielding 1s electrons exposes them to more of
the influence of the nucleus and causes them to be more tightly bound, lowering their
associated energy states. In the case of Na with two filled shells, the 3s electron penetrates
the inner shielding shells more than the 3p and is significantly lower in energy.

8. The states of 3 2S;; , 3 2P3/5, and 3 2Py, in Na

The electron configuration of Na is given by
Na: (15)2(25)2(2p)°(3s)

The inner 10 electrons can be visualized to form a spherically symmetrical electron cloud.
We are interested in the excitation of the 11-th electron from 3s to a possible higher state.

(a) The 3s state
For the electron with 3s state (1 =0, s =1/2),

Do x Dy =Dip

Thus we have j = 1/2 (the degeneracy 2). The state is described by 3 2S;, (or simply 2S ).

Here we use the notation of n 2S+]Lj where n is the principal quantum number, S is the spin

number, | is the orbital angular momentum, and j is the resultant angular momentum.

lj=1/2,m=1/2)=|m =0,m, =1/2)

lj=1/2,m=-1/2)=|m =0,m, =-1/2)
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Fig.13 ‘j :%,m>. (I'=0). m = 1/2. m = -1/2. The recursion relation to obtain the

Clebsch-Gordan coefficients.

(b) The 3p state
For the electron with 3p state (I =1, s = 1/2), we have

Dy xDyp=D3,p+Djp

Thus we have j = 3/2 (the degeneracy 4) and j = 1/2 (degeneracy 2). These states are
described by 3 2Pz, (j = 3/2) and 3 2P, (j = 1/2).

Note that



Fig.14 jzg,m>. (I = 1). The recursion relation to obtain the Clebsch-Gordan

coefficients.
The Clebsch-Gordon coefficients can be calculated using the Mathematica.

(i)  Forj=3/2(32P;y),
|j=3/2,m=-3/2)=|m =-1,m =-1/2)
|j=3/2 m:—1/2>:\/§|m =0,m =—1/2>+l|m =-1,m,=1/2)
> 3 1 > s \/g 1 >'s

: 1 2
|j :3/2,m:1/2>:$|m, =1,m, :—1/2>+\/;|m, =0,m,=1/2)

li=3/2,m=3/2)=|m =1m =1/2)
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Fig.15
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coefficients.

jzl,m>. | = 1. The recursion relation to obtain the Clebsch-Gordon

(i)  Forj=1/2(3 2Pyp),
: 1 2
|j=1/2,m :—1/2>:$|m| =0,m, :—1/2>—\/;|m, =-1,m =1/2)

: 2 1
|j :1/2,m:1/2>:\/;|m| =1,m, :—1/2>—$|m, =0,m,=1/2)

(¢) g factors

The Lande g-factor is defined by



_§+s(s+l)—l(l+l)

9 2 2j(j+1)

(see the Appendix)

Table
Term j | S 2
32P3) 32 1 1/2 4/3
32Pyp 1/2 1 1/2 2/3
328, 1/2 0 1/2 2

=13
—= m="13

1
2 m=1/2
3 P1/2'T< 1 A 1 A m=—1/2
Am=— ( (] —H1-=10 0
vy Y. viy _
25, T Yy — ¥ m=12
Fig.16 Schematic diagram of energy levels in Na (n = 3) with and without magnetic

field B. The splitting of energy levels occurs due to the spin-orbit interaction
and the Zeeman effect.



The wavelength of sodium D lines is given by
A=1589.6 nm (3 3P1/2 -3 381/2).
A=1589.0 nm (3 3P3/2 -3 381/2).

The sodium D lines correspond to the 3p — 3s transition. In the absence of a magnetic field
B, the spin orbit interaction splits the upper 3p state into 3 2P3/, and 3 2P}/, terms separated

by 17 em-l. The lower 3 2S;, has no spin-orbit interaction.

9. Quantum mechanics for system with one electron
(a) Spin orbit interaction

The spin-orbit interaction serves to remove the | degeneracy of the eigenenergies of
hydrogen atom. If the spin-orbit interaction is neglected, energies are dependent only on n
(principal quantum number). In the presence of spin-orbit interaction (n, I, s = 1/2; j, m) are
good quantum numbers. Energies are dependent only on (n, 1, j).

We introduce a new Hamiltonian given by

The Hamiltonian I:|O commutes with all the components of L and S.

A ~

[HoaLz] = [Hoal—zz]: [Hoa Lz]

or



and
[H,L,]+0.

Thus we conclude that

~

|y/> is the simultaneous eigenket of the mutually commuting observables { I:|0 , I:z, §2, J?,

and J,}.
Holv) = E,"v),
Cly)=r’ 10 +1)y),
S?|y) =n’s(s+D|y),
Jw)=n*j(i+Dly).
Ji|w)=nmly).

We consider the hydrogen atom problem with the spin orbit interaction. The eigenket |l//> is

expressed by [n,l,s; j, m) . The angular part of this eigenket is

s j,m),

j.m)=
with

s=1/2,j=1=+1/2,



where

The spin-orbit interaction is given by

A A oy

HLS: s“ﬁ~§=§[32— Lz_sz]’

His j,m>=§|:-§ j,m>
ooy
j.m)

j.m)

RLj(j+D) =11 +1)-3/4]

(a) For j=1+1/2,
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o,
' S
] e
' *e.
' S
] e
L} .
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' S
L} ‘~
: I
(m-1R, 1) So (m+1/2,172)
.
{x
[
(m-1/2,-1/2) (m+1)8,-1/2)
] . 1 . . .
Fig.17 j:|+5,m> . The recursion relation to obtain the Clebsch-Gordan
coefficients.
Hili=1+1/2,m)=Eg|j=1+1/2,m),
with

E.. :ghz[(l +1/2)(1 +3/2) = 1(I +1)—3/4]=§h2| .

We note that



l+m+1/2
21 +1

y T2 12m, = 1/2)
21 +1

The expectation values of I:Z and éz are obtained as follows.

[j=1+1/2,m)= Im =m-1/2,m, =1/2)

l+m+1/2

Ci=1+1/2,m)=n|——"Z(m-1/2))m =m-1/2,m, =1/2)
21 +1
n I—m—+1/2(m+1/2)|ml —m+1/2,m =—-1/2)
21 +1
l+m+1/2
X - ———— 2 (m-1/2)
<j:|+1/2,m||_z|j:|+1/2’m>:h \/|+m+1/2 \/I m+1/2 N +1
21 +1 21 +1 l-m+1/2
—— 2 (M+1/2)
21 +1
4 I+m+1/2(m_1/2)+I—m+1/2(m+1/2)
L 2l+1 21 +1
~ h2Im
21 +1
Similarly,
S li=t+t2m=n 2 oym o mo1y2,m, =1/2)
21 +1
++h I_””—”/2(—1/2)|m, =m+1/2,m, =—1/2)
21 +1

) 2. l+m+1/2 l-m+1/2
=l+1/2,mS [j=1+1/2,m)=h ——(1/2)———(1/2
y .13 ) [ 21 +1 1/2) 21 +1 ( )}

_ hm
21 +1

Then we have



1

(j=1+1/2,m|, +2S,| j=1+1/2,m)=hm(1+——)
2l +1
() Forj=1-12
1N
: U
(m-1 1/52) “.‘(m+1/2,1/2)
.
(m=1/2,-1/2) (m+1%,-1/2)
Fig.18 J =1 —% . The recursion relation to obtain the Clebsch-Gordan coefficients.
Hisli=1-1/2,m)=E|j=1-1/2,m),
with
FTI| 1 3 g0
E.=2n[l-—=>)+)-1(+)—=]=-=n"(1+1),
s =S M=)+ 2= 1A+ D =7 ]=—"md+1)



j=t-t2my=— 2 o, =12y 2 2m, = -1/2)
21 +1 21 +1
or
Hili=1-1/2 _ g j=1-
NE ,m) = 2;1(|+1ﬂ1._| 1/2,m).
The expectation value of I:Z and §Z
(j=it2mll]j=i-t/2,m)=p L ZME2 00 gy TEMEL2 0y )
21 +1 21 +1
_2am(l +1)
21 +1
. A l-m+1/2 l+m+1/2
=l-1/2,mlS,|j=1-1/2,m)=h| ———=(1/2) - —————=(1/2
(=t-v2m ity < R - )|
_hm
21 +1
Then we have
- ~ 2 H 1
=1-1/2,m|L, +2S |j=1-1/2,m)=Am(1 - )
(i L, +25,] )=hm(1-——)

In summary, the energy shift due to the spin-orbit interaction is given by

AEzszgﬁL for j = 1+1/2,

AE=E5=—§#G+D, for j=1-1/2,

Spl 0
|:ILS= 2
0 —gh%|+n



under the basis of|j =I+1/2,m> and |j =|—1/2,m>,

where
e ez’ _(a2)’ 1
|E| cnPRld+1/2)(1+1) 0 1d+1/2)1+1)’
or
z* 1
n’E=Ra’

N 10+ 1/2)A+ 1)

(b) Zeeman effect in a system with a single electron such as Na
The magnetic moment is given by a sum of the orbital magnetic moment and spin
magnetic moment as

fi=-2(L+28),

€ . ..
where 4 = > (>0) is the Bohr magneton. The Zeeman energy is given by

m.C

e

H, :—ﬁ-B:%(£+2S)-B:%(3+§)-B:ﬂ;B 3. +$,),

for B//z. We now calculate

l+m+1/2
21 +1

$HB (a8 22 12m, = —1/2)
7 21+1

HB|j=|+1/2,m>=%B(|ZZ+2§Z) Im =m-1/2,m, =1/2)

or



m=m-1/2,m =1/2)

l-m+1/2

L Im =m+1/2,m =-1/2)
27V 21+1

Noting that

HLS“ :|+1/2,m>=ELS|j =|+1/2,m>

we have
(l:lLs+|:|B)|j=|+1/2,m>=[élh2+uBB(m+1)],/|+m—+l/2]|m,=m—1/2,ms=1/2>
2 2 21+1
S 152 1, [I-m+1/2
+[Z1R? + g B(M = )], [—————|m, =m+1/2,m_ =—1/2
(510 + e B(M =)} — | m, ; )
Similarly,
|:|BJ=I——,m =_IULB(|:Z+2S) |—m+1/2| m, m—1/2,m5=1/2>
2 h 21 +1
fHB g IEMAEVZ o am, = —1/2)
h 21 +1
or
< 1 1. [I-m+1/2
Holj=1-—m)=—u,B(M+=),|[——m =m-1/2,m, =1/2
o)} 2 > #eB(M+3) 2|+1|' )

+ pgB(m - ),/”;—:/ﬂm. =m+1/2,m, =-1/2)

or

(Hi +Hp)j=1-1/2,m) =[§(| +1)hz_ﬂBB(m+%)] "2‘:—+1/2|ml —m-1/2,m, =1/2)
+

I+m+1/2|
I

s 2
+[ (I+1)h + ugB(m— 2 il

=m+1/2,m, =-1/2)



Note that

j=talm= V20 yam, =12 Y 2 o myyam, =12
2 21+1 21+1

j=t-Lom = T2 am, =12 2 2m, =12
2 21+1 21+1

j:I—1/2,m>} can

Then the matrix elements of H ¢ +H, in the basis {| j=1+1/2, m> ,

be obtained as

[j=1+1/2,m) |j=1-1/2,m)
2 2
j:|+l,m é|h2+,uBBm(1+ ) _yBB\/(I+1/2) m
2 2 21+1 20+1
1] 1BY(1+1/2) -m* & 2
=l--.m - | 1) + 11y Bm(1 - ——
<J 2 ‘ 2l +1 ( ™+ pgBM( s )

for the same | and m. The eigenvalues of this matrix are given by

2, = 145 Bm —%——\/4% B? + 81, Bm&h® + EX(2l + 1)1

_ _ﬂz l 2np2 2 2 224
A, = pzBm n +4 4p B + 8 Bmén” + 721 +1)°h" .

10. Zeeman effect in Na
We now consider the D lines of Na.
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i T m=_3/2
=1/2
3°Pip < E——/l/z
: =1/2
51— —
Fig.19 Energy levels for Na in the presence of weak magnetic field. In the presence

of a strong magnetic field, the states |J =3/2,m= i1/2> in 3°P,,
|j =1/2,m=+1/ 2> in 3°P,,are no loner eigenstate. The appropriate linear
combination of |j=3/2,m=%1/2) in 3°P,, and |j=1/2,m=%£1/2) in 3

?P,, for the same m (= £1/2) becomes eigenstates of H ¢ + H .

The mixed state of 3°P,,, (j=3/2,1=1,5s=1/2),and3’P,, (j=1/2,1=1,5=1/2) is
the eigenstate.
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with m = £1/2, where the factors 4/3 and 2/3 of the Zeeman terms correspond to the g

factors for °P,,, and °P,, , respectively. The eigenvalue can be obtained from the

eigenvalue problem for the (2 x 2) matrix. We get

E,(m)=EQG p)+,uBBm—§T——\/4,uB B? + 8, BM&k? + 9&H*

for m==1/2, and

for m = +x1/2. We note that

2

E,(m)=E(3p)+ uBm —%+%\/4sz82 +8uBm&h® +9&°1"

J :%,m :i%> is the eigenket of H ¢ +H,, where

3 3 <., . 3 3
H, +H =— M=— )= +2,B)|[J==—,m==),
(Hys B)J % 2> (2 Hp )‘J 5 2>
with
E.=EQ3 é 2
5 = p)+2h +2u5B
form=3/2,
and
~ ~ . 3 3 E.s . 3 3
H.+H == m=—=)=(Zh"-2uB)j=—m=—=
(Hy )l ) 5 2> (2 Hg )‘J ) 2>
with

E, = E(3p)+gh2—2yBB,



form=-3/2.

b))  j=1/2,1=0,5s=1/2
‘j :1/2,m:i%> is the eigenket of |:|L3+|:|B,

with the eigenvalue

E,(m)=E(3s)+2u;Bm

for m=+

N |~

11. Paschen-Back effect in Na

The Paschen-Back effect is the splitting of atomic energy levels in the presence of a
strong magnetic field. This effect is the strong-field limit of the Zeeman effect. The effect
was named after the German physicists Friedrich Paschen and Ernst E. A. Back.

In the limit of strong magnetic field B, the energy levels of Na are strongly dependent

on the magnetic field, and are given by

E,(m =%) = E(3s)+ u43B,
1
E,(M =) = E(3) ~ 41,8,

1 o’
E,(m=-)=E@Gp)--,
»(M 2) (3p 2

1 7
E(M=-2)=EGP) -~ 4B,

E, = E(3p)+§h2—2,uBB,



1 7’
(M=) = EGP) -5+ 8.

LIPS
Ey(m=—-")=E(3p)-= -,

E, = E(3p)+§h2 +244,B.

((Mathematica))
We use
=1, =1
EQp) - E(3s)= -7. &£=1.

for the calculation using the Mathematica.

Energy levels

5t
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E4(1/2)
G e Y w—— = el
1.0 1.5 N £ o
s R 1 ¢ 72 E—— 0
spin—orbit
Ex(=1/2)
7 Es _
—5L
E(3s)
ﬁ Ei(=1/2)
—10+ _—
Fig.20 Splitting of energy levels of Na in a magnetic field B (anomalous Zeeman

effect).



Fig.22 Paschen-Back effect. Zeeman splitting in the very large magnetic field for
Na.



12. Paschen-Back effect in Na; quantum mechanical treatment

Suppose that an extremely strong magnetic field is applied for the case of Na. The
Zeeman term of the Hamiltonian is much significant compared to the spin-orbit interaction.
in this case, the Hamiltonian H is simply given by

ﬁB:%(|:Z+2§Z)B

in the presence of the magnetic field along the z axis.
(1) 3p states

I=1,s=1/2.

A

Hy ml’m5>3p = g B(m, +2m5)|m|,m5>3p

|mI ,ms>3p is the eigenket of H, with the eigenvalue z;B(m, +2m,).

|my,m,), (m=1,0,-1,my=1/2, -1/2).

p
(2) 3s states

I=0,s=1/2.

A

HB

m,, mg >3s = 'uBB(mI + 2m8)| m, ’m5>3s

|m, , ms>3S is the eigenket of H s with the eigenvalue w;B(m, +2m,).

|my,m,) (=0, mg=1/2,-1/2).

3s

In the extremely high magnetic fields, the energy levels of 3s and 3p states split into five
levels. The difference between adjacent energy levels is the same and is equal to w5B.

Table



Energy (usB) Eigenkets

2 L1/2)
1 0,1/2) 0,1/2),
0 L-1/2)  |=L1/2),
-1 0-1/2)  |0-1/2),
2 ~1-1/2),
1
1, =>
| 2 3P 2ugB
[0, =>3p, 10 ! >
b ~ 3 2 5 ~ 3
2o P 2" ugB
1
|19 _3>3 P |_193>3p 0
1 1
|0: — 5 >3ps IOa = =35
23—+ 2 —peB
1
-1, —=>
| 230 “2.sB
Fig. The level splitting of Na for the Pashen-Back effect. |m|,ms>3p is the

eigenket for 3p states (6, states; =1, 0, -1, mg=1/2, -1/2). |m, ,ms>35 is the

eigenket for 3s states (2 states; m; =0, mg = 1/2, -1/2).

13.  Zeeman splitting in Cd
The electron configuration of Cd is given by (Kr) 4d'® 5s°. This is similar to the outer
electron configuration of He but also of Hg.

(a) 5s5s

DoXD():D() I=0



(b)

(©)

D1 x D1 =D1 + Do s=1,s=0

I=0ands=1
DoxD; =Dy j=]

I=0ands=0
DoXDoZDo JZO

S5s5p

D x Do =D =1
D1 x Dy =Dy + Dy s=1,s=0

I=1lands=1
DixD;=D,+D; +Dg

N v S ¢ o o
(IR
[en) [\

I=1lands=0
D1XDO:D1
5s5d

DzXD():Dz |
DisxDip=D; + Do S=

|=2ands=1
D, xD;=Ds+ D; + Dy

]=3

533,

518,

J:
5'P (g=1)

5°D,



j=2 5°D,

j=1 5°D,
I=2ands=0
D2XDO:D2 J:2
5'D,  (@=1)

-
5 5 3
s Ly

/
5'0, K ——— 17
< ‘A i n

643.8 nm AmE-1 nl=0 m=1

Yllwlrvlr
IS I i 2 i ——

m=-1

Fig.23 Schematic diagram for the Zeeman splitting in Cd. 643.8 nm. g =1 for 5 'D,
(=2,1=2,s=0)and 5'P, (j=1,1=1,5=0).

We can observe the normal Zeeman effect in the red spectral line of Cd (643.8 nm). It
corresponds to the transition
5'D(j=2,1=2,5=0)—> 5P, (j=1,1=1,5=0).

In the presence of the magnetic field, the 5 'D, level splits into 5 Zeeman components and
the 5 'P, level splits into 3 Zeeman component. The optical transitions between these levels



are only possible in the form of electrical dipole radiation. The following selection rules
apply for the magnetic quantum number m of the states involved;

Am=+1 for o components,
Am=0 for 7 components,

Thus we observe three spectral lines

14.  Energy levels in Hg: system with two electrons

The neutral mercury (Hg) atom in its ground state has 80 electrons in the configuration
15°2s22p°3s23p3d4s:4pedd4145s25p:5d°6s* in which the n =1, 2, 3, 4, and 5 electrons form
an inert core for two 6s valence electrons. The optical emission spectrum of Hg results from
transitions of the two valence electrons between various excited two-electron
configurations. The Hg spectrum therefore has many features in common with the two-
electron helium system.

2S+1 L
J

Orbital angular momentum
Di1 X D1 = Dypsip +..... + Dy
Spin:
Dy x Dy2 =Dy + Do
(a) 6s6s
I=0and | =0— Dy x Dy = Dy
I=0ands=1

DoXD1:D1
j=1 6°S,



(b)

(©)

I=0ands=0

D()XD():D()
j=0 6'So

6s6p
|=0and|=1—> DoXD1:D1
|=1lands=1

D1XD1:D2+D1+DO

=2 6°P, (9 =3/2).
j=1 6P,
j=0 6 Py
|=1ands=0
D1XDO:D1
j=1 6'P,

6s6d

|=0and|=2—> DoXDzZDz

I=2ands=1

DzXD1:D3+D2+D1

i=3 6 °Ds

j=2 6°D,

j=1 6D,
|=2ands=0

DzXD():Dz

j=2 6 'D,



(d)

(e)

®

6s7s

|=0and |l =0— D()XD():D()

I=0ands=1

Dy x D; =D,

i=1 738, (9=2)
I=0ands=0

Do x Do = Dy

j=0 7S,
6s7p

|=Oand|=1—> DoXD1:D1

I=1lands=1

DixD;=D,;+D;+ Dy

j=2 7°P,

j=1 7P,

j=0 7P,
I=1ands=0

D1XDO:D1

j=1 7P

6s7d

|=Oand|=2—> DoXDzZDz

I=2ands=1

DyxDy=Ds;+Dy+ D,



j:3 73D3

j=2 7°D,

j=1 7°D,
|=2ands=0

DzXD():Dz

j=2 7'D,

15. Zeeman splitting in Hg

m=1
< AA‘ i

m=2
VA
6 TP i a—_
< Y m=—1 2
m=-2
Fig.24 Schematic diagram for the Zeeman splitting in Hg. 546.07 nm (Green line).

7381 (6s7s). 6 °P, (6s6p). 7°S; (j=1,1=0,s=1)and 6 °P, (j=2,1=1,s=
).

The Hg green line corresponds to the transition from 7 °S; to 6 °Ps.

The state of the 7 °S; level is described by



i, =1,m,) (= 1,5=1,1,=0,0=2)
with m, = 1, 0, and -1. The state of 6 °P; level is described by
ljy=2.m,) Gi=25=1,1=1,0=3/2)

withm; =2, 1,0, -1, and -2. According to the selection rule (Am =1, 0, and -1), there are 9
lines.

Am = =£1 (6 lines): o lines.
Am =0 (3 lines): 7 lines.
16. Evaluation of observed wavelenghts
E,=E,, +09,4;mB, for 7°S; level
E =E,+0,4;mB for 6 °P; level
The energy separation is given by

AE,=E,-E = AElzo + pgB(M,g, —mg,)

with
Am=m,-m, =-1,0,or I.
m,=1,0,-1. m=2,1,0,-1,-2.
0,=2 g1=3/2

Here we note that



c c
AE, = hﬂq—, AE," =h—=

2 2

Then we have

L_ 1 22120_]12: 1 _
(/1,2 2120) 2122120 ZﬂCh IUBB(ngz mlgl)

or
0
- Y\ 1
E 2012 ~ 512 = > h:uBB(ngz -mg,)
PRV PR
or
Me _ 1 B-om,+m)
(2120)2 27ch 2
where
ﬁ U =4.66865x107° (Oe'em™)
and

A" =546.07 nm (Green)

We note that

3
f(my, my) = (-2m, +m, 5)

takes discrete values of 3/2, 1, 1/2, 0, -1/2, -1, and -3/2.
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APPENDIX
A. Fundamentals of quantum mechanics
Al.  Orbital angular momentum and its magnetic moment of one electron

v

i

¥
Fig.A1 Orbital (circular) motion of electron with mass m and a charge —e. The
direction of orbital angular momentum L is perpendicular to the plane of
the motion (X-Yy plane).
The orbital angular momentum of an electron (charge —e and mass m) L is defined by

L=rxp=rx(mv),or L, =mvr.

According to the de Broglie relation, we have

pQ2ar) = %27# =nh,



where p (= mv) is the momentum ( p = E), n is integer, h is the Planck constant, and A is

the wavelength.

N A1)
SZANP/

AR AR
Ll S

Fig.A2 Acceptable wave on the ring (circular orbit). The circumference should be
equal to the integer n (=1, 2, 3,...) times the de Broglie wavelength A. The
picture of fitting the de Broglie waves onto a circle makes clear the reason
why the orbital angular momentum is quantized. Only integral numbers of
wavelengths can be fitted. Otherwise, there would be destructive
interference between waves on successive cycles of the ring.

Then the angular momentum L, is described by

L, = pr:mvr:n—h:nh.
2

The magnetic moment of the electron is given by

1
=—1,A,
:uz c 4

where ¢ is the velocity of light, A = zr” is the area of the electron orbit, and |y is the current
due to the circular motion of the electron. Note that the direction of the current is opposite



to that of the velocity because of the negative charge of the electron. The current lg is given
by

e € ev

l,=—==

T Qalv) 2’

where T is the period of the circular motion. Then the magnetic moment is derived as

po=tga= B & Lty o)
c 2C 2mc 2mec # h
where 1 (=2e—h) is the Bohr magneton. x5 = 9.27400915 x 10! emu. emu=erg/Oe. Since
mc

L,=n#, the magnitude of orbital magnetic moment is Nysp.

A.2  Spin angular momentum and its magnetic moment
The spin magnetic moment is given by

ZIUB S
h b

Bs =—

where S is the spin angular momentum.
In quantum mechanics, the above equation is described by

2pg g

H== 7

using operators (Dirac). When S = Eé— , we have 4 =—uy0 . The spin angular momentum

is described by the Pauli matrices (operators)

S,=-0,,S,=-6,S,=

y o, .

o |
N |
N |

Using the basis,



we have

. 0 1) . 0 —i) . 1 0
o, = ,O0, =| . ,0, = .
1 o) i o 0 -1
The commutation relations are valid;
[6,,0,]1=2i5,, [6,,6,]=2i5,, [6,,6,]=2i0,.
The resultant magnetic moment of an electron is given by

u:—%(mzsy

A.3. Magnetic moment of atom
We consider an isolated atom with incomplete shell of electrons. The orbital angular
momentum L and spin angular momentum S are given by
L=L +L,+L;+...,S=8,+S,+8S,+...
The total angular momentum J is defined by

J=L+S.

The total magnetic moment g is given by
n= —%(L +28).

The Land¢ g-factor is defined by

:_gJIUBJ

1, 7



where

Fig.A3 Basic classical vector model of orbital angular momentum (L), spin
angular momentum (S), orbital magnetic moment (g), and spin magnetic
moment (). J (= L + S) is the total angular momentum. g4 is the
component of the total magnetic moment (g + us) along the direction (-J).

Suppose that

L=aJ+L, and S=bJ+S ,



where a and b are constants, and the vectors S, and L are perpendicular to J.

Here we have the relation a+b=1,and L, +S, =0. The values of a and b are determined

as follows.

Here we note that
JF-r-s r-r+s’
2

J-S=(L+S)-S=8"+L-S=8"+

b

or

2 12, Q2 2
J-S:#;%[J(J )= L(L+1)+S(S+1)],

using the average in quantum mechanics. The total magnetic moment g is
__Ms _ M
p= —7(L +28)= —7[(a +2b)J + (L, +2S))].
Thus we have

Hp Hp 0,4p
=—2@+2b)=—E(1+b)J=—2=27,
1, h( ) h( ) 5

with

g, =1+b=1+35_3 SE+D-LL+D
Jo2 2J(J +1)

((Note))
The spin component is given by

S=bJ+S, =(g,-DJ+S,,

with b =g; —1. The de Gennes factor is defined by



G DT ;121)2‘]2 =(9, =D I +D).

In ions with strong spin-orbit coupling the spin is not a good quantum number, but rather
the total angular momentum , J = L+S. The spin operator is described by

S=(g,-DJ.

A.4  Spin-orbit interaction in an electron around the nucleus

The electron has an orbital motion around the nucleus. This also implies that the
nucleus has an orbital motion around the electron. The motion of nucleus produces an
orbital current. From the Biot-Savart’s law, it generates a magnetic field on the electron.

B

electran -}

Fig.A4 Simple model for the spin-orbit interaction. The orbital current due to the
circular motion of the nucleus (with velocity vy and charge Ze) produces
an magnetic field at the center where the electron is located.

The current | due to the movement of nucleus (charge Ze, e>0) is given by

Idl = Zev,,
. . dl
where v is the velocity of the nucleus and Pl Note that

Idl :ﬂdl = Aqﬂz Zev,, .
At dt



The effective magnetic field at the electron at the origin is

| dixr,
Beff :E r13 ) VN =Vega

where V is the velocity of the electron. Then we have

:EVerl ZEVegxrl
3 3 :

Bff
N R A T

Since r, = -r, B, can be rewritten as

_Zevyxr, Zeve,xr
c r c r 7

Beff

or

Zeve,xr [eve,xr [Zeve, Zeve, Zemv

B -_%° — _
eft c r c r’ crX c¢r* mer

The Coulomb potential energy is given by

Ze? dv.(r) Ze?
vin=--=, D _ze
r dr r
Thus we have
Zemrv Ze*mrv Ze’m,rv
B, = e, = e, = —-e
mcr mcer m cerr
2 dv (r .
:LZisz ezz; C( )Lzez
mcer r mcer dr
or
B, - L 1dv(n,

meer dr 2 Y

e,.



where L, is the z-component of the orbital angular momentum, L, = mvr .

The spin magnetic moment is given by

2”8 S

B =— B

The Zeeman energy is given by

=L 5, =1 Bag) (L1000,

2 7] mcer dr
_ 1 o1dvm
2mc*r dr

S-L=&S-L)

((Thomas correction))

Thomas factor 1/2, which represents an additional relativistic effect due to the acceleration
of the electron. The electron spin, magnetic moment, and spin-orbit interaction can be
derived directly from the Dirac relativistic electron theory. The Thomas factor is built in the
expression.

His =28 L,

with

a4 () 1.
2m°c’ r dr 2 \mc)\r’/,

When we use the formula

Z3
<r‘3> JENTINE ’
n“a,” 1(1+1/2)(1 +1)
the spin-orbit interaction constant & is described by

. e’z* B me‘zZ*
am’c’n'a l(1+1/2)(1 +1) 2 n* 710 +1/2)(1 +1)




where
h 2

e2

=0.52917720859 A.

a, =

(Bohr radius) (from NIST physics constants)

The energy level (negative) is given by

_Z’met 7%

e Te 2n’a,

The ratio h2§/|En| is

e e'z? _(aZy’ 1
E,| cn’Al(d+1/2)A1+1)  n* 1(0+1/2)(1+1)’

with

1
137.037°

eZ
o=—=
hc

((Note)) For | = 0 the spin-orbit interaction vanishes and therefore £= 0 in this case.

B. Paschen-Back effect in Na
Mathematica calculation



Calculation of Matrix element for the Zeeman effect

Eigenvalue problem for the Zeeman effect

Clear["Global +"7];

£ n? 1 uB B 1+1/2)2-m?
Ml:{{—l+uBBm(l+ ),- \/( ) }
2 21 +1 21+1

uBB\/(I+1/2)2-m2 £ K2 1
{- - (I+1)+uBBm(1— )}}
21+1 2 21+1

eql = Eigensystem[M1] // Simplify;
The eigenvalues;

Al=eql[[1, 1]]

n2 1
BmuBgT Z\/4BZUBZ+88muB§h2+ (£+2186)2%n

A2 =eql[[1l, 2]]

1
7 4BmuB—§fz2+\/4BzuBz+88muB§f12+ (E+2182n%

The eigenvectors:

¥l =eql[[2, 1]]

ZB\/1+4I+4I274m2 uB 1}

4BmMB+ (1+21) [<1+2|) £024/4B2 B2 + 8B muB £ B2 + (§+2I§)2h4)

¥l = eql[[2, 211 // FullSimplify

ZB\/(1+2I)2—4m2 uB 1}
ABmuB+ (1+21) [(1+2|) §h2—\/482u82+88mu85h2+ (§+2|§>2h4)

C. Zeeman splitting for Na
Here we discuss the eigenvalue problem in more detail.



j=32.1=1.s=1/2
Clebsch-Gordan coefficient

. 3 3
j=5,m=5>=|l =1,m, =1>‘T>

3

e Liitm =)o)+ Bt =)

,m :—%>=\E|I =1,m =O>‘¢>+%|I =1,m =-1)[T)

,m :—%>:|I =1,m, :—l>‘¢>

(3
2)

j:

SR

j=

3
2

j=12,1=1,s=1/2
Clebsch-Gordan coefficient;

11\ 2 I
1:5,m=5>=£|1=hm.=1>H>—g|'=hml=0>ﬁ>

j=5,m=—%>=%|l =1,m, =o>\¢>—€|l =1,m, =—1>\T>

Note that
20 Lyt ot
(||1,m|1>‘~l«> _ 3 \/g 1_2’ _2
I=tm=0)T)) | 1 [ |§ :1>
V3 1=5M=3



[\

1L 2] 1 1
(||_1,m.—o>\¢>} NERE |‘:5’m=_5>
3
2

3
||=1,m,=—1>\T> _\ﬁ%
3

The Hamiltonian is expressed by

(O8]

H =§L-S+%(L+2S).B =§(J2 - —s2)+%(|_z +25,)B.

We need to calculate H

) withj=1/2(m==%1/2)and j = 3/2 (m = +3/2, +1/2).

N N AW Y Hg 21 _ —
Hyeon j—E,m——§> B(L, +25 )\/_|| 0>‘~L>—7B(LZ+2SZ) §|I—1,m,——1>‘T>)
— —uB—[1 =1,m, =0} {)
V3
3 2 2 2 2
o1 & o 1 1 of 1 1
spin—orbit J 2 2> ( 2 2> é J > 2>
HZeemanjzé,m=%> e (L, +25 )\ﬂl_lml_l\i} e gL, 25)\/_|I—1m| o))
B—|l=1,m =0)T
B ﬂ o)
L)L \f,_z _1
f B2 2
- J=—,m=l>+x/5‘1——,m—l>
3 27 2 2
1 | I 1 .1 1
Ho o lj=—m=—)=2J*-1*-8)j=—,m=—)=—&| j=—,m=—
spin—orbit J 2 2> 2( ) J 7 2> é: J 7 2>




Hyr jz%,m:—%>:%B(LZ+ZSZ)|I:l,ml:—l>‘¢>
= 2Bl =1,my =—1)[¥) =24, B j=2m=-2
2 2
3 3\ & 0 1w 3 3\ 1._,]. 3 3
Hoi ol i ==,M=—= J-12-8 =2 m=—2)=— =2, m=-=
spin—orbit J 7 2> ( )IUB 7 7 7 6 J 7 )
.3 1 i
Hzeemanjzg,m=—5> BB(L +2S )(\f||_1m,_o|¢>+ B(L, +2S)\/_|I_1m|_ -1
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e e
NE ) 2
Hp 1 1
—_r8- S 2li= -
: (\/_‘J > >+ j= 2>)
3 e NS 2 o3 e N Lo 23 o1
Hspin—orbit J_ 2’m - 2> (J -L S )/uB - 2 m - 2> é:h 2 m 2>
H |j=2m=1 :ﬁB(Lz+2sz)(l||=1,ml:1}\¢>+ﬁB(LZ+2sZ)\E|l:1,m,:0}“})
2 2/ & NE) h 3
2
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f(__ L S O R
2’ 37 27 2
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3 272 27 2
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spin—orbit J 2 2> 2( ):uB J 2 2> 2 5 J 2 2>
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Then we have
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There are two subspaces of the matrices for the basis of {| j= %,

3 1 1 1
and {|j==,m=——), |j=—,m=——
{|J 2 2> 2 2>}
.3 1 1 1
1 Forthebasisof {| j=—m=—), | j=—,m=—
() {‘J 2 2> : 2 2>
2upetar 2
Hsub1: 3 2 3
V2 1

_TIUBB EIUBB_é:hZ

((Mathematica))

1
m=—),
2




Clear["Global " *"];

m=1/2;
M1 =

eql = Eigensystem[M1] // Simplify

({35 [sBuB-3cm2 328282 81621 |,

1—12 (BBHB3§h2+\/3282u82+81§2h4)},

—9§ﬁ2+\/3282u82+81§2ﬁ4 9§h2+\/3282u82+81§2h4
{{ 4-/2 BB ’1}’{_ 4-/2 BB 1}}}

El=eql[[1, 1]] // Series[#, {B, 0, 3}]1 & // Simplify[#, {§>0, A>0}] &

2.BB 4 .B2B?

_ 4
3 27 (& n?) +O[B]

—en®s

E2=eql[[1, 2]] // Series[#, {B, 0, 3}]1 &// Simplify[#, {§>0, A>0}] &

En® 2.BB 4uB?B?
+ +
2 3 27 € n?

+0[B]*

Yl =eql[[2, 1]] // Series[#, {B, 0, 3}] &// Simplify[#, {§>0, A>0}] &

{2ﬁuBB 16 (v/2 1B®) B3
9 € n? 729 (&3 n°)

+ O[B4, 1}

Y2 =eql[[2, 2]] // Series[#, {B, 0, 3}] & // Simplify[#, {§>0, A>0}] &

9(¢n?)  2(vJ2.B)B 16+/2 B3B3
{_2 (V2 18] B 9 (en?) | 7296348

+0[B]4, 1}

(if) For the basis of {| j :%,m _ _%>




((Mathematica))



Clear["Global " *"];

m=-1/2;

M1 =

eql = Eigensystem[M1] // Simplify

({55 [8BuB-3£1®-\[a282 .82 8121 |,

1
12

(8BuB3§h2+\/3282u82+81§2h4)},

—9§ﬁ2+\/3282u82+81§2ﬁ4 9¢n? \/3252 B2 +81&2nt
{{ 4-/2 BB ’1}’{_ - 4\/§l;u|3+ 1}}}

El=eql[[1, 1]] // Series[#, {B, 0, 3}]1 & // Simplify[#, {§>0, A>0}] &

2.BB 4 .B2B?

_ 4
3 27 (& n?) +O[B]

S

E2=eql[[1, 2]] // Series[#, {B, 0, 3}]1 &// Simplify[#, {§>0, A>0}] &

£n’ 2.BB 4 .B?B?
2 3 " 27en?

+0[B]*

Yl =eql[[2, 1]] // Series[#, {B, 0, 3}] &// Simplify[#, {§>0, A>0}] &

{2ﬁuBB 16 (v/2 1B®) B3
9 € n? 729 (&3 n°)

+ O[B4, 1}

Y2 =eql[[2, 2]] // Series[#, {B, 0, 3}] & // Simplify[#, {§>0, A>0}] &

[- 9(¢n?)  2(V21B)B 16+/2 ;B3 B®
2(V2 B)B 9 (cn?) = 72931

+0[B]4, 1}



