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1 Introduction
The aim of this report is to study the influence of the gauge potentials of electrodynamics in non-
relativistic quantum mechanics. In contrast to classical mechanics, where the equation(s) of motion
contain only the electric and magnetic field, in quantum mechanics the Schrödinger equation explic-
itly contains the electromagnetic potentials. This fact was known since the beginning of quantum
mechanics, but it wasn’t until the publishing of the paper Significance of Electromagnetic Potentials
in the Quantum Theory [7] by Y. Aharonov and D. Bohm in 1959, that the consequences of this fact
received serious attention.

This report is divided in two bigger parts. In section 2 the Schrödinger equation of a charged particle
in an electromagnetic field is recapitulated. In particular the behavior of an eigenfunction to the
Schrödigner equation under gauge transformations is considered. We will find that in order to keep
physical observables independent of gauge the wave functions must change with the gauge used. This
will be illustrated in the example of a charged particle in a constant magnetic field. In the sections 3,
4 & 5 the ”physicality” of the gauge potentials is exemplarily presented in the case of a solenoid with a
magnetic field restricted to the interior of the solenoid. In particular in section 3 we look at effects of
the gauge potentials on the energy spectrum, in section 4 we look at the Aharonov-Bohm effect, which
occurs e.g. in a modified double slit experiment and in section 5 we look at the connection to topology.

This text is part of the proseminar Algebra, Topology and Group theory in physics organized by
Prof. Matthias Gaberdiel, taking place in the spring semester 2018 at ETH Zürich. It is the report
associated with a talk held by myself in March 2018. Most topics of this text are based on chapters
1.4 and 1.5 of David Tong’s lecture script on the Quantum Hall effect [1].

2 Schrödinger equation for charged particle
In this section we recapitulate the classical equation of motion of a charged particle in an electro-
magnetic field and derive the transformation of the Schrödinger equation and the corresponding wave
function of such a particle. We finish with an example, where we explicitly solve the Schrödinger
equation of a charged particle in a constant magnetic field. This will yield a discrete energy spec-
trum called Landau levels named after the soviet physicist Lew Landau. Landau levels play a role
in the explanation of the integer and fractional quantum hall effect [1], which is treated in another
proseminar.

2.1 Lorentz force, Lagrangian and Hamiltonian
Let’s consider the motion of a particle of mass m and charge q in a generic electromagnetic field.
Classically the motion is given by the Lorentz force (in cgs units):

m
dv⃗

dt
= qE⃗ +

q

c
v⃗ × B⃗ (1)

The E- and B-field can be expressed in terms of the scalar and the vector potential.

E⃗ = −∇⃗V − 1

c

d

dt
A⃗ B⃗ = ∇⃗ × A⃗ (2)

The equation of motion can be derived from the Lagrangian or the Hamiltonian, which are

L =
m

2
v⃗2 +

q

c
v⃗ · A⃗− qV H = p⃗ · v⃗ − L =

1

2m

(
p⃗− q

c
A⃗
)2

+ qV (3)

where p⃗ = mv⃗ + q
c A⃗ is the canonical momentum and the term Π = mv⃗ is the mechanical momentum.
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2.2 Schrödinger equation and gauge transformations
We can now formulate the Schrödinger equation by using the correspondence principle where we
replace p⃗ → −i~∇⃗ in the Hamiltonian of eqn. (3).

i~
∂

∂t
Ψ = HΨ =

[
1

2m

(
−i~∇⃗ − q

c
A⃗
)2

+ qV

]
Ψ (4)

From electrodynamics we remember that both E- and B-Field and in general all physically observable
quantities are invariant under gauge transformations of the scalar and vector potential, that are:

V → Ṽ = V − 1

c

∂

∂t
Λ A⃗ → ˜⃗

A = A⃗+ ∇⃗Λ (5)

with Λ some scalar function.
Since the classical Lorentz force only depends on the EM-field E⃗ and B⃗ but the Schrödinger equation
depends on the scalar and vector potential, we might wonder whether the wave function Ψ depends
on the gauge and whether charged particles respond to the EM-field or the EM-potentials. We will
now show that the wave function for the Schrödinger equation with the new potentials is [5]

Ψ̃(x⃗, t) = exp

(
iqΛ(x⃗, t)

~c

)
Ψ(x⃗, t) (6)

Proof. We multiply the Schrödinger eqn. from the right with exp
(

iq
~cΛ(x⃗, t)

)
and use the identity

exp (f(x, y)) ∂x = (∂x − ∂xf(x, y)) exp (f(x, y))

which yields[
1

2m

(
~
i
∇⃗ − q

c
A⃗− ~

i

iq

~c
∇⃗Λ

)2

+ qV

]
exp

(
iqΛ

~c

)
Ψ = i~

(
∂t −

iq

~c
∂tΛ

)
exp

(
iqΛ

~c

)
Ψ

which is identical to [
1

2m

(
~
i
∇⃗ − q

c
˜⃗
A

)2

+ qṼ

]
Ψ̃ = i~∂tΨ̃.

With this change of the wave function the Schrödinger equation stays invariant.

We obtain the same result when considering the correspondence between a classical observable and
the expectation value of a quantum mechanical observable. Classically we find that the trajectory x⃗
and the mechanical momentum Π are invariant whereas the canonical momentum p⃗ is not invariant
under gauge transformations. From the requirement that the same should hold for the expectation
values of the respective quantum mechanical operators we find again (6). Luckily with this additional
phase factor of the wave function, the probability density ρ = Ψ∗Ψ and the probability flux j⃗ =
~
mℑ(Ψ∗∇⃗′

Ψ)− q
mcA⃗ρ stay invariant under gauge transformation. This can best be seen when writing

Ψ as √
ρ exp(iS(x⃗)/~) and therefore j⃗ = ρ

m(∇⃗S − qA⃗
c ), where S is some real scalar function. Since

S → S + qΛ
c the terms with Λ just cancel each other. [3]

2.3 Free charge in constant magnetic field - Landau levels
In this subsection we treat the special case of a free particle of charge e in a constant homogeneous
magnetic field with no other potential. We choose the magnetic field to point in positive z-direction

3



B⃗ = Bẑ and for the vector potential we choose the so-called symmetric gauge. Since B⃗ is constant we
can write

A⃗ = −1

2
r⃗ × B⃗ Ax = −1

2
yB Ay =

1

2
xB (7)

Plugging these expressions into our Hamiltonian from (3) with V = 0 we find

H =
1

2m
(−~2∇⃗2 − eB

c
Lz +

e2B2

4c2
(x2 + y2)) (8)

where Lz = −i~(x∂y − y∂x) is the z-component of the angular momentum operator. In order to make
calculations easier we rewrite this equation using magnetic units

lB =

√
~

mωc
ωc =

eB

mc
lB = a0

4.83× 104√
B(gauss)

(9)

where lB is called magnetic length, ωc is the cyclotron frequency and a0 is the Bohr radius.
Using lB as the unit of length, ~ωc as the unit of energy and measuring Lz in units of ~ the Hamiltonian
now reads

H = −1

2
(∇⃗2 + Lz) +

x2 + y2

8
(10)

2.3.1 Derivation of the energy spectrum using creation and destruction operators

First we rewrite the Hamiltonian (10) in terms of the Hamiltonian for zero angular momentum and a
part containing only the angular momentum part.

H = H0 − ωLz (11)

H0 =
1

2
(p2x + ω2x2 + p2y + ω2y2) (12)

where we set ω = 1/2 · ωc = 1/2 to have H0 in usual harmonic oscillator form. We now introduce the
well known creation and destruction operators of the harmonic oscillator, that satisfy the canonical
commutation relations

[
aj , a

†
j

]
= 1 for j ∈ {x, y}. Explicitly we have

aj =
1√
2ω

(ω · j + ipj) j =
aj + a†j√

2ω
pj = −i

√
ω

2
(aj − a†j) (13)

Rewriting the Hamiltonian H0 and the angular momentum Lz in terms of these operators we get

H0 = ω(a†xax +
1

2
+ a†yay +

1

2
) (14)

Lz = −i(a†xay − a†yax) (15)

Now because we work in two dimensions it’s best to work in complex components rather than in
cartesian. We therefore define the complex numbers z = x + iy and z̄ = x − iy and express them in
terms of the above operators:

z =
1√
2ω

((ax + iay) + (a†x + ia†y)) z̄ =
1√
2ω

((ax − iay) + (a†x − ia†y)) (16)

But this is still in terms of Cartesian operators. Therefore we define new, so-called ”charged” operators
a and b, which also satisfy the canonical commutation relations

[
a, a†

]
=
[
b, b†

]
= 1 and [a, b] =[

a, b†
]
= 0, i.e. the a’s and b’s form a set of independent creation and destruction operators.

a =
1√
2
(ax + iay) a† =

1√
2
(a†x − ia†y) (17)

b =
1√
2
(bx − iby) b† =

1√
2
(b†x + ib†y) (18)
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z reads then

z =
1√
2ω

(a+ b†) (19)

We now want to express our Hamiltonian in terms of these new operators. We have

ax =
1√
2
(a+ b) ay = − i√

2
(a− b) (20)

and therefore

H0 = ω(a†a+
1

2
+ b†b+

1

2
) (21)

Lz = (b†b− a†a) (22)

and with using ω = 1/2 we obtain [2]

H = a†a+
1

2
(23)

This is an interesting result. On the one hand we see that Hamiltonian is of the form of a 1-D harmonic
oscillator and therefore has discrete energy levels En = n+ 1/2 with n ∈ N0. These energy levels are
called Landau levels. On the other hand we see that the Hamiltonian is independent of the creation
and destruction operators b and b†. From the theory of the harmonic oscillator we know that by acting
with b† on an arbitrary eigenstate |n,m⟩ we obtain an orthogonal eigenstate |n,m+ 1⟩, but with the
same energy (n+1/2). For this reason we conclude that the Landau levels must be hugely degenerate.
There are infinitely many (orthogonal) eigenstates with the same energy.

2.3.2 Derivation of the ground state wave functions

To find the ground state wave functions we express the operators a and b in terms of differential
operators:

∂z =
1

2
(∂x − i∂y) ∂z̄ =

1

2
(∂x + i∂y) (24)

a =
1√
2
(
z

2
+ 2∂z̄) a† =

1√
2
(
z̄

2
− 2∂z) (25)

b =
1√
2
(
z̄

2
+ 2∂z) b† =

1√
2
(
z

2
− 2∂z̄) (26)

We want to show that a general ground state wave function ⟨(z, z̄) | n = 0⟩ =
∑∞

m=0 am ⟨(z, z̄) | 0,m⟩
can be expressed by an arbitrary holomorphic function f(z) multiplied by a Gaussian exp(− zz̄

4 ) (up
to normalization). Using that a general ground state wave function satisfies ⟨(z, z̄) | a | n = 0⟩ = 0,
we have

1√
2
(
z

2
+ 2∂z̄)Ψ0(z, z̄) = 0 (27)

1√
2
(
z

2
+ 2∂z̄)f(z) exp(−

zz̄

4
) = 0 (28)

because any holomorphic function f(z) satisfies

∂z̄f(z) = 0 (29)

and therefore the derivative only acts on the Gaussian. The fact that the ground state can be any
holomorphic function times a Gaussian shows again the big degeneracy of the Landau levels. At the
same time for an arbitrary eigenfunction with m = 0 we know that ⟨(z, z̄) | b | m = 0⟩ = 0 and in an
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analogous way we find that this condition is satisfied by any wave function of the form g(z) · exp(− zz̄
4 )

with g(z) some anti-holomorphic function. Therefore we conclude that ⟨(x, y) | 0, 0⟩ = 1√
2π

exp(− zz̄
4 ).

This is the eigenstate with minimal energy and vanishing angular momentum, which follows directly
from eqn. (22). With this knowledge we can calculate a basis of the ground state functions by acting
with the b† operator on the state |0, 0⟩

b†Ψ0,0 ∝ b† exp(−|z|2

4
) =

1√
2
(
z

2
− 2∂z̄) exp(−

|z|2

4
) (30)

∝ z exp(−|z|2

4
) (31)

Since zm is holomorphic, ∂z̄(zm) = 0 and we get

(b†)mΨ0,0(x, y) ∝ zm exp(−|z|2

4
) (32)

and after a dimension analysis we find

Ψ0,m(z) ∝ (
z

lB
)m exp(−|z|2

4l2B
) (33)

This is no surprise since any holomorphic function can be represented as a power series in z. In
a similar way by acting with the a† operator on a ground state eigenfunction one could obtain the
excited eigenfunctions.
The Landau levels (resp. eigenfunctions) in symmetric gauge happen to be most convenient for
describing the fractional quantum hall effect [1].

2.4 Degeneracy of Landau levels in symmetric and Landau gauge
In reality it is often the case that a physical system is confined to certain region. E.g. in the case of
the quantum hall effect this is the expanse of the conductor sample. To learn something about the
degeneracy of the system it is interesting to calculate the number of states (with the same energy)
per area. In this subsection we will derive this quantity in the symmetric and the Landau gauge. We
return to using cgs units for this purpose.

2.4.1 Wave functions in Landau gauge

In Landau gauge the vector potential A⃗ is

A⃗ = xBŷ (34)

and, again confining ourselves to two dimensions, the Hamiltonian reads

H =
1

2m
(p2x + (py −

eB

c
x)2) (35)

Because of translational invariance in the y-direction the energy eigenfunctions must also be eigen-
functions of py, which motivates the ansatz

Ψk(x, y) = exp(iky)fk(x) (36)

Acting with the Hamiltonian on Ψk we find the equation of a displaced harmonic oscillator in the x
direction.

Hk =
1

2m
p2x +

mω2
c

2
(x− klB)

2 (37)
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Which finally leads to the following result [1]:

En = ~ωc(n+
1

2
) (38)

Ψn,k(x, y) ∝ exp(iky)Hn(x− kl2B) exp(−
(x− kl2B)

2

2l2B
) (39)

with Hn the usual Hermite polynomial wave function of the harmonic oscillator. Notice that the wave
function depends on two quantum numbers n ∈ N0 and k ∈ R, but the energy only depends on n
which implies a huge degeneracy.
We see that the wave functions are not gauge invariant and therefore do not have any physical meaning.
Also since there is a huge degeneracy we are able to cook up almost any possible wave function by
taking linear combinations of the eigenfunctions.

2.4.2 Degeneracy in symmetric gauge

In the symmetric gauge we see that the basis wave functions or more specifically the modulus squared
of the wave functions form concentric rings around the origin (see Figure 1). The higher the angular
momentum m, the further out the ring. As the wave function (and its modulus squared) in the lowest
Landau level with angular momentum m are given as

Ψ0,m(z, z̄) ∝ (
z

lB
)m exp(−|z|2/4l2B) (40)

|Ψ0,m(r, ϕ)|2 ∝ (
r

lB
)2m exp(−r2/2l2B) (41)

they are peaked at a ring of radius r =
√
2mlB. This means that in a disc shaped region of area

A = πR2 the number of states is the integer part of [1]

N = R2/(2l2B) = A/(2πl2B) =
eBA

2π~c
(42)

Figure 1: Plot of the non-normalized modulus squared wave function |Ψ0,m(r, ϕ)|2 for m = 3 and
lB = 1. It is peaked at r =

√
6.
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2.4.3 Degeneracy in Landau gauge

We would expect to get the same result in the Landau gauge and actually this is the case. In order to
calculate the number of states we need to restrict ourselves to a finite region of the (x,y)-plane. We
pick a rectangle with sides of lengths Lx and Ly and we want to know how many states fit inside this
rectangle. Having a finite size Ly is like putting the system in a box in the y-direction. This yields
a quantization of the wave vector k, namely k = 2π

Ly
·N , where N ∈ Z. The allowed values of N are

then further restricted by the somewhat heuristic argument that the center of force of the oscillator
x0 = kl2B must physically lie within the system 0 ≤ x0 ≤ Lx which gives a maximum value for N
which is [1]

N =
LxLy

2πl2B
=

eBA

2π~c
(43)

Notice that in both gauges we didn’t make any attempt to normalize the wave functions, since it is of
no relevance for the calculation of the degeneracy and provides no further physical insight.

3 Vector potential outside of a solenoid
In this section we study the physics of a quantum particle moving around a flux tube. Motivated by
the the appearance of the gauge potentials V and A⃗ in the Hamiltonian for a charged particle, we will
show that to some extent the physics of a quantum particle are affected by these potentials, rather
than only by the electric and the magnetic field. In the first subsection we mention two important
concepts of the proseminar on Berry phases. We will need these concepts in the context of spectral
flow and the Aharonov-Bohm phase. The definitions of these concepts are taken from [1].

3.1 Adiabatic theorem and Berry phases
1. The adiabatic theorem: The adiabatic theorem states that if we place a system in a non-
degenerate energy eigenstate and vary parameters sufficiently slowly, then the system will cling to
that energy eigenstate.

2. Berry phase and Berry connection: The Berry phase is given as

exp(iγ) = exp(−i

∮
C
Ai(λ)dλ

i) (44)

where Ai is the Berry connection defined as

Ai = −i ⟨n | ∂

∂λi
| n⟩ (45)

The Berry phase arises in the context of a general Hamiltonian, which we write as H(xa;λi). The
xa are the degrees of freedom of the system and the λi represent the parameters of the Hamiltonian.
They are fixed and their values are determined by some external apparatus.

3.2 Spectral flow
We consider a particle moving around a solenoid. The solenoid shall be taken to expand infinitely in
the z-direction and have a profile of area A, carrying a constant magnetic field B⃗ and hence magnetic
flux Φ = BA. Outside the solenoid the magnetic field is zero, but the vector potential is not. This
follows from Stoke’s theorem which tells us that the line integral outside the solenoid is given by∮

A⃗ · dr⃗ =

∫
B⃗ · dS⃗ = Φ (46)
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This is simply solved in cylindrical polar coordinates by

Aϕ =
Φ

2πr
(47)

Let’s now consider a charged quantum particle restricted to lie in a ring of radius r outside the solenoid.
The only dynamical degree of freedom is then the angular coordinate ϕ ∈ [0, 2π). The Hamiltonian,
the energy eigenstates and the energy eigenvalues are then easy to find [1]

H =
1

2m
(pϕ − e

c
Aϕ)

2 =
1

2mr2
(−i~∂ϕ − eΦ

2πc
)2 (48)

Ψ =
1√
2πr

exp(inϕ) (49)

E =
1

2mr2
(~n− eΦ

2πc
)2 =

~2

2mr2
(n− Φ

Φ0
)2 (50)

where n ∈ Z and Φ0 = 2π~c/e is the quantum of flux. We make the following observations. The
energy spectrum of the particle is affected by the flux even though the particle never goes near the
region with magnetic field. And if the flux is a multiple of the quantum of flux the energy spectrum
is unaffected.
We can imagine the following: we turn off the solenoid and place the particle in the n = 0 ground
state. We very slowly increase the flux. By the adiabatic theorem, the particle remains in the n = 0
state. But, by the time we have reached Φ = Φ0 it is no longer in the ground state. It is now in
the state that we previously labeled n = 1. Similarly each state n is shifted to the next state n + 1.
This is an example of a phenomenon called spectral flow. As we increase the flux by one unit of Φ0,
the spectrum returns to itself, but individual states have morphed into each other. In this sense by a
change of parameter - in this case Φ - the spectrum of the Hamiltonian ”flows”.

4 Aharonov-Bohm Effect
In this section we study further the physicality of the vector potential. In order to do so it is illustrative
to consider a modified double slit experiment (see Figure 2). As in a usual double slit experiment,
from the source region A a beam of coherent particles of charge q is emitted. The beam is split
into two parts and is brought together after passing the slits. In region B a detector is placed, which
measures an interference pattern. In addition an impenetrable cylinder (e.g. a thin, but long solenoid)
containing constant magnetic flux is placed behind the middle wall such that each part of the beam
goes on opposite sides of the solenoid. Of course classically we wouldn’t expect to have any influence
of the flux of the solenoid on the motion of a particle, since B⃗ = 0 everywhere where the particle
can move. However quantum mechanically we will find that there is an influence on the interference
pattern. This physically measurable influence of the vector potential is commonly referred to as the
Aharonov-Bohm effect.
In the first subsection we will look at a slightly different setup that will provide us more insight of the
connection to Berry phases. In the second subsection we return to the setup introduced above and
quantify the change of the interference pattern.

4.1 Aharonov-Bohm phase
In this subsection we consider the Aharonov-Bohm phase which turns out to be also a special case of
general Berry phases. We consider the same setup as in subsection 3.2 with the only difference that
now the particle is restricted to lie in a small box. Mathematically, we describe this by including a
potential U(x⃗) in the Hamiltonian that is infinite outside the box. By calling the box ”small” we mean
that the gauge potential is approximately constant inside the box. If we place the center of the box

9



Figure 2: Sketch of the setup for the Aharonov-Bohm effect. In order for the magnetic field to
approximately vanish outside the solenoid, we take the solenoid to be very large in the direction
perpendicular to the image plane. Image from [3]

at position x⃗ = X⃗, then the Hamiltonian reads

H =
1

2m
(−i~∇⃗ − e

c
A⃗(X⃗))2 + U(x⃗− X⃗) (51)

We now place the center of the box at a position x⃗ = X⃗0 where the gauge potential vanishes. This
can always be done due to gauge freedom. The solution to the Hamiltonian is now just the solution
of a particle in a box and we denote the ground state solution by Ψ(x⃗− X⃗0). In specifying this wave
function we also have made a choice of the phase. The connection to Berry phases becomes evident,
when doing the following: We slowly move the box in some path in space. On this path the gauge
potential experienced by the particle changes. The Schrödinger equation for the Hamiltonian (51) is
then solved by the state

Ψ(x⃗− X⃗) = exp

(
ie

~c

∫ x⃗=X⃗

x⃗=X⃗0

A⃗(x⃗) · dx⃗

)
Ψ(x⃗− X⃗0) (52)

This is because when the gradient ∇⃗ acts on the exponent, it pulls down a factor which cancels the
− e

c A⃗ term. To obtain the Berry phase we take the box in a loop C and bring it back to where we
started. Our original wave function thereby catches a phase Ψ(x⃗− X⃗0) → exp(iγ)Ψ(x⃗− X⃗0) with

exp(iγ) = exp

(
ie

~c

∮
C
A⃗(x⃗) · dx⃗

)
(53)

Comparing this to our general expression for the Berry phase, we see that in this particular context
the Berry connection is actually identified with the electromagnetic vector potential,

A⃗(X⃗) = − e

~c
A⃗(x⃗ = X⃗) (54)

and the parameter space is in this special case the position space R3 − {line}. A particle of arbitrary
charge q that goes around a region containing flux Φ will pick up an Aharonov-Bohm phase

exp

(
iqΦ

~c

)
(55)

4.2 Path integral formulation of the Aharonov-Bohm-effect
An elegant way to derive the influence of the vector potential on the interference pattern is by using
Feynman’s path integral formalism. In one dimension the time evolution of a generic wave function
Ψ(x, t) can be expressed using the propagator K(x, t1;x

′
, t0):

Ψ(x, t1) =

∫ ∞

−∞
K(x, t1;x

′
, t0)Ψ(x

′
, t0)dx

′ (56)
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In Feynman’s formalism this propagator can be expressed as

K(x, t1;x
′
, t0) =

∑
p

Wp exp (iSp(t1, t0)/~) (57)

where the sum represents the sum over all possible paths, Wp is some weighting function and S is the
classical action given as

S(t1, t0) =

∫ t1

t0

L(ẋ(t), x(t))dt (58)

Feynman showed that with this formulation the probability amplitude to find a particle at time t1 at
position x1 that at time t0 was at position x0 is given as [3]

⟨x1, t1 | x0, t0⟩ =
∫ x1

x0

D [x(t)] exp

[
i
S(t1, t0)

~

]
(59)

where D is some kind of infinite dimensional integral operator. Eqn. (58) is known as Feynman’s path
integral. In fact the relevant part for the Aharonov-Bohm effect is

⟨x1, t1 | x0, t0⟩ ∝
∑
p

exp

(
iS(t1, t0)

~

)
(60)

We remember the Lagrangian of a charged particle in a general EM-field.

L =
m

2
˙⃗x2 +

q

c
˙⃗x · A⃗− qV (61)

If we don’t have any EM-field, we are back at the original two slit experiment, and we want to denote
the action for this case as S0. By turning on a magnetic field, we change the action

S → S0 +
q

c

∫
A⃗ · ˙⃗xdt = S0 +

q

c

∫
A⃗ · d⃗l (62)

Going back to the experiment the probability amplitude to find the particle at some point on the
detector is proportional to [6]∑
all paths through slit 1

exp

(
iS0/~+ iq/~c

∫
A⃗ · d⃗l

)
+

∑
all paths through slit 2

exp

(
iS0/~+ iq/~c

∫
A⃗ · d⃗l

)
(63)

The physically important quantity is the difference in accumulated phases between the two paths.
This is given by [6]

exp

(
iq

~c

∫
slit 1

A⃗ · d⃗l − iq

~c

∫
slit 2

A⃗ · d⃗l
)

= exp

(
iq

~c

∮
A⃗ · d⃗l

)
(64)

Using Stoke’s theorem, we can write the exponent in eqn. (64) as

iq

~c

∮
A⃗ · d⃗l = iq

~c

∫
enclosed

B⃗ · dS⃗ =
iq

~c
Φenclosed (65)

Notice that all line integrals above are independent of the path as long as the path does not enclose
a magnetic flux. Therefore the contributions to all paths going through slit 1 (resp. slit 2) are given
by a common phase factor, because in the regions where there is no magnetic flux, A⃗ can be written
as the gradient of a scalar function. Furthermore it is obvious from eqn. (64) that the difference in
accumulated phases is independent of the chosen gauge.
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The physically observable result is a shift of the interference pattern measured on the observation
screen. Since all physical influences only act locally, i.e. they are described by fields, one is lead to
the conclusion that the electromagnetic vector potential has in some sense to be considered a physical
quantity.
As in subsection 3.2 we find that the effect is only sensitive to non integer multiples of the quantum
of flux. Because if the flux Φ is an integer multiple of the quantum of flux Φ0 = 2π~/qc, then the
phase shift is an integer multiple of 2π and is hence equivalent to no phase shift.

Including relativistic considerations, the covariance of eqn. (65) demands that there should be a
similar result for the scalar potential V . I.e. from the condition that the following loop integral is
Lorentz-invariant:

− q

~

∮ (
V dt− A⃗

c
· d⃗l

)
(66)

where the path of integration now goes over any closed path in space-time. A description of an
experiment displaying a phase difference due to the scalar potential V can be found in [7].

5 The topological perspective: the fundamental group of R3−{line}
In this section we look at the topological perspective of the Aharonov-Bohm effect. In particular in
what way does the Aharonov-Bohm phase of the wave function of a charged particle depend on the
topology of the space it moves in. In this context we come across the concept of the fundamental
group of a (topological) space. In our case the space of interest is R3 − {line} which mathematically
grasps the situation we dealt with in sections 3 and 4, i.e. the real 3D-space in the absence of an
infinitely expanded cylinder (the solenoid). In the first subsection we proof that topologically our space
is equivalent to the space S1 and therefore has the same fundamental group, which is the group of
integer numbers (Z,+). In the second subsection we try to motivate this result. In the last subsection
we will have a look at the implications for the Aharonov-Bohm effect.
The definitions in the subsections 5.1 & 5.2 are taken from [8].

5.1 Homotopy equivalence between S1 and R3 − {line}

In order to proof that there exists a homotopy equivalence between S1 and R3 − {line}, we need to
introduce the topological concepts of homotopy, homotopy equivalence and deformation retraction.
Two mathematical objects are said to be homotopic if one can be continuously deformed into the
other. For the case of maps this is formally given by the following definition:

Definition 1. Let f, g : X → Y be two continuous maps between two topological spaces. f and g are
said to be homotopic, if there is a continuous map H : X × [0, 1] → Y such that ∀x ∈ X : H(x, 0) =
f(x) ∧ ∀x ∈ X : H(x, 1) = g(x) and we write f ≃ g. H is called a homotopy between f and g.

In the case of topological spaces we need to introduce the notion of homotopy equivalence.

Definition 2. Let X and Y be topological spaces.
(a) A continuous map f : X → Y is called homotopy equivalence if there exists a continuous map
g : Y → X with g ◦ f ≃ idX and f ◦ g ≃ idY .
(b) X and Y are called homotopy equivalent if there exists a homotopy equivalence between them.
(c) X is called contractible if X is homotopy equivalent to the space consisting of only one point.

Again this means two topological spaces are homotopy equivalent if one can be continuously
deformed into the other. We note that homotopy equivalence of two topological spaces is indeed an
equivalence relation. A frequently occurring case of homotopy equivalence is the one that one of the
spaces is a subspace of the other and the homotopy equivalence is the embedding map.
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Definition 3. Let A be a subset of a topological space X. We refer to the embedding map as i : A →
X,x 7→ x.
A continuous map f : X → A with f |A= idA (and therefore f ◦ i = idA) and i ◦ f ≃ idX is called
deformation retraction. If such a map exists A is called a deformation retract of X.

Obviously every deformation retraction is a homotopy equivalence. So a deformation retract is
always homotopy equivalent to the space it is embedded in [8]. With this definitions we are now
capable of giving a proof that there exists a homotopy equivalence between S1 and R3 − {line} or
rather that S1 is a deformation retract of R3 − {line}.

Proof. Lets denote A = S1 and X = R3 − {line} Let i : A → X, r⃗ 7→ r⃗ be the embedding map. We
claim that the following map is a deformation retraction between X and A.

f : X → A, (x, y, z) 7→ (
x

|x+ y|
,

y

|x+ y|
, 0)

Obviously we have f◦i = idA but also there exists a homotopy between idX and i◦f : X → X, r⃗ 7→ f(r⃗)
which is

H : X × [0, 1] → X

((x, y, z), s) 7→ (
x

|x+ y|s
,

y

|x+ y|s
, (1− s)z)

and therefore idX ≃ i ◦ f and f is a deformation retraction between X and A.

5.2 The fundamental group of R3 − {line}

In this subsection we introduce the concept of the fundamental group of a topological space. This
concept allows it to define a group structure on the topological space and analyze it with algebraic
methods. The fundamental group can be defined in the following way:

Definition 4. The fundamental group π1(x,X)of a topological space X is defined as the set of all
homotopy equivalence classes of paths from x to x in X.

The group operation is the connection of paths, the identity element is the homotopy equivalence
class of all null homotopic paths and for every group element the inverse element is given by the equiv-
alence class of the inverse paths. We note that in the case of a path-connected space the fundamental
group π1(x,X) is the same for every x ∈ X and we simply write π1(X).
Now that we know what a fundamental group is we can explain why π1(R3 − {line}) ∼ (Z,+). With
methods of algebraic topology it can be proven that πn(S

n) ∼ (Z,+). It can also be proven that
homotopy equivalent (path-connected) spaces have isomorphic fundamental groups.[8] Therefore it
follows that π1(R3 − {line}) ∼ (Z,+). Graphically this result can be understood as follows. When
considering all possible closed (continuous) paths in R3 − {line}, it is clear that all loops that do
not go around the line are contractible, i.e. they are in the equivalence class of the constant path
corresponding to the identity element 0. In general the group element Z ∈ Z corresponds to the
equivalence class of all loops with winding number Z around the line. The connection of two loops
corresponds to the addition of the respective winding numbers.

5.3 Relation to the Aharonov-Bohm effect
Now the relation to the Aharanov-Bohm effect is quite obvious, when we consider the example of the
Aharonov-Bohm phase where we moved a small box in space. Here the phase is proportional to the
winding number of a loop in the space R3 − {line}, i.e. we get a phase Z · iQΦ

~c where Z ∈ Z is the
winding number.
Furthermore for the Aharonov-Bohm effect to occur, we need a configuration space which is not simply

13



connected. In the case of R3 − {line} this shows up in the following: even though everywhere in our
space we have ∇⃗ × A⃗ = 0 and therefore A⃗ = ∇⃗D with D some scalar function, we are not allowed to
conclude ∮

A⃗ · d⃗l =
∮

∇⃗D · d⃗l = 0 (67)

if the loop is not homotopic to the constant path, i.e. if the loop encloses some flux.
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