Live imaging microscopy

 \cap

Gabriele Baj gbaj@units.it

Why Live imaging?

The understanding of complex and/or fast cellular dynamics is an important step for exploring biological processes. Therefore, today's life science research is increasingly focusing on dynamic processes like cell migration, morphological changes of cells, organs or whole animals and physiological (e.g. changes of intracellular ion composition) events in living specimens in real time.

One approach to address these challenging demands is to employ certain optical methods that are collectively called live-cell imaging. Live-cell imaging allows investigation of dynamical processes of living cells instead of giving a "snapshot" of a cell's current state – it turns snapshots into movies.

Live-cell imaging provides spatial and temporal information of dynamic events in single cells, cellular networks (*in situ*) or even whole organisms (in vivo).

General issues in live-cell imaging

Live-cell imaging generally is possible with cultured cell lines (e.g. HEK cells, HeLa cells), primary cell cultures (e.g. skin cells, neural cells), acute slice preparations (e.g. brain slices) or whole organs or organisms. A major task is to keep the cells in a healthy state during the experiments as the cells suffer from phototoxicity and are taken out of their "natural" environment.

KEEPING CELLS ALIVE

- Temperature (37°C)
- CO₂ (5%) and Ph
- Humidity

LIVE CELL IMAGING:

Cell Health Parameter	Short-Term Study	Longer-Term Study
pН	HEPES Buffer	CO ₂ Incubator
Temperature	Stage Warmers	Objective Lens Warmers Cell chambers with integrated heating elements Enclose microscope within a heated box
Humidity	Open cell chambers	Tightly sealed cell chambers
Oxygenation	Large volume of media	Media changes during study Large media volume
Osmolarity	Sealed chamber	Enclose system within a humidified chamber

LIVE CELL IMAGING: INCUBATION

Incubation chambers can surround the microscope stand or just the cell dish. Both can maintain cells at the correct temperature for long periods of time.

LCV110 Incubator Fluorescence Microscope

Your Vision, Our Future

SMALL FORMAT CHAMBER

LIVE CELL IMAGING: LABELING CELLS

The most basic challenge is detecting clear, nearly invisible cells when using a microscope.

Optical Techniques to Enhance contrast: Differential Interference Contrast (DIC) Phase Contrast Darkfield Polarized Light Fluorescence

Transmitted Light Techniques in Live-Cell Imaging

In vitro cells

Mitosis in Xenopus S3 Cell with Late Aligning Chromosomes Video by John Daum in the Gorbsky Lab Molecular, Cell and Developmental Biology Oklahoma Medical Rsearch Foundation

00:00:00

Copyright © 2005 Gorbsky Lab. All rights reserved.

In vitro cells

 \bigcap

Q

Collective Cell Migration

In vitro cells scratch assay

Collective Cell Migration

In vitro cells scratch assay

0105600-2003225013

0

()

LIVE CELL IMAGING: GENTLE IMAGING

The **central** challenge in live cell imaging – Cells are inherently photosensitive!

Formation of free radicals by fluorophores only exacerbates the problem.

Free radical formation cannot be prevented, only <u>managed</u> by careful tuning of imaging parameters to reduce light exposure.

Live cell imaging requires "gentle imaging" - short exposures of low intensity Illumination to succeed.

Examples of phototoxicity

Vacuoles

Phototoxicity during live-cell imaging. (a) (RK13) cells expressing EYFP fused to a nuclear localization signal (green nucleus) were treated with the synthetic dye MitoTrackerTM (b) Same view field as panel a after time-lapse imaging for 2 hours at 15 second intervals.

(c) HeLa cells labeled with Hoechst 33342 imaged for 30 minutes at 10second intervals Cells have detached from the coverslip and are rounding.

(d) Vacuole formation in a fibroblast cell after imaging for 8 hours at 30second intervals using tungsten halogen illumination and DIC optics.

FLOW CELLS AND MICRO-FLUIDICS

Cell Microscopy

- Perfect cell growth
- High imaging quality

Chemotaxis Assays

- Adherent & non-adherent cells
- Stable, linear gradients

Immunofluorescence

- All-in-one chambers
- Minimum volume of 25 µl

Angiogenesis Assays

- Tube formation & sprouting assays
- Video microscopy

Flow Assays

- Defined shear rates
- Adhesion assays

Wound Healing Assays

- Defined separated areas
 - Highly reproducible

٠

Mo

FLUORESCENCE LABELING OF LIVING CELLS

- Advantages of fluorescence labeling
- Categories of Fluorescence labels
- Fluorescent Proteins

WHY WE USE FLUORESCENCE

- Detect specific molecules (immunocytochemistry, in situ hybridization, fluorescent proteins)
- Must keep the specimen transparent.
- Detect multiple molecules at the same time
 <u>Jablonski Diagram</u>

Courtesy of Dr. Yien Che Tsai, NCI

LIVE CELL IMAGING: LABELING CELLS

 \square

Technique	Example	Pros	Cons
Cell Permeable Dyes	MitoTracker®Red CMXRos DAPI BAPTA / FURA	•Simple • <i>In vivo</i> labeling	•Often toxic to cells
Fluorescent Proteins	EGFP	•Simple; <i>in vivo</i> •Well developed •Very specific labeling	Large tagOligomerization
Direct labeling of Protein	FITC labeled actin	 Very specific labeling 	Highly purifiedprotein requiredDelivery into cell
Auto-labeling of protein fusions	HaloTag™ SnapTag™	• <i>In vivo</i> labeling	Large tagLimited colors
Labeling peptide tags	FIAsH and ReAsH	•Specific labeling •Small label • <i>In vivo</i> labeling	•Limited colors

LIVE CELL IMAGING: LABELING CELLS

Protein (Acronym)	Ex (nm)	Em (nm)	EC (x 10 ⁻³)	QY	Photostability	Quaternary Structure	Brightness (% of EGFP)
Green Fluc	prescent	Proteins					
EGFP	488	507	56.0	0.60	++++	Monomer*	100
Emerald	487	509	57.5	0.68	+++	Monomer*	116
Protein (Acronym)		:x Em m) (nm)	EC (x 10 ⁻³)	QY	Photostability	Quaternary Structure	Brightness (% of EGFP)
mApple	50	68 592	75.0	0.49	+++	Monomer	109
mStrawberry	5	74 596	90.0	0.29	+	Monomer	78
AsRed2	57	76 592	56.0	0.05	+	Tetramer	8
mRFP1	5	84 607	50.0	0.25	++	Monomer	37
JRed	5	84 610	44.0	0.20	++	Dimer	26
mCherry	5	87 610	72.0	0.22	\ +++ /	Monomer	47

For live cell experiments, choose FPs with high photostability

MINIMIZING DAMAGE WHILE GETTING GOOD IMAGES

- Light Gathering Power and Focus Maintenance
- Which immersion media
- Correct coverslip thickness
- Resolution vs Speed vs Sensitivity
- 3D Imaging

USING THE CORRECTION IMMERSION MEDIA

Using water immersion objectives for samples in liquid media captures more signal and preserves resolution better than refractive index mismatched oil immersion objectives.

CONFOCAL MICROSCOPES

Point Detector	Area Detector	Line Detector	Area Detector
Photomultiplier	CCD camera	Photomultiplier Array	CCD camera
Avalanche Photodiode	CMOS camera	CCD Line Array	CMOS camera
GaAsP			

ρ

RESOLUTION, SPEED, SENSITIVITY

- Spatial Resolution
 - Depends on application \rightarrow optical magnification and lens apperture
 - Smaller and more pixels = higher resolution
- Sensitivity
 - Larger pixels = higher sensitivity
 - Higher sensitivity = shorter exposure time
 - Shorter exposure time = higher frame rate
 - Larger pixels = lower resolution
- Speed
 - Less pixels = faster readout
 - Faster Readout = higher framerate
 - Less pixels = lower resolution
- Speed requires fast readout and high sensitivity
 - Light is the limit

SIGNAL TO NOISE RATIO

Camera Sensitivity -

Signal needs to be 2-3x brighter than background noise to be detected.

Increasing the exposure time (integration time) or increasing the illumination intensity produce more signal.

RESOLUTION VERSUS SPEED

512ms 1x1 binning

117ms 2x2 binning 28ms 4x4 binning

Using binning shortens exposure times reducing cell phototoxicity and fluorophore photobleaching

Ion imaging observing changes in ion concentrations

A commonly performed method is ion imaging (calcium, chloride, magnesium) using either fluorescent dyes or proteins especially designed to change their emission behavior upon calcium binding.

primary neurons in vitro calcium imaging

0

primary neurons in vitro calcium imaging

0

primary neurons in vitro calcium imaging

 \cap

Q

OTHER ADVANCED TECHNIQUES

- a. Fluorescence Recovery After Photobleaching
- **b.** Förster Resonance Energy Transfer
- c. Total Internal Reflection Fluorescence
- d. Photo-Activation
- e. Combining Technologies

FLUORESCENCE RECOVERY AFTER PHOTOBLEACHING

fluorescence intensity

Α

FÖRSTER RESONANCE ENERGY TRANSFER (FRET)

Кŀ

YFP

1 – 10 nm

Еŀ

Oxidized Linker: Clamped Coil

(Fig 1 in Exp Biol Med Feb 2008 vol 233, no 2, vii - viii)

TOTAL INTERNAL REFLECTION FLUORESCENCE (TIRF)

Only fluorophores very near the coverslip (100-200 nm) are excited.

Α

PHOTO-CONVERTIBLE FLUORESCENT ACTIN

COMBINING TECHNIQUES

Summary

Ó

Biological application	Microscopy Approach	Abbreviation
Cell shape – cell migration – organelle kinetics	Transmission Microscopy : Bright Field, Dark Field, Phase Contrast, Differential Interference Contrast	BF/ PH/ DIC
Protein colocalization - dynamics, organisation and structure of cells , organelles, proteins	Epifluorescence / Confocal / Spinning disk	
3D imaging of live cells	Confocal/ Spinning disk	
3D imaging of tissues, model organisms, small animals – study structure and development	Multiphoton microscopy/ light sheet microscopy	
Quantification of ion concentrations (calcium, magnesium)	ion imaging	
Biosensing and protein-protein interactions	Forster resonance energy transfer	FRET
Biosensing and protein-protein interactions without light excitation	Bioluminescence resonance energy transfer	BRET
Protein diffusion and kinetics	Fluorescence recovery after photo-bleaching	FRAP
Protein diffusion with high spatio-temporal accuracy (µs- s and 300-400nm)	Fluorescence correlation spectroscopy	FCS
Protein diffusion with single molecule mapping and high spatio-temporal resolution	Single particle tracking	SPT
Protein diffusion with single molecule mapping and high spatio-temporal resolution in dense samples	SPT photoactivated localisation microscopy	sptPALM

Summary

0

Туре	Common Application	Pro	Con
Fluorescent	Targeting probe to specific cellular compartments or	Direct in situ labeling	Large Size
Proteins (FP)	to interact with particular proteins FRET	Can be attached to a target genetically Very specific Low toxicity	Beta barrel shape may hinder molecules under study Photobleach Low signal intensity
Fluorescent Peptides	Similar applications as FP but utilized when size of FP may hinder study	Small size Low Toxicity	Targets Specific Interactions Often requires coupling to molecules
Organic Fluorophores	Can target cell structures Label mRNA sequences	Small Good for multiplexing Limited photostability Wide range of colors	Require coupling to another molecule Photobleach Hydrophobic Somewhat toxic Lower specificity
Indicator Probes	Indicate presence of ions and metals	Very specific	Often requires coupling to molecules
Quantum Dots	Long term imaging studies Real-time tracking over extended periods	Very photostable Good for multiplexing Intense signal Enable very sensitive detection	Coupling to another molecule necessary Interference

Platform	To improve efficiency	To improve sensitivity and S/N	To minimize light exposure
All	Hard-coated filters (see Box 1).	General:	Keep excitation light levels low.
	Dye-specific filters.	Phenol-red-free medium.	Avoid blue dyes.
	Avoid excess optical elements (lenses,	Restorative deconvolution.	Minimum resolution ($60 \times$, 1.4 NA):
	DIC components).	Camera-based systems:	$x, y \sim 0.1 - 0.2 \ \mu m$
	100% light to detector port.	Avoid color cameras.	$z \sim 0.3-0.4 \ \mu m$ t=2.3× timescale of events.
	High NA objectives.	Bin high-resolution cameras 2×2	Minimum number of probes.
Spectral un-mixing. Avoid phase objectives.	Spectral un-mixing.	(exposure times of 200-500 ms).	Use oxygen-radical scavengers.
	Slow camera read times.	ose onjgen nanon oranengensi	
		Use EM-CCD for high speed (exposure times of <100 ms).	
WFM	Remove DIC prism and analyzer when	Perform post-acquisition restorative	Find cells with transmitted light.
imaging fluor	imaging fluorescence.	deconvolution (Fig. 3C,D).	Use ND filters (<10% lamp power).
			Use UV- and IR-blocking filters.
			Use halogen lamps if possible.

0

 \bigcirc

CLSM

Ó

Use long-pass or wide band-pass filters and un-mix post acquisition.

Open the pinhole ≥ 2 Airy units.

Remove DIC prism.

High PMT voltage (≥800 V). Restorative deconvolution. Avoid spectral-array detectors. Low laser power.

AOTF laser blanking.

No line or frame averaging.

Fast scan speed (≥8 µs/pixel).

Image regions of interest when possible.

Recommended laser powers: 405 nm Avoid 488 nm <2% (30 mW) 514 nm <2% (30 mW) 543 nm <50% (1 mW) 633 nm <5% (5 mW)

RESOLUTION, SPEED, SENSITIVITY

- Spatial Resolution
 - Depends on application \rightarrow optical magnification and lens apperture
 - Smaller and more pixels = higher resolution
- Sensitivity
 - Larger pixels = higher sensitivity
 - Higher sensitivity = shorter exposure time
 - Shorter exposure time = higher frame rate
 - Larger pixels = lower resolution
- Speed
 - Less pixels = faster readout
 - Faster Readout = higher framerate
 - Less pixels = lower resolution
- Speed requires fast readout and high sensitivity
 - Light is the limit

