
Exercises Lecture III:
Random numbers with non uniform distributions;

simulations of simple random processes

1. Random numbers with non uniform distributions:
Inverse Transformation Method

(a) With the Inverse Transformation Method we can generate random

numbers according to the exponential distribution f(z) = �e��z
,

starting from random numbers with uniform distribution: if x is

the random variable with uniform distribution in [0,1], then z =

�ln(x) is distributed according to e�z
. Write a code implementing

the algorithm. An example is given in expdev.f90.

(b) Check—doing a histogram—that the random variate z generated wi-

th that algorithm is actually exponentially distributed.

(What is convenient to plot in order to check this behavior? Hint:
with gnuplot you can print the log of your data (e.g., suppose you
saved the values of z in column 1 and its frequency in column 2, plot
with u 1:(log($2)) or u 1:(log10($2)))).

(c) With gnuplot you can also do the fit of the histogram with an ex-

ponential function using the least-square method, with � as fitting

parameter. Check whether you get the expected value of �. (It is
convenient to make a semilog plot as suggested above and then make
a least-square linear fit; the slope is �)

Remember that with the method of the least-square fit we get for a
linear regression: y = ax+ b:

a =
xy � yy

(�x)2
; b = y � ax

where (�x)2 = x2 � x2 (other definitions are trivial . . .).

1

homework: n. 1,3,4

2. Random numbers with non uniform distributions:
comparison between di↵erent algorithms

Suppose you want to generate a random variate x in (-1,1) with distri-

bution

p(x) =
1

⇡
(1� x2

)
�1/2.

Consider both methods suggested below, do the histograms and check that

both methods give correct results.

(a) From the Inverse Transformation Method:

generate a random number U with uniform distribution in [0,1] and

consider x = sin⇡(2U � 1).

(b) Generate two random numbers U and V with uniform distribution

in [0,1]. Disregard them if U2
+ V 2 > 1. Otherwise consider

x =
U2 � V 2

U2 + V 2

Note 1: the last method has the advantage of using only elementary ope-
rations.
Note 2: since x is also negative, pay attention to the algorithm used to
make the histogram; you should notice the di↵erence between the intrinsic
functions int and nint; see also floor. From Chapman’s book:

AINT(A,KIND): Real elemental function
- Returns A truncated to a whole number.
AINT(A) is the largest integer which is smaller than |A|, with the sign of A.
For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.
- Argument A is Real; optional argument KIND is Integer

ANINT(A,KIND): Real elemental function
- Returns the nearest whole number to A.
For example, ANINT(3.7) is 4.0, and AINT(-3.7) is -4.0.
- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND): Integer elemental function
- Returns the largest integer < or = A.
For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.
- Argument A is Real of any kind; optional argument KIND is Integer
- Argument KIND is only available in Fortran 95

NINT(A[,KIND])
- Integer elemental function
- Returns the nearest integer to the real value A.
- A is Real

2

3. Random numbers with gaussian distribution:
Box-Muller algorithm

Consider the Box-Muller algorithm to generate a random number gaussian

distribution (see for instance boxmuller.f90; the gasdev subroutine used

inside is similar to what you can find in “Numerical Recipes”: it gives a

gaussian distribution with � = 1 and average µ = 0). Do a histogram of

the data generated, calculate numerically from the sequence the average

value and the variance, check with the expected results.

4. Simulation of radioactive decay

(a) Write a program for a numerical simulation of the radioactive decay,

with a decay parameter � in input. (See for instance decay.f90).

(b) Use the code with “reasonable” values of the parameters (e.g., N(0)

about 1000) and save N(t) in a data file. Check whether N(t) =

N(0)e��t
as expected. (Hint: As for the exercise 1, you could ma-

ke use of a least-square fit by considering lnN(t) vs. t, i.e. the
relationship in a semilog form in order to manage a linear fit.)

(c) Change N(0) (100 or less; 10000 or more). What do you see?

Notice that in decay.f90 the upper bound of the inner loop (nleft) is
changed within the execution of the loop; but in the execution the loop
goes on up to the nleft set at the beginning of the loop; this ensures
that the implementation of the algorithm is correct. See the programs
checkloop.f90 and decay checkloop.f90 in the same directory.

5. Random deviates with other distributions (Optional)
You can try t random.f90 which uses the module random.f90 to generate

random deviates with other distributions. Remember to compile first the

module: g95 (or gfortran) random.f90 t random.f90

!CCC
! expdev.f90
program test_expdev

implicit none
real :: lambda,delta,x
integer :: i,n,nbin,ibin, sizer
integer, dimension(:), allocatable :: histo, seed
print*, " Generates random numbers x distributed as exp(-lambda*x)"
call random_seed(sizer)
allocate(seed(sizer))
print *,’Here the seed has ’,sizer,’ components; insert them (or print "/") >\’
read(*,*)seed
call random_seed(put=seed)

3

print *," length of the sequence >"
read *, n
print *," exponential decay factor (lambda)>"
read *, lambda
print *," Collecting numbers generated up to 2/lambda (disregard the others)"
print *," and normalizing the distribution in [0,+infinity["
print *," Insert number of bins in the histogram>"
read *, nbin
delta = 2./lambda/nbin

allocate (histo(nbin))
histo = 0
do i = 1,n

call expdev(x)
ibin = int (x/lambda/delta) + 1
if (ibin <= nbin)histo(ibin) = histo(ibin) + 1

end do
open (unit=7,file="expdev.dat",status="replace",action="write")
do ibin= 1 ,nbin

write(unit=7,fmt=*)(ibin-0.5)*delta,histo(ibin)/float(n)/delta
end do

contains

subroutine expdev(x)
REAL, intent (out) :: x
REAL :: r
do

call random_number(r)
if(r > 0) exit

end do
x = -log(r)

END subroutine expdev

end program test_expdev

!CCC
! boxmuller.90
! uses the Box-Muller algorithm to generate
! a random variate with a gaussian distribution (sigma = 1)
!
program boxmuller

implicit none
real :: rnd,delta
real, dimension(:), allocatable :: histog
integer :: npts,i,ibin,maxbin,m

4

print*,’ input npts, maxbin >’
read*, npts,maxbin
allocate(histog(-maxbin/2:maxbin/2))
histog = 0
delta = 10./maxbin
do i = 1, npts

call gasdev(rnd)
ibin = nint(rnd/delta)
if (abs(ibin) < maxbin/2) histog(ibin) = histog(ibin) + 1

end do

open(1,file=’gasdev.dat’,status=’replace’)
do ibin = -maxbin/2 , maxbin/2

write(1,*)ibin*delta, histog(ibin)/real(npts)/delta
end do
close(1)
deallocate(histog)
stop

contains
SUBROUTINE gasdev(rnd)

IMPLICIT NONE
REAL, INTENT(OUT) :: rnd
REAL :: r2,x,y
REAL, SAVE :: g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then

rnd=g
gaus_stored=.false.

else
do

call random_number(x)
call random_number(y)
x=2.*x-1.
y=2.*y-1.
r2=x**2+y**2
if (r2 > 0. .and. r2 < 1.) exit

end do
r2=sqrt(-2.*log(r2)/r2)
rnd=x*r2
g=y*r2
gaus_stored=.true.

end if
END SUBROUTINE gasdev

end program boxmuller

5

!CCC
! decay.f90
! Simulation of radioactive decay
!
PROGRAM decay

IMPLICIT none
REAL, PARAMETER :: lambda=0.2
REAL :: r
INTEGER :: i, t, nleft, start, sizer
integer, dimension(:), allocatable :: seed
!
call random_seed(sizer)
allocate(seed(sizer))
print *,’Here the seed has ’,sizer,’ components; insert them (or print "/") >’
read(*,*)seed
call random_seed(put=seed)

! initial values
print *,"initial number of nuclei >"
read *, start
t = 1 ! initialize time
nleft = start ! at the beginning N(t=0)=start
! N(t) nuclei left at time t,
! that have a given probability lambda of decay
! in the time interval t:t+dt
!
OPEN(unit=7, FILE="decay.dat", status="replace",action="write")
WRITE (unit=7,fmt=*) "# t , N(t)"
WRITE (unit=7,fmt=*) "0 ", nleft !REAL(nleft)/start
!
DO ! time loop

DO i = 1, nleft ! loop on the nuclei left
call random_number(r)
IF (r <= lambda) THEN

nleft = nleft - 1 ! update the number of nuclei left
ENDIF

END DO
!
WRITE (unit=7,fmt=*) t , nleft ! or REAL(nleft)/start
if (nleft == 0) exit
t = t + 1

END DO
!
close(7)
stop

END program decay

6

