Exercises Lecture I1I1:

Random numbers with non uniform distributions;

simulations of simple random processes

homework: n. 1,3,4

1. Random numbers with non uniform distributions:
Inverse Transformation Method

(a)

With the Inverse Transformation Method we can generate random
numbers according to the exponential distribution f(z) = Ae™*?,
starting from random numbers with uniform distribution: if x is
the random variable with uniform distribution in [0,1], then z =
—In(z) is distributed according to e~*. Write a code implementing
the algorithm. An example is given in expdev.£90.

Check—doing a histogram—that the random variate z generated wi-
th that algorithm is actually exponentially distributed.

(What is convenient to plot in order to check this behavior? Hint:
with gnuplot you can print the log of your data (e.g., suppose you
saved the values of z in column 1 and its frequency in column 2, plot
withu 1: (Log($2)) oru 1:(logl0($2)))).

With gnuplot you can also do the fit of the histogram with an ex-
ponential function using the least-square method, with A\ as fitting
parameter. Check whether you get the expected value of A. (1t is
convenient to make a semilog plot as suggested above and then make
a least-square linear fit; the slope is \)

Remember that with the method of the least-square fit we get for a
linear regression: y = ax + b:

Ty — Yy,

Aoy b=9—ax

a =

where (Az)? = 22 — T2 (other definitions are trivial ...).

2. Random numbers with non uniform distributions:
comparison between different algorithms

Suppose you want to generate a random variate = in (-1,1) with distri-

bution 1
pla) = =(1—a?)~1/2
T

Consider both methods suggested below, do the histograms and check that
both methods give correct results.

(a) From the Inverse Transformation Method:
generate a random number U with uniform distribution in [0,1] and
consider z = sin7w(2U — 1).

(b) Generate two random numbers U and V' with uniform distribution
in [0,1]. Disregard them if U? + V2 > 1. Otherwise consider

U2 _ V2
r= U2+ V2
Note 1: the last method has the advantage of using only elementary ope-
rations.
Note 2: since x is also negative, pay attention to the algorithm used to
make the histogram; you should notice the difference between the intrinsic
functions int and nint; see also floor. From Chapman’s book:

AINT (A,KIND) : Real elemental function

- Returns A truncated to a whole number.

AINT(A) is the largest integer which is smaller than |A|, with the sign of A.
For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

- Argument A is Real; optional argument KIND is Integer

ANINT(A,KIND): Real elemental function

- Returns the nearest whole number to A.

For example, ANINT(3.7) is 4.0, and AINT(-3.7) is -4.0.
- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND): Integer elemental function

- Returns the largest integer < or = A.

For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.

- Argument A is Real of any kind; optional argument KIND is Integer
- Argument KIND is only available in Fortran 95

NINT(A[,KIND])

- Integer elemental function

- Returns the nearest integer to the real value A.
- A is Real

3. Random numbers with gaussian distribution:
Box-Muller algorithm

Consider the Box-Muller algorithm to generate a random number gaussian
distribution (see for instance boxmuller.f£90; the gasdev subroutine used
inside is similar to what you can find in “Numerical Recipes”: it gives a
gaussian distribution with o = 1 and average . = 0). Do a histogram of
the data generated, calculate numerically from the sequence the average
value and the variance, check with the expected results.

4. Simulation of radioactive decay

(a) Write a program for a numerical simulation of the radioactive decay,
with a decay parameter X in input. (See for instance decay.£90).

(b) Use the code with “reasonable” values of the parameters (e.g., N(0)
about 1000) and save N(¢) in a data file. Check whether N(¢) =
N(0)e=? as expected. (Hint: As for the exercise 1, you could ma-
ke use of a least-square fit by considering In N(t) vs. t, i.e. the
relationship in a semilog form in order to manage a linear fit.)

(¢) Change N(0) (100 or less; 10000 or more). What do you see?

Notice that in decay.f90 the upper bound of the inner loop (nleft) is
changed within the execution of the loop; but in the execution the loop
goes on up to the nleft set at the beginning of the loop; this ensures
that the implementation of the algorithm is correct. See the programs
checkloop.f90 and decay_checkloop.£90 in the same directory.

5. Random deviates with other distributions (Optional)
You can try t_random.f90 which uses the module random.£90 to generate
random deviates with other distributions. Remember to compile first the
module: g95 (or gfortran) random.f90 t_random.f90

1CCCCCCCCCCCCCreeeeeeeeereereeeceeecceeeeceecceececeeeceececeeccecccececccecccececcececce
! expdev.£f90
program test_expdev
implicit none
real :: lambda,delta,x
integer :: i,n,nbin,ibin, sizer
integer, dimension(:), allocatable :: histo, seed
print*, " Generates random numbers x distributed as exp(-lambda*x)"
call random_seed(sizer)
allocate(seed(sizer))
print *,’Here the seed has ’,sizer,’ components; insert them (or print "/") >\’
read (*,*)seed
call random_seed(put=seed)

print *," length of the sequence >"
read *, n
print *," exponential decay factor (lambda)>"
read *, lambda
print *," Collecting numbers generated up to 2/lambda (disregard the others)"
print *," and normalizing the distribution in [0,+infinity["
print *," Insert number of bins in the histogram>"
read *, nbin
delta = 2./lambda/nbin
allocate (histo(nbin))
histo = 0
doi=1,n
call expdev(x)
ibin = int (x/lambda/delta) + 1
if (ibin <= nbin)histo(ibin) = histo(ibin) + 1
end do
open (unit=7,file="expdev.dat",status="replace",action="write")
do ibin= 1 ,nbin
write(unit=7,fmt=%) (ibin-0.5)*delta,histo(ibin)/float(n)/delta
end do

contains

subroutine expdev(x)
REAL, intent (out) :: x
REAL :: r
do
call random_number (r)
if(r > 0) exit
end do
x = -log(r)
END subroutine expdev

end program test_expdev

1CCCCCCCCCCCceeeeeeeeeeeceeeeeecceceececceceeececceceeecccceeccccceecccccecccecce
! boxmuller.90
! uses the Box-Muller algorithm to generate
! a random variate with a gaussian distribution (sigma = 1)
]
program boxmuller
implicit none

real :: rnd,delta
real, dimension(:), allocatable :: histog
integer :: npts,i,ibin,maxbin,m

print*,’ input npts, maxbin >’
read*, npts,maxbin
allocate(histog(-maxbin/2:maxbin/2))
histog = 0
delta = 10./maxbin
do i =1, npts
call gasdev(rnd)
ibin = nint(rnd/delta)
if (abs(ibin) < maxbin/2) histog(ibin) = histog(ibin) + 1
end do

open(1l,file=’gasdev.dat’,status=’replace’)
do ibin = -maxbin/2 , maxbin/2
write(1l,*)ibin*delta, histog(ibin)/real(npts)/delta
end do
close(1)
deallocate(histog)
stop

contains
SUBROUTINE gasdev(rnd)
IMPLICIT NONE
REAL, INTENT(OUT) :: rnd
REAL :: r2,x,y
REAL, SAVE :: g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then
rnd=g
gaus_stored=.false.
else
do
call random_number (x)
call random_number (y)
x=2.%x-1.
y=2.%y-1.
r2=X**2+y**2
if (r2 > 0. .and. r2 < 1.) exit

end do
r2=sqrt (-2.*log(r2)/r2)
rnd=x*r2
g=y*r2
gaus_stored=.true.

end if

END SUBROUTINE gasdev
end program boxmuller

ICCCCCCceeceecceececcceececcceccecccecceeccecceccceccecccecceecceccecccece
! decay.f90
! Simulation of radioactive decay
!
PROGRAM decay
IMPLICIT none

REAL, PARAMETER :: lambda=0.2

REAL :: r

INTEGER :: i, t, nleft, start, sizer
integer, dimension(:), allocatable :: seed

]

call random_seed(sizer)

allocate(seed(sizer))

print *,’Here the seed has ’,sizer,’ components; insert them (or print "/") >’
read (*,*)seed

call random_seed(put=seed)

! initial values

print *,"initial number of nuclei >"

read *, start

t=1 ! initialize time

nleft = start ! at the beginning N(t=0)=start
! N(t) nuclei left at time t,

! that have a given probability lambda of decay
! in the time interval t:t+dt

]

OPEN(unit=7, FILE="decay.dat", status="replace",action="write")

WRITE (unit=7,fmt=x) "# t , N(E)"
WRITE (unit=7,fmt=%) "O ", nleft 'REAL(nleft)/start
!
DO ! time loop
DO i =1, nleft ! loop on the nuclei left

call random_number (r)
IF (r <= lambda) THEN
nleft = nleft - 1 ! update the number of nuclei left
ENDIF
END DO
]
WRITE (unit=7,fmt=*) t , nleft ! or REAL(nleft)/start
if (nleft == 0) exit
t=t+1
END DO
!
close(7)
stop
END program decay

