1.3 Dipole Radiation

The electric and magnetic fields for an oscillating dipole are®

1 dH(t)  dHI(t) 1 d)(t,)
(+) i TR A BN e BY [ NN o NXDS —— [(¢-F\ = & — =L
EH)(r,t) 7= [3(¢ - )7 s][ i + o ]+47r50 [(-F)f — ¢ =
j(+) J+)
+) - € s @ (tr) d (tr)
s s (B [ = B T

(dipole radiation fields) (1.42)

!Alan Corney, Atomic and Laser Speciroscopy (Oxford, 1987).

2See Peter W. Milonni and Joseph H. Eberly, Lasers (Wiley, 1988), p. 239.

#See John David Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999), p. 411 or Peter W. Milonni and Joseph H.
Eberly, Lasers (Wiley, 1988), p. 44.

where t, = t—r/c is the retarded time, and £ is the polarization unit vector of the applied field (and thus the
dipole orientation vector). Only the 1/r terms actually transport energy to infinity (i.e., they correspond to
radiation), so we can drop the rest to obtain
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The energy transport is governed by the Poynting vector, which we can write as
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for the angular dependence.
There are two main possibilities for the polarization vector: the incident light can be linearly or
circularly polarized.

1. Linear polarization (¢ = 2): 1 —|#-&*> = sin®0. This is the usual “doughnut-shaped” radiation
pattern for an oscillating dipole.
2. Circular polarization (¢ = £y := F(& £ i)/v2): 1 - |f-é[2 = (1 +cos?#)/2. This is a “peanut-
shaped” radiation pattern for a rotating dipole.
Here, @ is the angle from the z-axis, while ¢ is the angle around the azimuth. Note that any arbitrary polar-

ization can be represented as a superposition of these three basis vectors. The (intensity/power) radiation
patterns for the linear and circular dipole cases are shown here.
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The three-dimensional distributions are generated by sweeping these patterns around the z-axis.
The corresponding electric fields for the dipole radiation are polarized. From Eq. (1.43), we can see
that the polarization vector is proportional to (€-7)7—£. For linear polarization (¢ = £), this factor turns out

to be sin @8, while for circular polarization (¢ = &+ = F(& + i§)/v/2), the polarization vector is proportional
to (cos 00 F ig)eT?/\/2.
Now let’s define the angular-distribution function via
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(radiative angular distribution)

£:0.9) = o (117 -4).
For linear and circular polarization, this takes the form
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This function has the nice property that it is normalized, and thus represents a probability distribution for
photon emission in quantum mechanics:
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Here, d2 = sin @ df d¢ is the usual solid-angle element.
Now we can write the Poynting vector in terms of the angular-distribution function as
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The power radiated per unit solid angle is then
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and the total radiated power is
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Of course, the incident intensity is contained implicitly in the electron acceleration Z.



