
M E T H O D S  F O R  

C O M PA R I N G  

R E P R E S E N TAT I O N S  

O F  A R T I F I C I A L  

N E U R A L  N E T W O R K S

M A R C O  Z U L L I C H ,  P H D  S T U D E N T  @  D E P T .  

O F  E N G I N E E R I N G  A N D  A R C H I T E C T U R E

U N I V E R S I T Y  O F  T R I E S T E



W H Y  C O M PA R I N G  R E P R E S E N TAT I O N S  

O F  A R T I F I C I A L  N E U R A L  N E T W O R K S ?

• The dynamics behind the training process of SGD are still vaguely understood, as

are the generalization capability and some properties of hidden representations

• It may be interesting, for instance, to compare layers during training

• On the other hand, given two identically structured ANNs trained on the same

dataset with two different random seeds, do they learn similar representations or 

the representations are different even if the final performance is the same?

• Can we establish connections between the representations learned by ANNs and 

by their biological counterpart?



C O M PA R I N G  L AY E R S  O F  A R T I F I C I A L  

N E U R A L  N E T W O R K S  ( A N N S )

• What defines two ANNs as «similar»?

• Their parameters (weights)

• Their outputs

• Their neurons

…other ideas?



C O M PA R I N G A N N S B Y  T H E I R

N E U R O N S

• What are their values given the input?

• How can we approximate their probability density (given the data manifold) over 

ℝ?

• 𝑝 𝑎𝑖𝑗 𝑥

• «How does the neuron respond to the data manifold»?

→ evaluate the network over a limited, yet «large enough» dataset of points

and collect the neurons activations.
«Monte-Carlo approximation»



A  B I T  M O R E  F O R M A L L Y

Dataset

𝑛 images

ANN

Activation vectors

size 𝑝

Layer 1

𝑝 neurons

Activation 

matrix 𝑛 × 𝑝

Representation of layer 1



C O M PA R I N G T W O S I N G L E -

D I M E N S I O N A L L AY E R S

𝑛 𝑛

𝑝 𝑝

What techinques do you know for comparing two matrices of the same size?



C O M PA R I N G M AT R I C E S W I T H  C O S I N E  

S I M I L A R I T Y

• The cosine similarity is a similarity metric between two vectors lying in the same

space

• Is equivalent to the cosine of the angle between the two

𝑣1 𝑣2

𝜃𝑣1
𝑇𝑣2 = 𝑣1 ⋅ 𝑣2 ⋅ cos(𝜃)

hence

cos 𝜃 =
𝑣1
𝑇𝑣2

𝑣1 ⋅ 𝑣2
=

𝑣1, 𝑣2
𝑣1 ⋅ 𝑣2

What is wrong with cosine similarity

when comparing two flattened

layers?



T H E  R E Q U I S I T E  O F  R O TAT I O N  

I N VA R I A N C E

• One of the properties of the neural network is that, by carefully changing the 

order of the neurons (and their corresponding weights) in the hidden layers, we

can obtain two networks behaving identically

• Ideally we would like a similarity metric to be invariant to that property

• If we view the neurons as directions within the space of representations

the permutation can be seen as a rotation within this space

and the requirement becomes rotational invariance.



… A N  A D D I T I O N A L R E Q U I S I T E

• In addition to the rotational invariance requisite, we would also like our metric to 

be more flexible and adapt to generic situations in which the two layers have

different sizes

• In pratical terms…

𝑛 𝑛

𝑝 𝑞

𝑝 ⋚ 𝑞



I N T R O D U C I N G C A N O N I C A L

C O R R E L AT I O N A N A L Y S I S ( C C A )

• CCA is a technique introduced in the ‘30s by the statistician Harold Hotelling

• Is a technique for establishing connections between two generic sets of 

continuous variables called phenomena

• 𝑋 = 𝑋1, … , 𝑋𝑝 ; 𝑌 = 𝑌1, … , 𝑌𝑞 , 𝑝 ⋛ 𝑞

• We operate by constructing a so-called view of these two phenomena

• We consider 𝑛 statistical units (individuals)

• We evaluate these individuals over our phenomena



C C A  { 2 }

• Now, we may store these views in two matrices, 𝑀𝑋, 𝑀𝑌

𝑛 𝑛

𝑝 𝑞
𝑀𝑋 𝑀𝑌



C C A  { 3 }

• CCA acts by applying a linear transformation to two unknown vectors 𝑤𝑋 ∈

ℝ𝑝, 𝑤𝑦 ∈ ℝ
𝑞

• The linear transformation is the one implied by 𝑀𝑋 and 𝑀𝑌

• 𝑀𝑋𝑤𝑋 = 𝑧𝑋 ∈ ℝ
𝑛; 𝑀𝑌𝑤𝑌 = 𝑧𝑌 ∈ ℝ

𝑛

𝑤𝑋

𝑤𝑌

𝑧𝑋 = 𝑀𝑋𝑤𝑋

𝑧𝑌= 𝑀𝑌𝑤𝑌𝜃

𝑀𝑋

𝑀𝑌

The constraint over 𝑤𝑋, 𝑤𝑦 is that the corresponding

𝑧𝑋, 𝑧𝑦
1) are unit vectors

2) have maximum Pearson correlation.

Geometrically, Pearson correaltion = cosine of 

enclosing angle 𝜃 (*)

Does this ring a bell?

(*) for 0-mean random variables/representations



C C A  { 4 }

• Call 𝜌 ≜ cos 𝜃 → CANONICAL CORRELATION (CC)

• We now wish to obtain another set 𝑤𝑋
(2)
, 𝑤𝑌
(2)

• Such that the corresponding 𝑧𝑋
(2)
, 𝑧𝑌
(2)

respect all previous properties

• and they’re orthogonal to 𝑧𝑋, 𝑧𝑦 respectively

• We will have the corresponding 𝜌(2) ≤ 𝜌
• We can find an iterative method which produces a decreasing sequence

of CCs 𝜌 1 , … , 𝜌 min 𝑝,𝑞



C C A  { 5 }
• We can summarize all this in matrix notation

• 𝑊𝑋 ∈ ℝ
𝑝×min 𝑝,𝑞 , 𝑍𝑋 ∈ ℝ

𝑛×min(𝑝,𝑞) (analogous for 𝑊𝑌 , 𝑍𝑌)

• 𝑀𝑋𝑊𝑋 = 𝑍𝑋 (analogous for 𝑊𝑌, 𝑍𝑌 , 𝑀𝑌)

• The rows of 𝑍𝑋 hold the s.c. canonical variables

• 𝑍𝑋 , 𝑍𝑌 are orthonormal bases of the space ℝ𝑛

• Pearson correlation between 𝑧𝑋
(𝑖)
, 𝑧𝑌
(𝑖)

is maximum

• Ρ = 𝜌 𝑖
𝑖

is trivially obtained as the row-wise cosine similarity between 𝑍𝑋 , 𝑍𝑌



C C A  { 6 }

But how can we obtain𝑊𝑋,𝑊𝑌?

VAR(𝑀𝑋)Σ𝑋𝑋

VAR(𝑀𝑌)Σ𝑌𝑌

𝐶𝑂𝑉(𝑀𝑋, 𝑀𝑌)Σ𝑋𝑌

Σ𝑋𝑋
−1/2
Σ𝑋𝑌Σ𝑌𝑌

−1/2
= 𝑈𝑆𝑉

Left singular vectors

Σ𝑋𝑋
1/2
𝑢𝑖 yields the corresponding 𝑤𝑋

(𝑖)

Right singular vectors

Σ𝑌𝑌
1/2
𝑣𝑖 yields the corresponding 𝑤𝑌

(𝑖)

Singular values

𝑠𝑖 corresponds to the canonical correlation 𝜌
(𝑖)

Singular Value Decomposition (SVD)



M E A N  C C A  S I M I L A R I T Y

𝝆(𝟏) 𝝆(𝟐) 𝝆(𝟑) … 𝝆(𝒓)

These coefficient convey an information on relatedness between 𝑀𝑋 and 𝑀𝑌.

CCAsim 𝑀𝑋, 𝑀𝑌 ≜
 𝑗=1
𝑟 𝜌(𝑗)

𝑟

𝑟 = min(𝑝, 𝑞)

Mean CCA similarity



R E C A P O N  C C A

Study connections between two phenomena X, Y of possibly different sizes

Build views by means of 𝑛 observations over X, Y → 𝑀𝑋, 𝑀𝑌

Linearly project the columns of 𝑀𝑋, 𝑀𝑌 in orthonormal bases of size ℝ𝑛 → 𝑍𝑋, 𝑍𝑌

The projection maximizes correlation 𝜌 between rows of these two bases

𝜌’s can be easily obtained one-shot via SVD applied on variance-

covariance matrices of 𝑀𝑋, 𝑀𝑌

X, Y are our layers

𝑀𝑋, 𝑀𝑌 are our representations



S V C C A [ 1 ]

• A technique thought explicitly for applying CCA to compare ANN layers

• Assumption: most of the neurons within a layer contribute close to nothing to the 

variance of its representation

Operate SVD for dimensionality reduction

𝑛

𝑝𝑀𝑋

𝑛

𝑛 𝑝

𝑝

𝑝
𝑈 𝑆 𝑉𝑇

𝑠𝑗𝑗
2 = VAR 𝑀𝑋 𝑗
𝑠𝑗𝑗 ≥ 𝑠𝑘𝑘 , 𝑗 > 𝑘

=

Operate CCA and obtain similarity



S I M I L A R I T Y O F  R E P R E S E N TAT I O N S

U S I N G K E R N E L S

Linear kernel over a representation 𝑀𝑋 𝐿𝑋 = 𝑀𝑋𝑀𝑋
𝑇 ∈ ℝ𝑛×𝑛

𝐿𝑌 = 𝑀𝑌𝑀𝑌
𝑇 ∈ ℝ𝑛×𝑛

To measure the dissimilarity between these two

matrices, we can use the inner product of their

vectorized version

vec 𝐿𝑋 , vec(𝐿𝑌) = tr(𝐿𝑋𝐿𝑌)

= 𝑀𝑌
𝑇𝑀𝑋 Fr

2

Note: COV 𝐴, 𝐵 =
𝐴𝐵𝑇

𝑛−1
⇒ COV 𝐴, 𝐵 2 =

𝐴𝐵𝑇
2

𝑛−1 2
= 𝑛 − 1 2 COV 𝑀𝑋

𝑇 , 𝑀𝑌
𝑇 2

COV 𝑀𝑋
𝑇, 𝑀𝑌

𝑇 2
=
tr(𝐿𝑋𝐿𝑌)

𝑛 − 1 2



H I L B E R T  S C H M I D T I N D E P E N D E N C E

C R I T E R I O N ( H S I C )

COV 𝑀𝑋
𝑇, 𝑀𝑌

𝑇 2
=
tr(𝐿𝑋𝐿𝑌)

𝑛 − 1 2
HSIC for linear kernels

HSIC  𝐾𝑋,  𝐾𝑌 =
tr( 𝐾𝑋 𝐾𝑌)

𝑛 − 1 2
 𝐾𝑋 = 𝐾𝑋(𝐼 − 𝑛

−1𝟏𝟏𝑇) kernels centered w.r.t. 

row and column means

HSIC is a statistic for determining

whether two generic sets of variables

are independent

HSIC → 0 stochastic independence

HSIC → 1 stochastic dependence



C E N T E R E D K E R N E L  A L I G N M E N T ( C K A )

• Normalization of HSIC

CKA  𝐾𝑋,  𝐾𝑌 =
HSIC  𝐾𝑋,  𝐾𝑌

HSIC  𝐾𝑋,  𝐾𝑋 HSIC  𝐾𝑌,  𝐾𝑌

=
 𝐾𝑋  ,𝐾𝑌
 𝐾𝑋  𝐾𝑌

∈ [0,1]

• Linear CKA

CKAlin 𝑀𝑋, 𝑀𝑌 =
𝑀𝑌
𝑇𝑀𝑋

2

𝑀𝑋
𝑇𝑀𝑋 𝑀𝑌

𝑇𝑀𝑌
∈ [0,1]



C H O I C E  O F  K E R N E L S

• Radial Basis Function (RBF) kernel:

• 𝜅 𝑥, 𝑦 = exp
− 𝑥−𝑦 2

2𝜎2

• [2] cites no substantial difference between using RBF kernel with 𝜎 ∈ [0.2, 0.6]

w.r.t. a linear kernel

• On the other hand, [3] refers that CKA with RBF with very small sigma may be a 

better choice for a more accurate similarity metric, but more on that on the next 

keynote.



O N  T H E  D E S I R A B L E  A N D  I N D E S I R A B L E  

I N VA R I A N C E S  O F  M E T R I C S

• Invariance to orthogonal transformations was already discussed before

• Invariance to isotropic scaling (arbitrary scaling of the features)

• SIM 𝑀𝑋, 𝑀𝑌 = SIM 𝛼𝑀𝑋, 𝛽𝑀𝑦 , 𝛼, 𝛽 ∈ ℝ
+ Good

BadInvariance to invertible linear transformations

This invariance poses problems when 𝑛 <
𝑝, as for full-rank matrices 𝐴, 𝐵,

the similarity 𝑆𝐼𝑀 𝐴, 𝐶 = 𝑆𝐼𝑀 𝐵, 𝐶 [2]

The training process is sensible w.r.t. 

invertible linear transforms. Just think of 

BATCH NORMALIZATION

Good



S U M M A RY  O F  M E T R I C S  I N VA R I A N C E S

Table from [2].



A U G M E N T I N G  C K A  W I T H  

I N F O R M AT I O N  O N  G R A D I E N T S

[4] proposes an augmentation of CKA by incorporating information on gradients for 

the given layer(s)

𝑛

𝑝𝑀𝑋

𝑛

𝑝𝐺𝑋

𝜅(⋅,⋅) 𝜅(⋅,⋅)

𝐾𝑀𝑋 𝐾𝐺𝑋

𝐾𝑋 = 𝐾𝑀𝑋⊙𝐾𝐺𝑋

𝐾𝑌 = 𝐾𝑀𝑌⊙𝐾𝐺𝑌

CKA𝐺𝑟.  𝐾𝑋,  𝐾𝑌 =
 𝐾𝑋,  𝐾𝑌
 𝐾𝑋  𝐾𝑌



W H Y  C K A  A N D  C C A  M I G H T  B E  

W R O N G

Classical statistics:

FIXED features (variables)

VARIABLE datapoints (observations)

𝑝 fixed; 𝑛 → ∞

Most of the results we know and use 

everyday in research adhere to this 

paradigm.

e.g. law of large numbers

High dimensional statistics [7]:

VARIABLE features (variables)

VARIABLE datapoints (observations)

𝑝 → ∞; 𝑛 → ∞

In high dimensional statistics, some 

results from classical statistics do not 

hold or may present abnormally large 

errors

In Deep Learning, the focus is either 

on depth and width. In wide ANNs, 

we're essentially increasing p which 

may be way larger than n.

Consider moreover that both CCA 

and CKA are essentially based on 

the concept of COVARIANCE.

Maybe, we might want to detach 

from a classical statistical view and 

go to more "non-parametric" 

techniques to obtain metrics.

𝑃 Σ −  Σ ≥ 𝛿 ≤ 2𝑝 exp
−𝑛𝛿2

2𝑏 Σ + 𝛿
, 𝑏 ∈ ℝ, 𝛿 → 0+

Negative exponential decayLinear increaseWhat is this?



I M D

• IMD is a metric recently proposed at ICLR 2020 [6]

• Compares generic data manifolds, unaligned and different in dimension

• Underlying theory is absurdly difficult

• If you really want to have a go at it

• https://github.com/xgfs/imd

• Focus is on generative models and language models, but it should work fine on 

simple MLPs as well

CRAZY 

STUFF!

https://github.com/xgfs/imd


R E C A P P I N G

Comparing hidden 

representations produced by 

MLPs is a difficult task

Unaligned representations: 

Neuron 𝑖 in ANN 1 might not be 

the same as neuron 𝑖 in ANN2

Different dimensionalities:

Representations may not be 

composed by the same number 

of neurons

Curse of  dimensionality:

Human intuition fails when the 

number of variables (neurons) in 

the representation is very high

High dimensional statistics:

Regular statistical results may fail when 

p→inf. It is shown that covariance is tricky 

in that scenario

Metrics such as 

CKA and 

(SV)CCA 

overcome these 

hurdles
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