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Hilbert’s 10th problem ( 1900 )

Given: a Diophantine eq.
D( x1, . . . , xm ) = 0 ↪→ Algorithmic

decider

H©
↪→ yes / no

Scheme of a hypothetical solver for the 10th problem. The answer:

“no” should indicate that there exist no solutions;
“yes ” should indicate that the equation has at least one solution

x1 = v1
...

...
...

xm = vm

where each v i is an integer ( positive, negative, or null ).
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An adaptation of Hilbert’s 10th problem to N

Establishing whether or not, any given equation

D( x1, . . . , xm ) = 0 ,

( where D is a polynomial with coefficients in Z ),

admits a solution
1 in Z
2 in N

are problems translatable into each other.

This presentation will refer H10 to N
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Limiting result by Davis-Putnam-Robinson-Matiyasevich

Theorem DPRM ( 1970 )

Hilbert’s problem H10 is algorithmically unsolvable
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Flattening instances of H10 into special low-degree systems

Consider a polynomial Diophantine equation

D( x1, . . . , xm ) = 0

to be solved in N. By pulling out subterms of the polynomial D, we
can flatten this equation into a system (=conjunction) of equations
of the forms

x = y + z , x = y · z , x = 1 , x = y

,

where x , y , z stand for variables, to be regarded—the new ones as
well as the original ones, x1 , . . . , xm—as unknowns in N. We will
manage that x , y , z are distinct when they appear in the same
equation x = y ? z .

The equisolvability between the system ∆

thus obtained and the equation given at the outset will be obvious.
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Example of how to flatten a Diophantine eq.

The equation§

4 x3
1 x2 − 2 x2

1 x3
3 − 3 x2

2 x1 + 5 x3 = 0

in 3 unknowns can be flattened into the following system in 22
unknowns ( 19 are ‘temporaries’ ):

ζ = ζ1 + ζ2 , ζ1 = ζ2 + ζ , ζ2 = ζ+ ζ1 ,

o = 1 , o1 = o

+ ζ

, u2 = o + o1 ,

o 6= ζ , o ′
1 = o + ζ , o = o1 · o ′

1 ,

p1 = u2 · x1 , p2 = p1 · x1 , p3 = p2 · x1 ,

q1 = u2 · x2 , q2 = q1 + x2 , q3 = q2 · x2 ,

s1 = x3

+ ζ

, s2 = s1 · x3 , s3 = s2 · x3 ,

r1 = s1 + x3 , r2 = r1 + x3 , r3 = r1 + r2 ,

t1 = p3 · q1 , t2 = p2 · s3 , t3 = q3 · x1 ,

w = t1 + r3 , w = t2 + t3 .

§Cf. [Mat93, p. 4]
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Trick to avoid equations between variables

We have just seen how to eliminate equations of the form x = y

( with x , y distinct var’s ) during flattening, thanks to a new var. ζ
which ( in concert with others ) gets the value 0 . To enforce this,
three constraints suffice:

ζ = ζ1 + ζ2 , ζ1 = ζ2 + ζ , ζ2 = ζ+ ζ1 ,︸ ︷︷ ︸
ζ 6 ζ1 6 ζ2 6 ζ ∴ ζ = ζ1 = ζ2 = 0

Figure: The three variables ζ , ζ1 , ζ2 are thus forced to take the value 0
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How to employ squaring instead of product

We can also rewrite each equation of the form

x = y · z

as a system involving only squaring and addition. In fact we can
replace it, in light of the identity

k︷ ︸︸ ︷
(y · z︸︷︷︸

x

) + (y · z︸︷︷︸
x ′

) +

h︷ ︸︸ ︷
y2︸︷︷︸
f

+ z2︸︷︷︸
g

= (y + z︸ ︷︷ ︸
p

) 2 ,

by the following equations:

q = k + h ,
k = x + x ′ , x ′ = x + ζ ,

h = f + g , f = y2 , g = z2 ,
p = y + z , q = p2 ,

where f , g , h, k , p, q and x ′ are new and, as before, ζ = 0.
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