Corollary 9. Let f € L},.(R%).
Then, for almost every x € RY,

1 e
I B o 1O )

Remark 16. Let v be a complex measure on B(R?). Suppose that v < A,
where X is the Lebesque measure. From the Radon-Nikodym theorem we know
that there exists fo € L} (R?) such that, for all E € B,

W(E) = /E fod.

From Corollary 9 we have also that, for almost every x € R,

o 1 . v(B(z,r)  dv
fol®) = i, 1B /B(m hW)dy = lm, SBe) =

Hence, if v < A, then, for almost every x € RY, v possesses a finite symmetric
derivative with respect to A and the value of the symmetric derivative is exactly
the value of the Radon-Nikodym density function, i. e., for all E € B,

dv

v(E) = . ﬁ(z) dA.

8 Lesson 9 — March 29, 2021

8.1 Preliminary results (to distribution theory)
8.1.1 (¢ dense in L'(Q)

The following density result is considered (by H. Brezis) “un résultat d’intégration
qu’il faut absolument connaitre”. —_—

Theorem 26 (Th. IV.3 in [1]). Let Q be an open set in R™. Let f € L*(Q).
Let ¢ > 0.
Then there exists ¢ € Co(Q2) such that

I =elire <e
i. e. Co(Q) is dense in L'(), where Co(Q) denotes the space of continuous
functions ¢ such that the closure of the set {x € ‘ o(x) # 0}, i. e. the support
of v, is a compact set in Q.
8.1.2 (o(Q) is dense in LP(Q2), for all 1 < p < 400

The density result of the previous paragraph can be extended to LP, for all
1 <p<+oo.

Lemma 10 (Lemma IV.2 in [1]). Let f € L},.(). Suppose that, for all ¢ €

Co(Q2),
/ fe=0.
Q
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Proof. Let us suppose that f € L1(Q) and |Q] < +oc.
Since Cy(f2) is dense in L1(Q), then, for all ¢ > 0, there exists f. € Cy(Q)
such that

If = fellr) <e
Consequently, for all ¢ € Cp(92),

| / feol = | / Del < IS = fllm@llelm@ < ellime.  (15)

Consider
Klz{xEQ‘fE(aE)Ze}, ng{xEQ‘fs(x)g—a}

and K = K1 U K,. Ki, Ky and K are compact sets in 2. We use Uryshon’s
Lemma to construct u. € Cy(€2) such that

us(x)=1 on Kj,

luc(x)| <1 forall =€ and
us(x) ==1 on K.

We have

/Iflé/lf—fs|+/|fslée+/ Ifs|+/ £l
Q Q Q Q\K K
—_——
<e
Remark now that

Jout= [ o= [ g [t

|/ feue| < elluel|pe < e, as a consequence of (15),
Q

and

|/ fsus|§/ Ife| <e-|Q\ K|, since, on Q \ K, we have |f:| < ¢,
Q\K Q\K

so that
/IfEISI/fsulerl/ fote] < (14 |2\ K]).
K Q O\K
N—_——

N — —’
<e <c|Q\K|

Finally
/|f|</|f fs|+/|fsl<6+/\ fl /|f€ < 2¢(1 + [9).
|Q\K| 6(1+IQ\KI)

This last inequality implies that [, |f| = 0 and consequently f = 0.
Suppose now f € L] and Q open in R™. Consider

loc

1
Q, =B(0,n)N{z € Q| dist(z,CQ) > ﬁ}
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From what we have already proved, we deduce that, for all n,

f " XQ, = 07
and this conclude the proof. ]
Theorem 27 (Th IV.12 in [1]). Co(R2) is dense in LP(QY), for all 1 < p < +oc.

Proof. This result, in the case p = 1, is already known. Let 1 < p < 4+00. We
know that a consequence of the Hahn-Banach theorem is the following: let W
a subspace of a normed space Vand suppose that, for all ® € V', ®(W) = 0
implies ® = 0, then W is a dense subspace of V. Consider ® € (LP(Q)))’. From
Riesz’s theorem we have that there exists g € LP" | with % + :z% =1, such that

D(p) = /Qgso

Suppose that ®(¢) = 0 for all ¢ € Co(Q), i. e. [, g9 = 0 for all ¢ € Co().
From the previous lemma we have that ¢ = 0, i. e. & = 0. As a consequence
Co(9) is dense in LP(92). ]
8.1.3 Convolution of functions

We collect here some (supposed) known results on convolution (see [1, Ch.
Iv.4]).

Theorem 28 (Th. IV.15 in [1]). Let f € LY(R™), g € LP(R™), with 1 < p <
+o00.
Then, for almost every x € R™, the function

y flx—y)gly) isin  L'(R")
and setting
fxg(x)= . [l —y)g(y) dy
we have fxg € LP(R™) and

1f*gllze <[l fllzsllgllzo-

More generally, let 1 < p, q, r < +o00, with % ==+ % —1. Let f € L"(R"™)
and g € LP(R™).

Then

1
p

frgeLl'R")  and  [|fxgllee <|fllcrllglle  (Young inequality).

Definition 20. Let f be a continuous function defined on 2, open set of R™.
We call support of f the closure, in Q, of the set {x € Q| f(x) # 0}.

Let f be a L}, () function. Consider W, the set of points of 2, having an
open neighborhood U in €, such that f is identically equal to 0 on U. We call
support of f the complementary set of W in €.

The support of f in € is the largest relatively closed set in Q) outside of which
f is identically equal to 0.
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Theorem 29 (Prop. IV.18 in [1]). Let f € LY(R"), g € LP(R™), with 1 < p <
+o00. Then

Supp (f * g) € Supp f + Suppyg

Remark 17. Let f € LY(R™) with compact support (i. e. f is identically equal
to 0 outside a compact). Let g € L (R™). Then it is possible to define f xg in

loc

the usual way and we have that f x g € LP(R™).

Theorem 30 (Prop. IV.20 in [1]). Let f € Co(R™) and g € L, .(R™).
Then f x g€ C(R™).

Let f € C*(R™), withm > 1, and g € L} _(R™).

loc
Then 5 of
%j(f *g) = Oz *g-

J

fxge C™R") and

8.1.4 Test functions and mollifiers

We collect here some notions on test functions and mollifiers (see [3, Ch. 1.2]).

Definition 21. We set
Co(Q2) = {continuous functions with compact support contained in Q},

form € N,
C3"(Q2) = Co() NC™(Q),

and, finally,
D(Q) = C3°(Q) = ) C5().

The elements of D(2) = C§°(Q) are called test functions.

Example 2. Let

FROR f(t){et for t>0,

0 for t<O0.
It is possible to prove that f € C(R) and f9)(t) = 0 for all j and for all t < 0.

The function
w:R" R, u(e)=f(1-]z),

is a test function, with Suppu = B(0,1).

Definition 22. Let p € D(R?), p > 0, Suppp C B(0,1) and [ p(z)dz = 1.

The set
1 T

{p67 ‘ €€ ]07 1]7 IOE(ZB) = g_d p( )} = <p8)56]0,1]7

€
is called mollifier (or also family of mollifiers). Similarly we will call mollifier
(or family of mollifiers) the sequence

(Pn)n with pn(z) = n?p(n).

Theorem 31 (Th. 1.2.1 in [3]). Let (p:): be a mollifier.
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i) Let u € LY(Q), with u = 0 outside a compact set of .

Then there exists eg > 0 such that, for all 0 < e < eq, pe xu € C§(Q).
i) Let u € Co(Q).

Then, for e going to 0T, p. * u converges uniformly to u.

iit) Letu € LP(QQ), with 1 < p < +oo. Let

o u(x) for xe€Q,
u(m){ 0 for x & Q.

Then, for € going to 07, p. * @ converges to u in LP(2).

Proof. i) Denote by K the compact set of Q2 outside of which the function w is
identically 0. Take 9 > 0 less than the distance between K and the border of
2. Theorem 4 and Theorem 5 give the conclusion.

ii) Let ¢g > 0 as in the previous point, and let 0 < ¢ < gg. Then
%*umwwmw=/}<%@xwx—m—um»@.
Y|s¢€

Consider now that u is uniformly continuous, so that for all » > 0 there exists
d > 0 such that, if |x1 — z2| < § then |u(x1) — u(z2)| < r. Consequently, if
e <9, for all z € Q,

|pe * u(x) —u(z)] < /

ly|<e

pelute—y) —w@ldy < [ plordy=r

ly|<e
and the conclusion follows.

iii) We know that Cy(Q2) is dense in LP(Q2) (recall that 1 < p < 4+00). Fix
§ > 0 and consider w € Co(f2) such that ||u — w|| o) <. We have

[(pe * @) — ullLr ()
< |[(pe * @) — || Lr®n)
< (pe * @) = (pe * w)||Lo@n) + [[(pe * W) — W Lrwn) + || — ul| e (o).

We consider now the fact that

1(pe * @) = (pe * w)||Lr(mn) = [lpe * (@ — W) || Lr&n) < llpellLrl|u — wllLr) <6,

and
|w —ul|Lr ) < 6.

Consequently
(pe # @) = ull oy < 1(pe * w) = wl| o) + 26

From the point ii) we know that p. * w is converging uniformly on 2 to w and
both p. xw and w are Cy(Q2) functions, so that p. * w is converging to w also in
LP(R™). This means that, if ¢ is sufficiently small,

[(pe * @) — ul| o (o) < 39,
and the proof is complete. O
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Remark 18. Convolution with a mollifier is a good way to construct a C§°
function which value is 1 in a neighborhood of a certain compact K. Let’s show
how to do it.

Let K be a compact set in R™. Consider the covering {B(x, &) ‘ r € K}
and extract a finite subcovering

B(w1750)7 B($2,50)7 s 7B<xN750)'

Define

and finally consider p. x xx,, with € < e9. We let as an exercise to verify that
pe * XK, s a C§° and that its value is 1 inside each ball B(x;,¢eq).

We end this paragraph with a refinement of the previous density results.

Lemma 11. Let f € L}, .(Q). Suppose that for all o € C§°(Y), [, fe =0.
Then f = 0.

Proof. Suppose first that f € L1(Q). Let ¢ € Co(Q2). Let (p,), be a mollifier.
Consider ¢,, = p, * 1. We have that, for all n, ¢, € C§° and ¢,, converges
uniformly to 1. Remark that

on@ = | [ paly)e(z ) dyl < max|| / ()] dy < max [,
R™ R™

Then
f(@)pn() = f(x)(x) almost everywhere,

and
|f(z)pn(z)] < max[y||f(z)].

We can apply the dominated convergence theorem and we have
| r@en@de = | j@yt)de

but we know that, for all n, [, f(z)¢n(x)dx =0, so that [, f(z)(x) dz. The
conclusion is a consequence of Lemma 1.

Let now f be in L} (). The above part of the proof guarantees that, for
all compact set K, the function f - x g is identically equal to 0 and this implies
that f = 0.

]

Corollary 10 (Cor. IV.23 in [1]). C§°(Q) is dense in LP(2), for all 1 < p <
+00.

8.1.5 Partition of unity

We conclude the list of preliminary results with a partition of unity theorem.
We need, before, a property that we let as an exercise.

o1



Exercise 2. Let K be a compact set in R™. Let Q01 and o be two open sets in
R™, with K C QU Qy and K; NQ; # 0, for j =1, 2. Show that there exists
two compact sets K1 C Q1 and Ko C Q9 such that K = K1 U K.

Hint. First of all, if Q; N Qy = ( then it is sufficient to take K; = K N, for
j=1,2. If Q1N Qs # 0, for every x € K, consider an open ball B(x,r,) such
that,

if v € K\ Q,, then B(x,2r,) C Q;, for j =1, 2,
if v € K NQ1NQy, then B(x,2r,) C Q1 N Q.
{B(z,r,) | x € K} is an open covering of K. Take a finite subcovering

Bl<$1,7“1), ‘s ,Bl(ZIJ'N,TN)
Define

KlzKﬂ( U Bl(l'i,m)) and K2:Kﬂ( U Bl(xi,ri)).

;€ ;€2

Theorem 32 (Th. 1.2.3 in [3]). Let K be a compact set in R™. Let Qy,...,Qp
be open sets in R™, with K C Ujvzl 62
Then there exist 1, ...,pN with, for all j, ¢; € C3°(2;) such that,

N
Zcpj(m)zl, forall z e K.
j=1

Proof. Using the exercise we can find K, ..., Ky compact sets, with, for all 7,

K; C Qj and U;K; = K. We consider, for all j, ; € C§°(€2;), such that ¢; =1
in a neighborhood of K ;. We set

©1 :¢17
Y2 = ¢2(1 - lbl),
@3 = P3(1 — ah2)(1 — 1),

on = n(1—by_1)(1 = Yn_a) - .. (1 ).

By induction, it is possible to prove that

901+902+---+90N:1_(1_¢1)'---'(1_¢N)7

and the conclusion follows. O
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