Corollary 9. Let $f \in L^1_{loc}(\mathbb{R}^d)$. Then, for almost every $x \in \mathbb{R}^d$,

$$\lim_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy = f(x).$$

Remark 16. Let ν be a complex measure on $\mathcal{B}(\mathbb{R}^d)$. Suppose that $\nu \ll \lambda$, where λ is the Lebesgue measure. From the Radon-Nikodym theorem we know that there exists $f_0 \in L^1_\lambda(\mathbb{R}^d)$ such that, for all $E \in \mathcal{B}$,

$$\nu(E) = \int_{E} f_0 \, d\lambda.$$

From Corollary 9 we have also that, for almost every
$$x \in \mathbb{R}^d$$
,
$$f_0(x) = \lim_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} f_0(y) \, dy = \lim_{r \to 0^+} \frac{\nu(B(x,r))}{\lambda(B(x,r))} = \frac{d\nu}{d\lambda}(x).$$

Hence, if $\nu \ll \lambda$, then, for almost every $x \in \mathbb{R}^d$, ν possesses a finite symmetric derivative with respect to λ and the value of the symmetric derivative is exactly the value of the Radon-Nikodym density function, i. e., for all $E \in \mathcal{B}$,

$$\nu(E) = \int_{E} \frac{d\nu}{d\lambda}(x) \, d\lambda.$$

8 Lesson 9 – March 29^{th} , 2021

8.1 Preliminary results (to distribution theory)

8.1.1 $C_0(\Omega)$ is dense in $L^1(\Omega)$

The following density result is considered (by H. Brezis) "un résultat d'intégration qu'il faut absolument connaître".

Theorem 26 (Th. IV.3 in [1]). Let Ω be an open set in \mathbb{R}^n . Let $f \in L^1(\Omega)$.

Let $\varepsilon > 0$. Then there exists $\varphi \in C_0(\Omega)$ such that

$$||f - \varphi||_{L^1(\Omega)} < \varepsilon,$$

i. e. $C_0(\Omega)$ is dense in $L^1(\Omega)$, where $C_0(\Omega)$ denotes the space of continuous functions φ such that the closure of the set $\{x \in \Omega \mid \varphi(x) \neq 0\}$, i. e. the support of φ , is a compact set in Ω .

8.1.2 $C_0(\Omega)$ is dense in $L^p(\Omega)$, for all $1 \leq p < +\infty$

The density result of the previous paragraph can be extended to L^p , for all

Lemma 10 (Lemma IV.2 in [1]). Let $f \in L^1_{loc}(\Omega)$. Suppose that, for all $\varphi \in G^1(\Omega)$

$$\int_{\Omega}f\varphi=0.$$

Then f = 0.

(V((R)) 2+12 Lesson 9 (march 29th) $M_{\gamma}(x) = \sup_{\xi>0} \frac{|\gamma|(B(x,\xi))}{\lambda(B(x,\xi))}$ y is a complex K meanie n R Brelian sets $M_{\gamma}: \mathbb{R}^{q} \rightarrow [0, + M]$ 15 lower renew nous $\forall x > 0$, $\exists x \in \mathbb{R}^d$ $\forall x \in \mathbb{R}^d$ $\forall x \in \mathbb{R}^d$ $\forall x \in \mathbb{R}^d$ is often dineven ne of R · (H-L muximul Hr.) $\forall \lambda > 0$, $\lambda (\{x \in \mathbb{R}^d : M_{\nu}(x) > \lambda\}) \leq 3^d \cdot 4 \cdot |Y|(\mathbb{R}^d)$ Hus / 15 true in pacheceler for $V = I_{f}$ $Y_{\mathcal{F}}(A) = \int_{\Omega} \mathcal{F}^{\mathcal{A}} \int_{\Omega} \mathcal{F}^{\mathcal{$ > ({M(x1>x})) < 3 - 1 - 1171/1+ lebergue pourt $f \in L^1(\mathbb{R}^d)$ Xo is a Laborque's point of law (B(4,21) BQE) Th. FELTON (Ra) thou for almost all $x \in \mathbb{R}^d$ (Sim $\frac{1}{R-70+} \int |f(y)-f(x)| dy = 0$. Consllour (E (Too (Rd) =) about all x ERd are leberque's proviéts

Preliminary results (to distribution Heory) 1) $\mathcal{C}_{o}(\Omega)$ is deen in $L^{\dagger}(\Omega)$ Dis our open set of Rol Co(1) = } frontinous lioning compact Fuget in 523 (f: 52 -) R(of), continuous. Suff f = dx E Si ; f(x) + 03 \ doone in si remorte that if f & (52), courdon les $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \notin \Sigma \\ 0 & \text{if } x \notin \Sigma \end{cases}$ Her FE (Rd) ue severul f & G(SZ) and f & G(Rd) from now on, if $f \in \mathcal{C}_{o}(\Omega)$, we use falso for the function extended north o outside IZ.) The set of Ra E. (S2) is weeke in L+ (S2).

2) Eo(SZ) is clease in LP(SZ) for all $1 \le p < + M$ (+ M excluded) Lemma Let $f \in L^{+}(SZ)$ Suffre that $\forall \varphi \in \mathcal{C}_{o}(\Omega)$, $f \varphi = 0$ also in $\mathcal{C}_{aya} H's$? Hen f=0. Hint, (See Dress On 4) use Ungshon leunin and often woundetions. Thereun let 15 + C+1X So peu cet in R. Hen Eo(s) is classe in LP(s2) troof, if $\beta = 1$ is the point I) of today's leoson. let 1<+ <+M (our der $C_0(\Omega)$ os a subspace of $L^{T}(\Omega)$ Let $\bar{\Phi} \in (L^{+}(\Omega))'$ supple that $\Phi_{(2)} \equiv 0$ if I deduce that $D \equiv 0$ on $L^{P}(\Omega)$ How Eo(I) is desire thank to a contlay to Halu - Banach $\oint_{\mathbb{R}_{0}(\Omega)} = 0 \quad (=) \quad \widehat{\Phi}(\gamma) = 0 \quad \forall \gamma \in \mathcal{E}_{0}(\Omega)$ The length of the large that $\widehat{\Phi} \in (\mathbb{L}^{+}) \stackrel{!}{=} 0 \quad (=) \quad$ $\exists : g \in L^{p}(\Omega)$, $\exists + \sharp, = I$ S,E, $\forall v \in (\uparrow \quad \oint (v) = \int gv$ $\mathcal{S} = \mathcal{I}^{\dagger}(\mathcal{I}(\Omega)) \quad \mathcal{S}, \mathcal{L}, \quad \mathcal{I} = \mathcal{I}(\mathcal{I}(\Omega)) \quad \mathcal{S}, \mathcal{L}, \quad \mathcal{I} = \mathcal{I}(\mathcal{I}(\Omega)) \quad \mathcal{I} = \mathcal{I}(\Omega) \quad \mathcal{I}(\Omega) \quad \mathcal{I} = \mathcal{I}(\Omega) \quad \mathcal{I}(\Omega) \quad \mathcal{I} = \mathcal{I}(\Omega) \quad \mathcal{I}$ From the leave $9 \equiv 0$ => the conclusion for H = B.

Proof. Let us suppose that $f \in L^1(\Omega)$ and $|\Omega| < +\infty$.

Since $C_0(\Omega)$ is dense in $L^1(\Omega)$, then, for all $\varepsilon > 0$, there exists $f_{\varepsilon} \in C_0(\Omega)$ such that

$$||f - f_{\varepsilon}||_{L^{1}(\Omega)} < \varepsilon.$$

Consequently, for all $\varphi \in C_0(\Omega)$,

$$\left| \int_{\Omega} f_{\varepsilon} \varphi \right| = \left| \int_{\Omega} (f_{\varepsilon} - f) \varphi \right| \le \|f - f_{\varepsilon}\|_{L^{1}(\Omega)} \|\varphi\|_{L^{\infty}(\Omega)} < \varepsilon \|\varphi\|_{L^{\infty}(\Omega)}. \tag{15}$$

Consider

$$K_1 = \{x \in \Omega \mid f_{\varepsilon}(x) \ge \varepsilon\}, \qquad K_2 = \{x \in \Omega \mid f_{\varepsilon}(x) \le -\varepsilon\}$$

and $K = K_1 \cup K_2$. K_1 , K_2 and K are compact sets in Ω . We use Uryshon's Lemma to construct $u_{\varepsilon} \in C_0(\Omega)$ such that

$$|u_{\varepsilon}(x)| \leq 1$$
 for all $x \in \Omega$ and
$$\begin{cases} u_{\varepsilon}(x) = 1 & \text{on } K_1, \\ u_{\varepsilon}(x) = -1 & \text{on } K_2. \end{cases}$$

We have

$$\int_{\Omega} |f| \leq \underbrace{\int_{\Omega} |f - f_{\varepsilon}|}_{<\varepsilon} + \int_{\Omega} |f_{\varepsilon}| \leq \varepsilon + \int_{\Omega \setminus K} |f_{\varepsilon}| + \int_{K} |f_{\varepsilon}|.$$

Remark now that

$$\int_{K} |f_{\varepsilon}| = \int_{K} f_{\varepsilon} u_{\varepsilon} = \int_{\Omega} f_{\varepsilon} u_{\varepsilon} - \int_{\Omega \setminus K} f_{\varepsilon} u_{\varepsilon}$$

and

$$|\int_{\Omega} f_{\varepsilon} u_{\varepsilon}| \leq \varepsilon ||u_{\varepsilon}||_{L^{\infty}} \leq \varepsilon,$$
 as a consequence of (15),

$$|\int_{\Omega \setminus K} f_{\varepsilon} u_{\varepsilon}| \leq \int_{\Omega \setminus K} |f_{\varepsilon}| \leq \varepsilon \cdot |\Omega \setminus K|,$$
 since, on $\Omega \setminus K$, we have $|f_{\varepsilon}| \leq \varepsilon$,

so that

$$\int_{K} |f_{\varepsilon}| \leq \underbrace{|\int_{\Omega} f_{\varepsilon} u_{\varepsilon}|}_{<\varepsilon} + \underbrace{|\int_{\Omega \setminus K} f_{\varepsilon} u_{\varepsilon}|}_{<\varepsilon, |\Omega \setminus K|} \leq \varepsilon (1 + |\Omega \setminus K|).$$

Finally

$$\int_{\Omega} |f| \leq \underbrace{\int_{\Omega} |f - f_{\varepsilon}|}_{\leq \varepsilon} + \int_{\Omega} |f_{\varepsilon}| \leq \varepsilon + \underbrace{\int_{\Omega \setminus K} |f_{\varepsilon}|}_{\varepsilon \cdot |\Omega \setminus K|} + \underbrace{\int_{K} |f_{\varepsilon}|}_{\varepsilon (1 + |\Omega \setminus K|)} \leq 2\varepsilon (1 + |\Omega|).$$

This last inequality implies that $\int_{\Omega} |f| = 0$ and consequently f = 0. Suppose now $f \in L^1_{loc}$ and Ω open in \mathbb{R}^n . Consider

$$\Omega_n = B(0, n) \cap \{x \in \Omega \mid \operatorname{dist}(x, C\Omega) > \frac{1}{n}\}.$$

From what we have already proved, we deduce that, for all n,

$$f \cdot \chi_{\Omega_n} = 0,$$

and this conclude the proof.

Theorem 27 (Th IV.12 in [1]). $C_0(\Omega)$ is dense in $L^p(\Omega)$, for all $1 \leq p < +\infty$.

Proof. This result, in the case p=1, is already known. Let 1 . We know that a consequence of the Hahn-Banach theorem is the following: let <math>W a subspace of a normed space V and suppose that, for all $\Phi \in V'$, $\Phi(W) = 0$ implies $\Phi = 0$, then W is a dense subspace of V. Consider $\Phi \in (L^p(\Omega))'$. From Riesz's theorem we have that there exists $g \in L^{p'}$, with $\frac{1}{p} + \frac{1}{p'} = 1$, such that

$$\Phi(\varphi) = \int_{\Omega} g\varphi$$

Suppose that $\Phi(\varphi) = 0$ for all $\varphi \in C_0(\Omega)$, i. e. $\int_{\Omega} g\varphi = 0$ for all $\varphi \in C_0(\Omega)$. From the previous lemma we have that g = 0, i. e. $\Phi = 0$. As a consequence $C_0(\Omega)$ is dense in $L^p(\Omega)$.

8.1.3 Convolution of functions

We collect here some (supposed) known results on convolution (see [1, Ch. IV.4]).

Theorem 28 (Th. IV.15 in [1]). Let $f \in L^1(\mathbb{R}^n)$, $g \in L^p(\mathbb{R}^n)$, with $1 \leq p \leq +\infty$.

Then, for almost every $x \in \mathbb{R}^n$, the function

$$y \mapsto f(x-y)g(y)$$
 is in $L^1(\mathbb{R}^n)$

and setting

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y) \, dy$$

we have $f * g \in L^p(\mathbb{R}^n)$ and

$$||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}.$$

More generally, let $1 \leq p$, q, $r \leq +\infty$, with $\frac{1}{q} = \frac{1}{p} + \frac{1}{r} - 1$. Let $f \in L^r(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$.

Then

$$f * g \in L^q(\mathbb{R}^n)$$
 and $||f * g||_{L^q} \le ||f||_{L^r} ||g||_{L^p}$ (Young inequality).

Definition 20. Let f be a continuous function defined on Ω , open set of \mathbb{R}^n . We call support of f the closure, in Ω , of the set $\{x \in \Omega \mid f(x) \neq 0\}$.

Let f be a $L^1_{loc}(\Omega)$ function. Consider W, the set of points of Ω , having an open neighborhood U in Ω , such that f is identically equal to 0 on U. We call support of f the complementary set of W in Ω .

The support of f in Ω is the largest relatively closed set in Ω outside of which f is identically equal to 0.

The let $f \in L^{+}(\mathbb{R}^{d})$ $g \in L^{+}(\mathbb{R}^{d})$ $1 \leq p \leq +\infty$ Her for alm all x & R y -> f(1-4) qa) 13 14 L1 and denoting by $f * g(x) = \int f(x-y)g(y) dy$ frgELP(Rd) and 11 f * g 1/ = = 11 f 1/2 11 y 1/2 = More gamely (Young inequality)

if $1 \le p, q, r \le + \bowtie$ S.t., q = p + q - 1then $f \in L^r$, $g \in L^p$ then $f \notin L^q$ and $\|f * q\|_{L^q} \le \|f\|_{L^r} \|g\|_{L^p}$ where $f \in L^{1}(S^{2})$ counder the set $\widetilde{\Omega} = \{y \in S^{2}: \exists z>0 \text{ s.t.} \}$ Post is the suppression of the super of the super state of the super s PB(49) Exercise: tale f & Co(s2) Hen verify that the ought as continuous function the sugest as L'es function ore the some, The order $f \in (l^{\dagger}(\mathbb{R}^{d}), g \in (l^{\dagger}(\mathbb{R}^{d}))$ Here Suff (f*g) = Suppf + Suffg Theorem $f \in G_o(\mathbb{R}^d)$ and $g \in L_{eo}^{\tau}(\mathbb{R}^d)$ ten f*g ∈ 6(Rd) f \(\mathcal{E}_{o}(\mathbb{R}^{m})\) and \(g \in \mathcal{L}_{co}(\mathbb{R}^{d})^{\dagger} \) still exists (+9 € 6 m(Rd) Row Q (f*9) = 2f *9

3) courolution

Theorem 29 (Prop. IV.18 in [1]). Let $f \in L^1(\mathbb{R}^n)$, $g \in L^p(\mathbb{R}^n)$, with $1 \leq p \leq +\infty$. Then

$$\operatorname{Supp}(f * g) \subseteq \overline{\operatorname{Supp} f + \operatorname{Supp} g}$$

Remark 17. Let $f \in L^1(\mathbb{R}^n)$ with compact support (i. e. f is identically equal to 0 outside a compact). Let $g \in L^p_{loc}(\mathbb{R}^n)$. Then it is possible to define f * g in the usual way and we have that $f * g \in L^p(\mathbb{R}^n)$.

Theorem 30 (Prop. IV.20 in [1]). Let $f \in C_0(\mathbb{R}^n)$ and $g \in L^1_{loc}(\mathbb{R}^n)$. Then $f * g \in C(\mathbb{R}^n)$.

Let $f \in C_0^m(\mathbb{R}^n)$, with $m \ge 1$, and $g \in L_{loc}^1(\mathbb{R}^n)$. Then

$$f * g \in C^m(\mathbb{R}^n)$$
 and $\frac{\partial}{\partial x_j}(f * g) = \frac{\partial f}{\partial x_j} * g.$

8.1.4 Test functions and mollifiers

We collect here some notions on test functions and mollifiers (see [3, Ch. 1.2]).

Definition 21. We set

 $C_0(\Omega) = \{continuous functions with compact support contained in \Omega\},\$

for $m \in \mathbb{N}$,

$$C_0^m(\Omega) = C_0(\Omega) \cap C^m(\Omega).$$

and, finally,

$$\mathcal{D}(\Omega) = C_0^{\infty}(\Omega) = \bigcap_m C_0^m(\Omega).$$

The elements of $\mathcal{D}(\Omega) = C_0^{\infty}(\Omega)$ are called test functions.

Example 2. Let

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(t) = \left\{ \begin{array}{ll} e^{-\frac{1}{t}} & for \quad t > 0, \\ 0 & for \quad t \leq 0. \end{array} \right.$$

It is possible to prove that $f \in C^{\infty}(\mathbb{R})$ and $f^{(j)}(t) = 0$ for all j and for all $t \leq 0$. The function

$$u: \mathbb{R}^n \to \mathbb{R}, \qquad u(x) = f(1 - |x|^2),$$

is a test function, with Supp u = B(0,1).

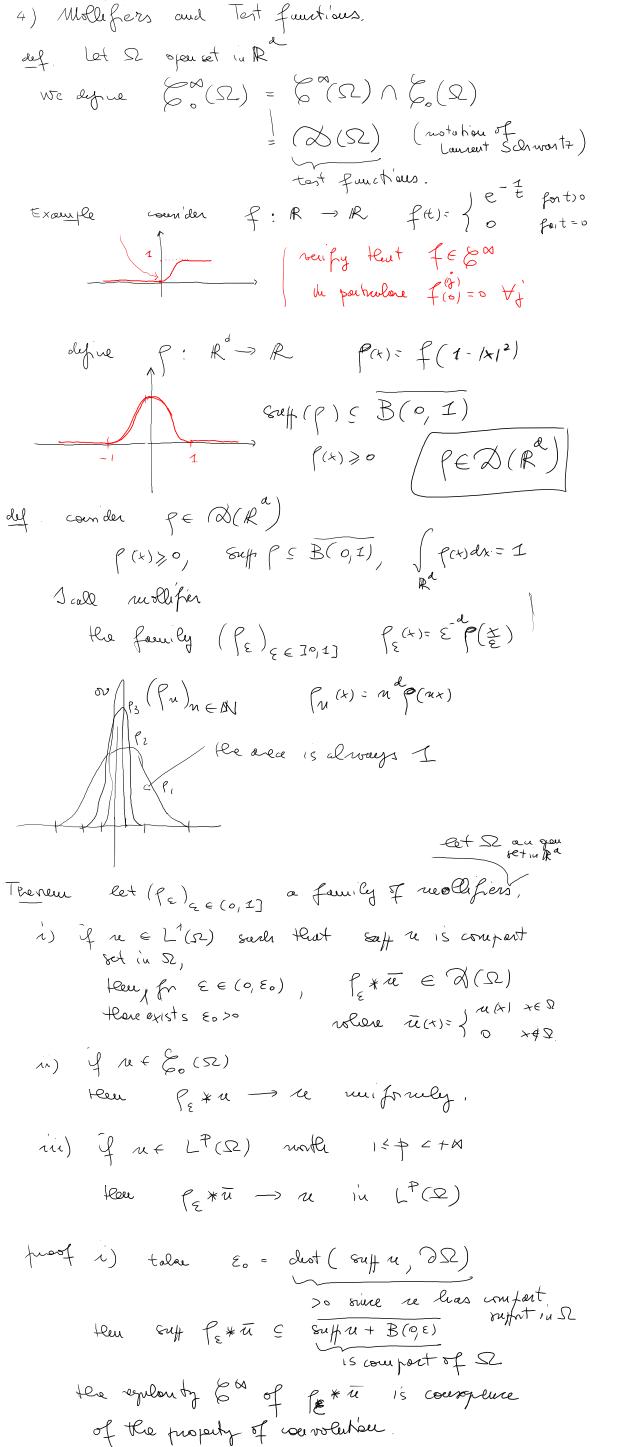
Definition 22. Let $\rho \in \mathcal{D}(\mathbb{R}^d)$, $\rho \geq 0$, Supp $\rho \subseteq \overline{B(0,1)}$ and $\int_{\mathbb{R}^d} \rho(x) dx = 1$. The set

$$\{\rho_{\varepsilon}, \mid \varepsilon \in]0,1], \quad \rho_{\varepsilon}(x) = \frac{1}{\varepsilon^d} \rho(\frac{x}{\varepsilon})\} = (\rho_{\varepsilon})_{\varepsilon \in]0,1],$$

is called mollifier (or also family of mollifiers). Similarly we will call mollifier (or family of mollifiers) the sequence

$$(\rho_n)_n$$
 with $\rho_n(x) = n^d \rho(nx)$.

Theorem 31 (Th. 1.2.1 in [3]). Let $(\rho_{\varepsilon})_{\varepsilon}$ be a mollifier.



- i) Let $u \in L^1(\Omega)$, with u = 0 outside a compact set of Ω . Then there exists $\varepsilon_0 > 0$ such that, for all $0 < \varepsilon < \varepsilon_0$, $\rho_{\varepsilon} * u \in C_0^{\infty}(\Omega)$.
- ii) Let $u \in C_0(\Omega)$. Then, for ε going to 0^+ , $\rho_{\varepsilon} * u$ converges uniformly to u.
- iii) Let $u \in L^p(\Omega)$, with $1 \le p < +\infty$. Let

$$\bar{u}(x) = \begin{cases} u(x) & for & x \in \Omega, \\ 0 & for & x \notin \Omega. \end{cases}$$

Then, for ε going to 0^+ , $\rho_{\varepsilon} * \bar{u}$ converges to u in $L^p(\Omega)$.

Proof. i) Denote by K the compact set of Ω outside of which the function u is identically 0. Take $\varepsilon_0 > 0$ less than the distance between K and the border of Ω . Theorem 4 and Theorem 5 give the conclusion.

ii) Let $\varepsilon_0 > 0$ as in the previous point, and let $0 < \varepsilon < \varepsilon_0$. Then

$$\rho_{\varepsilon} * u(x) - u(x) = \int_{|y| \le \varepsilon} \rho_{\varepsilon}(y) (u(x - y) - u(x)) \, dy.$$

Consider now that u is uniformly continuous, so that for all r > 0 there exists $\delta > 0$ such that, if $|x_1 - x_2| < \delta$ then $|u(x_1) - u(x_2)| < r$. Consequently, if $\varepsilon < \delta$, for all $x \in \Omega$,

$$|\rho_{\varepsilon} * u(x) - u(x)| \le \int_{|y| \le \varepsilon} \rho_{\varepsilon}(y) |u(x - y) - u(x)| \, dy \le \int_{|y| \le \varepsilon} \rho_{\varepsilon}(y) r \, dy = r$$

and the conclusion follows.

iii) We know that $C_0(\Omega)$ is dense in $L^p(\Omega)$ (recall that $1 \leq p < +\infty$). Fix $\delta > 0$ and consider $w \in C_0(\Omega)$ such that $||u - w||_{L^p(\Omega)} < \delta$. We have

$$\begin{aligned} &\|(\rho_{\varepsilon} * \bar{u}) - u\|_{L^{p}(\Omega)} \\ &\leq \|(\rho_{\varepsilon} * \bar{u}) - \bar{u}\|_{L^{p}(\mathbb{R}^{n})} \\ &\leq \|(\rho_{\varepsilon} * \bar{u}) - (\rho_{\varepsilon} * w)\|_{L^{p}(\mathbb{R}^{n})} + \|(\rho_{\varepsilon} * w) - w\|_{L^{p}(\mathbb{R}^{n})} + \|w - u\|_{L^{p}(\Omega)}. \end{aligned}$$

We consider now the fact that

$$\|(\rho_{\varepsilon} * \bar{u}) - (\rho_{\varepsilon} * w)\|_{L^{p}(\mathbb{R}^{n})} = \|\rho_{\varepsilon} * (\bar{u} - w)\|_{L^{p}(\mathbb{R}^{n})} \le \|\rho_{\varepsilon}\|_{L^{1}} \|u - w\|_{L^{p}(\Omega)} \le \delta,$$
and

$$||w - u||_{L^p(\Omega)} \le \delta.$$

Consequently

$$\|(\rho_{\varepsilon} * \bar{u}) - u\|_{L^{p}(\Omega)} \le \|(\rho_{\varepsilon} * w) - w\|_{L^{p}(\mathbb{R}^{n})} + 2\delta.$$

From the point ii) we know that $\rho_{\varepsilon} * w$ is converging uniformly on Ω to w and both $\rho_{\varepsilon} * w$ and w are $C_0(\Omega)$ functions, so that $\rho_{\varepsilon} * w$ is converging to w also in $L^p(\mathbb{R}^n)$. This means that, if ε is sufficiently small,

$$\|(\rho_{\varepsilon} * \bar{u}) - u\|_{L^{p}(\Omega)} < 3\delta$$

and the proof is complete.

Remark 18. Convolution with a mollifier is a good way to construct a C_0^{∞} function which value is 1 in a neighborhood of a certain compact K. Let's show how to do it.

Let K be a compact set in \mathbb{R}^n . Consider the covering $\{B(x, \varepsilon_0) \mid x \in K\}$ and extract a finite subcovering

$$B(x_1, \varepsilon_0), B(x_2, \varepsilon_0), \ldots, B(x_N, \varepsilon_0).$$

Define

$$K_1 = \bigcup_{j=1}^{N} \overline{B(x_j, 2\varepsilon_0)}$$

and finally consider $\rho_{\varepsilon} * \chi_{K_1}$, with $\varepsilon < \varepsilon_0$. We let as an exercise to verify that $\rho_{\varepsilon} * \chi_{K_1}$ is a C_0^{∞} and that its value is 1 inside each ball $B(x_j, \varepsilon_0)$.

We end this paragraph with a refinement of the previous density results.

Lemma 11. Let $f \in L^1_{loc}(\Omega)$. Suppose that for all $\varphi \in C_0^{\infty}(\Omega)$, $\int_{\Omega} f \varphi = 0$. Then f = 0.

Proof. Suppose first that $f \in L^1(\Omega)$. Let $\psi \in C_0(\Omega)$. Let $(\rho_n)_n$ be a mollifier. Consider $\varphi_n = \rho_n * \psi$. We have that, for all $n, \varphi_n \in C_0^{\infty}$ and φ_n converges uniformly to ψ . Remark that

$$|\varphi_n(x)| = |\int_{\mathbb{R}^n} \rho_n(y)\psi(x-y) \, dy| \le \max |\psi| \int_{\mathbb{R}^n} |\rho_n(y)| \, dy \le \max |\psi|.$$

Then

$$f(x)\varphi_n(x) \xrightarrow{n} f(x)\psi(x)$$
 almost everywhere,

and

$$|f(x)\varphi_n(x)| \le \max |\psi||f(x)|.$$

We can apply the dominated convergence theorem and we have

$$\int_{\Omega} f(x)\varphi_n(x) dx \xrightarrow{n} \int_{\Omega} f(x)\psi(x) dx,$$

but we know that, for all n, $\int_{\Omega} f(x)\varphi_n(x) dx = 0$, so that $\int_{\Omega} f(x)\psi(x) dx$. The conclusion is a consequence of Lemma 1.

Let now f be in $L^1_{loc}(\Omega)$. The above part of the proof guarantees that, for all compact set K, the function $f \cdot \chi_K$ is identically equal to 0 and this implies that f = 0.

Corollary 10 (Cor. IV.23 in [1]). $C_0^{\infty}(\Omega)$ is dense in $L^p(\Omega)$, for all $1 \leq p < +\infty$.

8.1.5 Partition of unity

We conclude the list of preliminary results with a partition of unity theorem. We need, before, a property that we let as an exercise.

Exercise 2. Let K be a compact set in \mathbb{R}^n . Let Ω_1 and Ω_2 be two open sets in \mathbb{R}^n , with $K \subseteq \Omega_1 \cup \Omega_2$ and $K_j \cap \Omega_j \neq \emptyset$, for j = 1, 2. Show that there exists two compact sets $K_1 \subseteq \Omega_1$ and $K_2 \subseteq \Omega_2$ such that $K = K_1 \cup K_2$.

Hint. First of all, if $\Omega_1 \cap \Omega_2 = \emptyset$ then it is sufficient to take $K_j = K \cap \Omega_j$, for j=1, 2. If $\Omega_1 \cap \Omega_2 \neq \emptyset$, for every $x \in K$, consider an open ball $B(x, r_x)$ such that,

if
$$x \in K \setminus \Omega_j$$
, then $B(x, 2r_x) \subseteq \Omega_j$, for $j = 1, 2$,

if
$$x \in K \cap \Omega_1 \cap \Omega_2$$
, then $B(x, 2r_x) \subseteq \Omega_1 \cap \Omega_2$.

 $\{B(x,r_x)\mid x\in K\}$ is an open covering of K. Take a finite subcovering

$$B_1(x_1,r_1),\ldots,B_1(x_N,r_N)$$

Define

$$K_1 = K \cap (\bigcup_{x_i \in \Omega_1} \overline{B_1(x_i, r_i)})$$
 and $K_2 = K \cap (\bigcup_{x_i \in \Omega_2} \overline{B_1(x_i, r_i)}).$

Theorem 32 (Th. 1.2.3 in [3]). Let K be a compact set in \mathbb{R}^n . Let $\Omega_1, \ldots, \Omega_N$ be open sets in \mathbb{R}^n , with $K \subseteq \bigcup_{j=1}^N \Omega_j$. Then there exist $\varphi_1, \ldots, \varphi_N$ with, for all $j, \varphi_j \in C_0^{\infty}(\Omega_j)$ such that,

$$\sum_{j=1}^{N} \varphi_j(x) = 1, \quad \text{for all} \quad x \in K.$$

Proof. Using the exercise we can find K_1, \ldots, K_N compact sets, with, for all j, $K_j \subseteq \Omega_j$ and $\bigcup_j K_j = K$. We consider, for all $j, \psi_j \in C_0^{\infty}(\Omega_j)$, such that $\psi_j = 1$ in a neighborhood of K_j . We set

$$\varphi_{1} = \psi_{1},
\varphi_{2} = \psi_{2}(1 - \psi_{1}),
\varphi_{3} = \psi_{3}(1 - \psi_{2})(1 - \psi_{1}),
\vdots
\varphi_{N} = \psi_{N}(1 - \psi_{N-1})(1 - \psi_{N-2}) \cdot \dots \cdot (1 - \psi_{1}).$$

By induction, it is possible to prove that

$$\varphi_1 + \varphi_2 + \ldots + \varphi_N = 1 - (1 - \psi_1) \cdot \ldots \cdot (1 - \psi_N),$$

and the conclusion follows.

References

[1] Brezis, Haïm. "Analyse fonctionnelle. (French) [Functional analysis] Théorie et applications. [Theory and applications]". Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree Masson, Paris, 1983. xiv+234 pp.

- [2] Hewitt, Edwin; Stromberg, Karl. "Real and abstract analysis. A modern treatment of the theory of functions of a real variable". Third printing. Graduate Texts in Mathematics, No. 25. Springer-Verlag, New York-Heidelberg, 1975. x+476 pp.
- [3] Hörmander, Lars. "Linear partial differential operators". Die Grundlehren der mathematischen Wissenschaften, Bd. 116 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg 1963 vii+287 pp.
- [4] Katsuura, Hidefumi. Continuous nowhere-differentiable functions—an application of contraction mappings. Amer. Math. Monthly 98, no. 5 (1991), 411–416.
- [5] Kolmogorov, A. N.; Fomin, S. V. "Introductory real analysis". Revised English edition. Translated from the Russian and edited by Richard A. Silverman Prentice-Hall, Inc., Englewood Cliffs, N.J. 1970 xii+403 pp. *Italian edition: "Elementi di teoria delle funzioni e di analisi funzionale". Editori Riuniti Univ. Press*, 2012.
- [6] McCarthy, John. An everywhere continuous nowhere differentiable function. Amer. Math. Monthly 60 (1953), 709. Free download at the address http://jmc.stanford.edu/articles/weierstrass/weierstrass.pdf
- [7] Rudin, Walter. "Principles of mathematical analysis". Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. x+342 pp. Free download at the address https://notendur.hi.is/vae11/%C3% 9Eekking/principles_of_mathematical_analysis_walter_rudin.pdf
- [8] Rudin, Walter. "Real and complex analysis". Third edition. McGraw-Hill Book Co., New York, 1987. xiv+416 pp.
- [9] Stein, Elias. "Singular integrals and differentiability properties of functions". Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 xiv+290 pp.