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Diophantine, and
existentially defin-
able, sets
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Generalized Diophantine rel’s and properties
A relation D ⊆ Nm is said to be existentially definable in terms

of some relation J ( , . . . , ) iff

D(a1, . . . , am) ⇐⇒ ∃ x1 · · · ∃ xk ϕ(

p.w. distinct variables

︷ ︸︸ ︷
a1, . . . , am︸ ︷︷ ︸

parameters

, x1, . . . , xk︸ ︷︷ ︸

unknowns

)

holds, over N, for some formula ϕ that only involves :

individual variables, specifically ( as free var’s ) the shown ones,

positive integer constants,

addition operator, multiplication operator,

the logical connectives & , ∨ , ∃υ, =, and

a predicate for J .

————

When J (b, n, c) is bn = c, one calls D exponential Diophantine.

E

When J does not occur in ϕ, one simply calls D Diophantine. D
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Toy example

s

Both of

(a + 1) · (a + 1) = 1 ,

aa = 1 & xx = a + 1

existentially define . . . in terms of triadic exponentiation bn = c.

Like 0, many other useful Diophantine constructs, e.g.

1

> , 6 , - , = � , b / c , % ,

can—and will, tacitly—be added to the language of existential
definitions.

1

E.g.,
a - b ⇐⇒ ∃ q ∃ r ∃ d (

q · a + r + 1 = b & r + 1 + d + 1 = a
)
.
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Singlefold-ness
Definition (Univocal existential definitions)

An existential definition

∃ ~x ϕ( ~a , ~x )

( as above ) is single-fold if

∀ ~a ∃ ~y ∀ ~x
[
ϕ( ~a , ~x ) =⇒ ~y = ~x

]
( i.e., ϕ( a1, . . . , am , x1, . . . , xk ) never has multiple solutions ).

Finite-fold existential definitions
The definition of finite-fold -ness is akin:

∀ ~a ∃ y ∀ ~x
[
ϕ( ~a , ~x ) =⇒ y >

∑
~x

]
To each ~a there must correspond a finite number of solutions.
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Existential definitions of
the binomial coefficient,
etc.
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Medium scale examples

Exercise
Explain the above specifications of primality, by means of Bézout’s
lemma and Wilson’s theorem.
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` chiave base coefficiente binomiale
(
`
j

)
0
1
2
3
4
...

1
2
3
4
5
...

2
4
8

16
32
...

· · · 0 0 0 0 0 1
· · · 0 0 0 0 1 1
· · · 0 0 0 1 2 1
· · · 0 0 1 3 3 1
· · · 0 1 4 6 4 1
. . .

...
...

...
...

...
...︸ ︷︷ ︸

j=...,5,4,3,2,1,0

Figura: Riguardo alla cifratura del coefficiente binomiale

digit(a, b, j) = d ⇐⇒Def ∃ v ∃w ∃ z
(

a = w bz + d b j + v &

z = j + 1 & d < b & v < b j
)

⇐⇒ ⌊ a

b j

⌋
% b = d ,

entry(a, k , j) = c ⇐⇒Def digit(a , 2k , j) = c ,(
`
j

)
= c ⇐⇒Def entry

(
(2`+1 + 1)` , `+ 1 , j

)
.
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Capturing bitwise dominance via Lucas’s thm.
Lucas’s congruence( ∑k

i=0 bi p
i∑k

i=0 ai p
i

)
≡

k∏
i=0

(
bi
ai

)
(mod p )

holds when p is a prime number and

{a0, b0, . . . , ak , bk } ⊆ {0, . . . , p − 1}

Consider the relationship
a v b

holding between a =
∑k

i=0 ai2
i and b =

∑k
i=0 bi2

i , with
a0, b0, . . . , ak , bk ∈ {0, 1}, when ai 6 bi for i = 0, . . . , k .
Bearing in mind that(0

1

)
= 0 and 1 =

(0
0

)
=
(1
0

)
=
(1
1

)
,

we get that a v b holds if and only if
(b
a

)
is odd.
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Summation of a generalized
geometric progression

Yuri V. Matiyasevich [Mat93, pp. 202 and 203] shows that the
triadic relation{〈

a∑
i=0

bi ik , a, b

〉
: a ∈ N, b ∈ N

}
is exponential Diophantine for each k ∈ N.

Jacob Bernoulli (XVII century) had a resut of the same flavour: For
each k ∈ N, the dyadic relation

〈
a∑

i=0

ik︸ ︷︷ ︸
c

, a

〉
: a ∈ N


is defined by an equation

c = B(a) ,

where B ∈ Q[a] has degree k + 1 .
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Would we make the
assembly kit stronger by
adding bounded ∀ to it ?
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Arithmetical specifications involving ∀υ 6 t

Example (“b is a power of 2”)

∃ ` 2` = b⇐⇒ ∀ u 6 b ∀ v 6 b b 6= (2 u + 3) · v⇐⇒ ∀ u 6 b ∀ v 6 b ∃w
[
b − (2 u + 3) · v

]2
= 1+ w

⇐⇒ ∃ ` ∃ s ∃ d
[

1 = s %
(
1+ d

)
&

b = s %
(
1+ (`+ 1) · d

)
&

∀i 6 `
[
s %

(
1+ (i + 2) · d

)
=

2 ·
[
s %

(
1+ (i + 1) · d

] ]]
.
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Primitive recursive functions [Rob69]

The collection P of primitive recursive functions is the smallest2

set of ( total ) functions, with arguments and result in N:
to which all initial functions belong;

which is closed with respect to composition and to recursion.

Our initial functions are: The everywhere null functions, the
successor function:

〈x1, . . . , xn〉
On7→ 0 ( n = 0, 1

, . . .

) ,

x
S7→ x + 1 ,

and all

projections associated with positive integers:

〈x1, . . . , xn〉
In,k7→ xk ( n > k > 1 ).

2I.e., minimum with respect to ⊆ .
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Function composition

Let:
f be a function of k arguments,

g1, . . . , gk be functions of M arguments.

One defines the composition h of f with g1, . . . , gk thus:

〈x1, . . . , xM〉
h7→ f

(
g1(x1, . . . , xM), . . . , gk(x1, . . . , xM)

)
.

Example. Through composition, from O1 and S, one gets all
constant functions:

c times︷ ︸︸ ︷
S( · · · S( O1( x )

c times︷ ︸︸ ︷
) · · · ) .
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Primitive recursion over two functions

Recursion, when applied to f and g such that

f is an n–adic function
( when n = 0, this means that f is a constant )

g is an n + 2 adic function

yields the n + 1 adic function

h such that:

h(~x , 0) = f (~x)

h(~x , t + 1) = g
(
~x , t, h(~x , t)

)
( Here ~x =Def x1, . . . , xn )

Eugenio G. Omodeo D versus E 16/29



Arithmetic nature of primitive recursiveness
Theorem (Gödel–Davis)

The graph {
〈~a , h(~a )〉 : ~a ∈ Nm}

of any m-adic primitive recursive function h is expressible through
an arithmetical formula in which:

∀-quantifiers appear only in the bounded form ∀ a 6 t ,

negation ( ¬ , 6= ) does not appear.

( ∃-quantifiers can occur without restrictions )

Theorem (Davis normal form 1950 tantalizing ! )

Given a m-tuple 〈h1 , . . . , hm〉 of monadic primitive recursive
functions, one can construct a polynomial D with integer
coefficients such that

〈a1 , . . . , am〉 ∈
{
〈h1(i) , . . . , hm(i)〉 : i ∈ N

}
⇐⇒

∃ y ∀ u 6 y ∃ v1 6 y · · · ∃ vκ 6 y D( a1 , . . . , am, y , u, v1 , . . . , vκ)=0 .
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Proof of the Gödel–Davis theorem ( clues )

On(a1, . . . , an) = b  b = 0 ,
S(a) = b  b = a + 1 ,

In,k(a1, . . . , an) = b  b = ak .

When h results from composition of f with g1, . . . , gk :

h(a1, . . . , aM) = b  ∃ y1 · · · ∃ yk
(

f (y1, . . . , yk) = b &
∧k

j=1 gj(a1, . . . , aM) = yj
)
.

When h results through recursion from f and g ,

h(~a, `) = b  ∃ s ∃ d
[

f (~a) = s %
(
1+ d

)
&

b = s %
(
1+ (`+ 1) · d

)
&

∀i 6 `
[
s %

(
1+ (i + 2) · d

)
=

g
(
~a , i , s %

(
1+ (i + 1) · d

)) ] ]
.
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Gödel’s lemma 1931

Lemma (Gödel’s variant of Chinese remainder th’m)

For any tuple 〈a1, . . . , a`〉 ∈ N`, there exist s,κ ∈ N such that

ai = s % ( i κ+ 1 ) , for i = 1, . . . , ` .

One may also

require that κ be a multiple of ` ! and, for each κ,

enforce uniqueness of s by requiring that s <
∏`

i=1(i κ+ 1) .
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One more device we need

Pairing theorem:

There exist primitive recursive,
Diophantine functions

[a, b] , sn(c) , dx(c) ,
with operands and result in N ,
satisfying the conditions

1. sn
(
[a, b]

)
= a , dx

(
[a , b ]

)
= b ;

2.
[
sn(c), dx(c)

]
= c ;

3. sn(c) 6 c , dx(c) 6 c .
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An application of pairing

Lemma (Useful exercise!)

Let [ , ] comply with the pairing theorem. If P is a polynomial
with integer coefficients in the variables a1, . . . , an,w , u, v1, . . . , vr ,
then the two formulae

∃w ∀ u 6 w ∃ v1 · · · ∃ vr P = 0 ,

∃ y ∀ u 6 y ∃ v1 6 y · · · ∃ vr 6 y ∃w 6 y ∃ z 6 y ∃ t 6 y(
y = [w , z ] &

(
u = w + 1+ t ∨ P = 0

))
are equivalent to each other over N .
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The DPR theorem and
its single-fold improvement
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A crucial result

Now consider listable3 (aka r.e.) sets.

DPR theorem (See [DPR61])

Each listable set is existentially definable in terms of exponentiation.

This was discovered by

Martin Davis,

Hilary Putnam,

Julia Robinson.

3Clue: A set is listable if its elements can be generated exhaustively by an
algorithmic ( perhaps non-terminating ) procedure.
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Enhanced DPR ( Davis, Putnam, Robinson; Matiyasevich )

DPR theorem (See [DPR61])

Graph, as well as domain D, of any partially computable function

F : Nm −⇀ N
are exponential Diophantine.

Significant improvement to DPR (see [Mat74])

Both of the above relations admit existential single-fold definitions
in terms of exponentiation.

Specifically, for some polynomial G with integral coefficients,

F(a1, . . . , am) = c ⇐⇒ ( ∃ x0 ∃ x1 · · · ∃ xk )
[

4x0 + x0 =

G ( a1, . . . , am, c , x1, . . . , xk )
]
.

F(a1, . . . , am) = c ⇐⇒ ( ∃ x1 · · · ∃ xk ) ϕ( a1, . . . , am, c︸ ︷︷ ︸
parameters

, x1, . . . , xk︸ ︷︷ ︸
unknowns

)

D(a1, . . . , am) ⇐⇒ ( ∃ y ∃ x1 · · · ∃ xk ) ϕ( a1, . . . , am︸ ︷︷ ︸
parameters

, y , x1, . . . , xk︸ ︷︷ ︸
unknowns

)
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Dyadic relations of
exponential growth
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Diophantine reduction of exponentiation
to any J of exponential growth [Rob52]

Suppose now that J is a dyadic relation satisfying:

1 J (u, v) =⇒ v < uu ;

2 ∀ k ∃ u ∃ v
[
J ( u , v ) & uk < v

]
;

3 J (u, v) =⇒ u > 1 .

After [Rob52], such a relation is said to be of exponential growth.

Historical example

:) Diophantine!

:)

Take

J =

{
〈u , φ2u〉 | u > 1

}
,

where
φ0 = 0 , φ1 = 1 , φh+2 = φh+1 + φh ,

for h = 0, 1, 2, . . . (See [Mat70b])

Eugenio G. Omodeo D versus E 26/29



Diophantine reduction of exponentiation
to any J of exponential growth [Rob52]

Suppose now that J is a dyadic relation satisfying:

1 J (u, v) =⇒ v < uu ;

2 ∀ k ∃ u ∃ v
[
J ( u , v ) & uk < v

]
;

3 J (u, v) =⇒ u > 1 .

After [Rob52], such a relation is said to be of exponential growth.

Historical example

:) Diophantine!

:)

Take

J =

{
〈u , φ2u〉 | u > 1

}
,

where
φ0 = 0 , φ1 = 1 , φh+2 = φh+1 + φh ,

for h = 0, 1, 2, . . . (See [Mat70b])

Eugenio G. Omodeo D versus E 26/29



Diophantine reduction of exponentiation
to any J of exponential growth [Rob52]

Suppose now that J is a dyadic relation satisfying:

1 J (u, v) =⇒ v < uu ;

2 ∀ k ∃ u ∃ v
[
J ( u , v ) & uk < v

]
;

3 J (u, v) =⇒ u > 1 .

After [Rob52], such a relation is said to be of exponential growth.

Historical example

:) Diophantine!

:)

Take

J =

{
〈u , φ2u〉 | u > 1

}
,

where
φ0 = 0 , φ1 = 1 , φh+2 = φh+1 + φh ,

for h = 0, 1, 2, . . . (See [Mat70b])

Eugenio G. Omodeo D versus E 26/29



Julia’s reduction ( simplified version as of [Rob69] )

�

bn = c⇐⇒ (∃ a , d , ` , s , x , h)
[
(c − 1)2 + n = 0 ∨

(n > 1 & c + b = 0) ∨(
n > 1 & b > 1 & J (a , d) & d > ` &

`2 =
(
a2 − 1

) [
(a − 1) s + n

]2
+ 1 &

x2 = (b + n)3 (b + n + 2) (h + 1)2 + 1 &

2 a b − b2 − 1 > (b + n + 1) x & a > b + n &(
2 a b − b2 − 1

)
%

[
`−

(
a − b

)(
(a − 1) s + n

)]
= c

) ]
.
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Conclusions
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Open p.: Does exponentiation admit a single-fold
(or at least finite-fold) Diophantine definition ?

“After the DPR-theorem was proved in 1961, in order
to establish the existence of Diophantine representations
for every effectively enumerable set it was sufficient to
find a Diophantine representation for one particular
set of triples

{ 〈a, b, c〉 | a = bc } . (12)

Today we are in a similar position with respect to
single-fold (and finite-fold) Diophantine representations:
now that we can construct single-fold exponential Dio-
phantine representations for all effectively enumerable
sets, in order to transform them into single-fold
(or finite-fold) genuinely Diophantine representations,
it would be sufficient to find a single-fold (or, respectively,
finite-fold) Diophantine representation for the same set
of triples (12) · · · ” [Mat10, p. 748]
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