%) versus ¢

Eugenio G. Omodeo

EQUAZIONI DIOFA 55
Le sommatorie Si(a) = si possono scrivere anche come polinomi
. JR— E+1 h
Se@) = o Y N
() 3T Do ( l)( L )B
di grado k + 1 nell'indeterminata a, dove By, By, Bz, sono i numeri razionali

individuati da Jakob Bernoulli nel 1713, calcolabili tramite la formula di ricorrenza

— B,
By 1. Ba B3 ( f ) gy P m>0

: Augusta Ada Byron, contessa di Lovelace, qui raffigurata in un

Figura 2
e considerato

doodle’ della Google, implementd attorno al 1843 quello che v
il primo programma per computer della storia: aveva il compito di calcolare i
mumeri di Bernoulli (v. http://it.wikipedia.org/wiki/Algoritmo_di_Ada_
Lovelace_per_i_numeri_di_Bernoulli).

Trieste, March 31, 2021

Eugenio G. Omodeo D versus




OUTLINE

@ Existentially definable, in particular Diophantine, sets

Eugenio G. Omodeo D versus ¢ 2/29



OUTLINE

@ Existential definitions of the binomial coefficient, bitwise
dominance, factorial, primality

Eugenio G. Omodeo D versus ¢ 2/29



OUTLINE

© Should bounded universal quantifiers enter the kit ?

Eugenio G. Omodeo D versus ¢ 2/29



OUTLINE

@ The Davis-Putnam-Robinson theorem
with its enrichment due to Matiyasevich

Eugenio G. Omodeo D versus ¢ 2/29



OUTLINE

© Relations of exponential growth

Eugenio G. Omodeo D versus ¢ 2/29



OUTLINE

@ Existentially definable, in particular Diophantine, sets

@ Existential definitions of the binomial coefficient, bitwise
dominance, factorial, primality

© Should bounded universal quantifiers enter the kit ?

@ The Davis-Putnam-Robinson theorem
with its enrichment due to Matiyasevich

© Relations of exponential growth

@ An open problem
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Diophantine, and

existentially defin-
able, sets
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GENERALIZED DIOPHANTINE REL'S AND PROPERTIES

A relation D C N™ is said to be existentially definable in terms
of some relation 7 (s, ... =) iff

D(ala---)am) @ 3Xl"'Elxk (p(ala---)am ) Xl)'--axk)

holds, over N, for some formula ¢ that only involves :
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GENERALIZED DIOPHANTINE REL'S AND PROPERTIES

A relation D C N™ is said to be existentially definable in terms
of some relation 7 (s, ... =) iff

p.w. distinct variables

D(al,...,am) @ 3X1"'E|Xk (p( dly..-ydm X1,...,Xk)
—_ ——
parameters unknowns

holds, over N, for some formula ¢ that only involves :
e individual variables, specifically ( as free var's ) the shown ones,

@ positive integer constants,
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GENERALIZED DIOPHANTINE REL'S AND PROPERTIES

A relation D C N™ is said to be existentially definable in terms
of some relation 7 (s, ... =) iff

p.w. distinct variables

D(al,...,am) @ 3X1"'E|Xk (p( dly..-ydm X1,...,Xk)
—_ ——
parameters unknowns

holds, over N, for some formula ¢ that only involves :

o addition operator, multiplication operator,

o the logical connectives &, Vv, v, =
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GENERALIZED DIOPHANTINE REL'S AND PROPERTIES

A relation D C N™ is said to be existentially definable in terms
of some relation [J (s, ...,=) iff

p.w. distinct variables

D(al,...,am) @ 3X1"'E|Xk (p( dly..-ydm X1,...,Xk)
—_ ——
parameters unknowns

holds, over N, for some formula ¢ that only involves :

(]

individual variables, specifically ( as free var's ) the shown ones,

positive integer constants,

o addition operator, multiplication operator,
o the logical connectives &, v, Jv, =, and
° ’a predicate for j‘.
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GENERALIZED DIOPHANTINE REL'S AND PROPERTIES

A relation D C N™ is said to be existentially definable in terms
of some relation [J (s, ...,=) iff

p.w. distinct variables

D(al,...,am) @ 3X1"'E|Xk (p( dly..-ydm X1,...,Xk)
—_ ——
parameters unknowns

holds, over N, for some formula ¢ that only involves :

(]

individual variables, specifically ( as free var's ) the shown ones,

positive integer constants,

o addition operator, multiplication operator,
o the logical connectives &, v, Jv, =, and
° ’a predicate for j‘.

When J(b,n,c) is b" = ¢, one calls D exponential Diophantine.
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the logical connectives &, Vv, 3v, =, and
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When J does not occur in @, one simply calls D Diophantine.
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A relation D C N™ is said to be existentially definable in terms
of some relation [J (s, ...,=) iff

p.w. distinct variables

D(al,...,am) @ 3X1"'E|Xk (p( dly..-ydm X1,...,Xk)
—_ ——
parameters unknowns

holds, over N, for some formula ¢ that only involves :

individual variables, specifically ( as free var's ) the shown ones,

(]

positive integer constants,

addition operator, multiplication operator,

(]

the logical connectives &, Vv, 3v, =, and

’a predicate for J ‘

When J(b,n,c) is b" = ¢, one calls D exponential Diophantine.
When J does not occur in @, one simply calls D Diophantine.
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TOY EXAMPLE

° (a+1)-(a+1) = 1,
° a? =1 & x* = a+1
existentially define ... in terms of triadic exponentiation b" = c.
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TOY EXAMPLES

Both of
° (a+1)-(a+1) = 1,
° a? =1 & x*¥ = a+1

existentially define {0} in terms of triadic exponentiation b" = .

Like 0, many other useful Diophantine constructs, e.g.
I>l’ Igl) I"/I) I:D’ LI/IJ) I%I)

can—and will, tacitly—be added to the language of existential
definitions.
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TOY EXAMPLES

Both of
° (a+1)-(a+1) = 1,
° a? =1 & x*¥ = a+1

existentially define {0} in terms of triadic exponentiation b" = .

Like 0, many other useful Diophantine constructs, e.g.!
I>l’ Igl) I"/I) I:D’ LI/IJ) I%I)

can—and will, tacitly—be added to the language of existential
definitions.

'Eg.,
atb<=3qg3r3d(qg-a+r+1=b&r+1+d+1=a).
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SINGLEFOLD-NESS

DEFINITION (UNIVOCAL EXISTENTIAL DEFINITIONS)

An existential definition

Ix @(a, x)
( as above ) is single-fold if

vgayvz[ (3, %) = y=x ]

(ie, ©(a1y.-.yam, Xiy...,Xk ) never has multiple solutions ).
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SINGLEFOLD-NESS
DEFINITION (UNIVOCAL EXISTENTIAL DEFINITIONS)

An existential definition
Ix (3, x)
( as above ) is single-fold if
ViEIYV)?[ (a3, X)) = y=Xx ]

(ie, ©(a1y.-.yam, Xiy...,Xk ) never has multiple solutions ).

V.

FINITE-FOLD EXISTENTIAL DEFINITIONS
The definition of finite-fold-ness is akin:

Vé’EIyV)?[ e(d, x) = y>Z>?]

To each 3 there must correspond a finite number of solutions.
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Existential definitions of

the binomial coefficient,
etc.
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MEDIUM SCALE EXAMPLES

. 1" : "
(l.> = \\MJ % u for any u > 2" 4 0"/

ut

J
il= { Tv-)J for any r > (2)"*!

G

ﬁﬂ.rE!;/(p:(.:'+2)(1/+2)Vp=0v;»=1)
<= d¢3 r/ﬂ/'(p=2+:/&[)1/—(4/+1)!I'=1)

Fig. Binomial coefficient, factorial, and “p is a prime” are existentially defin-
able by means of exponential Diophantine equations, cf. [Rob52, pp. 446-447].
Throughout, ‘%’ designates the integer remainder operation.
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MEDIUM SCALE EXAMPLES

(,l) = \‘(uj_—/l)J % u for any u > 2" 4 0"
; 3

J
jl= \‘(C—)J for any r > (25) !
J

~3z3y(p=(x+2)(y+2)Vp=0Vvp=1)
< JqJuIv(p=2+q&pu—(¢+1)lv=1)
< JqI u (]):2+r/&[)1/:(r/+1)! +1)

2
«— 3J¢3u <,):2+,/,0((4,+1)!+1—<2+u>h) >

Fig. Binomial coefficient, factorial, and “p is a prime” are existentially defin-
able by means of exponential Diophantine equations, cf. [Rob52, pp. 446-447]
Throughout, ‘%’ designates the integer remainder operation.
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MEDIUM SCALE EXAMPLES

(,l) = \‘(uj_—/l)J % u for any u > 2" 4 0"
; 3

J
jl= \‘(C—)J for any r > (25) !

~3z3y(p=(x+2)(y+2)Vp=0Vvp=1)
< JqJuIv(p=2+q&pu—(¢+1)lv=1)
< JqI u (]):2+r/&[)1/:(r/+1)! +1)

2
«— 3J¢3u <,):2+,/,0((4,+1)!+1—<2+u>h) >

Ibn al-Haytham
(Aihazen)

Fig. Binomial coefficient, factorial, and “p is a prime” are existentially defin-
able by means of exponential Diophantine equations, cf. [Rob52, pp. 446-447].
Throughout, ‘%’ designates the integer remainder operation.

Explain the above specifications of primality, by means of Bézout's
lemma and Wilson's theorem.
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¢ | chiave | base coefficiente binomiale (Je)

0 1 2 -« 0 0 0 O 01

1 2 4 0O 0 0 O 1 1

2 3 8 O 0 01 2

3 4 16 0O 01 3 3

4 | 5 | 32 0 1 4 6 4
j=..5,4,3,2,1,0

F1cUurA: Riguardo alla cifratura del coefficiente binomiale

digit(a, b,j) = d <pes ElvElelz( a=wb’+dbl+v &
z=j+1& d<b & v<bj)
a
— {EJ %b = d,
entry(a, k,j) = ¢ &pe digit(a, 25, ) = c,

() = ¢ <o entry (2“1 + 1), 0+1, ) .

Eugenio G. Omodeo D versus ¢ 9/29



CAPTURING BITWISE DOMINANCE VIA LUCAS’S THM.

LUcAS’s CONGRUENCE
k
h, —o bi P b;
= d
(Z i HO , ) (modp)

holds when p is a prime number and

{30)b0>--->3k>bk}Q{Ow-wp_l}

Consider the relationship
aChb

holding between a = Zf‘(:o a;2" and b = Zf'(:o bi2', with
ao, boy ..., ak, b €{0,1}, when a; < b; for i =0,..., k.
Bearing in mind that

(1)=0 and 1=(g)=(o)=(1),
we get that a C b holds if and only if (S) is odd.
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SUMMATION OF A GENERALIZED
GEOMETRIC PROGRESSION

Yuri V. Matiyasevich [Mat93, pp. 202 and 203] shows that the

triadic relation
<Zb"ik, a, b> caeN, beN}

i=0
is exponential Diophantine for each k € N.
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SUMMATION OF A GENERALIZED
GEOMETRIC PROGRESSION

Yuri V. Matiyasevich [Mat93, pp. 202 and 203] shows that the

triadic relation
<Zb"ik, a, b> caeN, beN}

i=0
is exponential Diophantine for each k € N.

Jacob Bernoulli (XVII century) had a resut of the same flavour: For

each k € N, the dyadic relation

is defined by an equation

where B € Q[a] has degree k + 1.
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Would we make the

assembly kit stronger by
adding bounded V to it ?
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ARITHMETICAL SPECIFICATIONS INVOLVING Vv < t

ExAMPLE (“b IS A POWER OF 2”)

3¢ 2'=b
& VYu<b Vv<b b#QRu+3)-v
& VYu<b Vv<hb 3W[b—(2u+3)-v}2:1+w
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ARITHMETICAL SPECIFICATIONS INVOLVING Vv < t

ExAMPLE (“b IS A POWER OF 2”)

3¢ 2'=p
b#(22u+3)-v
3w [b—(2u+3) v =14w

=s% (1+(t+1) -d) &
Vi<t [s% (14 (i+2)d) =
2-[s% (1+(i+1)-d] ||

?
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PRIMITIVE RECURSIVE FUNCTIONS

The collection 3 of primitive recursive functions is the smallest?
set of ( total ) functions, with arguments and result in N:

e to which all initial functions belong;

@ which is closed with respect to composition and to recursion.

2|.e., minimum with respect to C .
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PRIMITIVE RECURSIVE FUNCTIONS

The collection 3 of primitive recursive functions is the smallest?
set of ( total ) functions, with arguments and result in N:

e to which all initial functions belong;
@ which is closed with respect to composition and to recursion.

Our initial functions are: The everywhere null functions, the
successor function:

On
(X1,..., %) =2 0 (n=0,1,... ),
S
x x+1,

and all

2|.e., minimum with respect to C .
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PRIMITIVE RECURSIVE FUNCTIONS

The collection 3 of primitive recursive functions is the smallest?
set of ( total ) functions, with arguments and result in N:

e to which all initial functions belong;
@ which is closed with respect to composition and to recursion.

Our initial functions are: The everywhere null functions, the
successor function:

O,
(X1,..., %) =2 0 (n=0,1 ),
S
x x+1,

and all projections associated with positive integers:

In,
<X1>"->Xn> lﬁk Xk (n>k>1)

2|.e., minimum with respect to C .
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FUNCTION COMPOSITION

Let:
f be a function of k arguments,

gi,...,8k be functions of M arguments.

One defines the composition h of f with g1, ..., gk thus:

h
<X1)'-->XM> H f(gl(Xl)"')XI\/I)>-")gk(X1>"-)XM)) .
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FUNCTION COMPOSITION

Let:
f be a function of k arguments,

gi,...,8k be functions of M arguments.

One defines the composition h of f with g1, ..., gk thus:
h
<X1)'-->XM> H f(gl(Xl)"')XM)>-")gk(X1>"-)XM)) .

Example. Through composition, from O; and S, one gets all
constant functions:

c times c times

S(-+-S(Oulx) ) ).
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PRIMITIVE RECURSION OVER TWO FUNCTIONS

Recursion, when applied to  and g such that

f is an n—adic function
( when n =0, this means that f is a constant )

g is an n+ 2 adic function

the n+ 1 adic function

h  such that:
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ARITHMETIC NATURE OF PRIMITIVE RECURSIVENESS

THEOREM (GODEL-DAVIS)

3 gl {(5, h(7)) : 7€ N™)

of any m-adic primitive recursive function h is expressible through
an arithmetical formula in which:

o V-quantifiers appear only in the bounded formV a < t
e negation ( —, # ) does not appear.

e ( J-quantifiers can occur without restrictions )

THEOREM (DAVIS NORMAL FORM TANTALIZING ! )

Given a m-tuple (hy, ..., hm) of monadic primitive recursive
functions, one can construct a polynomial D with integer
coefficients such that

(a1y...yam) € { hi(i)y. .oy hm(i)) :iGN}
S
JyVu<yawvy <y ---Ivi <y D(ar,...,amy Yy Uy V1y.ey Vi)=0
Eugenio G. Omodeo D versus &
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Proor orF THE GODEL-DAVIS THEOREM

O,(a1y...yan)=b ~~ b=0,
S(a)=b ~ b=a+1,
I,,,k(al,...,a,,) =b ~ b:ak.

When h results from composition of f with gi,..., gk :
h(ai,...,am) =b ~ El)/l"'zl)/k(
vy =b & Ny gilar,...yam) =y ).

When h results through recursion from f and g,
h(F0) =b ~ EIsEId[ (@) =s%(1+d) &
b=5% (14+({+1)-d) &
Vi<t s%(1+(i+2)-d) =
g(z,i,s%(1+(i+1)-d))H.
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GODEL'S LEMMA 1931

LEMMA (GODEL'S VARIANT OF CHINESE REMAINDER TH'M)

For any tuple (a1, ...,a;) € N, there exist s,k € N such that

ai = s%(ik+1), for i=1,...,L.
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GODEL'S LEMMA 1931

LEMMA (GODEL'S VARIANT OF CHINESE REMAINDER TH'M)

For any tuple (a1, ...,a;) € N, there exist s,k € N such that

ai = s%(ik+1), for i=1,...,L.

One may also

@ require that k be a multiple of £! and, for each «,

e enforce uniqueness of s by requiring that s < H?Zl(i K+1).

v

Eugenio G. Omodeo D versus &
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ONE MORE DEVICE WE NEED

Pairing theorem:

There exist primitive recursive,
Diophantine functions

la, b], sn(c), dx(c),
with operands and result in N,
satisfying the conditions

1. sn(la,b]) =a, dx(la, b]) = b;

2. [sn(c , dx(c)] =c;

N

3. sn(c)<c, dx(c) < c.
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ONE MORE DEVICE WE NEED

‘ (@) (a+b)?+3a+b

Pairing theorem: ’
There exist primitive recursive, . .10\\.16 .
Diophantine functions i \ Lo
[a) b] ! Sn(c) ’ dX(C) ’ 5 '3\\.7\.12\\'15 .
with operands and result in N, AL T
satisfying the conditions NN,
1. sn(la,b]) =a, dx(la, b]) = b; oo K
2. sn(c), dx(c)] = c; SR T
3. sn(c)<c, dx(c) < c. : - ‘

Pairing, after George Cantor ( 1878 ), and its projections
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AN APPLICATION OF PAIRING

LEMMA (

|

Let [=, =] comply with the pairing theorem. If P is a polynomial
with integer coefficients in the variables a1, ..., an, W, U, Vi,..., V;,
then the two formulae

dwVYuwidvyy---dv, P=0,
dyVu<ydvi<y---3v, <ydwyIz<y Ity
<y:[w,z] & <uzw+1—|—t V P:O>>

are equivalent to each other over N .
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The DPR theorem and
its single-fold improvement
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A CRUCIAL RESULT

Now consider listable® (aka r.e.) sets.

3Clue: A set is listable if its elements can be generated exhaustively by an
algorithmic ( perhaps non-terminating ) procedure.
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A CRUCIAL RESULT

DPR THEOREM

Each listable set is existentially definable in terms of exponentiation.

This was discovered by
Martin Davis,
Hilary Putnam,

Julia Robinson.

3Clue: A set is listable if its elements can be generated exhaustively by an
algorithmic ( perhaps non-terminating ) procedure.
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EnuANCED DPR

DPR THEOREM

Graph, as well as domain D, of any partially computable function

F:N" — N
are exponential Diophantine.
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EnuANCED DPR

DPR THEOREM

Graph, as well as domain D, of any partially computable function

F:N" — N
are exponential Diophantine.

f(al,...,am):c /;) (3X1-~E|Xk) (p(al,...,am,c,xl,...,xk)
parameters unknowns

D(ala---)am) @ (3)/3X1"'5|Xk) (P(al)---,am))/>X1>---ka)
parameters unknowns
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EnuANCED DPR

Graph, as well as domain D, of any partially computable function

F:N" — N
are exponential Diophantine.

SIGNIFICANT IMPROVEMENT TO DPR

Both of the above relations admit existential single-fold definitions
in terms of exponentiation.

f(al,...,am):c /;) (3X1-~E|Xk) (p(al,...,am,c,xl,...,xk)
parameters unknowns

D(ala---)am) @ (3)/3X1"'5|Xk) (P(al)---,am))/>X1>---ka)
parameters unknowns
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EnuANCED DPR

Graph, as well as domain D, of any partially computable function

F:N" — N
are exponential Diophantine.

SIGNIFICANT IMPROVEMENT TO DPR

Both of the above relations admit existential single-fold definitions
in terms of exponentiation.

Specifically, for some polynomial G with integral coefficients,

Flat,...,am) =c < (Elxoflxl---ﬂxk)[ 40 4 xg =
G(al,...,am,c,xl,...,xk) ]
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Dyadic relations of
exponential growth
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DIOPHANTINE REDUCTION OF EXPONENTIATION

TO ANY J OF EXPONENTIAL GROWTH [ROB52]

Suppose now that 7 is a dyadic relation satisfying:
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DIOPHANTINE REDUCTION OF EXPONENTIATION

TO ANY J OF EXPONENTIAL GROWTH [ROB52]

Suppose now that 7 is a dyadic relation satisfying:
Q0 Jluv) = v<u;
(2] VkﬂuEIv[J(u,v)&uk<v] ;

@ Jluyv) = u>1.

After [Rob52], such a relation is said to be of exponential growth.
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DIOPHANTINE REDUCTION OF EXPONENTIATION

TO ANY J OF EXPONENTIAL GROWTH [ROB52]

Suppose now that 7 is a dyadic relation satisfying:
Q0 Jluv) = v<u;
Q Vkﬂuﬂv[j(u,v)&uk<v] ;

@ Jluyv) = u>1.

After [Rob52], such a relation is said to be of exponential growth.

HISTORICAL EXAMPLE < DIOPHANTINE!

Take

J = {<U’d)2u> | u>1}>

bo = 0, 1 = 1, po = bpe1+ dp,
for h=0,1,2,... (See [Mat70b])

where
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JULIA’S REDUCTION

AEN
b“zc<’;>(§la,d,€,s,x,h)[(c—1)2+n:0 vV
m>1l&c+b=0) V
(n)l&b}l& Jla,d)| & d>1 &
2 _ (2 i 2
) —(a 1) [(a l)s—i-n] +1 . &
x's
2=(b+n)B3(brn+2) (h+1)2+1 I« &
2ab—0b>—1>(b+n+1)x & a>b+n &

(2ab—82—1)% [t — (a—b) (23— 1) s +n)] :c)].
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Conclusions
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Open p.: DOES EXPONENTIATION ADMIT A SINGLE-FOLD

(OR AT LEAST FINITE-FOLD) DIOPHANTINE DEFINITION 7

“After the DPR-theorem was proved in 1961, in order
to establish the existence of Diophantine representations
for every effectively enumerable set it was sufficient to
find a Diophantine representation for one particular
set of triples

{{(a,byc) | a=0b}. (12)

Today we are in a similar position with respect to
single-fold (and finite-fold) Diophantine representations:
now that we can construct single-fold exponential Dio-
phantine representations for all effectively enumerable
sets, in order to transform them into single-fold

(or finite-fold) genuinely Diophantine representations,

it would be sufficient to find a single-fold (or, respectively,
finite-fold) Diophantine representation for the same set

of triples (12) ---” [Mat10, p. 748]
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