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Hybrid systems

“hybrid: [...] A thing made by combining two different elements.”
Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.

They can be found in
physical processes (bouncing ball, freezing water, . . .)
digital controllers for continuous systems (avionics, automotive,
automated plants) → cyber-physical systems

As they interact and possibly modify the surrounding environment they
are often safety critical.
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Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.
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Problem: In general undecidable.

Here: bounded over-approximative
reachability analysis for linear hybrid systems.
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Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

l0
ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
ẋ = A1 · x + B1 · u

c1(x)

c01(x)

x := A01 · x

c10(x)

x := A10 · x

A finite set of locations Loc
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Hybrid automata – example

Simplified model of a thermostat1:

x ∈ [20,21]
t = 0

on
ẋ = 0.1 · (35− x)

ṫ = 1
x ∈ [16,25]

off
ẋ = 0.1 · (10− x)

ṫ = 1
x ∈ [16,25]

x≥ 21

x≤ 18

1https://www.digitalcity.wien/even-thermostats-have-a-heart/
Stefan Schupp 4/47
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Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.
Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪Rnew;
Rnew := Reach (Rnew)\R;

}

Question: How to compute Reach for (linear) hybrid systems?
Answer: Alternatingly compute time- and jump-successor states.
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Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ= Ax

Over-approximate flowpipe segment for time [iδ, (i+ 1)δ] by Pi

time [0,δ]

time [δ,2δ]

time [2δ,3δ]

P0

P1

P2

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕VA)
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Over-approximate flowpipe segment for time [iδ, (i+ 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕VA)

Stefan Schupp 6/47



Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ= Ax
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Linear hybrid automata: Discrete steps (jumps)

P0

P1

P2

P3
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Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0

ẋ = x + 4y
ẏ = −4x + y

x≥ 0

x≥ 0.25∧ x≤ 0.3
y := 0.9y + 0.3

x := x− 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0
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ẏ = −4x + y

x≥ 0

x≥ 0.25∧ x≤ 0.3
y := 0.9y + 0.3

x := x− 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0

Stefan Schupp 8/47



Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
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Induced search tree

The induced search tree depends on:

The model itself
Bounds (jump depth, time horizon)
Time step size
State set representation
Aggregation settings

Depth 0

Depth 1

root
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Analysis parameters – examples
The precision and running time depends on several parameters, e.g.,

Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp 10/47
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Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Required operations on sets:
linear transformation (time successors, reset functions)
intersection (invariants, guards, bad states)
union (first segment, clustering/aggregation)
Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.
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Implemented state set representations

boxes [MKC09]

convex polytopes [Zie95]
zonotopes [Gir05]
orthogonal polyhedra [BMP99]
support functions [LGG10]
Taylor models [CÁS12]

x

y

Ix

Iy

x

y

min

max
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GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX + b
X.minkowskiSum(geometricObject Y) X ⊕ Y
X.intersectHalfspaces(matrix A, vector b) X ∩ {y |Ay ≤ b}
X.satisfiesHalfspaces(matrix A, vector b) X ∩ {y |Ay ≤ b} 6= ∅
X.unite(geometricObject Y) cl(X ∪ Y )

Set utility functions:
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions
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Operations – complexity

Computational effort required for the most commonly used operations for
different representations:

·⋃ · ·⋂ · · ⊕ · A(·)
Box +
H-polytope - + - -
V-polytope + - + +
Zonotope + +
Support function + - + +

→ There is no "perfect" state set representation.

Stefan Schupp 15/47
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Boxes

Boxes are one of the simplest ways to represent a set:

Definition: box [MKC09]
A box B of dimension n is defined as an ordered vector of intervals

x

y

Ix

Iy

B = (I0, . . . ,In),Ii ∈ I

Where I is the set of all real-valued intervals

Ii = {x | l ≤ x≤ u} l,u ∈R,

we write Ii = [l,u] ∈ I

Stefan Schupp 16/47



Boxes – operations

Intersection:

Bc = Ba ∩Bb = {x | x ∈ Ba ∧ x ∈ Bb}

For boxes:

Bc = Ia0 ∩ Ib0 , . . . ,Ian ∩ Ibn

Ba

Bb

Ia0 Ib0

Ia1

Ib1

Ba

Bb

Ia0 Ib0

Ia1

Ib1
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Boxes – operations

Intersection with a half-space (e.g. guards, invariants):

Recap: half-space

x

y

H
~c

A half-space H ∈Rn contains all points

H = {x | ~cT · x≤ d, ~c ∈Rn, d ∈R}

Example:

H =

x
∣∣∣∣∣∣
(

1
1

)T
· x≤ 1.5
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Boxes – operations

Intersection with a half-space (e.g. guards, invariants):
Bc = A∩H = {x | x ∈ Ba ∧~cT · x≤ d}

Approaches:
use conversion (box → h-polytope → intersect → box)
use box traversal
use interval arithmetic (ICP-style, used method in HyPro)
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Excursion: Interval Arithmetic3

Binary operations (general case):
X � Y = {x� y | x ∈X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2]

= [3,7]
Subtraction : [4,5] − [−1,2] = [2,6]
Multiplication: [4,5] · [−1,2] = [−5,10]
Division: [4,5] ÷ [2,3] = [ 4

3 , 5
2 ]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.
Example: [1,1]÷ [−3,2]

0

3See e.g., [MKC09] for details.
Stefan Schupp 19/47
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ICP-style Half-space Intersection

Interval constraint propagation (ICP):
Often used in SMT as a theory solver
In general incomplete
Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals Ix,Iy ∈ I:

Sat(x+ 2 · y ≤ 17) = Ix + 2 · Iy ∩ (−∞,17]

Approach: Given c :
∑
ai · xi ∼ d with xi interval-valued

For each variable xi with interval [a,b]:
Solve c for xi (symbolically) to get c′
Substitute intervals for all xj ,j 6= i in c′, solve to get interval [a′,b′]
Update interval for xi ∈ [a,b] ∩ [a′,b′]

If one interval becomes empty, the constraint is not satisfiable.

Stefan Schupp 20/47
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ICP-style Half-space Intersection: Example

Example
Assume B = [0,3]× [0,2] and a constraint c : x+ 2 · y ≤ 2.

Contraction for x:

x≤ 2− 2 · y⇔ x ∈ [0,3]∩ (−∞,2]− [0,4]→ x ∈ [0,2]

Contraction for y:

y ≤ (1− x)÷ 2⇔ y ∈ [0,2] ∩ ((−∞,2]− [0,2])÷ 2→ y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices4.

4See [Sch19] for a proof.
Stefan Schupp 21/47



ICP-style Half-space Intersection: Example

Example
Assume B = [0,3]× [0,2] and a constraint c : x+ 2 · y ≤ 2.
Contraction for x:

x≤ 2− 2 · y⇔ x ∈ [0,3]∩ (−∞,2]− [0,4]→ x ∈ [0,2]

Contraction for y:

y ≤ (1− x)÷ 2⇔ y ∈ [0,2] ∩ ((−∞,2]− [0,2])÷ 2→ y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices4.

4See [Sch19] for a proof.
Stefan Schupp 21/47



ICP-style Half-space Intersection: Example

Example
Assume B = [0,3]× [0,2] and a constraint c : x+ 2 · y ≤ 2.
Contraction for x: x≤ 2− 2 · y⇔ x ∈ [0,3]∩ (−∞,2]− [0,4]→ x ∈ [0,2]

Contraction for y:

y ≤ (1− x)÷ 2⇔ y ∈ [0,2] ∩ ((−∞,2]− [0,2])÷ 2→ y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices4.

4See [Sch19] for a proof.
Stefan Schupp 21/47



ICP-style Half-space Intersection: Example

Example
Assume B = [0,3]× [0,2] and a constraint c : x+ 2 · y ≤ 2.
Contraction for x: x≤ 2− 2 · y⇔ x ∈ [0,3]∩ (−∞,2]− [0,4]→ x ∈ [0,2]
Contraction for y:

y ≤ (1− x)÷ 2⇔ y ∈ [0,2] ∩ ((−∞,2]− [0,2])÷ 2→ y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices4.

4See [Sch19] for a proof.
Stefan Schupp 21/47



ICP-style Half-space Intersection: Example

Example
Assume B = [0,3]× [0,2] and a constraint c : x+ 2 · y ≤ 2.
Contraction for x: x≤ 2− 2 · y⇔ x ∈ [0,3]∩ (−∞,2]− [0,4]→ x ∈ [0,2]
Contraction for y:
y ≤ (1− x)÷ 2⇔ y ∈ [0,2] ∩ ((−∞,2]− [0,2])÷ 2→ y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices4.

4See [Sch19] for a proof.
Stefan Schupp 21/47



ICP-style Half-space Intersection: Example

Example
Assume B = [0,3]× [0,2] and a constraint c : x+ 2 · y ≤ 2.
Contraction for x: x≤ 2− 2 · y⇔ x ∈ [0,3]∩ (−∞,2]− [0,4]→ x ∈ [0,2]
Contraction for y:
y ≤ (1− x)÷ 2⇔ y ∈ [0,2] ∩ ((−∞,2]− [0,2])÷ 2→ y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices4.

4See [Sch19] for a proof.
Stefan Schupp 21/47



Boxes – operations

Union:
Bc = Ba ∪Bb = {x | x ∈ Ba ∨ x ∈ Bb}

Note: The union of two convex sets is not necessarily convex → we use
the closure (cl) of the union.

Bc = cl(Ia0 ∪ Ib0), . . . ,cl(Ian ∪ Ibn)

= [min(Ia0l
,Ib0l

),max(Ia0u
,Ib0u

)], . . . , [min(Ianl
,Ibnl

),max(Ianu
,Ibnu

)]

Ba

Bb

Ia0 Ib0

Ia1

Ib1

Ba

Bb

Ia0 Ib0

Ia1

Ib1
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Boxes – operations

Minkowski-sum:

Bc = Ba ⊕Bb = {x | x= xa + xb,xa ∈ Ba,xb ∈ Bb}

Note: Minkowski’s sum can be applied point-wise on convex sets.

Bc = Ia0 ⊕ Ib0 , . . . ,Ian ⊕ Ibn

= [Ia0l
+ Ib0l

,Ia0u
+ Ib0u

], . . . , [Ianl
+ Ibnl

,Ianu
+ Ibnu

]

Stefan Schupp 23/47
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Boxes – operations

Linear transformation:

Bc = A · Ba = {x | x= A · xa,xa ∈ Ba},A ∈Rn×n

Approaches:
Naive (conversion): apply A on all vertices, re-convert to box
Utilize interval arithmetic

·A
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Support functions

Definition: support function

x

y The support function ρΩ of a n-dimensional set
Ω ∈Rn is defined as

ρΩ : Rn→R∪ {−∞,∞}
ρΩ(l) = sup

x∈Ω
lT · x

Properties:
implemented as tree structure (see next slides)
operations are cheap, reduced overhead
scale well in higher dimensions
well developed (see e.g. [LGG10, FKL13, FGD+11, LG09])
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Intersection: ρc(l) = min(ρa(l),ρb(l))

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
min(ρa(l),ρb(l))

l

l
l
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Intersection with a half-space H = cT · x≤ d (e.g. guards,
invariants): ρc(l) = min(ρa(l),H(l)),

where H(l) =
{
d when l = c

∞ else

H

l

c
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Union: ρc(l) = max(ρa(l),ρb(l))

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
max(ρa(l),ρb(l))

Note: The union operation on a set of support functions returns the
supporting hyperplane of the convex hull of the set of underlying
sets.
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Minkowski-sum: ρc(l) = ρa(l) + ρb(l)

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
ρa(l) + ρb(l)
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Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Linear transformation: ρc = ρa(A

T l︸︷︷︸
l′

)

ρc

ρa

AT l ρa(AT l)

l
ρa(AT l)

·A

l

l′
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Support functions – optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

collect sequences of linear transformations

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

ll5 = AT ll4 = AT l5l3 = AT l4l2 = AT l3l1 = AT l2

ρ0(l1) ρ1(l2) ρ2(l3) ρ3(l4) ρ4(l5) ρ5(l)

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

·A2

·A4

ll5 = AT l
l4 = (A4)T l5

ρ0(l4)
ρ4(l5) ρ5(l)

remove intersections which have no effect

reduce tree upon discrete jump (templated evaluation)
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Linear optimization

HyPro can use different number implementations via templates
(supported: cln::cl_RA, mpq_class, double).
Obstacles:

inexact linear optimization not suitable
exact linear optimization expensive

 combined application
Compute
optimal
solution

glpk

Compute optimal solution s∗ ≥ s
SMT-RAT/SoPlex/Z3

Compute optimal solution
SMT-RAT/SoPlex/Z3

Solution

No
solution

solution s

no solution
no

solution

solution s∗

no solution

solution s∗
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Utility

Additional features of HyPro:
datastructures for e.g. hybrid automata, state, point, halfspace
parser for Flow*-based syntax
gnuplot plotting interface (pdf, eps and tex)
logging

Reachability analysis methods:
Linear hybrid automata
Singular automata
Rectangular automata
Timed automata
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Demo

Stefan Schupp 31/47



Thermostat5

We model and analyze a thermostat according to the following
specifications:

Can either be on (initially) or off
Temperature x changes accordingly: ẋ= 50− x (on), ẋ= 10− x
(off)
Switches from on to off when x ∈ [20,25]
Switches off to on when x ∈ [16,18]

5https://www.digitalcity.wien/even-thermostats-have-a-heart/
Stefan Schupp 32/47
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Outline

1 Introduction

2 HyPro
State set representations

3 Short tutorial

4 Current research
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Applications

Extensions for reachability analysis based on HyPro:
Syntactic decoupling - subspace computations
CEGAR-based reachability analysis
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CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis
Time step size δ
State set representation
Aggregation
. . .

Reachability analysis induces a search tree, however
not all branches intersect with bad states → coarse analysis
avoid spurious counterexamples → fine analysis

Goal: Be as lazy as possible and as precise as necessary.
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CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
State set representation Ri
Time step size δi

Strategy (ordered set of parameter settings):

R0,
δ0

start R1,
δ1

R2,
δ2

Depending on the application, order and choice of parameter settings
matters!
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CEGAR-based reachability analysis - Example

Strategy:

S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:

A

Extension: Parallelized search in different branches.
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Tree-updates

Variation of parameter settings influences the shape (number of child
nodes) of the search tree.

Aggregation settings
Spurious branches (over-approximation)

Approaches:

Keep separate trees for each refinement → inefficient for
backtracking
Keep separate trees but link nodes → management overhead
Create multi-level tree

A A A

B B B C

DE E F F F

G G
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Tree-updates

Update increases number of child nodes:

A

B

X

A A

B

X

A A

B B C

Update reduces number of child nodes:

A

B C

X

A A

B C

X

A A

B C C
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Example: Bouncing ball
@0x22bbb20

 

@0x22bd670

0 1

 [0, 0]
[0, 0]

@0x7fa37400ee10

0 1

 [1.42, 1.45]
[1.426, 1.444]

@0x7fa374031bb0

0

 [2.136, 2.17]

@0x7fa3740179c0

0

 [1.56, 1.67]

@0x7fa3740384d0

0

 [1.09, 1.34]
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Example: Bouncing ball
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Example: Bouncing ball
@0x18d7b20

 

@0x18d9670

0 1 2

 [0, 0]
[0, 0]
[0, 0]

@0x7f4c3400ee10

0 1 2

 [1.42, 1.45]
[1.42, 1.43]

[1.426, 1.444]

@0x7f4c34014b30

 D 1  D

 ]-INF, INF[
[1.43, 1.44]
]-INF, INF[

@0x7f4c340150a0

 D 1  D

 ]-INF, INF[
[1.44, 1.45]
]-INF, INF[

@0x7f4c3402bc60

0

 [2.13, 2.14]

@0x7f4c340dc150

0

 [2.12, 2.13]

@0x7f4c340d2d30

0

 [2.14, 2.15]

@0x7f4c340b6220

0

 [2.15, 2.16]

@0x7f4c3414d650

0

 [1.57, 1.63]

@0x7f4c34158810

0

 [1.13, 1.27]

@0x7f4c3412ed50

0

 [1.56, 1.61]

@0x7f4c3413a7f0

0

 [1.13, 1.25]

@0x7f4c34068330

0

 [1.59, 1.64]

@0x7f4c3411c6e0

0

 [1.15, 1.27]

@0x7f4c34039080

0

 [1.6, 1.66]

@0x7f4c34056050

0

 [1.15, 1.29]

@0x7f4c3402cdb0

0

 [2.13, 2.14]

@0x7f4c3402d760

0

 [2.14, 2.15]

@0x7f4c3402de20

0

 [2.15, 2.16]

@0x7f4c3402e520

0

 [2.16, 2.17]

@0x7f4c340c9680

0

 [1.56, 1.62]

@0x7f4c340d4b00

0

 [1.12, 1.26]

@0x7f4c340abae0

0

 [1.57, 1.63]

@0x7f4c340b7c20

0

 [1.13, 1.27]

@0x7f4c3408e190

0

 [1.59, 1.65]

@0x7f4c34099be0

0

 [1.15, 1.29]

@0x7f4c340394c0

0

 [1.6, 1.66]

@0x7f4c3407bd50

0

 [1.15, 1.29]
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Example: Bouncing ball
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A free and open source library for hybrid systems reachability analysis

https://github.com/hypro/hypro

https://github.com/hypro/hypro
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Bouncing ball, V-polytopes with conversion to H-polytopes for intersection,
double glpk-only, T = 3, δ = 0.01, 4 jumps

Stefan Schupp 48/47



Examples

 0

 2

 4

 6

 8

 10

-15 -10 -5  0  5  10

Bouncing ball, V-polytopes with conversion to H-polytopes for intersection,
double glpk+SMT-RAT, T = 3, δ = 0.01, 4 jumps

Stefan Schupp 49/47



Examples
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Rod reactor, box, double glpk-only, T = 17, δ = 0.01, 2 jumps
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Examples
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Examples
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