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Hybrid systems

“hybrid: [...] A thing made by combining two different elements.”
Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.
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Hybrid systems

“hybrid: [...] A thing made by combining two different elements.”
Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.
They can be found in

m physical processes (bouncing ball, freezing water, ...)

m digital controllers for continuous systems (avionics, automotive,
automated plants) — cyber-physical systems

As they interact and possibly modify the surrounding environment they
are often safety critical.
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Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

Testing
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Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

Reachability analysis

////’\

Problem: In general undecidable.
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Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

Reachability analysis

/\

Here: bounded over-approximative reachability analysis for linear hybrid
systems.
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Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

C(n(.’)?)
lo ll
C](l‘)—» t=Ap-x+ By-u t=A1-z+ Bi-u
co() c1(x)
_on@)
z:=Ap-x

A finite set of locations Loc
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Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

C(n(.’)?)
lo ll
C](l‘)—» t=Ap-x+ By-u t=A1-z+ Bi-u
co() c1(x)
_on@)
z:=Ap-x

Flow: Loc — Pred . vir
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Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

C(n(.’)?)
lo ll
C](l‘)—» t=Ap-x+ By-u t=A1-z+ Bi-u
co() c1(x)
_on@)
z:=Ap-x

Invariant: Loc — Pred v,
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Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

C(n(.’)?)
lo ll
C](l‘)—» t=Ap-x+ By-u t=A1-z+ Bi-u
co() c1(x)
_on@)
z:=Ap-x

Transitions: Edge C Loc X Predyg, X Predy,, vy % Loc
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Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

C(n(.’)?)
lo ll
C](l‘)—» t=Ap-x+ By-u t=A1-z+ Bi-u
co() c1(x)
_on@)
z:=Ap-x

An initial set Loc — Pred vy,
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Hybrid automata — example

Simplified model of a thermostat!:

x> 21
T\
on off
z € [20,21] &=0.1-(35—2) i=0.1-(10—z)
t=20 t= t=
x € [16,25] £ <18 x € [16,25]
L= 1o~

1https ://www.digitalcity.wien/even-thermostats-have-a-heart/
Stefan Schupp 4/47
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Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.

Algorithm:
R := Init;
R:=0;
while (R"™W £ 0){
R = RU R"V,;
Rnew e (Rnew)\R;
}
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Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.

Algorithm:
R := Init;
R:=0;
while (R"™W £ 0){
R = RU R"V,;
Rnew = (Rnew)\R;
}

Question: How to compute Reach for (linear) hybrid systems?
Answer: Alternatingly compute time- and jump-successor states.

Stefan Schupp 5/47



Linear hybrid automata: Time evolution

m Assume initial set V and flow & = Az

Stefan Schupp 6/47



Linear hybrid automata: Time evolution

m Assume initial set V and flow & = Az

Stefan Schupp 6/47



Linear hybrid automata: Time evolution

m Assume initial set V and flow & = Az

Stefan Schupp 6/47



Linear hybrid automata: Time evolution

m Assume initial set V and flow & = Az
m Over-approximate flowpipe segment for time [id, (i + 1)d] by P;
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Linear hybrid automata: Time evolution

m Assume initial set V5 and flow & = Az

m Over-approximate flowpipe segment for time [id, (i + 1)d] by P,

Py = cl(Vo, eV & V)

A0 Vo

Vo
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Linear hybrid automata: Discrete steps (jumps)

Ps

Py

Py
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Linear hybrid automata: Discrete steps (jumps)
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Linear hybrid automata: Discrete steps (jumps)
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Linear hybrid automata: Discrete steps (jumps)
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Example - linear hybrid automata

z € [0.5,0.6]
y €0.1,0.2]

0.2

0.18

0.14

0.12

0.1

0.08

0.5 0.52 0.54 0.56 0.58
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Example - linear hybrid automata

€ [0.5,0.6]
y €[0.1,0.2] 02 |

l 0.18 - B

0.14 - ,

0.12 ,

0.08 - 4

\ \ \ \ \ \ \
0.5 052 054 0.56 0.58 0.6 0.62

§A'I

linear transformation: e
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Example - linear hybrid automata

z € [0.5,0.6]
y €0.1,0.2]

l

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.5 052 054 0.56 0.58 0.6
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Example - linear hybrid automata

z € [0.5,0.6]
y €0.1,0.2]

l

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.5 052 054 0.56 0.58 0.6

Minkowski sum
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Example - linear hybrid automata
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y €0.1,0.2]
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Example - linear hybrid automata

z €[0.5,0.6]
y €10.1,0.2] 0.2
l 0

—0.2

—-0.4

—0.6

-0.8

0 01 02

Stefan Schupp

0.3 0.

\ \ \
4 05 06 0.7
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Example - linear hybrid automata

z €[0.5,0.6]
y €10.1,0.2] 02

| N ]

—0.2 | 4

—0.4 —

—0.8 |

\ \ \ \ \ \ \
0 01 02 03 04 05 06 0.7

intersection: Inv(ly) NQY
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Example - linear hybrid automata

z €[0.5,0.6]
y €10.1,0.2] 02

| f O

—0.2 | 4

—0.4 —

—0.8 |

\ \ \ \ \ \ \
0 01 02 03 04 05 06 0.7

linear transformation: ()1, = e . Q)
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z €[0.5,0.6]

Example - linear hybrid automata
y €10.1,0.2]

0.2

—0.6

0 01 02 03 04 05 06 0.7

linear transformation: ()1, = e . Q)

8/47
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z €[0.5,0.6]

Example - linear hybrid automata
y €10.1,0.2]

0.2
—0.2
—-0.4
—0.6
-0.8

r>025Ax<0.3

0 01 02 03 04 05 06 0.7

intersection: guard N ();
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XXX
SN
"
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DO
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z €[0.5,0.6]

Example - linear hybrid automata
y €10.1,0.2]

0.2

—
|
o™
S ™
vie ™
x+n_v
D
S s
2.n,u__
o |
LR Y
Al 5,
8

0 01 02 03 04 05 06 0.7

linear transformation: I’':=reset(();)
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Example - linear hybrid automata

€ [0.5,0.6] I
y €[0.1,0.2] 02 |- 1
l o | ]
—-0.2 _
—04 |- i
—-0.6 —
_08 - —

r>025Ax<0.3

y:=09y+ 0.3 -1 F —

z:=zx—0.1 | | | \ | | |
0 01 02 03 04 05 06 0.7

linear transformation: ()1, = e . Q)
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Induced search tree
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Induced search tree

The induced search tree depends on:
m The model itself

m Bounds (jump depth, time horizon)
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Induced search tree

The induced search tree depends on:
The model itself
Bounds (jump depth, time horizon)

[
m Time step size

m State set representation
[

Aggregation settings

Stefan Schupp 9/47



Analysis parameters — examples

The precision and running time depends on several parameters, e.g.,

m Time step size §
100

50

Stefan Schupp
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Analysis parameters — examples

The precision and running time depends on several parameters, e.g.,

m Time step size §

1.6 - B
14

1.2 ~

0.8
0.6
04 -

0.2 -
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Analysis parameters — examples

The precision and running time depends on several parameters, e.g.,

m Time step size §

m State set representation L6 i i
14

1.2 ~

0.8
0.6
04 -

0.2 -

6 = 0.1, support functions
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Analysis parameters — examples

The precision and running time depends on several parameters, e.g.,

m Time step size §

m State set representation

—-100 - -

6 = 0.1, boxes
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Analysis parameters — examples

The precision and running time depends on several parameters, e.g.,

m Time step size §

m State set representation
1.4 -

1.2 ~ B

0.8
0.6

04 -

0.2 -

0 02 04 06 08 1 1.2

6 = 0.1, boxes
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Analysis parameters — examples

The precision and running time depends on several parameters, e.g.,

m Time step size §

m State set representation

m Clustering/aggregation
m Default behavior 1L

4+ No additional effort
= No control of number of
discrete successors

6 = 0.1, support functions, no
aggregation
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Analysis parameters — examples

The precision and running time depends on several parameters, e.g.,

m Time step size §

m State set representation

m Clustering/aggregation
m Default behavior 1L

4+ No additional effort
= No control of number of
discrete successors

m Aggregation

+ Only one discrete —05 |- i
successor
= Additional -1 :

over-approximation I I L L

6 = 0.1, support functions,
aggregation

Stefan Schupp 10/47



Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).
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Required operations on sets:
m linear transformation (time successors, reset functions)
m intersection (invariants, guards, bad states)
m union (first segment, clustering/aggregation)

m Minkowski sum (first segment, bloating)
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Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Required operations on sets:
m linear transformation (time successors, reset functions)
m intersection (invariants, guards, bad states)
m union (first segment, clustering/aggregation)

m Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.

=

o

Stefan Schupp 11/47
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Implemented state set representations

yt

m boxes [MKC09]

min
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Implemented state set representations

Y

m boxes [MKC09]

m convex polytopes [Zie95]

<

N
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Implemented state set representations

m boxes [MKC09]
m convex polytopes [Zie95]

m zonotopes [Gir05]
m orthogonal polyhedra [BMP99]

z
Y
z
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Implemented state set representations

A

boxes [MKCO09] - -
convex polytopes [Zie95]

zonotopes [Gir05] ‘ | "
orthogonal polyhedra [BMP99] ,
support functions [LGG10]
Taylor models [CAS12]

-1 -05 0] 05 1

-1

Image: Xin Chen
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GeometricObjectBase interface

Set operations:

X.
.minkowskiSum(geometricObject Y)
.intersectHalfspaces(matrix A, vector b)
.satisfiesHalfspaces(matrix A, vector b)
.unite(geometricObject Y)

P> D

affineTransformation(matrix A, vector b)

Stefan Schupp

AX +b

XaY
XN{y|Ay <b}
Xn{y|Ay<b}#0
d(XUY)

14/47



GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX +0b
X.minkowskiSum(geometricObject Y) XaY
X.intersectHalfspaces(matrix A, vector b) X nN{y|Ay <b}
X.satisfiesHalfspaces(matrix A, vector b) X N{y| Ay <b}#0
X.unite(geometricObject Y) d(XUY)

Recap: Minkowski sum (dilation)
A@eB={z|z=a+bac Abe B}

A

A -,
D

R
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GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX +0b
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X.satisfiesHalfspaces(matrix A, vector b) X N{y| Ay <b}#0
X.unite(geometricObject Y) d(XUY)

Recap: Minkowski sum (dilation)
A@eB={z|z=a+bac Abe B}

AAVAR

NANY

@AV

NPAND
(D .
1/
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GeometricObjectBase interface

Set operations:

X.affineTransformation(matrix A, vector b) AX +1b

X.minkowskiSum(geometricObject Y) XY
X.intersectHalfspaces(matrix A, vector b) Xn{y| Ay <b}
X.satisfiesHalfspaces(matrix A, vector b) Xn{y| Ay <b} #£0
X.unite(geometricObject Y) d(XUY)

Set utility functions:
dimension()
empty ()
vertices()

project(vector<dimensions> d)
contains(point p)

conversion operations

reduction functions

Stefan Schupp 14/47



Operations — complexity

Computational effort required for the most commonly used operations for
different representations:

| [U-[-N-[-e[AQ)]
Box +
‘H-polytope - + - -
V-polytope + - + +
Zonotope + +
Support function | + - + +
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Boxes

Boxes are one of the simplest ways to represent a set:

Definition: box [MKC09]

A box B of dimension n is defined as an ordered vector of intervals

yi [ B=(Io,....In), I € T

I, Where I is the set of all real-valued intervals

L={z]l<z<u} LueR,

we write I; = [l,u] €I

Stefan Schupp 16/47



Boxes — operations

Intersection:

Be=B,NBy={z|z€By A€ By

Stefan Schupp 17/47



Boxes — operations
Intersection:
B.=B,NBy,={x|zeB, Nz € By}
For boxes:

B. :Iao ﬂfbo,...,fan ﬂ[bn

Iay Iy,

Stefan Schupp 17/47



Boxes — operations

Intersection with a half-space (e.g. guards, invariants):

Recap: half-space

A half-space H € R" contains all points
A

Y

H={z|é -z<d, ¢eR", de R}

Example:

Oy

Stefan Schupp 18/47



Boxes — operations

Intersection with a half-space (e.g. guards, invariants):
Be=ANH={z|z€B,NE -z <d}
Approaches:
m use conversion (box — h-polytope — intersect — box)

m use box traversal
m use interval arithmetic (ICP-style, used method in HYPRro)
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18/47



Boxes — operations

Intersection with a half-space (e.g. guards, invariants):
Be=ANH={z|z€B,NE -z <d}

Approaches:
m use conversion (box — h-polytope — intersect — box)
m use box traversal
m use interval arithmetic (ICP-style, used method in HYPRro)

Stefan Schupp 18/47



Boxes — operations

Intersection with a half-space (e.g. guards, invariants):
Be=ANH={z|z€B,NE -z <d}

Approaches:
m use conversion (box — h-polytope — intersect — box)
m use box traversal
m use interval arithmetic (ICP-style, used method in HYPRro)

Stefan Schupp 18/47



Boxes — operations

Intersection with a half-space (e.g. guards, invariants):
Be=ANH={z|z€B,NE -z <d}

Approaches:
m use conversion (box — h-polytope — intersect — box)
m use box traversal
m use interval arithmetic (ICP-style, used method in HYPRro)

Stefan Schupp 18/47



Boxes — operations

Intersection with a half-space (e.g. guards, invariants):
Be=ANH={z|z€B,NE -z <d}

Approaches:
m use conversion (box — h-polytope — intersect — box)
m use box traversal
m use interval arithmetic (ICP-style, used method in HYPRro)

Stefan Schupp 18/47



Boxes — operations

Intersection with a half-space (e.g. guards, invariants):
Be=ANH={z|z€B,NE -z <d}
Approaches:
m use conversion (box — h-polytope — intersect — box)

m use box traversal
m use interval arithmetic (ICP-style, used method in HYPRro)

\

Stefan Schupp 18/47



Boxes — operations

Intersection with a half-space (e.g. guards, invariants):
Be=ANH={z|z€B,NE -z <d}

Approaches:
m use conversion (box — h-polytope — intersect — box)
m use box traversal
m use interval arithmetic (ICP-style, used method in HYPRro)

Stefan Schupp

18/47



Excursion: Interval Arithmetic3

Binary operations (general case):

XoY={z0y|lzeX,yeY}L X, Yel

Example (Basic arithmetic operations)

Addition: [4,5] + [-1,2]

3See e.g., [MKCO09] for details.
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Binary operations (general case):

XoY={z0y|lzeX,yeY}L X, Yel

Example (Basic arithmetic operations)

Addition: [4,5] + [-1,2] =][3,7]
Subtraction :  [4,5] — [-1,2]

3See e.g., [MKCO09] for details.
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Excursion: Interval Arithmetic3

Binary operations (general case):

XoY={z0y|lzeX,yeY}L X, Yel
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Excursion: Interval Arithmetic3

Binary operations (general case):

XoY={z0y|lzeX,yeY}L X, Yel

Example (Basic arithmetic operations)

Addition: [4,5] + [-1,2] =][3,7]
Subtraction :  [4,5] — [-1,2] =[2,6]
Multiplication:  [4,5] [-1,2] =[-5,10]
Division: [4,5] + [2,3] =[32]

Corner case: X +Y with XY €,0 €Y — may cause a split.
Example: [1,1] +[-3,2]

3See e.g., [MKCO09] for details.
Stefan Schupp 19/47



|CP-style Half-space Intersection

Interval constraint propagation (ICP):
m Often used in SMT as a theory solver
m In general incomplete

m Exploits interval arithmetic
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|CP-style Half-space Intersection

Interval constraint propagation (ICP):
m Often used in SMT as a theory solver
m In general incomplete
m Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals I, I, € II:

Sat(z+2-y<17)=IL,+2-I,N(—00,17]

Approach: Given c¢: > a; - x; ~ d with z; interval-valued
m For each variable z; with interval [a,b]:

m Solve ¢ for z; (symbolically) to get ¢/
m Substitute intervals for all z;,7 # i in ¢/, solve to get interval [a’,¥/]
m Update interval for z; € [a,b] N [a,]

If one interval becomes empty, the constraint is not satisfiable.
Stefan Schupp 20/47



|CP-style Half-space Intersection: Example

Assume B = [0,3] x [0,2] and a constraint c: z 4+ 2-y < 2.

SN

4See [Sch19] for a proof.
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|CP-style Half-space Intersection: Example

Assume B = [0,3] x [0,2] and a constraint c: z 4+ 2-y < 2.
Contraction for x: 2 <2—-2-y <z €[0,3]N(—00,2] — [0,4] — = € [0,2]

Contraction for y:
Yy < (1—517)—2<=>y€ [072]0((_0072] _[072])_2_}3/6 [071]

Yy

&

4See [Sch19] for a proof.
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|CP-style Half-space Intersection: Example

Assume B = [0,3] x [0,2] and a constraint c: x +2-y < 2.

Contraction for x: © <2—-2-y <z €[0,3] N (—00,2] — [0,4] — = € [0,2]
Contraction for y:

y<(l—-z)+2<ye€l0,2]N((-00,2] —[0,2]) +2—y € [0,1]

Yy

&

>

X

Note: termination not guaranteed due to new intervals.

But: For single linear constraints, a single iteration suffices®.
4See [Sch19] for a proof.
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Boxes — operations

Union:
Be=B,UBy,={x|z€B,VaxecBy}

Note: The union of two convex sets is not necessarily convex — we use
the closure (cl) of the union.
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Boxes — operations

Union:
B.=B,UBy,={z|ze€B,Vzeb}

Note: The union of two convex sets is not necessarily convex — we use
the closure (cl) of the union.

Be = cl(Ing Ul ). cl(Ia, UTy,)
= [min(lay,, Iy, ) max(Lag,, , Ino,, )], - - - (min(la,, , 1o, ), max(la,, , Iy, )]

I [y
laq laq
W ~——

Ioy I, Iag Iy,
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Boxes — operations

Minkowski-sum:
B.=B,®By={z|r=1mx4+ xp,24 € By, xp € By}

Note: Minkowski's sum can be applied point-wise on convex sets.
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Boxes — operations

Minkowski-sum:
B.=B,®By={z|r=1mx4+ xp,24 € By, xp € By}
Note: Minkowski's sum can be applied point-wise on convex sets.

Bc:Iao @Ibo,...,fan @Ibn
— [ (lol +Ib0l7[(l0u +Ib0u]7"‘7[ (lnl +Ibnl7lanu +Ibnu]
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Boxes — operations

Linear transformation:

B.=A-B,={z|z=A x4, € Bs},A€R"™"
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Boxes — operations

Linear transformation:
B.=A-B,={z|z=A x4, € Bs},A€R"™"

Approaches:
m Naive (conversion): apply A on all vertices, re-convert to box

m Utilize interval arithmetic
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Support functions

Definition: support function

KA ‘ The support function pq of a n-dimensional set
) € R"™ is defined as

o = pa:R" - RU{—00,00}

pa(l) =sup I" -z
z€Q)
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Support functions

Definition: support function

KA The support function pq of a n-dimensional set
) € R"™ is defined as
o = pa:R" - RU{—00,00}
pa(l) =sup 1" -z
x zeQ)
Properties:

m implemented as tree structure (see next slides)
m operations are cheap, reduced overhead

m scale well in higher dimensions
m well developed (see e.g. [LGG10, FKL13, FGD"11, LG09])
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Support functions — operations [LGG10]

Most commonly used operations during reachability analysis:
m Intersection: p.(1) = min(pa (1), ps(1))
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Support functions — operations [LGG10]

Most commonly used operations during reachability analysis:
m Intersection with a half-space H = ¢’ -z < d (e.g. guards,
invariants): p.(1) = min(p, (1), H(1)),

d hen [ =
where H(l) = { V\: mr=e
oo else
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Support functions — operations [LGG10]

Most commonly used operations during reachability analysis:
m Union: p.(1) = max(pa (1), pp(1))

Note: The union operation on a set of support functions returns the
supporting hyperplane of the convex hull of the set of underlying
sets.
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Support functions — operations [LGG10]

Most commonly used operations during reachability analysis:
m Minkowski-sum: p.(1) = pa (1) + pp(1)
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Support functions — operations [LGG10]

Most commonly used operations during reachability analysis:

m Linear transformation: p. = pa(AT1)
l/

d "

AL L,
AT pal(ATT) l
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Support functions — optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

m collect sequences of linear transformations

Lh=ATly l9=AT13 13=ATl; 14 =ATl5 15= ATl !

O ===

po(li)  pr(l2)  pa(ls)  ps(la)  palts)  Ps()
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Support functions — optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

m collect sequences of linear transformations
Lh=ATly lo=ATl3 13=ATly lu=ATl5 15=ATI !
VSN VSN VN VSN LSRN
() — () +— () +—()+—)+— ()=
~_ v ~_ v ~_ ¥ ~_ ~_

po(li)  pr(l2)  pa(ls)  ps(la)  palts)  Ps()

ly= (AHT1;
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The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

m collect sequences of linear transformations

m remove intersections which have no effect
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Support functions — optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

m collect sequences of linear transformations
m remove intersections which have no effect

m reduce tree upon discrete jump (templated evaluation)

Stefan Schupp 27/47
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Linear optimization

HYPRoO can use different number implementations via templates
(supported: cln::cl_RA, mpq_class, double).
Obstacles:

m inexact linear optimization not suitable

m exact linear optimization expensive

~~ combined application

Compute
optimal Compute optimal solution s* > s | solution s* Soluti

- ——— 7] Solutio
solution SMT-RAT/SoPLEX/Z3 I solution 5* E

GLPK

no
solution

Compute optimal solution
SMT-RAT/SoPLEX/Z3

no solution No

no solution .
solution
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Utility

Additional features of HyPRro:
m datastructures for e.g. hybrid automata, state, point, halfspace
m parser for FLow*-based syntax
m GNUPLOT plotting interface (pdf, eps and tex)
m logging

Reachability analysis methods:
m Linear hybrid automata
m Singular automata
m Rectangular automata
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Demo
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Thermostat®

We model and analyze a thermostat according to the following
specifications:

m Can either be on (initially) or off

m Temperature x changes accordingly: © =50 —z (on), £ =10 —z
(off)

m Switches from on to off when x € [20,25]

m Switches off to on when z € [16,18]

5https ://www.digitalcity.wien/even-thermostats-have-a-heart/
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Outline

Introduction

HyPro
m State set representations

Short tutorial

Current research
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Applications

Extensions for reachability analysis based on HYPRro:

m Syntactic decoupling - subspace computations
m CEGAR-based reachability analysis
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CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis
m Time step size §
m State set representation
m Aggregation
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CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
m State set representation R;

m Time step size 6;
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CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
m State set representation R;
m Time step size 6;

Strategy (ordered set of parameter settings):

tart Ro, Ry,
start —
50 61
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CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
m State set representation R;
m Time step size 6;

Strategy (ordered set of parameter settings):

tart Ro, Ry,
Start —|
50 61

Depending on the application, order and choice of parameter settings
matters!

Stefan Schupp 36/47



CEGAR-based reachability analysis - Example

Strategy:

S1: box,
6=0.1

.

Search tree:
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CEGAR-based reachability analysis - Example

Strategy:

S1: box,
6=0.1

S2: support f.,
6 =0.01

oo

Search tree:

v
v

D]
v

Extension: Parallelized search in different branches.

Stefan Schupp
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Tree-updates

Variation of parameter settings influences the shape (number of child
nodes) of the search tree.

m Aggregation settings

m Spurious branches (over-approximation)
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m Keep separate trees for each refinement — inefficient for
backtracking
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Tree-updates

Variation of parameter settings influences the shape (number of child
nodes) of the search tree.

m Aggregation settings

m Spurious branches (over-approximation)
Approaches:

m Keep separate trees for each refinement — inefficient for
backtracking

m Keep separate trees but link nodes — management overhead
m Create multi-level tree

BJB
o6 riem

cle]

D]
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Tree-updates

Update increases number of child nodes:

B
X
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Example: Bouncing ball

(@0x22bbb20

[0, 0]
[0, 0]

@0x22bd670

[1.42, 1.45]
[1.426, 1.444]

@0x7fa37400ee10

[2.136,2.17]

@0x7fa374031bb0

[1.56, 1.67]

@0x7fa3740179c0

[1.09, 1.34]

(@0x7fa3740384d0
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Example: Bouncing ball

bouncingpallig

Stefan Schupp 41/47



Example: Bouncing ball

@0x18d7b20|
@0x18d9670

1142, 145) J-INE, INF[
[142,1.43] [1.43,1.44]
[1.426, 1.444] [-INF, INF[

(@0x7f4c34014b30
i [ D]

J-INF, INF[
[1.44,1.45]
JINF, INF{

@0x7f4c3401 50a0

[2.16,2.17]

[2.15.2.16]

(@0x7H4c3402bc60 @0x7Hc340dc150 @OxTF || |[@ox7r || |[@ox7t || |[@ox7t4c34024760) (@0x7f4¢3402de20) (@0x7f4c3402¢520)
[1.6, 1.66]

(@Ox7f4c3414d650 (@0xTf4c3412ed50 (@0x7f4c34068330| @OxTf4c3 ] @OxTf4c3 ] @Ox7f4c3 ] @OXTH: ] @0x 3940

[1.13,1.27] [1.15,1.29] [1.15,1.291

[1.13,1.27] [1.13,1.25] [1.15,1.27] [1.15,1.29] [1.12, 1.26]

@0x7f4c3Alixs 10 @l]x'!Mc'Ml 3a710) @0x7f4c34| 1c6e0] @0x7f4c34056050 @0x7f4c340d4b00 @0x7'4c140h7c20 @0x704c‘44099he0 @0x7Mc1407bd50
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Example: Bouncing ball

bouncingpallig
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0

A free and open source library for hybrid systems reachability analysis

https://github.com/hypro/hypro


https://github.com/hypro/hypro
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Examples

Bouncing ball, VV-polytopes with conversion to H-polytopes for intersection,
double glpk-only, T'=3, 6 = 0.01, 4 jumps
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Examples

Bouncing ball, V-polytopes with conversion to H-polytopes for intersection,
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Examples
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Rod reactor, box, double glpk-only, T'=17, § = 0.01, 2 jumps
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Examples

5-D switching system, support function, double glpk-only, T'=0.2,
0 =0.001, 4 jumps
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Examples

5-D switching system, boxes, double glpk-only, T'= 0.2, 6 = 0.001, 4
jumps
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Examples

Filtered oscillator, support function, double glpk-only, T'=4, § =0.01, 5
jumps
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