Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2019

Lecture 9: Signal Temporal Logic

[Many Slides due to J. Deshmukh, A. Donzé]

Linear Temporal Logic (LTL) specification

It is a logic interpreted over infinite discrete-time traces

E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest temperature will be above 60 degree

X $(p \land q) \land X X (p \land q) \land X X X (p \land q)$ with p = T < 75, q = T > 60

Metric Interval Temporal Logic (STL)

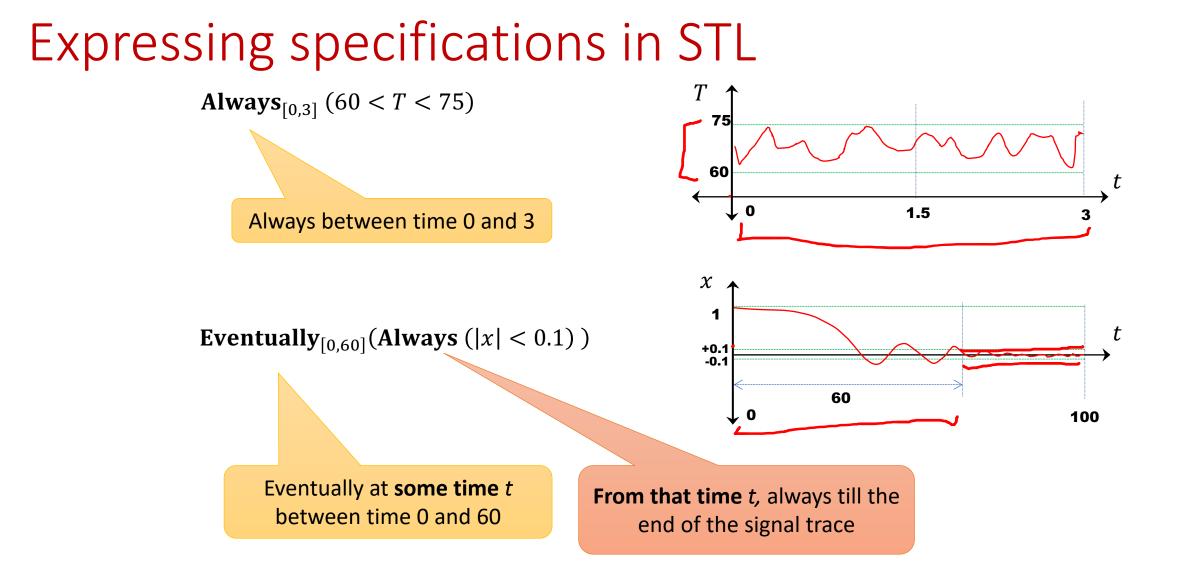
Invented by R. Alur, T.Feder, T.A. Henzinger (1991) It extended LTL by adding **dense time intervals**:

 $G_{[0,3]}(\mathbf{p} \wedge q)$

Signal Temporal Logic (STL)

Invented by D. Nickovic and O. Maler from Verimag (2004) It extended MITL by having **signal predicates over real values as atomic formulas:**

 $G_{[0,3]}(T < 75 \land T > 60)$

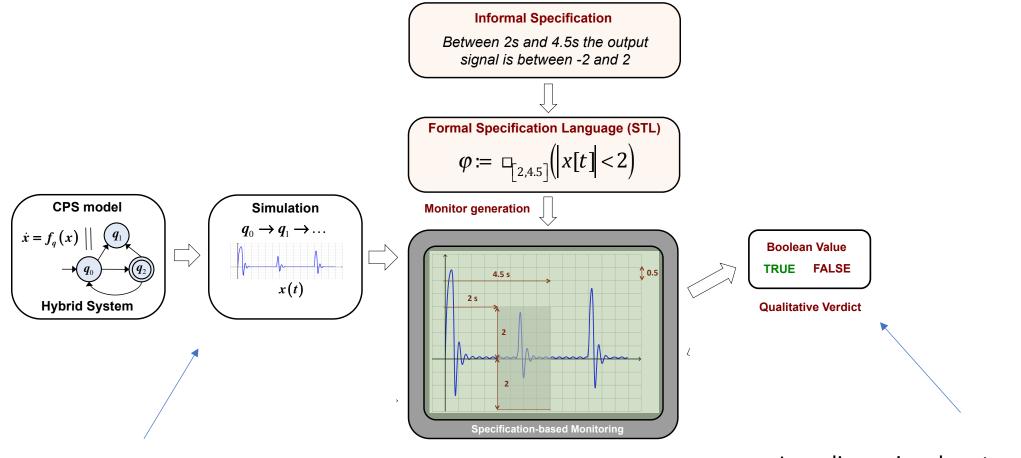


STL Syntax

Syntax of STL

φ ::=	$f(\mathbf{x}) \sim 0$		$f: \mathbb{D} \to \mathbb{R}$ is a function over the signal $\mathbf{x}: \mathbb{T} \to \mathbb{D}$,
			$\sim \in \{\leq, <, >, \geq, =, \neq\}$
	$\neg \varphi$	Ι	Negation
	$\varphi \wedge \varphi$	Ι	Conjunction
	$\mathbf{F}_{[a,b]}\varphi$	Ι	At some F uture step in the interval $[a, b]$
	$\mathbf{G}_{[a,b]} \varphi$	Ι	G lobally in all times in the interval $[a, b]$
ų	$\mathcal{O} \mathbf{U}_{[a,b]} \varphi$	Ι	In all steps U ntil in interval $[a, b]$
4	$ ho \; m{s}_{[a,b]} \; arphi$	Ι	In all steps S ince in interval $[a, b]$

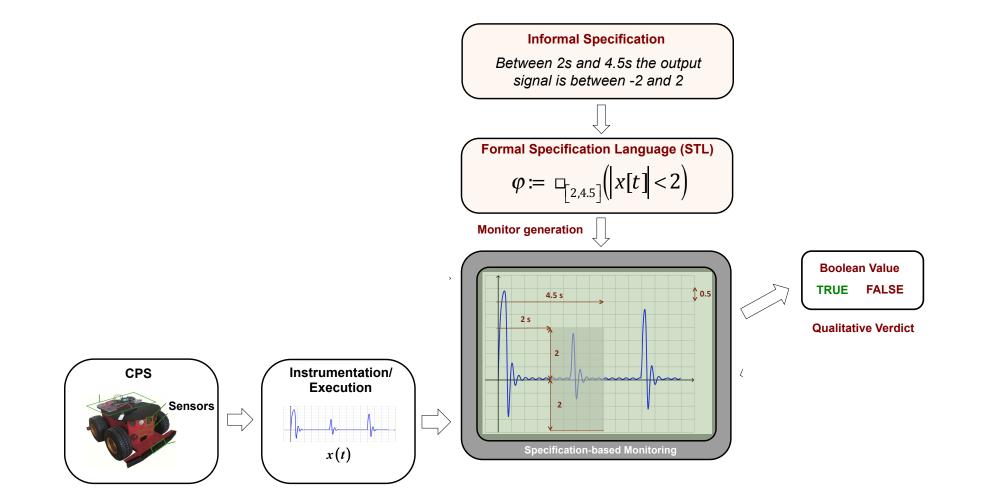
Specification-based Monitoring



Complex behaviours

Low dimensional vectors

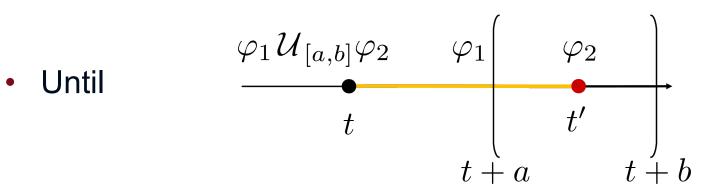
Specification-based Monitoring

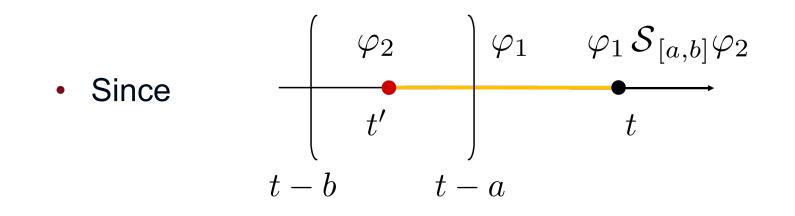


Recursive Boolean Semantics of STL				
arphi	$\beta(\varphi, \mathbf{x}, t)$			
$f(\mathbf{x}) \sim 0$	$f(\mathbf{x}(t)) \sim 0$, $\sim \in \{\leq, <, >, \ge, =, \neq\}$			
$\neg \varphi$	$\neg \beta(\varphi, \mathbf{x}, t)$			
$\varphi_1 \wedge \varphi_2$	$\beta(\varphi_1, \mathbf{x}, \mathbf{t}) \land \beta(\varphi_2, \mathbf{x}, \mathbf{t})$			
$\mathbf{F}_{[a,b]}\varphi$	$\exists \tau \in [t + a, t + b] \ \beta(\varphi, \mathbf{x}, \tau)$			
${f G}_{[a,b]} arphi$	$\forall \tau \in [t + a, t + b] \ \beta(\varphi, \mathbf{x}, \tau)$			
$arphi {f U}_{[a,b]} \psi$	$\exists \tau \in [t + a, t + b] \left(\beta(\psi, \mathbf{x}, \tau) \land \forall \tau' \in [t, \tau) \ \beta(\varphi, x, \tau') \right)$			
$arphi {f S}_{[a,b]} \psi$	$\exists \tau \in [t - a, t - b] \left(\beta(\psi, \mathbf{x}, \tau) \land \forall \tau' \in (\tau, t] \beta(\varphi, x, \tau') \right)$			

 $\beta(\varphi, \mathbf{x}) = \beta(\varphi, \mathbf{x}, 0)$

Since and Until Operators



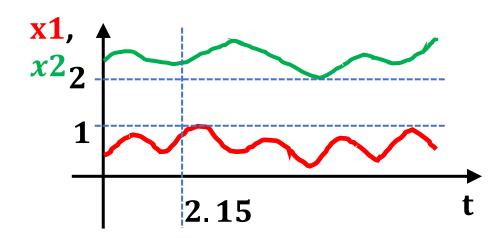


STL semantics

▶ Semantics of STL specified recursively over a signal \mathbf{x} : $\mathbb{T} \rightarrow \mathbb{D}$ at each time,

For each STL formula φ , here's how we define it's semantics:

• If φ is the signal predicate $\mu = f(\mathbf{x}) > 0$, then $\beta(\varphi, \mathbf{x}, t) = true \text{ iff } f(\mathbf{x}(t)) > 0$



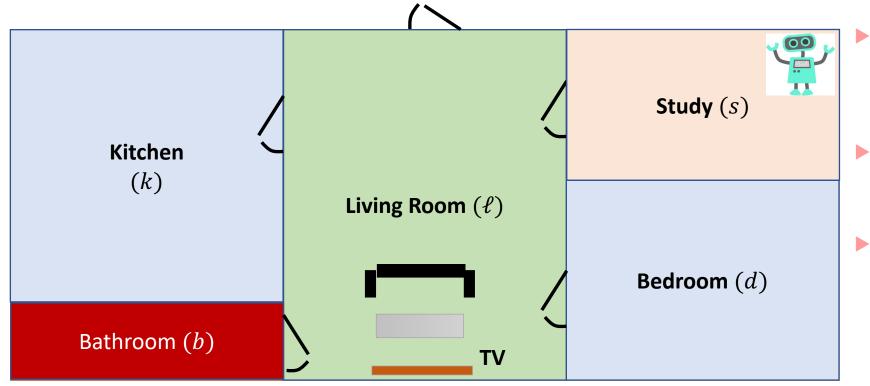
$$\mathbf{x} = (x1, x2)$$

$$\mathbf{f} = x2 - x1 - 1$$

$$\beta(f(\mathbf{x}) > 0, \mathbf{x}, 2.15)?$$

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions



Whenever the robot visits the kitchen, it should visit the bedroom after.

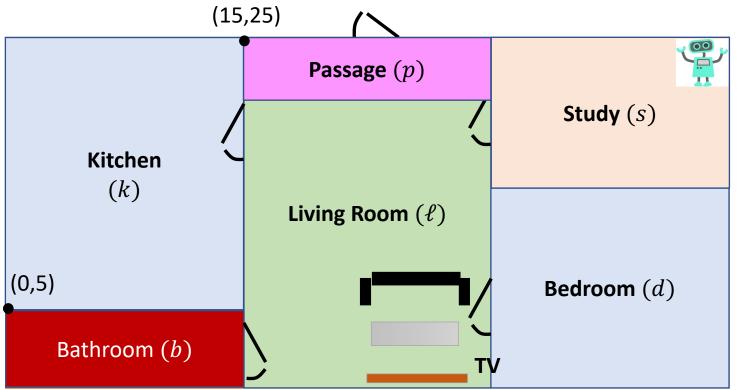
$$\mathbf{G}(k_r \Rightarrow \mathbf{F} \, d_r)$$

Robot should never go to the bathroom.

 $\mathbf{G} \neg b_r$

The robot should keep working until its battery becomes low *working* **U** *low_battery*

Robot Path Specification



 $p(t) \in B_k : (0 < p_x(t) < 15) \land (5 < p_y(t) < 25)$

Whenever the robot visits the kitchen, it should visit the bedroom within the next 15 mins. $G((p(t) \in B_k) \Rightarrow F_{[0,15]}(p(t) \in B_b))$

 B_r : Box describing room r

p(t): Position of robot at time t

Robot should not go to the bathroom in the first 60 mins. $G_{(0,60)}(p(t) \notin B_{bath})$

Robot Path Specification

