Light microscopy in Cellular Biology

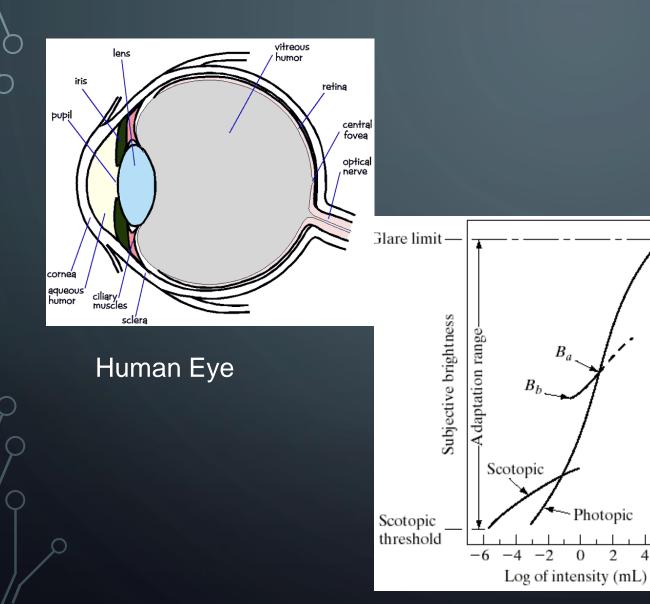
Gabriele Baj gbaj@units.it

WHAT IS COMPUTER VISION?

- Inverse Optics
- Intelligent interpretation of Imagery
- Building a Visual Cortex

- No matter what your definition is...
 - Vision is hard.
 - But is fun...

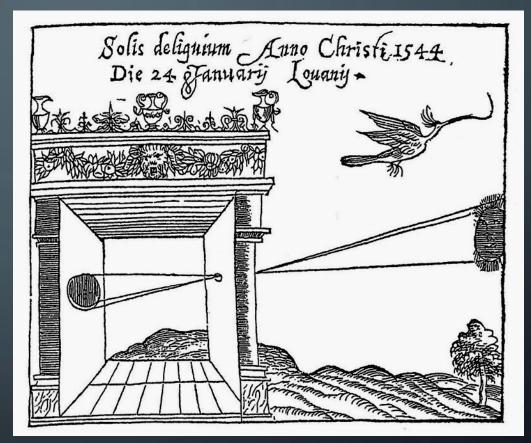
BIOLOGICAL CAMERAS



Mosquito Eye

CAMERAS AND THEIR OPTICS

Today's Digital Cameras



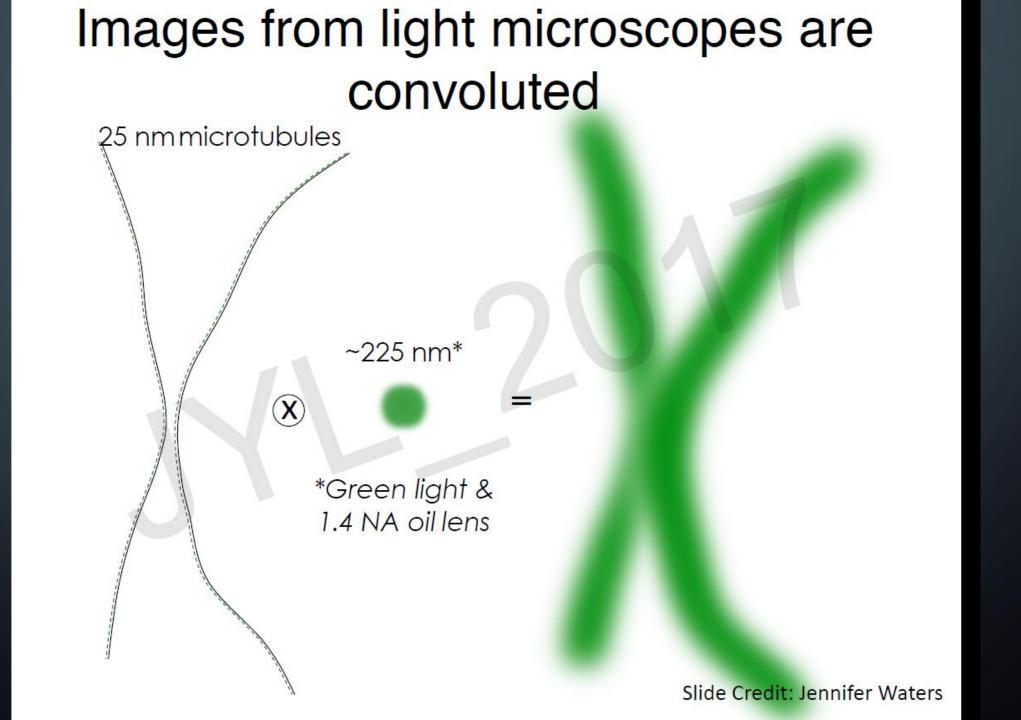
The Camera Obscura

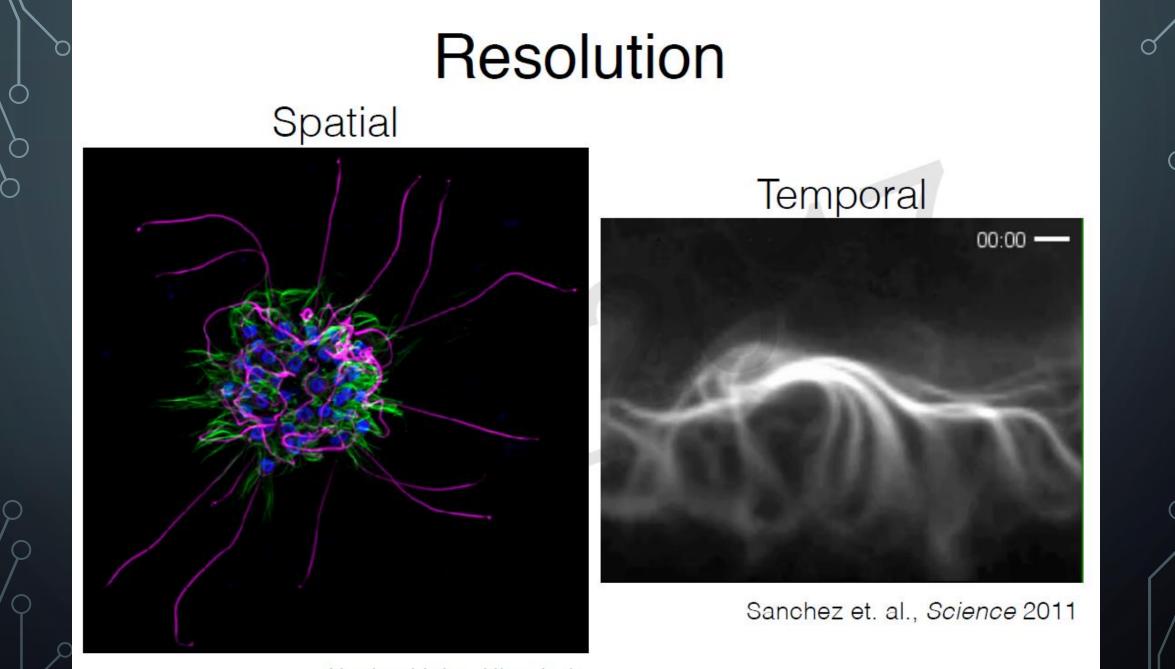
Image Acquisition



Resolution & Sampling

- Digital Image Formation
- Histograms/Saturation
- Calibrating Hardware
- Reproducibility





Kayley Hake, King Lab

О

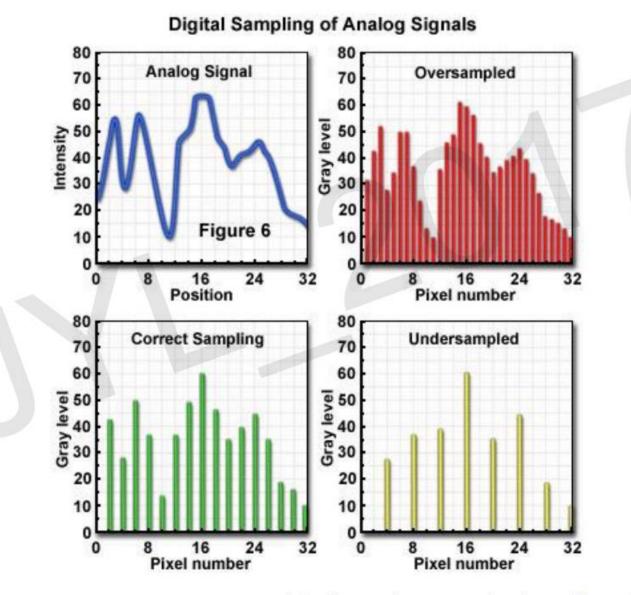
Shannon-Nyquist Sampling Criterion

a.k.a., how to avoid undersampling/aliasing

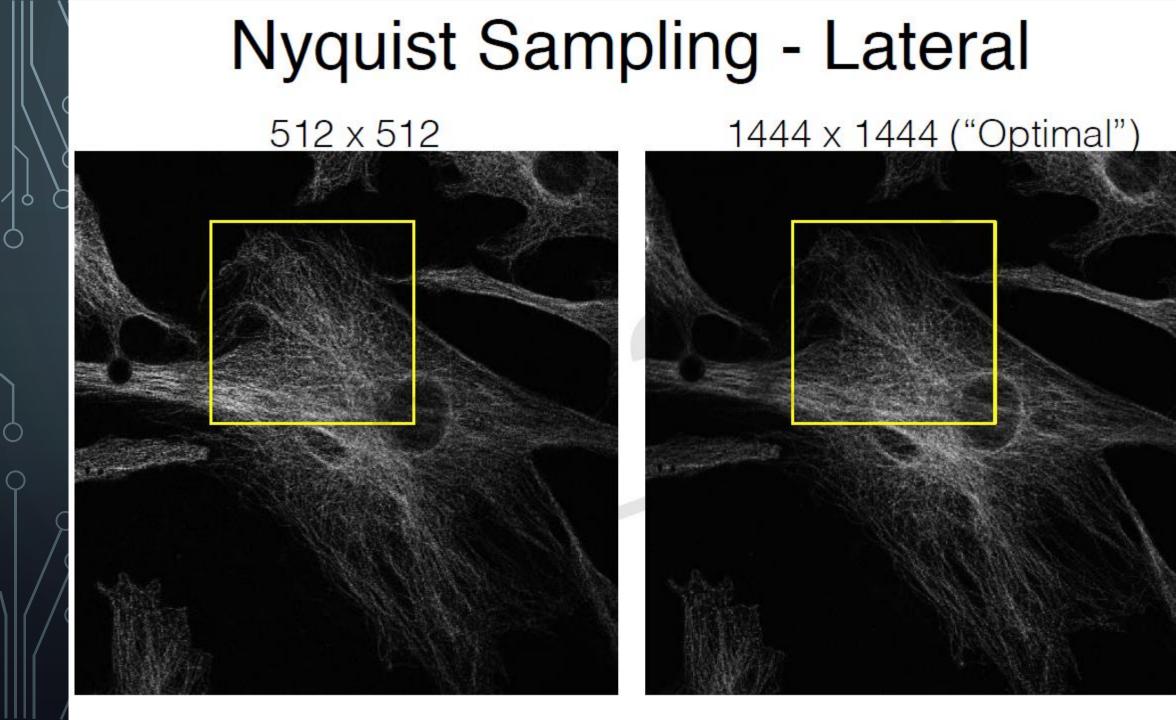
$$\Delta s \leq \Delta x, y, z, t / 2$$

Take your limit of resolution & divide it by 2 (Some people divide by 2.3 to be safe)

Proper Sampling is Essential in Microscopy

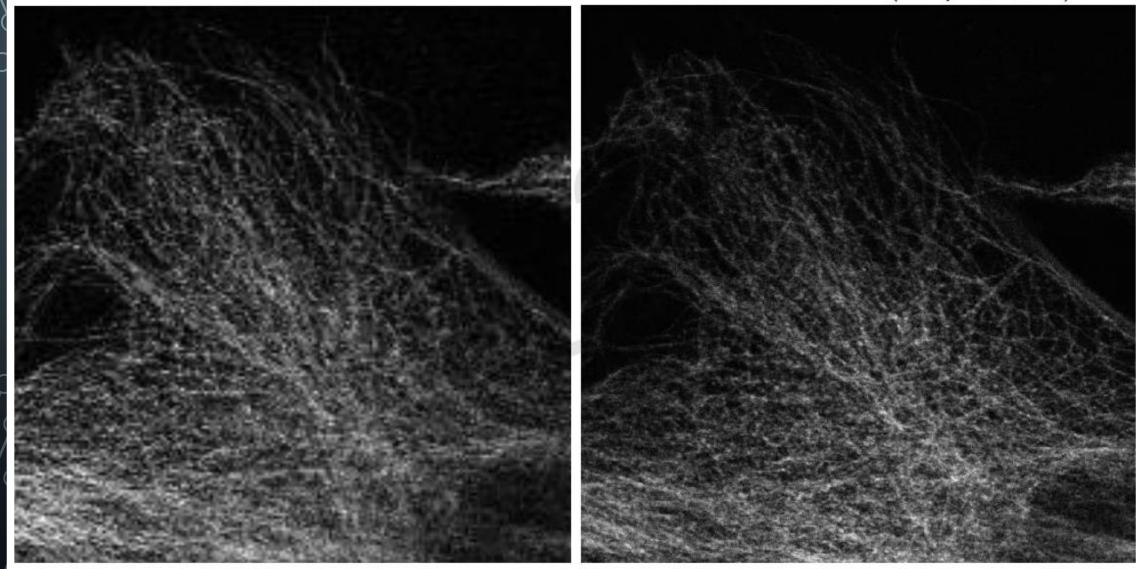


http://www.olympusconfocal.com/theory/resolutionintro.html



ΙÇ

Nyquist Sampling - Lateral512 x 5121444 x 1444 ("Optimal")



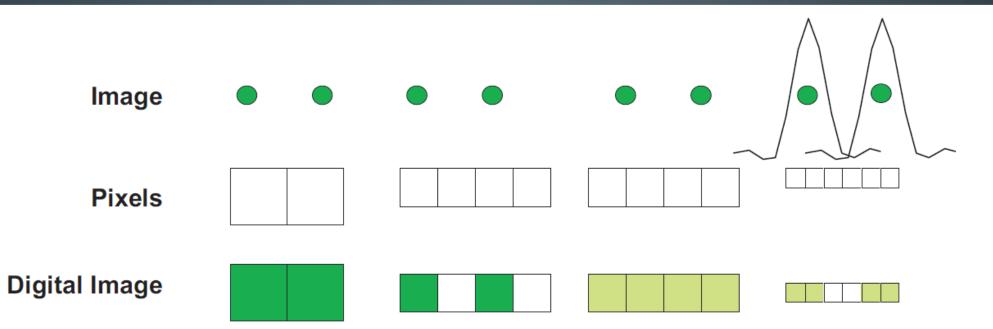


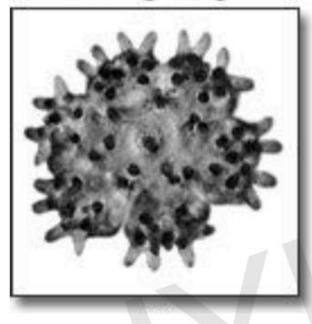
Figure 8: Resolution limitations of a CCD camera (Jennifer Waters, Nikon Imaging Center, Harvard Medical).

ρ

Digital Image Formation

Digital Sampling

Analog Image



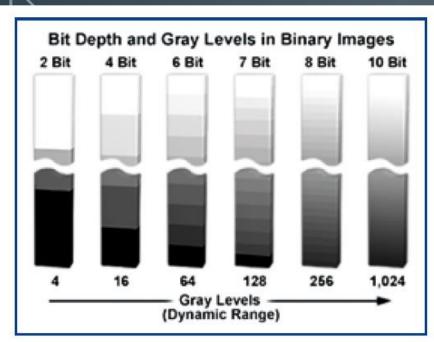
			10.00	
1	18		10.89	
				6
)III	
1		17	_	
		12	-	

Pixel Quantization

249	244	240	230	209	233	227	251	255
248	245	210	93	81	120	97	193	254
250	170	133	94	137	120	104	145	253
241	116	118	107	134	138	96	92	163
277	142	121	113	124	115	107	71	179
234	106	84	125	97	108	125	106	204
241	202	102	132	75	73	141	246	252
253	252	244	239	178	199	242	250	245
255	249	244	250	226	231	240	251	253

http://hamamatsu.magnet.fsu.edu/articles/digitalimagebasics.html

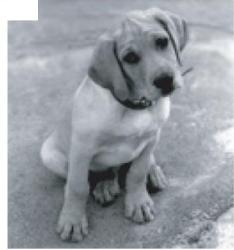
Bit depth = digital readout of intensity levels 8-bit = 2⁸ = 256 levels of gray 12-bit = 2¹² = 4096 levels of gray 16-bit = 2¹⁶ = 65,536 levels of gray The human eye can only detect between 32-64 levels of gray!

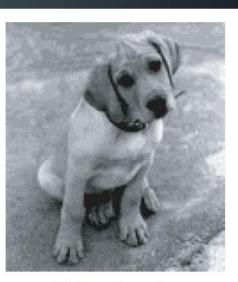


Ó

 \bigcirc

Fig. 9: Bit depth and grey levels in digital images.





256 Gray levels

64 Gray levels

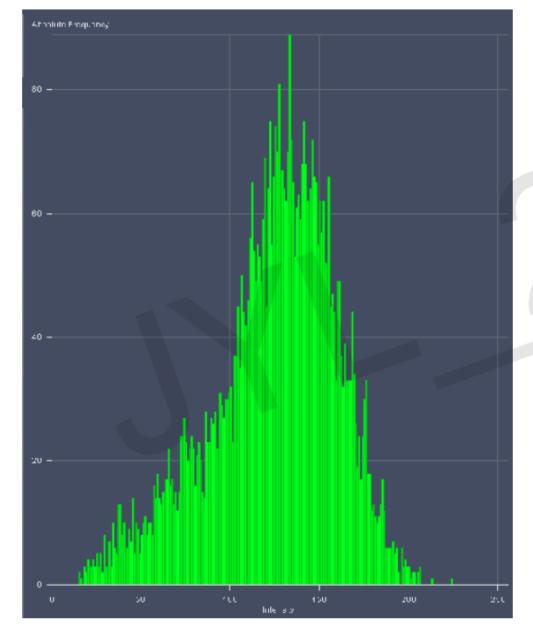
16 Gray levels

Figure 9: Same picture displayed with different gray levels (Butch Moomaw, Hamamatsu)

Histograms are a Microscopist's Best Friend

Best way to optimize settings for maximum contrast and dynamic range without saturation (i.e., information loss)

What are histograms?



Graph of intensity vs. frequency
Quick way to assess contrast, saturation

Histograms are a Microscopist's Best Friend

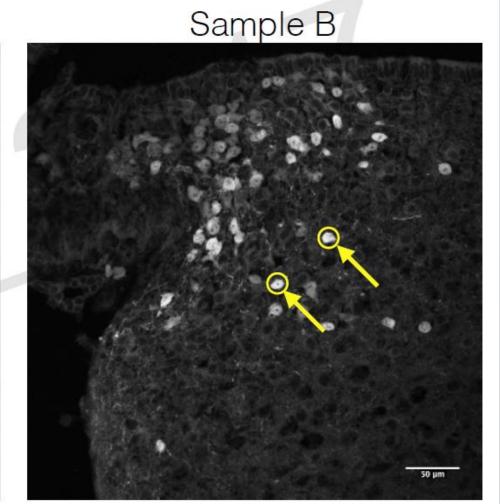
Larger dynamic range = higher signal-tonoise ratio

However, you want to avoid saturation because saturation = data loss

Avoiding Saturation

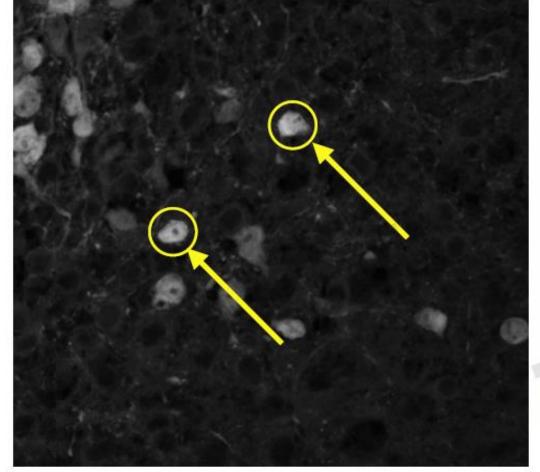
Mouse brain section, imaged on the LSM 880 ("Trinity") 20X W/1.0 NA, 1 AU

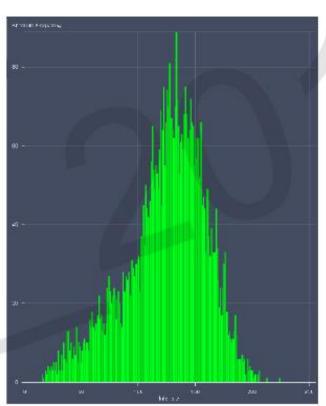
Sample A

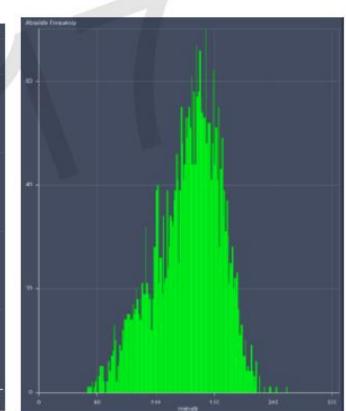


Sample courtesy of George Stratigopoulos, Columbia University

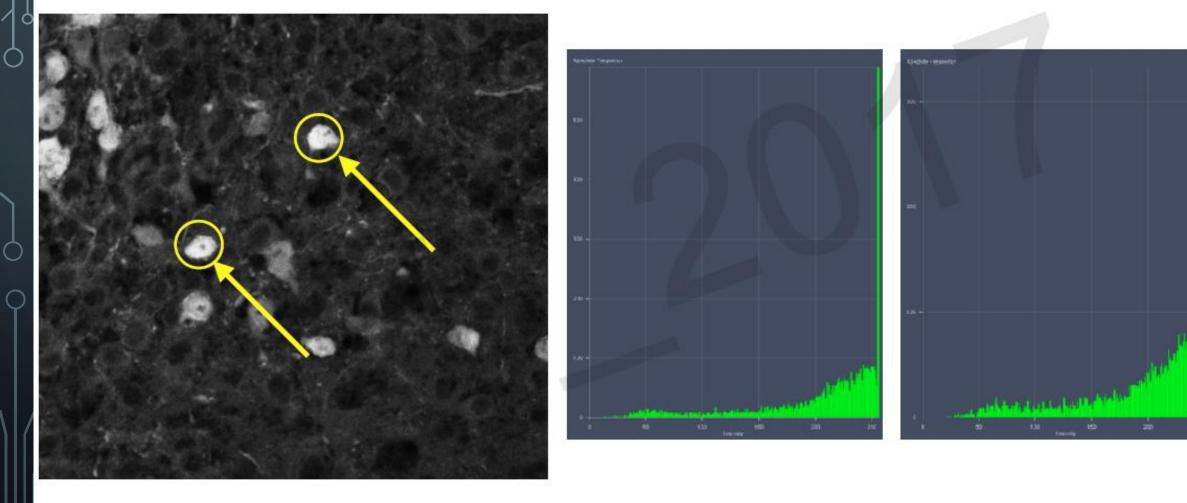
Sample A







Sample B

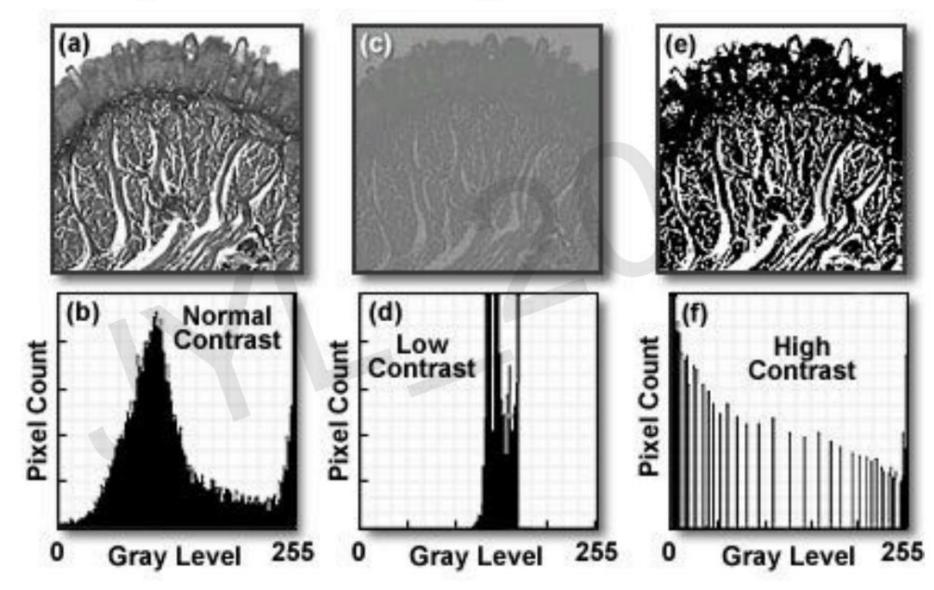


Saturation = Potential Data Loss, Skewed Distribution

	Sample A (Not Saturated)	Sample B (Saturated)
Cell 1- mean intensity	124 (+/- 36)	202 (+/- 57)
Cell 2- mean intensity	127 (+/- 27)	195 (+/- 55)
Cell 1 - saturated pixels	0	590
Cell 2- saturated pixels	0	332

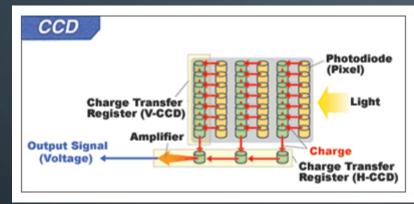
Remember you can always change contrast/levels for presentations/figures.

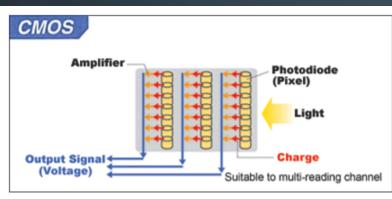
Dynamic Range = Contrast



http://hamamatsu.magnet.fsu.edu/articles/digitalimagebasics.html

CCD VERSUS CMOS

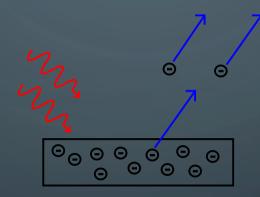


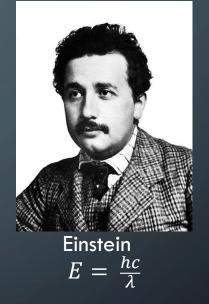


- Both convert photons of light into electric charge and process it into electric signals
- Charge Coupled Devices (CCDs) every pixels charge is transferred through a limited number of output nodes and sent off as an analog signal
- Complementary Metal Oxide Semiconductors (CMOS) is designed to have every pixel to have its own charge to voltage conversion and includes amplifiers, noise correction, and digitization circuits where the chips output is in digital bits
- Generally, CCDs have lower noise and more uniformity with better signal
- CMOS cameras have very high frame rates

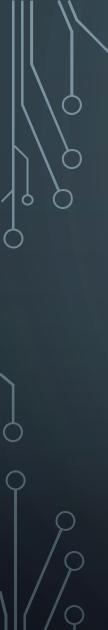
HOW IMAGE SENSORS SENSE AN IMAGE 1. Need way to detect photons

Hertz: observed in 1887 Photoelectric Effect

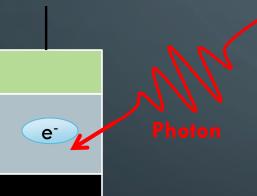




• For silicon, need \approx 1.14 eV to release an electron - So need $\lambda <$ 1100 nm



- Photodiodes
 - Photons will generate electron (photoelectron)

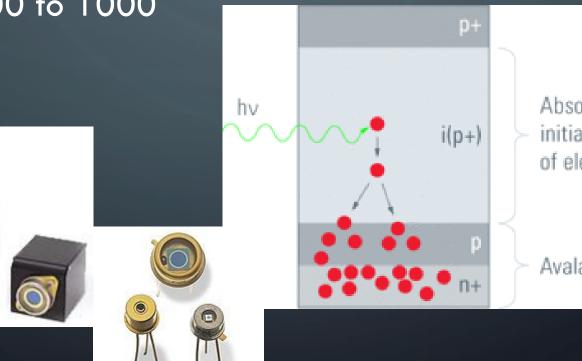


- But detecting few electrons is hard
- Need way to amplify the signal

° POINT DETECTORS

- Avalanche Photodiode (APD)
 - Initial e⁻ becomes amplified through impact ionization
 - Gains of 100 to 1000

0



Absorption and initial generation of electron-hole-pair

Avalanche amplification

Image from http://www.leica-microsystems.com/science-lab/sensors-for-true-confocal-scanning/

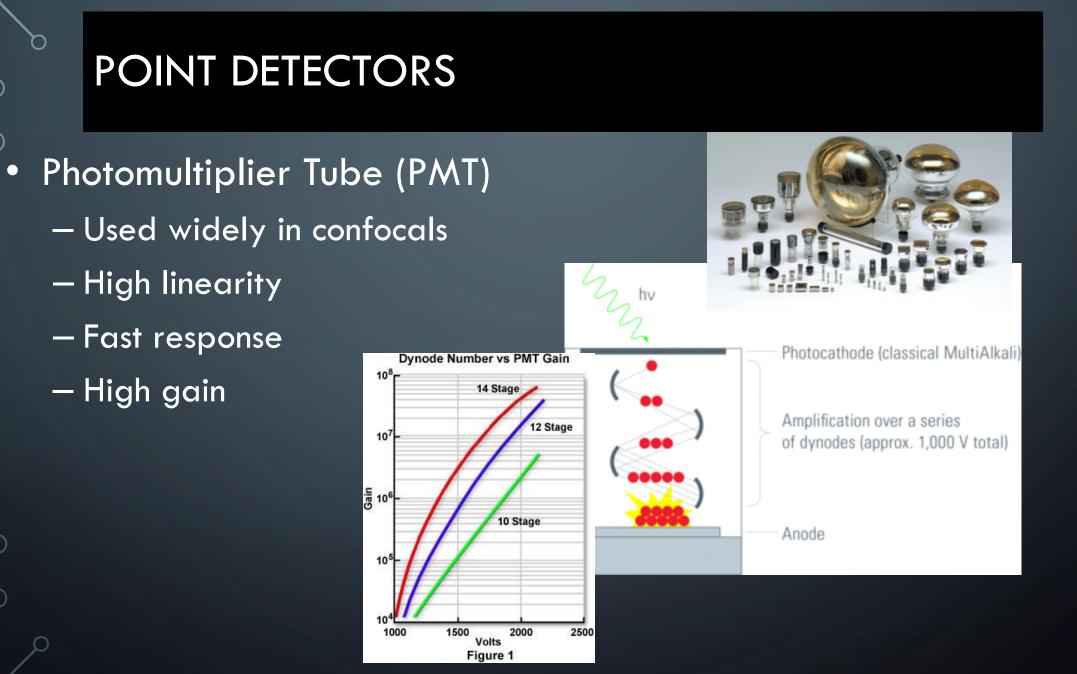
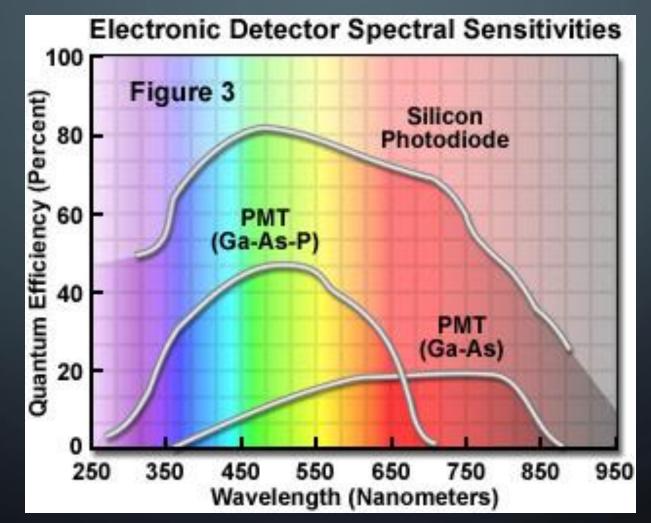


Image from http://www.leica-microsystems.com/science-lab/sensors-for-true-confocal-scanning/

HOW WELL ARE PHOTONS DETECTED?

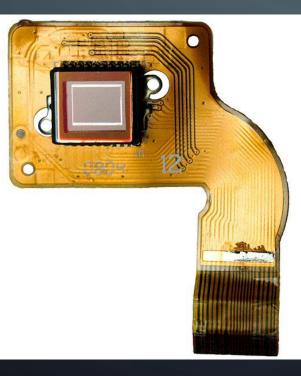
Quantum Efficiency



Additional INFO

HOW IMAGE SENSORS SENSE AN IMAGE 2. Must detect photons over an array of pixels

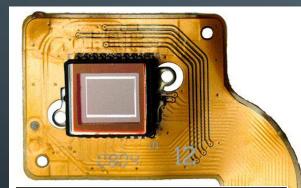
CCD



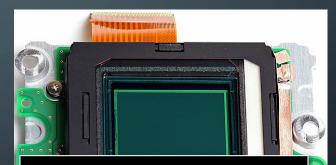
CMOS

HOW IMAGE SENSORS SENSE AN IMAGE 3. Electrons generated in each pixel must be read out

CCD



Serial devices where each pixel's charge is read out one at a time CMOS



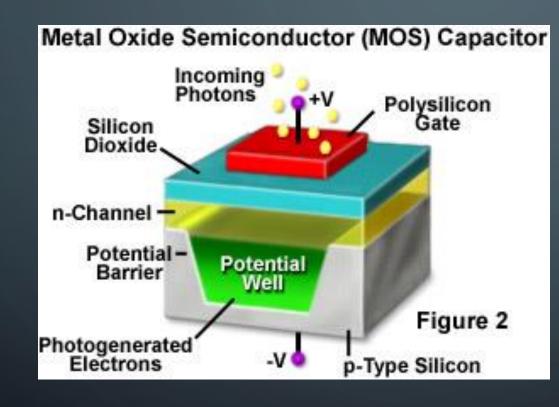
Each pixel contains amplifier electronics so read out can be much faster

WHAT IS MEANT BY "READ OUT"?

Photons

Bit Depth	Number of gray levels
8	2 ⁸ = 256
10	2 ¹⁰ = 1024
12	2 ¹² = 4096
14	2 ¹⁴ = 16384
16	2 ¹⁶ = 65536

CCD DETECTORS

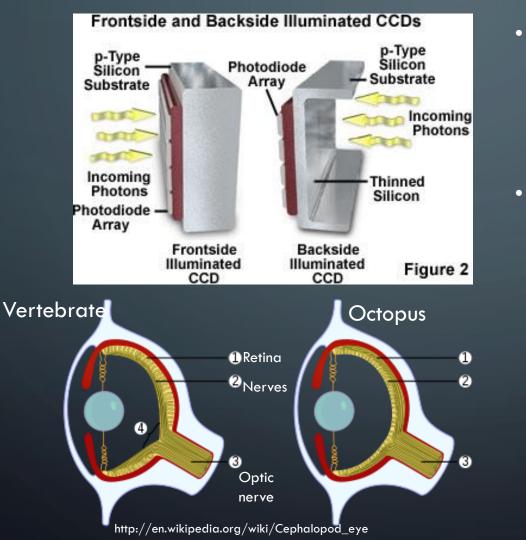


Charge-Coupled Device

- Invented at Bell Labs in 1970
- 2009 Nobel Prize in Physics
- Widely used in TV, medical, astronomy cameras
- Array of light sensitive MOS capacitors (pixels)
- Incoming light generates electrons which are captured in a potential well
- Electrodes, or gates, move the charge

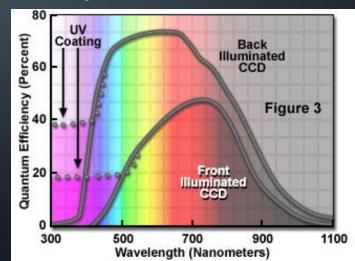
Image from http://www.microscopyu.com/articles/digitalimaging/ccdintro.html

FRONT OR BACK ILLUMINATED

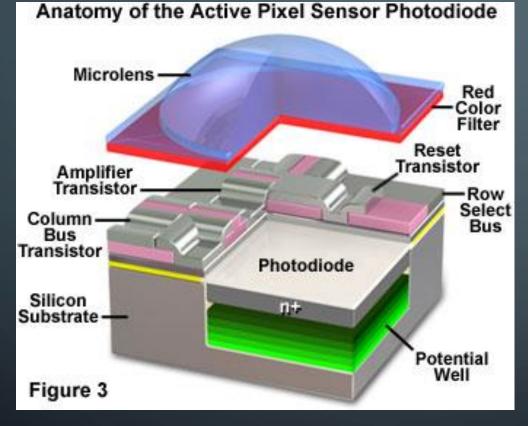


From http://learn.hamamatsu.com/articles/quantumefficiency.html

- Traditional, front-illuminated have **wiring in front** of photosensitive region
 - This blocks some light, reducing
 QE
- Back-illuminated CCDs:
 - Back side of the CCD is etched to 10-15 microns
 - More fragile and costly, but higher QE



CMOS DETECTORS



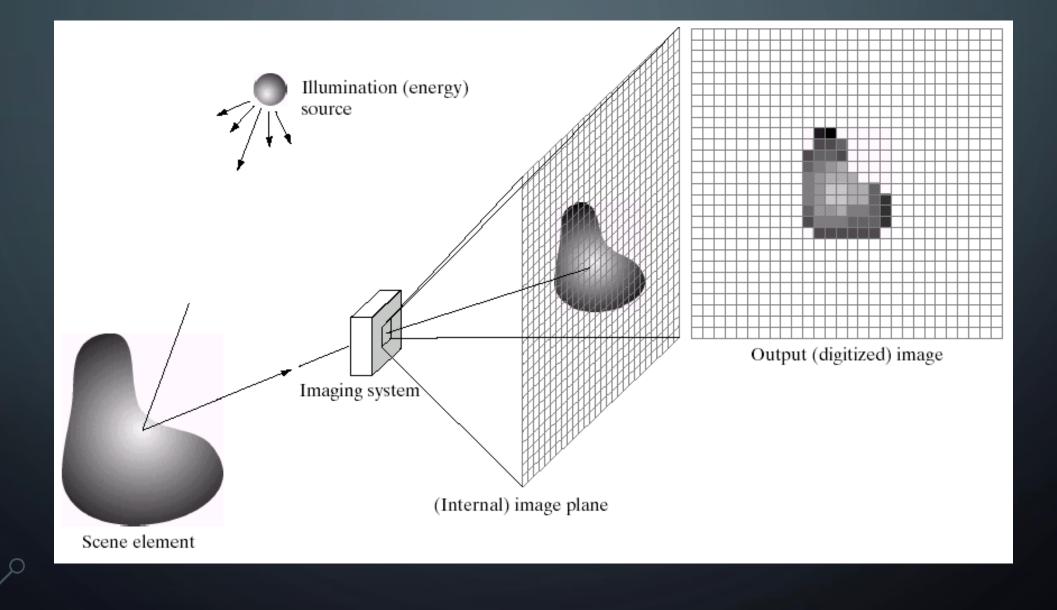
Complementary Metal Oxide Semiconductor

- Transistors in **each pixel** convert charge to voltage
- More can be done within a pixel meaning frame read out can be faster
- Fabricated much like microprocessors and RAM so are cheaper to make
- Used in webcams, phone cameras since they use less power

Image from http://www.olympusmicro.com/primer/digitalimaging/cmosimagesensors.html

THE IDEAL CAMERA

- High resolution
 - Optically resolvable features span a couple pixels
- Large area
 - Covers field of view
- Linear response
 - Twice the photons gives twice the output
- Uniform response
 - Same response no matter where photon lands
- Fast
 - Can capture dynamic processes
- High sensitivity
 - All photons get measured



•Pixel values typically represent gray levels, colours, heights, opacities etc

•Remember digitization implies that a digital image is an approximation of a real scene

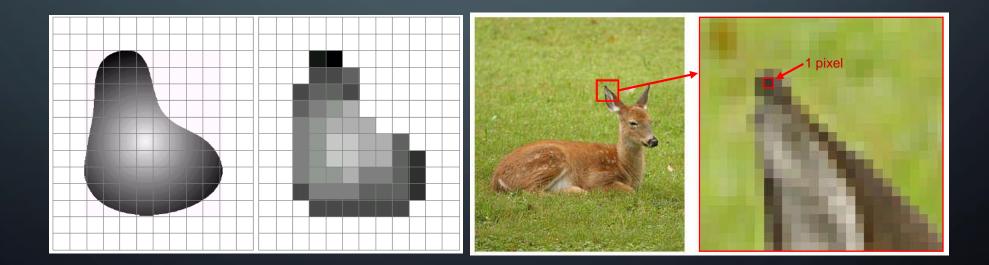
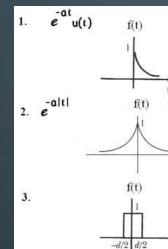
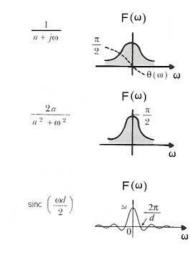
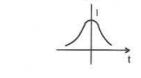


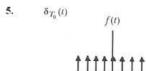
IMAGE PROCESSING



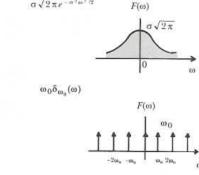


4. $e^{-t^2/2\sigma^2}$

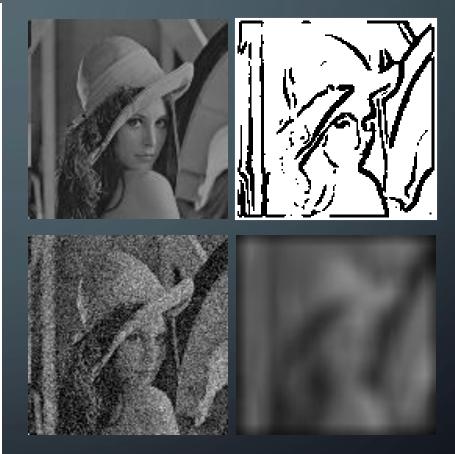




-T. T. 2T.



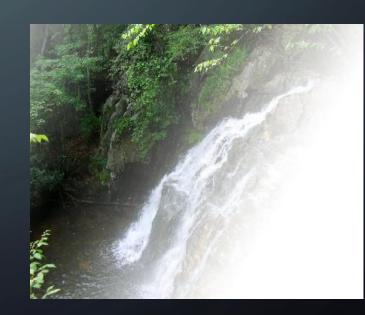
 $\sigma \sqrt{2\pi} e^{-\sigma^2 \omega^2/2}$



Fourier Transform Sampling, Convolution Image enhancement Feature detection

• Common image formats include:

- 1 sample per point (B&W or Grayscale)
- 3 samples per point (Red, Green, and Blue)



WHAT IS DIGITAL IMAGE PROCESSING?

•Digital image processing focuses on two major tasks

- Improvement of pictorial information for human interpretation
- Processing of image data for storage, transmission and representation for autonomous machine perception

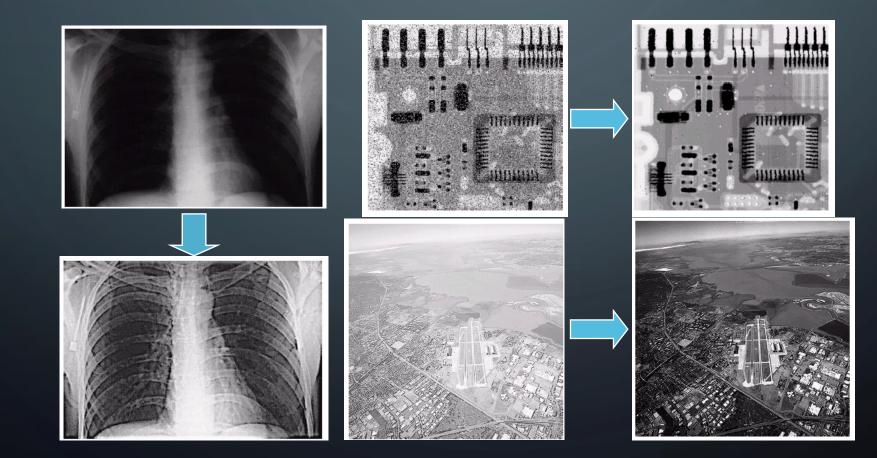
•Some argument about where image processing ends and fields such as image analysis and computer vision start

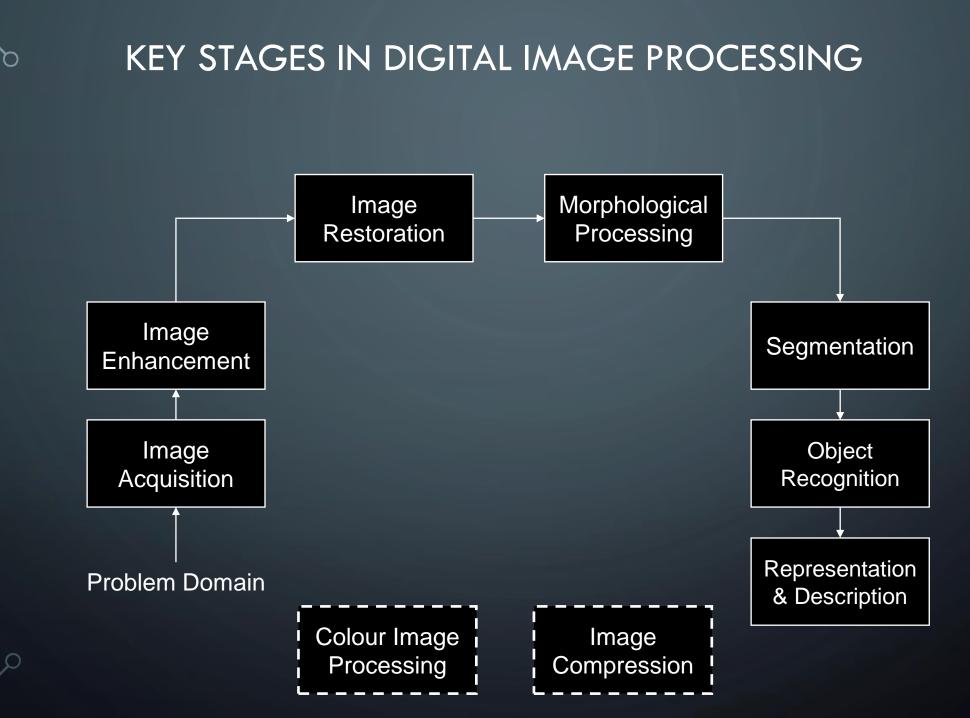
•The continuum from image processing to computer vision can be broken up into low-, mid- and high-level processes

Low Level Process	Mid Level Process	High Level Process	
Input: Image Output: Image	Input: Image Output: Attributes	Input: Attributes Output: Understanding	
Examples: Noise removal, image sharpening	Examples: Object recognition, segmentation	Examples: Scene understanding, autonomous navigation	

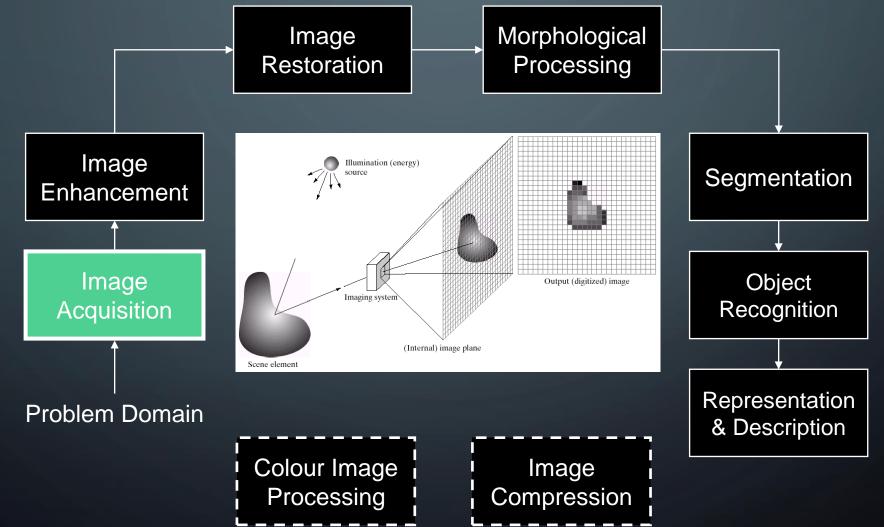
EXAMPLES: IMAGE ENHANCEMENT

•One of the most common uses of DIP techniques: improve quality, remove noise etc



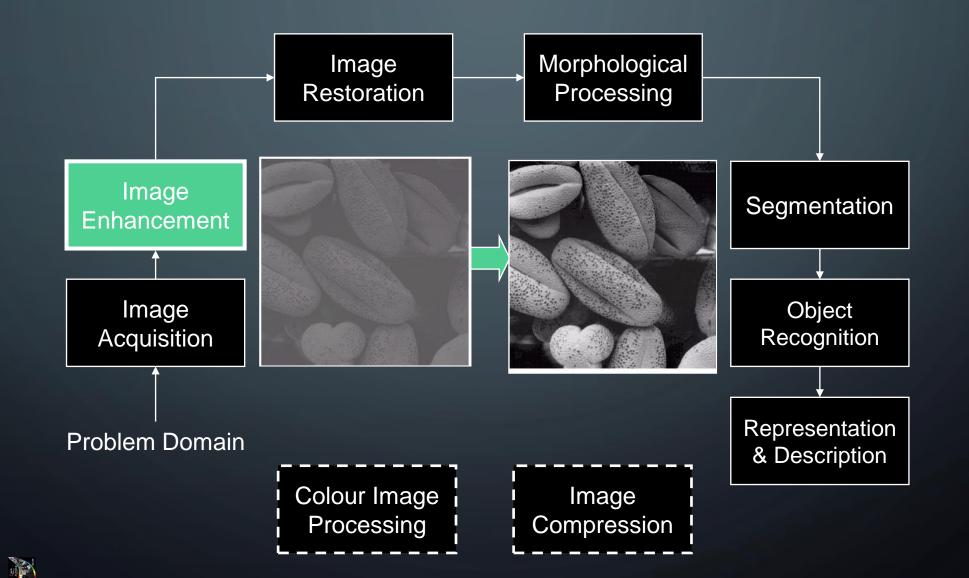


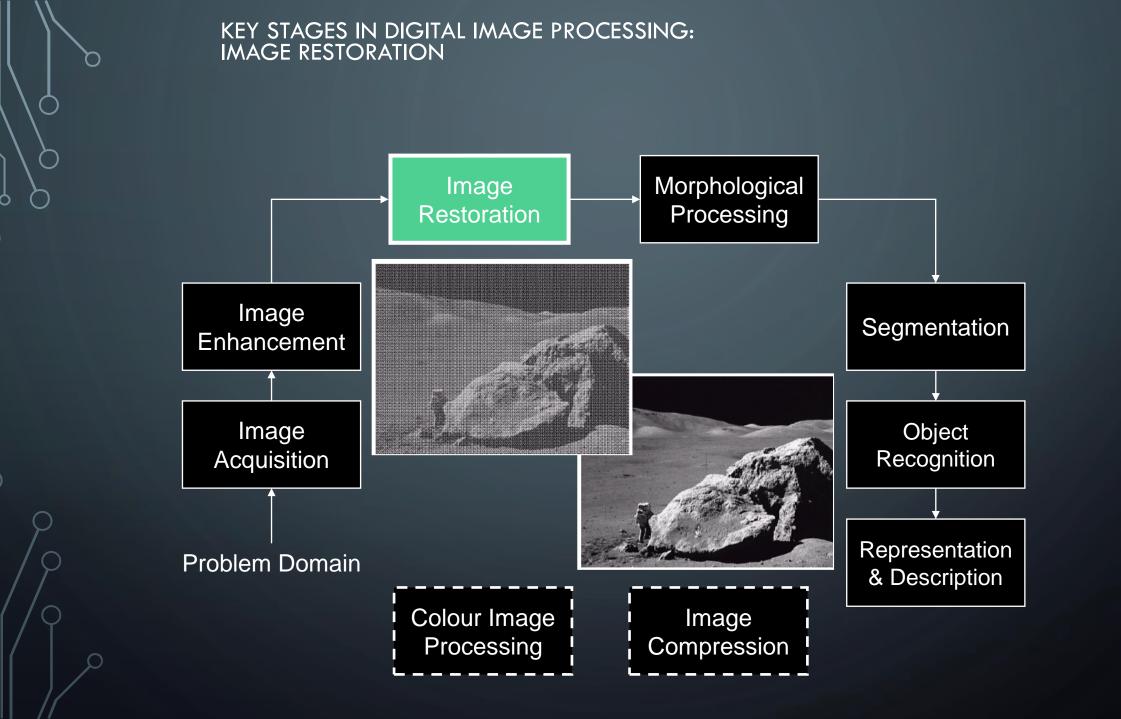




 \bigcirc

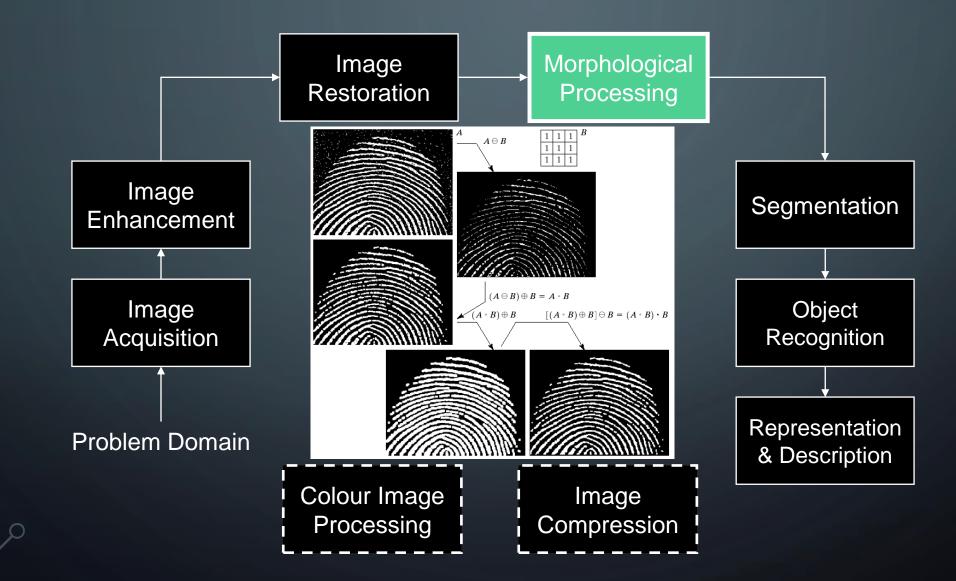
KEY STAGES IN DIGITAL IMAGE PROCESSING: IMAGE ENHANCEMENT



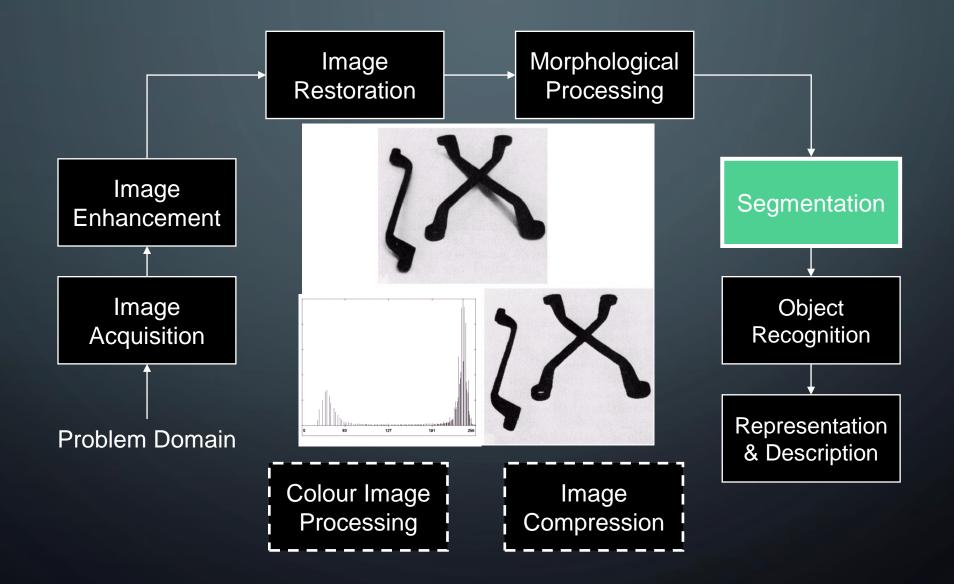


/

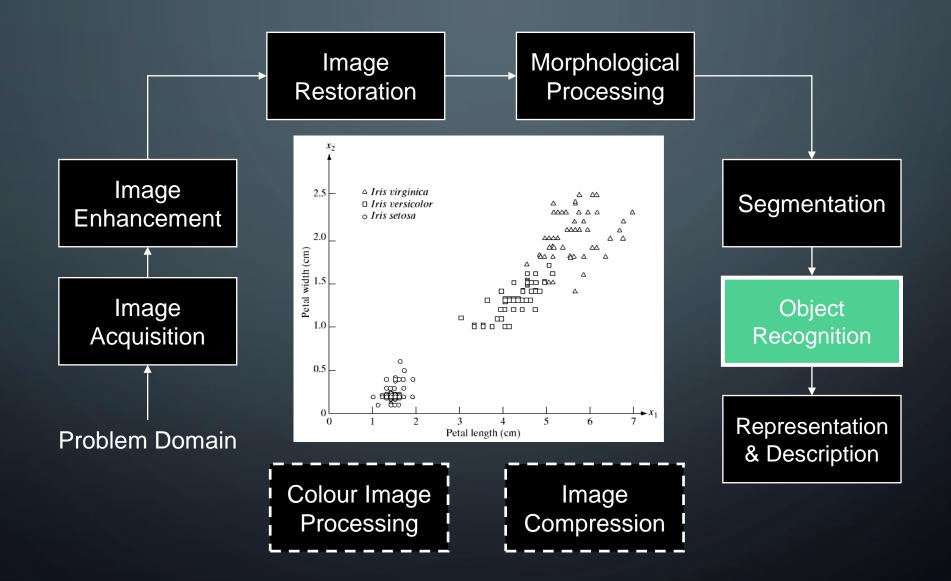
KEY STAGES IN DIGITAL IMAGE PROCESSING: MORPHOLOGICAL PROCESSING



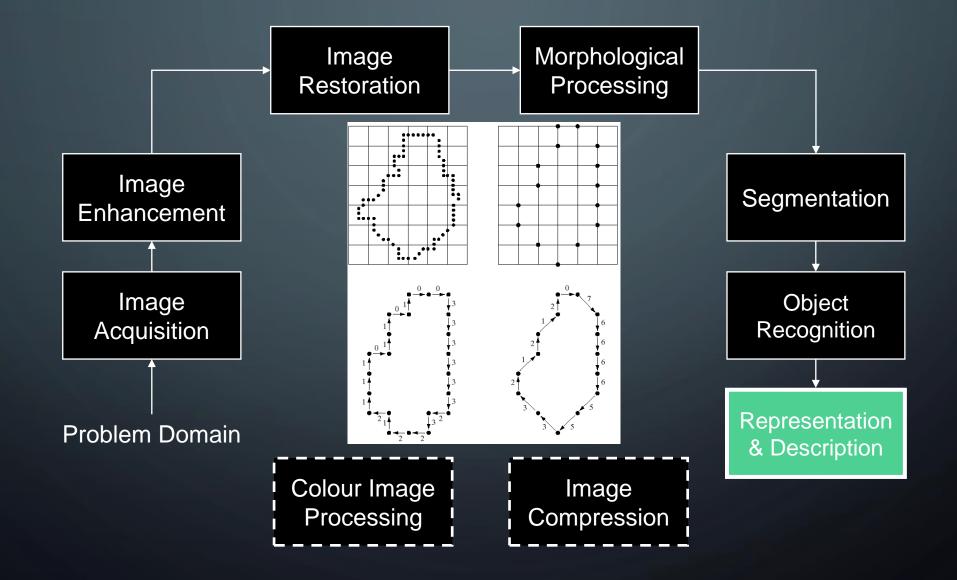
KEY STAGES IN DIGITAL IMAGE PROCESSING: SEGMENTATION



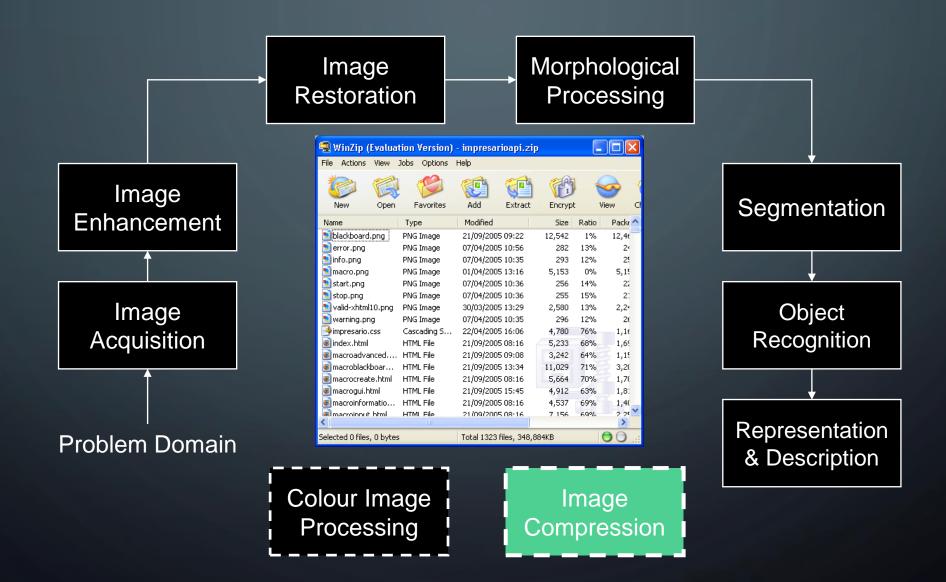
KEY STAGES IN DIGITAL IMAGE PROCESSING: OBJECT RECOGNITION



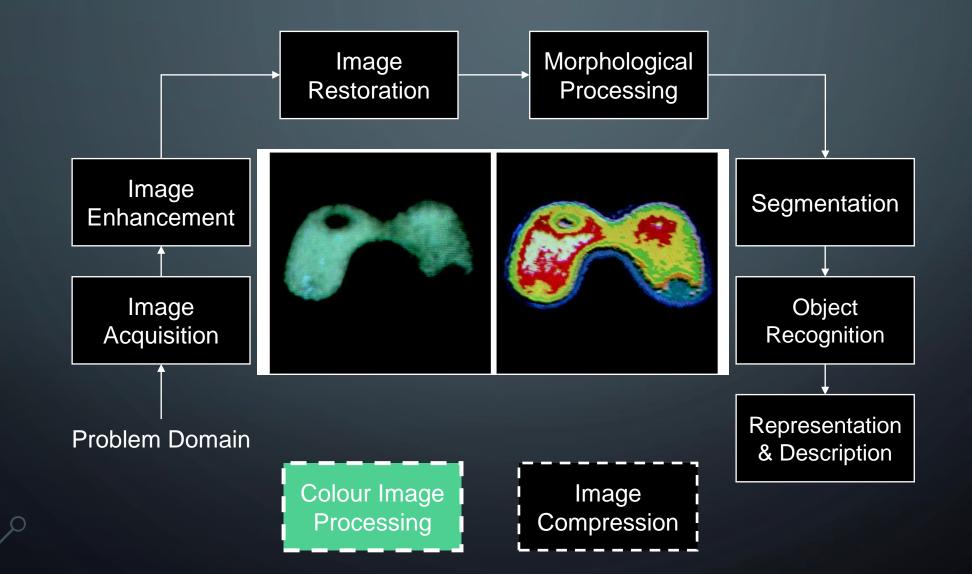
KEY STAGES IN DIGITAL IMAGE PROCESSING: REPRESENTATION & DESCRIPTION

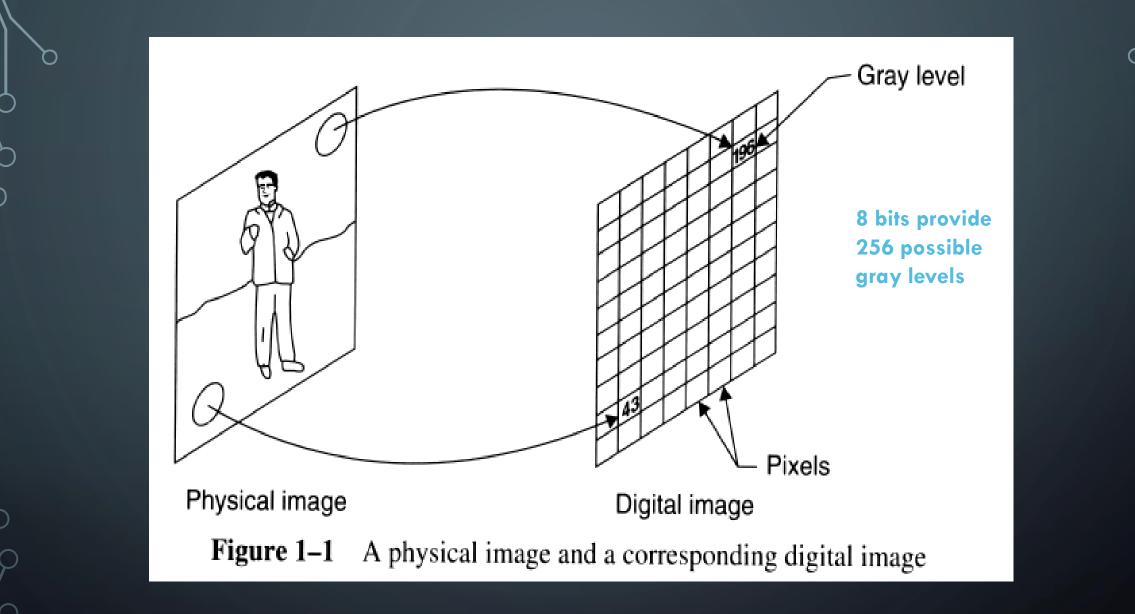


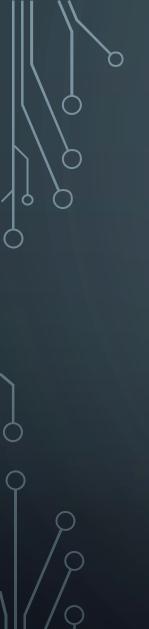
KEY STAGES IN DIGITAL IMAGE PROCESSING: IMAGE COMPRESSION



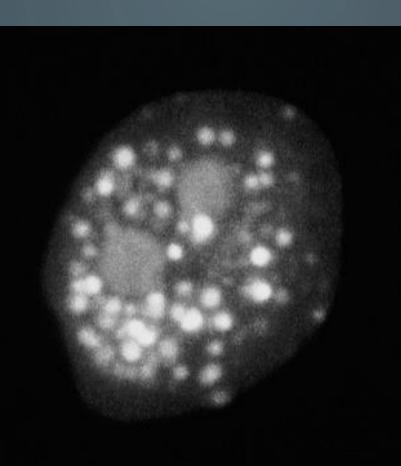
KEY STAGES IN DIGITAL IMAGE PROCESSING: COLOUR IMAGE PROCESSING





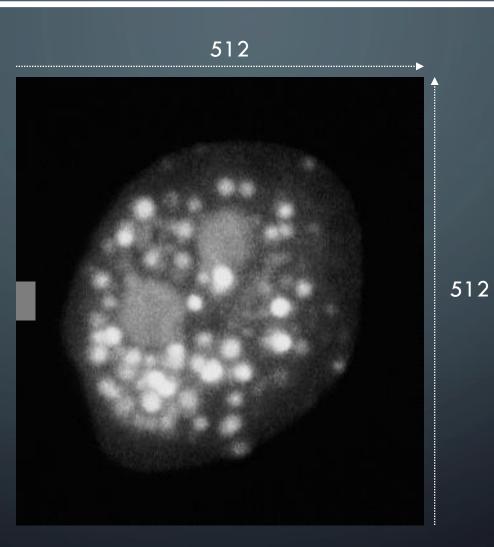


How does this translate from an image into an image map?

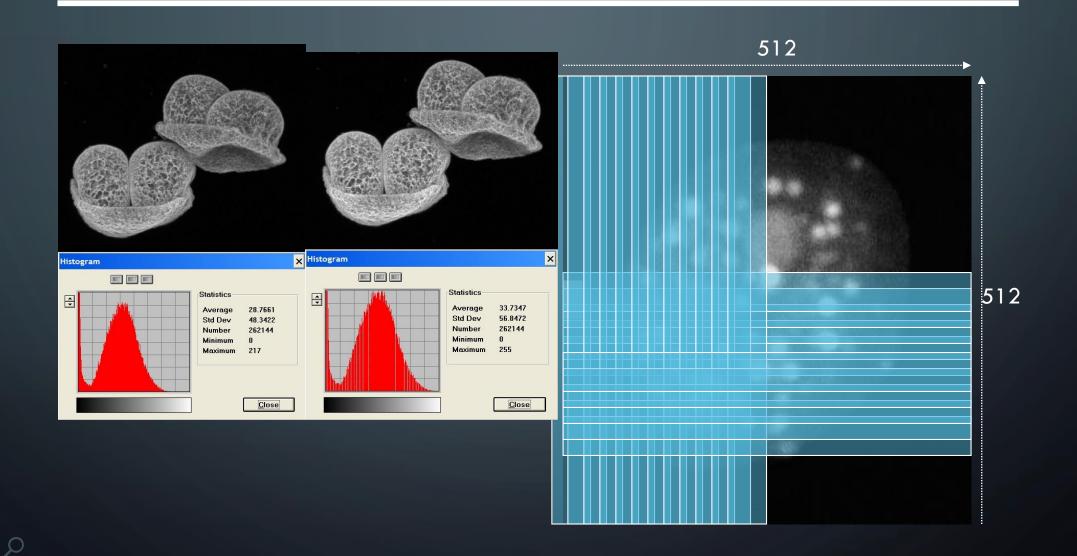


COPYRIGHT J. PAUL ROBINSON, STEVE KELLEY PURSUE COMPARED CONTRACTOR CONTRACTOR CONTRACTOR

How does this translate from an image into an image map?

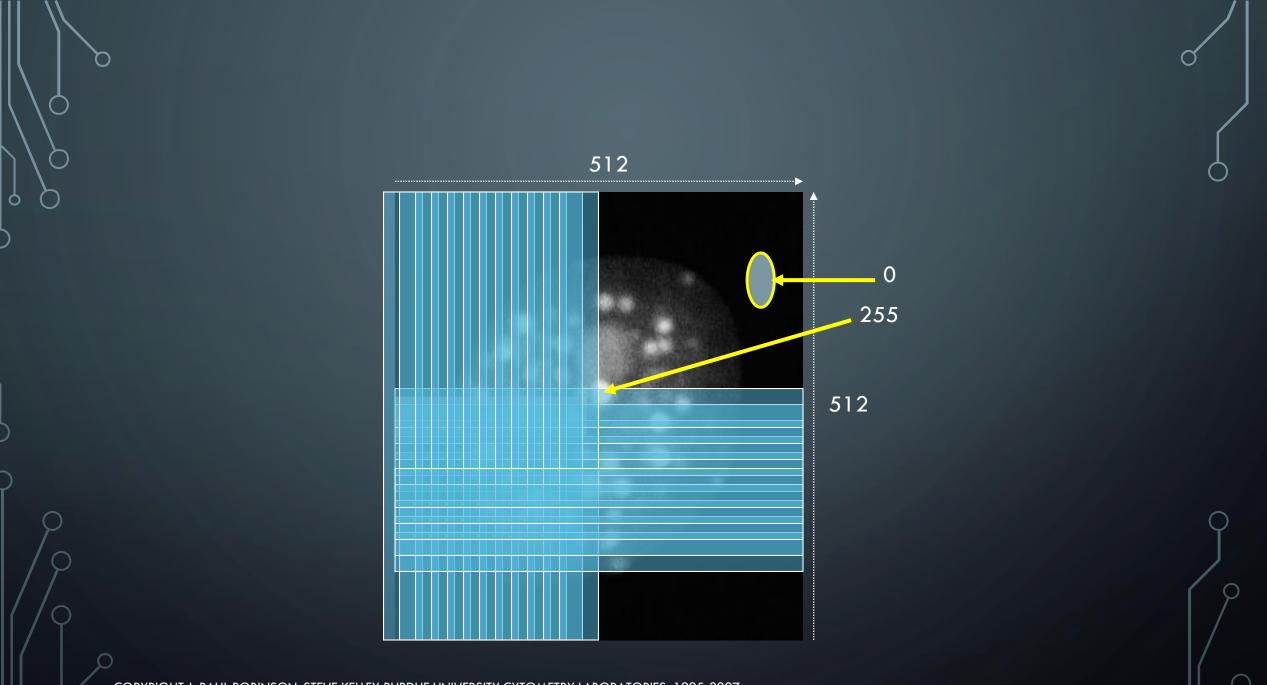


How does this translate from an image into an image map?



_					<u>D</u> ata <u>W</u> ind												_ 5
D	🛩 日	🖨 🖪 🖇		ኤ 🖻 🛍	ダ 🗠 -	🔮 Σ 🥬	f≈ ĝ↓ 🛍	. 🕐 🐥 🔤 Ari	al	 ■ 10 	• B .	Ι∐≣		\$ %	, 镡	🛄 • 🕭 •	<u>A</u> -
_	A1	<u> </u>	=	P2	_	_	_	-									
1	A	В		С	D	E	F	G	Н		J	K	L	М	N	0	P
2	<u>- 2</u> 25	5	255														
3	25		200														
4		3	6	3	3	6	3	6	3	6	3	6	3	6	6	6 3	3
5		6	3	6	2	3	6	3	6	3	6	3		3	2		
6		3	6	3	6	2	6	3	6	2	3	6	2	6	3	3 3	3
7		6	3	2	3	6	3	2	3	6	2	3		3	6		6
8		3	6	3	6	3	6	3	6	2	3	6		6	3		-
9		6	3	6	3	6	3		3	6	3	6		6	2		
10		2	3	6	3	2	6	3	6	3	6	3		6	3		
11		6	2	6	3	6	3	2	6	3	2	6		2	3		
12 13		3 2	6 3	3	2	3	6	2	3	6 6	3	2		6	2		
13		6	5	2	6	3	 6	3	2	6	3	6			3		
15		3	3	3	2	3	6	3	26	3	2	6		6	2		
16		6	6	3	6	2	6	3	2	6	3	6		2	3		-
17		2	3	6	3	- 6	3		3	3	- 6	2		- 6	2		
18		6	2	6	6	3	2		2	6	3	2		3	6		
19		6	3	2	6	3	6	3	6	3	6	6	3	6	2	2 3	3
20		3	6	3	2	3	2		3	6	2	3		6	3		
21		2	6	3	6	6	3		2	6	3	6		2	6		
22		3	3	6	2	3	6	3	6	3	6	3		2	3		
23		6	6	3	6	3	6	2	3	2	2	2		6	2		
24 25		2	3	6 2	3	2	2	3	6	3	6	3		3			
25 26		6 2	3 6	2	6 2	3	6	2	6 6	2	3	6		2			
28 27		6	3	6	2	6	3		3	6	3	6		2	6		
28		3	3	6	2	6	3		6	3	2	6		6	3		
29		6	2	3	6	3	6	6	3	6	3	6		3	6		
30		3	6	3	6	3	6	2	3	2	6	3		6	3		
31		2	6	3	6	2	3	6	3	6	3	6		6	3	3 6	6
32		3	6	3	6	3	6	6	2	6	3	2	6	3	6		
33		3	6	6	3	6	3		6	3	6	3		2	6		
34		6	3	3	6	3	6	6	6	3	2	6		6	3		
35		3	6	6	3	2	3	3	6	2	6	3		3	6		
36		2	3	6	3	6	6	3	6	3	3	6		6	6		
37		6	3	6	2	3	6	2	3	6	6	3		2	3		
38		3 2	2	6	3	6 6	3		6	3	2	6		6	3 8		
39 40		6	ь З	3 6	3	3	 6	2	2	3				3 6			
40		3	2	6	2	6	3		2	6	3	6		6	3		
42		3	6	3	 6	3	6	3	6	2	6	3		3	6		
43		6	3	2	3	6	2		3	2	6	3		3	2		
44		6	3	- 6	2	6	- 3		3	- 6	3	6		6	2		
45		3	6	2	6	3	6	3	6	3	6	6		6	3		
46	► ►\D	2	_6_	3	6	3	6	3	6	2		З	6	3	P	i P	i .
	▶ ▶ \ D dy	LEPMN1 /															Þ

0



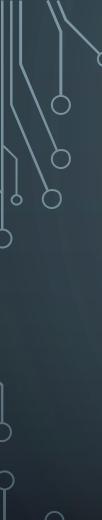


IMAGE SIZE

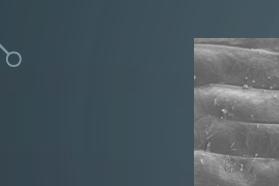
- The higher the resolution of the image, the more data points there are
- Very high resolution files need to be reduced in size to store the data
- We need to employ compression algorithms to reduce the file size
- But the goal is to maintain the quality of the image

Compression

Run Length Encoding – count the number of identical values, replace the values with a count followed by the value

				RUN LENG	STH ENCO	DING								
			Data File											
0	0	0	0	0	1	1	0	0	0					
1	0	0		2	0	0	1	1	1					
1	1	0	0		0	1	0	0	1					
0	2	0	1	0	1	0	0	1	1					
			Lossless	Run-length	encoding									
5	0	2		3	0									
1	1	2	0	1	1	1	2	2	0	3	1			
2	1	4	0	1	1	2	0	1	1					
1	0	1	2	1	0	1	1	0	1	1	2	c C) 2	2 1
			Lossy Ru	n-length er	ncoding									
10	0		_	_	_									
10	0													
10	0													
10	0													

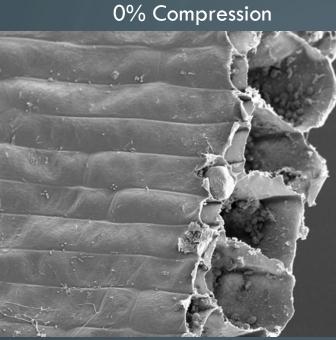
A kind of compression algorithm which replaces sequences ("runs") of consecutive repeated haracters



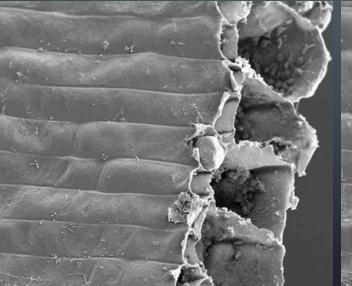
76k

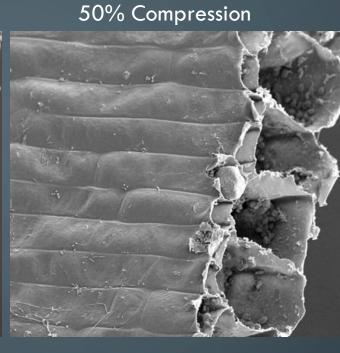
28k

0

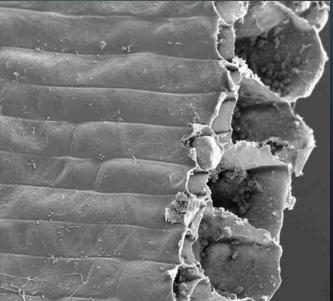


75% Compression





80% Compression



26k

42k

What is image analysis?

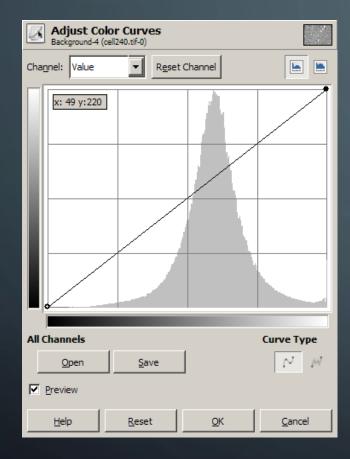
Brightness and contrast variation are controlled by a system input-output curve.

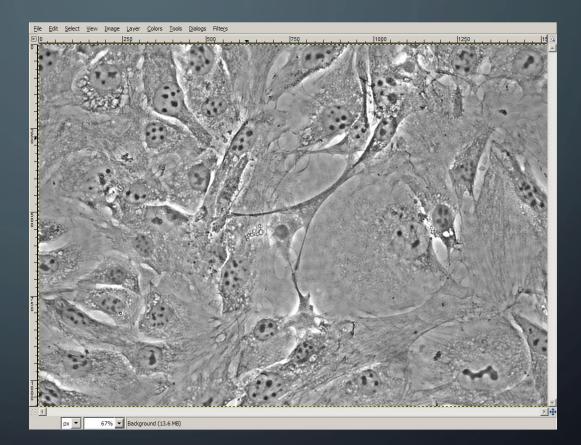
Spatial kernel filtering and median filtering use information local to a particular area of an image to modify that area.

Digital image analysis is "Data Analysis".

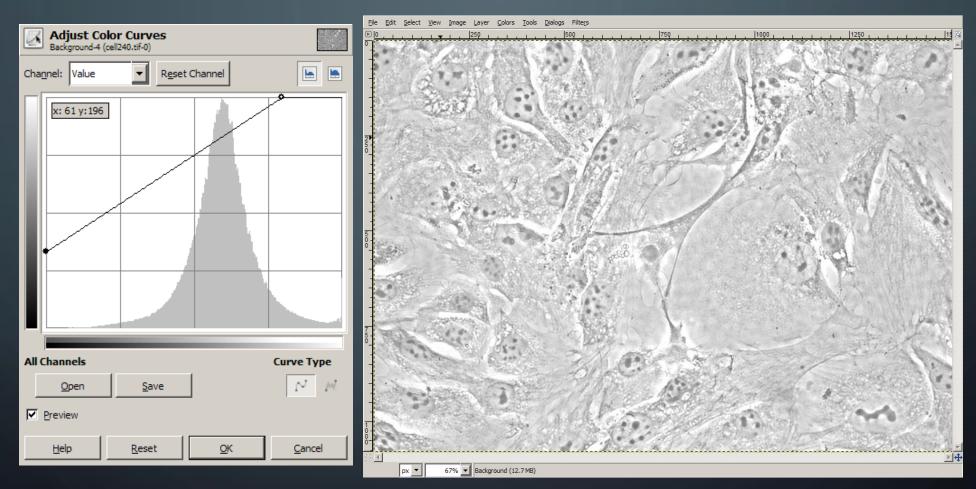
Input-Output Curve

О

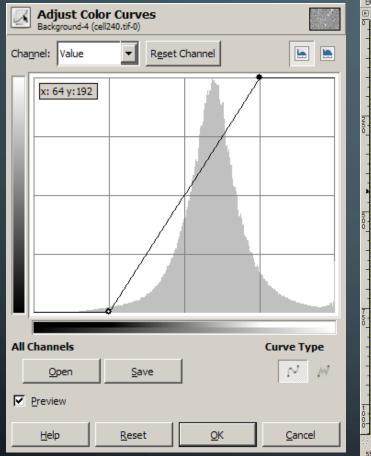


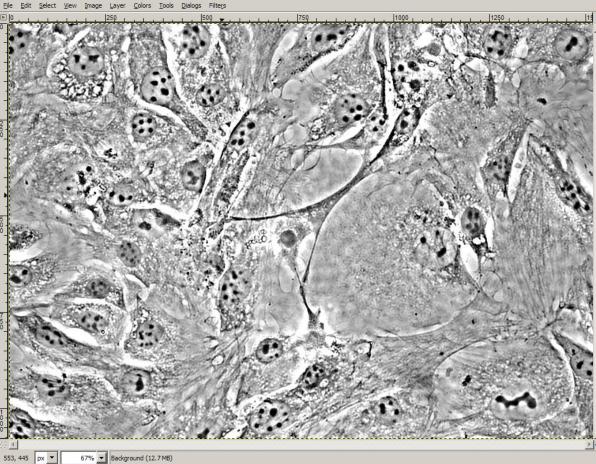


Input-Output Curve

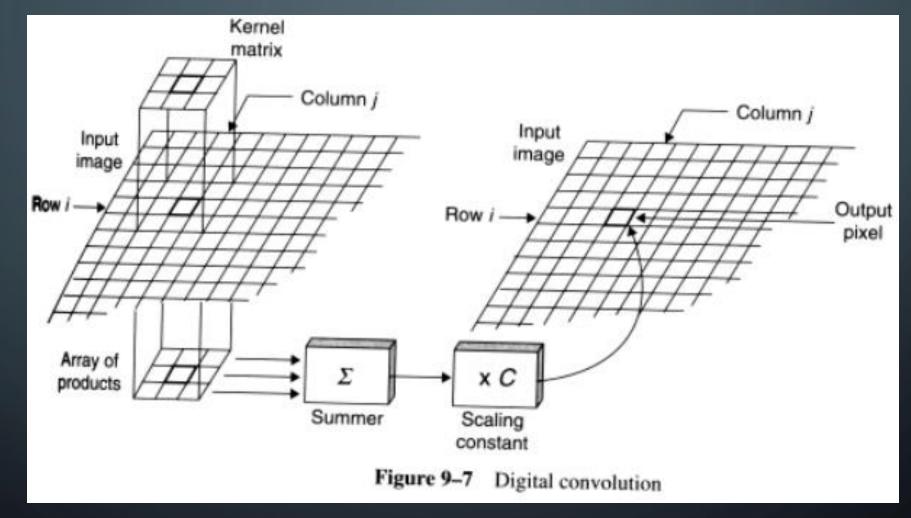


Ο





Mechanics of kernel convolution



COPYRIGHT J. PAUL ROBINSON, STEVE KELLEY PURDUE UNIVERSITY CYTOMETRY LABORATORIES 1995-2007

0

Section of image file

Gaussian kernel filter

О

Divisor=1+2+1+2+4+2+1+2+1 =16

127	129	123	121	124	130
139	134	133	134	137	137
127	130	133	134	132	131
123	122	131	129	129	125
118	122	122	124	123	122
124	121	117	116	114	118
127	121	114	110	109	114
136	124	122	117	111	109

COPYRIGHT J. PAUL ROBINSON, STEVE KELLEY PURDUE UNIVERSITY CYTOMETRY LABORATORIES 1993-2007-68 OF 29 SLIDES Smoothing

	📓 cells2.pgm														
	A	В	C	D	E	F	G	Н		J	K	L	M	N	
2															
3															
4		2 x 129			124	130									
5		4 x 134	2 x 133	134	137	137				130.75					
E		2 x 130	1 x 133	134	132	131									
7				129	129	125									
8					123	122									
9				116	114	118									
1					109	114									
1					111	109									
1					110	106									_
1					113	105									<u> </u>
1					121 138	116 122									_
1					130	122									_
1					138	123									
1		1/3	105	102	140	134									-
1	2														
2	י 1														
2	1														
2		1 x 129	2 x 123	1 x 121	124	130									
2	3 131	2 x 134		2 x 134	124	130				130.75	130.875				
2	1 127	1 x 130		1 x 134	137	137				100.70	100.070				
2	123			129	129	125									-
2	5 118				123	122									
2	7 124				114	118									
2	3 127				109	114									
2	3 136				111	109									
3	139				110	106									
3	1 157			124	113	105									
3	2 161	151			121	116									
3	3 178				138	122									
29 SL 3	4 172				138	123									
		173	163	162	148	134									
3	6														

COPYRIGH 69 OF 29 S

 \Box

0

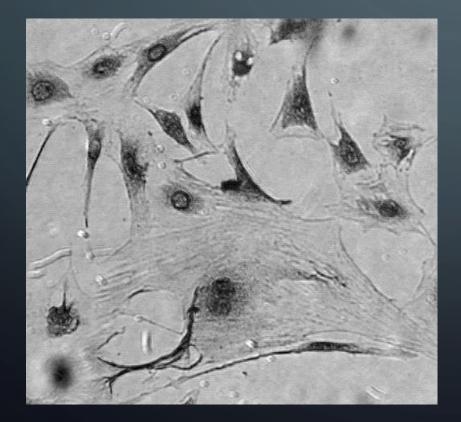
What is image manipulation?

For most purposes, a one-to-one mapping of pixels to data values is most useful, but the internal representation of the data values may be different for different file formats.

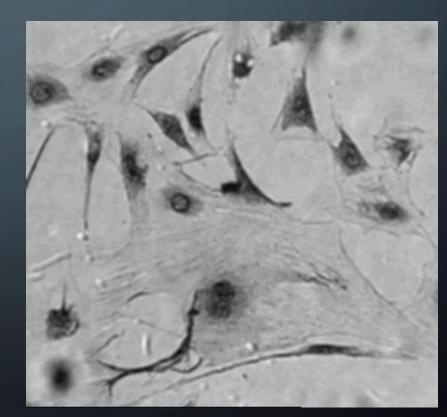
Files can be either compressed, or not, and compression can be either lossy or not. For scientific analysis lossy compression is unacceptable; it may be useful for overview presentations.

Image manipulation can take place before image acquisition, during image acquisition, on the digital data, or during recreation of an output image.

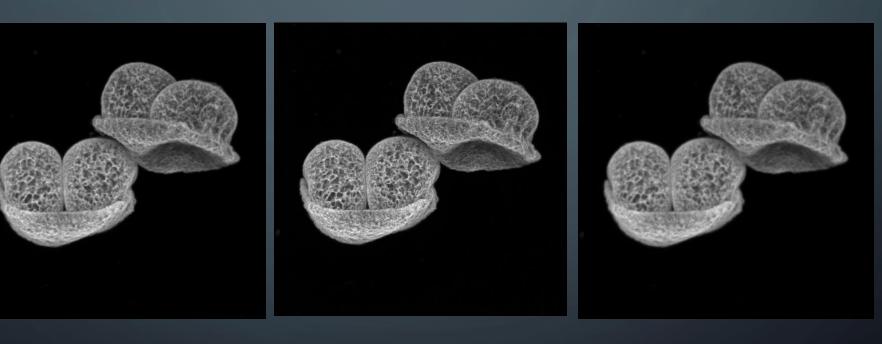
COPYRIGHT J. PAUL ROBINSON, STEVE KELLEY PURDUE UNIVERSITY CYTOMETRY LABORATORIES 1995-2007



0



 \cap

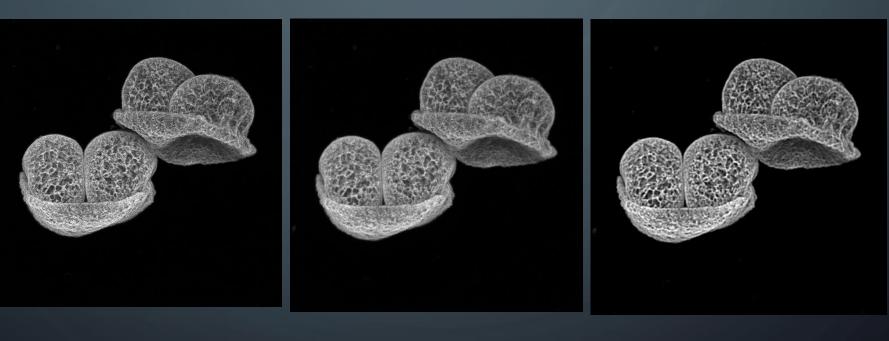


3 x 3 Smooth

original

9 x 9 Smooth

SHARPENING

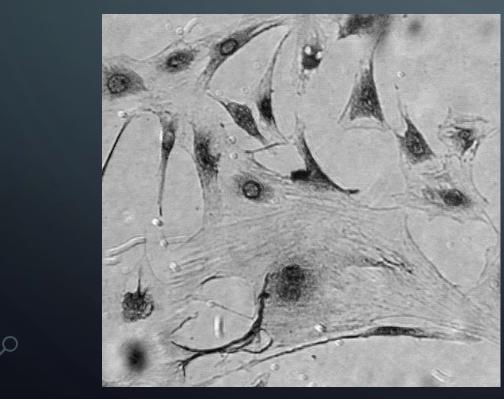


3 x 3 Sharpen

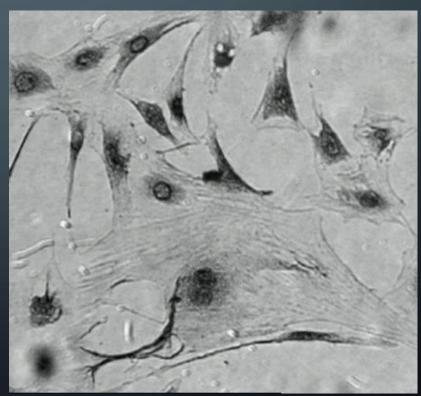
original

9 x 9 Sharpen

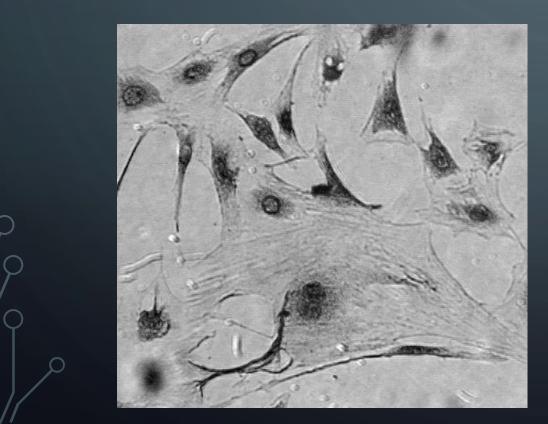
COPYRIGHT J. PAUL ROBINSON, STEVE KELLEY PURDUE UNIVERSITY CYTOMETRY LABORATORIES 1995-2007

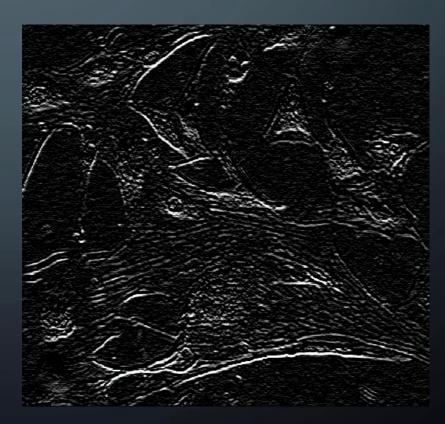


0



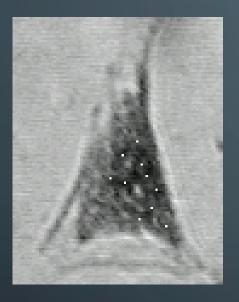
COPYRIGHT J. PAUL ROBINSON, STEVE KELLEY PURDUE UNIVERSITY CYTOMETRY LABORATORIES 1995-2007



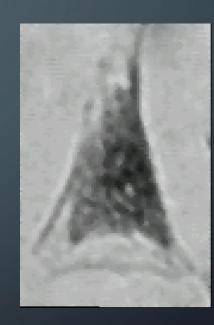


 \cap

Application of a median filter



Median Filter							
Radius 1	⊙ Median ○ Maximum ○ Minimum						
Selection Blend O	★ Strength 100 ★						



LOSSY COMPRESSION

Most filters will result in lossy compression

This means once you compress the image, you can never return the image back to its original self

One needs to be careful with biological data to ensure that you preserve the raw files

Lossless: TIF, BMP, GIF

Lossy: jpg, png

SUMMARY

- Structure of data files
- Image manipulation
- Kernels
- Filters