Short cut Distillation

Maurizio Fermeglia

<u>Maurizio.fermeglia@units.it</u> Department of Engineering & Architecture University of Trieste

Agenda

- Short cut methods introduction
- Fenske equation
- Underwood equations
- Gilliland correlation method

Short cut methods

- In the past, when simulators were not available, different approximate methods were developed.
- The most relevant is the Fenske-Underwood-Gilliland that combines:
 - Underwood equation for the minimum reflux estimation;
 - Fenske equation for the minimum number of ideal stages estimation;
 - Gilliland correlation for the estimation of the number of ideal stages as a function of reflux ratio and the minimum number of ideal stages

Short cut methods

- Some assumptions are necessary
 - constant relative volatility in the column
 - constant molar flow rates in the two column sections
- Short cut methods are based on key components
 - Components that are present in both distillate and residual
 - Light key component is the lightest component that is present in the residue in appreciable concentration
 - Heavy key component is heaviest component that is present in the distillate in appreciable concentration

 Short cut methods are not much used today
 The DSTWU distillation package in Aspen Plus uses the Winn-Underwood-Gilliland short-cut methods and correlation.

Temperature and concentration profiles in the column

- Distillation of a 4 component mixture:
 - n-C4, i-C5, n-C5, n-C6
- Temperature always raise from top to bottom
- Composition profiles of intermediate components have a maximum
- Non-key components are separated in few stages and they behave as inert in the other stages

MCD Short-Cut Methods – Limiting Conditions

MCD short-cut methods are based upon the limiting conditions for a distillation column:

Reflux Ratio	L/V	L/D	N
Total	$(L/V)_{max} = 1$	Ø	N _{min}
Actual	L/V	L/D	Ν
Minimum (L/V) _{min} (L/D) _{min}	$N_{max} = \infty$	

- The actual or operating reflux ratio will lie between the total and minimum reflux ratios $(L/V)_{min} < L/V < 1$.
- The operating reflux ratio, L/D, is often specified as a multiple of the minimum reflux ratio, (L/D)_{min}, e.g.,

$$L/D = 2 \cdot (L/D)_{min}$$

Fenske (Winn) Equation – N_{min}

While at times we cannot obtain a rigorous solution for complex systems, one can often obtain rigorous solutions for complex systems at limiting conditions.

 One such limiting condition for multi-component systems is the solution for N_{min} at total reflux. This solution is known as the Fenske equation or Fenske method.

While we cannot define a relative volatility for multicomponent systems directly, we can begin with defining a relative volatility for component *i* with respect to a reference component in the multi-component system:

Total reflux column.

For a column at total reflux starting at the bottom of the column (the reboiler), we can write :

$$\left(\frac{Y_i}{Y_{ref}}\right)_{bot} = \left(\alpha_{i-ref}\right)_{bot} \left(\frac{X_i}{X_{ref}}\right)_{bot}$$

• For total reflux, we have, $Y_{i, bot} = x_{i, N}$ $Y_{ref, bot} = x_{ref, N}$

- where N is the Nth stage at the bottom of the column above the reboiler
- Substituting these relationships into the previous equation yields

$$\left(\frac{\mathbf{x}_{i}}{\mathbf{x}_{ref}}\right)_{N} = \left(\alpha_{i-ref}\right)_{bot} \left(\frac{\mathbf{x}_{i}}{\mathbf{x}_{ref}}\right)_{bot}$$

Similarly, if we step up the column to the N-1 stage, we have

$$\left(\frac{\mathbf{x}_{i}}{\mathbf{x}_{ref}}\right)_{N-1} = \left(\alpha_{i-ref}\right)_{N} \left(\frac{\mathbf{x}_{i}}{\mathbf{x}_{ref}}\right)_{N}$$

Eqs. above can be combined to give

$$\left(\frac{x_i}{x_{ref}}\right)_{N-1} = \left(\alpha_{i-ref}\right)_N \left(\alpha_{i-ref}\right)_{bot} \left(\frac{x_i}{x_{ref}}\right)_{bot}$$

Separation Processes – Maurizio Fermeglia

Trieste, 6 April, 2021 - slide 9

If we continue to move up the column we obtain to the top of the column (the condenser) or distillate, we obtain

$$\begin{pmatrix} x_{i} \\ x_{ref} \end{pmatrix}_{dist} = (\alpha_{i-ref})_{1} (\alpha_{i-ref})_{2} (\alpha_{i-ref})_{3} \dots (\alpha_{i-ref})_{N-1} (\alpha_{i-ref})_{N} (\alpha_{i-ref})_{bot} \left(\frac{x_{i}}{x_{ref}}\right)_{bot}$$
Defining α_{i-ref} as the geometric average relative volatility yields:
$$a_{i-ref} = \left[(\alpha_{i-ref})_{1} (\alpha_{i-ref})_{2} (\alpha_{i-ref})_{3} \dots (\alpha_{i-ref})_{N-1} (\alpha_{i-ref})_{N} (\alpha_{i-ref})_{bot} \right]^{/N} min$$
Equation above becomes

$$\left(\frac{x_{i}}{x_{ref}} \right)_{dist} = (\alpha_{i-ref})^{N} min \left(\frac{x_{i}}{x_{ref}} \right)_{bot}$$
Solving Eq. above for N_{min}

$$N_{min} = \frac{\ln \left[\left(\frac{x_{i}}{x_{ref}} \right)_{dist} / \left(\frac{x_{i}}{x_{ref}} \right)_{bot} \right]}{\ln(\alpha_{i-ref})}$$

Eq. can be rewritten in terms of the fractional recoveries as

$$N_{min} = \frac{\ln \left[\frac{(Dx_i/Dx_{ref})_{dist}}{(Bx_i/Bx_{ref})_{bot}} \right]}{\ln(\alpha_{i-ref})}$$

Separation Processes – Maurizio Fermeglia

Trieste, 6 April, 2021 - slide 10

Equations may be rewritten in terms of fractional recovery: the Fenske equation for N_{min} is obtained

The fractional recoveries for component i are determined from:

 $(Dx_A)_{dist} = (FR_A)_{dist} Fz_A$ $(Bx_A)_R = [1 - (FR_A)_{dist}] Fz_A$

Substituting one gests the Fenske equation for multicomponent systems, (FR_A)_{dist} is the fractional recovery of A in the distillate, while (FR_B)_{bot} is the fractional recovery of B in the bottoms.

$$N_{min} = \frac{\ln \left\{ \frac{(FR_A)_{dist}(FR_B)_{bot}}{[1 - (FR_A)_{dist}][1 - (FR_B)_{bot}]} \right\}}{\ln \alpha_{AB}}$$

Calculation with the Fenske equation is straightforward if fractional recoveries of the two keys, A and B, are specified.

- Equation can be used directly to find N_{min}.
- The relative volatility can be approximated by a geometric average.

 Once N_{min} is known, the fractional recoveries of the non-keys (NK) can be found by writing Eq. for an NK component, C, and either key component.

Fenske Equation Methodology

The use the Fenske equation to determine N_{min} depends upon what is defined in the problem.

- If two fractional recoveries are specified, one can solve Fenske equation and all of the ancillary equations directly.
- If one is given two compositions, x_i and x_j, then one needs to make some assumptions...

Underwood Equations – (L/D)min

- The other limiting condition for multi-component systems is the solution for the minimum reflux ratio, (L/D)_{min}, which gives us an infinite number of stages.
- This method is known as the Underwood method or the Underwood equations.

First underwood equation

$$\Delta \mathbf{V}_{\text{feed}} = \mathbf{V}_{\text{min}} - \overline{\mathbf{V}}_{\text{min}} = \sum_{i=1}^{c} \frac{\alpha_{i-\text{ref}} \, \text{Fz}_{i}}{\alpha_{i-\text{ref}} - \phi}$$

- Where ΔV_{feed} is the change in vapor flow rate at the feed stage. If q is known then $\Delta V_{\text{feed}} = F(1-q)$
- Second Underwood equation

$$V_{\min} = \sum_{i=1}^{c} \frac{\alpha_{i-ref}(Dx_{i,dist})}{\alpha_{i-ref} - \phi}$$

Once V_{min} is known, L_{min} is calculated from the mass balance

Underwood Equations – Cases

There are 3 cases that we need to consider when using the Underwood equations:

Case A: Non-keys do not distribute.

Case B: Use the results from the Fenske equation and assume that the distributions of non-keys determined at total reflux are also valid at minimum reflux.

Case C: Exact solution without further assumptions.

Underwood Equations – Case A Methodology

Case A: Assume all NK's do not distribute: there are no intermediate NK's.

- 1. Specify the LK, HK, LNK's and HNK's.
- 2. Determine q for the feed conditions.
- **3.** Determine all α_{i-ref} 's where the reference component is the HK.
- 4. Determine ΔVF from Eq.:

$$\Delta V_{\mathcal{F}} = F(1-q)$$

5. Solve following Eq. for a single root, φ :

$$\Delta V_{F} = \sum_{i=1}^{C} \frac{\alpha_{i-ref}F_{ZF,i}}{\alpha_{i-ref}-\phi}$$

Note that

 $\alpha_{LK-ref} < \phi < \alpha_{HK-ref}$

- and choose the guess value between α_{LK} and α_{HK} .
- If one chose the HK as the reference for the relative volatilities, $\alpha_{HK-ref} = 1$.

Underwood Equations – Case A Methodology (continued)

6. Determine the NK rates from the assumption that the NK's do not distribute:

 $(\mathsf{Dx}_{HNK i})_{dist} = 0$ $(\mathsf{Dx}_{LNK i})_{dist} = Fz_{F, LNK i}$

7. Determine the LK and HK rates from Eqs: $(Dx_{LK})_{dist} = (FR_{LK})_{dist}Fz_{F, LK}$

$$(\mathsf{Dx}_{HK})_{dist} = \left[1 - (FR_{HK})_{bot}\right] Fz_{F, HK}$$

8. Determine V_{min} from Eq.:

$$V_{\min} = \sum_{i=1}^{d} \frac{\alpha_{i-\text{ref}}(Dx_{i})_{\text{dist}}}{\alpha_{i-\text{ref}} - \phi}$$

C.

9. Determine D from Eq.:

$$\mathsf{D} = \sum_{i=1}^{N} (Dx_i)_{dist}$$

C

Separation Processes – Maurizio Fermeglia

Underwood Equations – Case A Methodology (continued)

10. Determine L_{min} from Eq.:

 $L_{min} = V_{min} - D$

11. Determine (L/V)_{min} using:

$$(L/V)_{\min} = L_{min}/V_{min}$$

12. Determine (L/D)_{min} from Eq.:

$$(L/D)_{\min} = \frac{(L/V)_{\min}}{1 - (L/V)_{\min}}$$

Separation Processes – Maurizio Fermeglia

Underwood Equations – Case B Methodology

- Case B: Assume that the distribution <u>of NKs determined</u> from Fenske eq. at total reflux are also valid at minimum reflux.
 - 1. Specify the LK, HK, NK's, LNK's and HNK's.
 - 2. Determine q for the feed conditions.
 - 3. Determine all α_{i-ref} 's where the reference component is the HK.
 - 4. Determine ΔVF from Eq.: $\Delta V_F = F(1-q)$
 - 5. Solve following Eq. for a single root, φ :

$$\Delta V_{F} = \sum_{i=1}^{C} \frac{\alpha_{i-ref} F_{Z_{F,i}}}{\alpha_{i-ref} - \phi}$$

- Note that
 - $\alpha_{LK-ref} < \phi < \alpha_{HK-ref}$
- and choose the guess value between α_{LK} and α_{HK} .
- If one chose the HK as the reference for the relative volatilities, $\alpha_{HK-ref} = 1$.

Underwood Equations – Case B Methodology (continued)

6. Determine the NK rates from the assumption that the distribution of NKs determined from Fenske eq. at total reflux are also valid at minimum reflux.

$$(\mathsf{Dx}_{NK i})_{dist} = (Dx_{NK i})_{dist, Nmin}$$

7. Determine the LK and HK rates from Eqs:

 $(\mathsf{Dx}_{LK})_{dist} = (FR_{LK})_{dist}F^{Z}F, LK$ $(\mathsf{Dx}_{HK})_{dist} = [1 - (FR_{HK})_{bot}]F^{Z}F, HK$

8. Determine V_{min} from Eq.:

$$V_{\min} = \sum_{i=1}^{c} \frac{\alpha_{i} - \operatorname{ref}^{(Dx_{i})} \operatorname{dist}}{\alpha_{i} - \operatorname{ref}^{-\phi}}$$

• Determine D from Eq.:
$$D = \sum_{i=1}^{c} (Dx_{i}) \operatorname{dist}^{-\phi}$$

9

Underwood Equations – Case B Methodology (continued)

10. Determine L_{min} from Eq.:

 $L_{min} = V_{min} - D$

11. Determine (L/V)_{min} using:

$$(L/V)_{\min} = L_{min}/V_{min}$$

12. Determine (L/D)_{min} from Eq.:

$$(L/D)_{\min} = \frac{(L/V)_{\min}}{1 - (L/V)_{\min}}$$

Separation Processes – Maurizio Fermeglia

Underwood Equations – Case C Methodology

Case C: Exact solution without further assumptions.

- 1. Specify the LK, HK, NK's, LNK's and HNK's.
- 2. Determine q for the feed conditions.
- 3. Determine all α_{i-ref} 's where the reference component is the HK.
- **4.** Determine ΔVF from Eq.:

5. Solve following Eq. for a single root, φ :

 $\Delta V_{F} = \sum_{i=1}^{L} \frac{\alpha_{i-ref}F_{ZF,i}}{\alpha_{i-ref}-\phi}$

 $\Delta V_F = F(1-q)$

Note that as an example, a C=5 system could be specified as:

 $\alpha_{\text{LNK 1-ref}} < \phi_1 < \alpha_{\text{LNK 2-ref}} < \phi_2 < \alpha_{\text{LK-ref}} < \phi_3 < \alpha_{\text{HK-ref}} < \phi_4 < \alpha_{\text{HNK 1-ref}}$

• Choose a guess value for each ϕ between the α 's. If one chose the HK as the reference for the relative volatilities, $\alpha_{LHK-ref} = 1$.

Underwood Equations – Case C Methodology (continued)

6. Determine the LK and HK rates from Eqs:

 $(Dx_{LK})_{dist} = (FR_{LK})_{dist}F^{Z}F, LK$ $(Dx_{HK})_{dist} = [1 - (FR_{HK})_{bot}]F^{Z}F, HK$ 7. Determine V_{min} from Eq.: $V_{min} = \sum_{i=1}^{C} \frac{\alpha_{i}-ref(Dx_{i})_{dist}}{\alpha_{i}-ref} - \phi$ 8. Determine D from Eq.:

$$\mathsf{D} = \sum_{i=1}^{C} (Dx_i)_{dist}$$

Separation Processes – Maurizio Fermeglia

Underwood Equations – Case C Methodology (continued)

9. Determine L_{min} from Eq.:

 $L_{min} = V_{min} - D$

10. Determine (L/V)_{min} using:

$$(L/V)_{\min} = L_{min}/V_{min}$$

11. Determine (L/D)_{min} from Eq.:

$$(L/D)_{\min} = \frac{(L/V)_{\min}}{1 - (L/V)_{\min}}$$

Gilliland Correlation – N and N_F

Empirical relationship which relates the number of stages, N, at finite reflux ratio, (L/D)_{actual} to the N_{min} and (L/D)_{min}.

- N_{min} is determined from the Fenske equation.
- (L/D)_{min} is determined from the Underwood equations.
- Gilliland correlation as modified by Liddle:

Validly limits of the diagram:

- N. components 2 < NC < 11
- Column Pressure : 0 < P < 40 bar
- Realtive volatility: 1.11 < α_{lk} < 4.05
- Reflux ratio min: $0.53 < r_{min} < 9.09$
- Minimum n. stages: $3.4 < N_{min} < 60.3$
- Thermal conditions: -0.42 < ϕ_F < 0.72.

Separation Processes – Maurizio Fermeglia

Aspen+ short cut methods

Using Shortcut method: DSTWU

DSTWU:

- DSTWU performs shortcut design calculations for single-feed, twoproduct distillation columns with a partial or total condenser.
- It assumes constant molal overflow and constant relative volatilities.
 - It is based on equations of:
 - Winn for Minimum number of stages
 - Underwood for Minimum reflux ratio
 - Gilliland for calculation of reflux ratio for a specified number of stages or the required number of stages for a specified reflux ratio
- For the specified recovery of light and heavy key components, DSTWU estimates:
 - Minimum reflux ratio
 - Minimum number of theoretical stages
- DSTWU then estimates one of the following:
 - Required reflux ratio for the specified number of theoretical stages
 - Required number of theoretical stages for the specified reflux ratio
- DSTWU also estimates the optimum feed stage location and the condenser and reboiler duties.

Using Shortcut method: DISTL & ConSep

DISTL:

- Distl simulates multistage multicomponent columns with a feed stream and two product streams.
 - Distl performs shortcut distillation rating calculations using Edmister approach: assumes constant mole overflow and constant relative volatilities.

ConSep:

- Use ConSep to develop design parameters and perform feasibility studies for distillation columns.
- It requires the definition of the splitting of three key components and the mapping of the others relative to key components

Example: benzene, toluene, cumene separation with short-cut methods

Components

Methods

Selection Per	troleum N	lonconvent	ional Enters	rise Database	Comments				
ect components									
Component	ID		Туре		Com	ponent na	me	Alias	
TOLUENE	Conve	vitional			TOLUENE			с7нв	
BENZENE	Conve	Innoin			BENZENE		1	сене	
CUMENE	Conve	ntional			ISOPROPYLE	ENZENE		C9H12-2	
		-			_	-	_		
Find E	ec Wizard	SFE Ass	iistant Us	er Defined	Reorder	Revie	w		
Aethods - Spec	cifications	(i+:							
Global FI	owsheet See	ctions I	Referenced	Commenta					
Property meth	ods & opti	ons		Method na	me				
Method filter	co	NOMMON	•	SRK		Me	hods Assistar		
Base method	SR	ĸ	-			- Inc		2	
Henry compo	nents		7.	Modif	y				
Petroleum c	alculation o	ptions		605		ESSRK			
Free-water r	nethod ST	EAMNBS	i 💦	Data set			10		
Water solub	ility 3		25	Liquid gar	TUTUB		2.0		
- Flectrolute c	alculation o	otions		Data set			×		
Chemistry II	5	10000		Liquid me	sar enthalpy	HLMXR	3		
V Use true	component	ts .		Liquid rise	aar vosume	VLMARL	H		
Main Flowst	neet × D	STWU (D	STWU) - Inpu	t FEED	MATERIAL)	× DST	WU (DSTWU) × DISTL	(Distl) - Stream
Mixed	CI Solid	NC Solid	i Flash Op	tions EO 0	Options C	osting	Comments		
Specific	ations								
Dark Turn	0			Vener Free		Com	position		
Plant type		essure		vapor ma	uon	Mo	le-Frac		
State var	iables								11/25
Tempera	ture			C		1	Compan	ent	Value
Pressure	have	-	-	atm		1	TOLGENE		0.3
Vapor fra	iction	-	1			1	BENZENE		0.4
Iotal flow	v basis	Mole		1	100	3	CUMENE		0.3
Total flow	v rate		100	kmol/hr					
Solvent					- 3				

Example: benzene, toluene, cumene separation with short-cut methods: DSTWU

Specifications Calculation	Options	Convergence	Comments	1
lumn specifications		Pressure		
Number of stages		Condenser	1	atm 🝷
Reflux ratio	-1.25	Reboiler	1	atm -
component recoveries		Condenser spe	cifications	
nt key		Total conde	mser	
mp TOLUENE	•	Partial cond vanor distill	lenser with a	a
10V	0.95	Partial cond	lenser with v	apor
savy key		and liquid o	distillate	
CUMENE		Distillate vapo	r fraction	0
cov	0.05			
-results		Theoretical	Reflu	ix ratio
results	▶ 6			4.65976
	> 7	í.		2.10013
	8	Ş		1.62371
	9	6		1.35263
	1	0		1.09655
	1	1	(0.974169
	1			
	1	2	(0.927001
	1	2 3	(0.927001 0.899971

0.868297

0	Specifications Calculation Option			ons	ons Convergence C		Com	Comments	
Op	tions	_							
1	Generate ta	ble (of reflux ratio vs nu	mber	of theo	retica	al sta	iges	
1	Calculate H	TP							
Tab	le of actual	reflu	ix ratio vs number o	of the	oretical	stage	es		
Init	tial number o	of st	ages				6		
Fin	al number o	f sta	iges				15		
Ð	Increment si	ze f	or number of stage	s					
0	Number of v	/alu	es in table				11		
Sig	nificant digit	ts di	splayed in table	5			٠		
HE	TP calculatio	n							
Pac	ked height	8			0	.8 m	nete	r.	•
Sun	nmary Balar	nce	Reflux Ratio Profile	0	Status	-	i		
	 Figure 	17.0	I server and a server a	1 -	2010/12/2010				
	Minimum refl	lux n	atio	0.	769559				
	Actual reflux	ratio		0.	961949				
	Minimum nur	mbe	r of stages	1	5.06018				
	Number of actual stages			2	11.1988				
	Feed stage			j,	5.25309				
	Number of actual stages above feec			3	5.25309				
	Reboiler heating required			0.	236841	Gcal	/hr		
	Condenser cooling required				1.07653	Gcal	/hr		
	Distillate temperature			3	88.8243	с			
	Bottom temp	erati	ire		148.943	с			
	Distillate to fe	ed f	raction	0.	699566				
	HETP			0.0	714363	mete	er :		
				Trie	este, f	5 Ap	ril.	2021	- sli

Example: benzene, toluene, cumene separation with short-cut methods: DISTL

DISTL – specifications

DISTL – results

Summary Balance	Status	
Condenser duty	1.05194587	Gcal/hr
Reboiler duty	0.205283	Gcal/hr
Feed stage temperature	122.148	c 🔹
Top stage temperature	89.2382	с •
Bottom stage temperature	145.422	c 🔹
Feed quality	1	

Specifications	Convergend	e Commer	its	
olumn specifica	tions			
lumber of stage	5	(T)	9 🗘	
eed stage			5 🗘	
leflux ratio		0.9		
Distillate to feed mole ratio			0.7	
ondenser type		Total	+	

Material Heat Load Vol.% Curves Wt. % Curves Petroleum Polymers Solids

		Units	52 -	BOT-1 ·	DIST-1 •
•	Enthalpy Flow	Gcal/hr	1.47454	-0.0570862	0.684959
F.	Average MW		94.9459	117.259	85.3832
P.	- Mole Flows	kmol/hr	100	30	70
F.	TOLUENE	kmol/hr	30	2.95043	27.0496
e.	BENZENE	kmol/hr	40	0.125718	39.8743
•	CUMENE	kmol/hr	30	26.9239	3.07613
F.	- Mole Fractions				
P.	TOLUENE		0.3	0.0983476	0.386422
F.	BENZENE		0.4	0.00419061	0.569633
+	CUMENE		0.3	0.897462	0.0439447

Example: benzene, toluene, cumene separation with RADFRAC & DSTWU

Components mole fraction profiles in RADFRAC

Example: benzene, toluene, cumene separation with RADFRAC & DSTWU

