Introduction to Automatic Differentiation

Luca Manzoni

Differentiation: possible techniques

- By hand
- Numerical
- Symbolic
- Automatic Differentiation

- The derivative is computed "offline", the result is then coded
- As done with the original backpropagation
- You do not want to do it

Differentiation: numerical

You can approximate the derivative with $\frac{1}{1}$ $\frac{1}{1}$ for a small value of *h*∂*f* ∂*xi* $f(x^* + h\mathbf{e}_i) - f(x)$ *h*

Pros: easy to implement

Differentiation: numerical

Cons: numerical instability

Sum of a small number to a

the approximation error

(but are far from perfect)

possibly large one Subtraction of two numbers of similar magnitude

 $f(x + h\mathbf{e}_i) - f(x)$ Some techniques allow to reduce

h

Division by a number near zero

Differentiation: numerical

Cons: computational cost

Let $f: \mathbb{R}^n \to \mathbb{R}^m$, we can compute the Jacobian matrix:

 $J =$ ∂f_1 ∂x_1 ∂f_1 ∂x_2 ⋯ ∂f_1 ∂*xn* ∂f_2 ∂x_1 ∂f_2 ∂x_2 ⋯ ∂f_2 ∂x_n $\ddot{\bullet}$ ∂*f m* ∂x_1 ∂*f m* ∂x_2 ⋯ ∂*f m* ∂x_n Each derivative requires 2 evaluations of the function…

…for a total of 2mn evaluations

Differentiation: symbolic

- You can use a symbolic differentiation engine to compute exactly the derivative
- Available in multiple libraries and CAS (e.g., Mathematica, SimPy, …)
- Pros: no approximation!

Differentiation: symbolic

Cons: difficult to manage selection (if) and loops (for, while)

Cons: the symbolic representation of the derivative can grow too large!

Automatic Differentiation

- A way to obtain the exact value of the derivative at a certain point
- The computation is augmented by keeping track some additional values for all intermediate steps of the computation

Automatic Differentiation

- Two (main) ways of performing automatic differentiation:
	- Forward mode (AKA Tangent Linear Mode)
	- Reverse mode (AKA Adjoint or Cotangent Linear Mode)

We will use a function *g*: ℝ → ℝ defined as follows:

 $g(x) = \cos(5x^2)$

But, since we usually have multiple inputs and outputs…

A (second) Running Example $f_2(x_1, x_2) = x_2^3 + \ln x_1 - x_2$ We will use a function $f\colon \mathbb{R}^2 \to \mathbb{R}^2$ defined as follows: $f_1(x_1, x_2) = x_1x_2 + \cos x_1$ $f(x_1, x_2) = (f_1(x_1, x_2), f_2(x_1, x_2))$ With:

Computational graph We can represent the function *g*with a graph where every intermediate operation is assigned to a variable

Computational graph The same can be done with *f*:

Forward-Mode AutoDiff

- The information "moves" from the inputs to the outputs
- Suppose that we want to derive w.r.t. the input x_j
- Then, each variable v_i has an associated value $\dot{\nu}_i$ which is .
V \dot{v}_i ∂v_i ∂*xj*

Forward-Mode AutoDiff

- We compute all v_i , keeping track of the values (obtaining the forward primal trace)
- We can compute all $\dot{\nu}_i$ using only the values in the primal trace and the already computed $\dot{\nu}_k$ for .
V $\dot{\nu}_i$.
V \dot{v}_k for $k < i$

Forward mode

Forward Primal Trace

 $v_0 = 2$ $v_1 = v_0^2 = 2^2 = 4$ $v_2 = 5v_1 = 5 \times 4 = 20$ $v_3 = \cos v_2 = \cos 20 = 0.408$ Forward Tangent Trace

$$
\dot{v}_0 = 1
$$
\n
$$
\dot{v}_1 = \frac{\partial v_1}{\partial v_0} = 2v_0 = 4
$$
\n
$$
\dot{v}_2 = \frac{\partial v_2}{\partial v_0} = \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial v_0} = \frac{\partial v_2}{\partial v_1} \dot{v}_1 = 5\dot{v}_0 = 20
$$
\n
$$
\dot{v}_3 = \frac{\partial v_3}{\partial v_0} = \frac{\partial v_3}{\partial v_2} \frac{\partial v_2}{\partial v_0} = \frac{\partial v_3}{\partial v_2} \dot{v}_2 = -\sin(v_2)\dot{v}_2 = -18.259
$$

Forward mode

Forward Primal Trace

 $v_{-1} = 2$ $v_0 = 3$ $v_1 = \cos v_{-1} = -0.416$ $v_2 = \ln v_{-1} = 0.693$ $v_3 = v_{-1}v_0 = 6$ $v_4 = v_0^3 = 27$ $v_5 = v_1 + v_3 = 5.584$ $v_6 = v_4 + v_2 = 27.693$ $v_7 = v_6 - v_0 = 24.693$

The two outputs $(y_1$ and y_2

Forward Tangent Trace $\dot{v}_{-1} = 1$
 $\dot{v}_{0} = 0$ $\dot{v}_0 = 0$ $\dot{v}_1 =$ $\frac{\partial v_1}{\partial v_1} \dot{v}_{-1} = -\sin(v_{-1})\dot{v}_{-1} = -0.909$ $\partial v_-\$ $\dot{v}_2 =$ $\frac{\partial v_2}{\partial v_1} \dot{v}_{-1} =$ ∂y_{-1} ⁻¹ y_{-1} 1 $\dot{v}_{-1} = 0.5$ $\dot{v}_3 =$ ∂v_2 ² ∂*v*−¹ *i*^{v}−1 + ∂v_2 ∂v_0 $\dot{v}_0 = v_0 \dot{v}_{-1} = 3$ $\dot{v}_4 =$ ∂v_4 ∂*v*⁰ $\dot{v}_0 = 0$ $\dot{v}_5 =$ ∂v_5 ∂v_1 \dot{v}_1 + ∂v_5 ∂v_3 $\dot{v}_3 = \dot{v}_1 + \dot{v}_3 = 2.090$ $\dot{v}_6 =$ ∂*v*⁶ ∂*v*⁴ $\dot{v}_4 +$ ∂*v*⁶ ∂v_2 $\dot{v}_2 = \dot{v}_2 = 0.5$ $\dot{v}_7 =$ ∂v_7 ∂*v*⁶ $\dot{v}_6 +$ ∂v_7 ∂v_0 $\dot{v}_0 = \dot{v}_6 = 0.5$ Now we must decide if we want to differentiate w.r.t x_1 or x_2 (we select x_1) The derivatives and ∂y_1 ∂x_1 ∂y_2 ∂x_1

Forward-Mode: things to notice

- By setting $\dot{x}_i=1$ and $\dot{x}_i=0$ for all $j\neq i$ we can compute the derivative of all outputs w.r.t. *xi* $\dot{x}_i = 1$ and $\dot{x}_j = 0$
- To compute w.r.t. each input variable we must repeat the process multiple times

Forward-Mode: things to notice

- All derivative are of simple "basic" operations (sums, products, trigonometric functions)
- We can compute any composition of them via the forward-mode diff
- The value obtained is the exact value of the derivative*

*There can still be floating point approximations, but they are of a different kind w.r.t. the one obtained when computing the derivative numerically

Forward-Mode: things to notice

- There is no obstacle in performing the derivation with loops and conditionals
- For the forward mode we can actually compute the derivatives at the same time as the computation of the forward primal trace

Forward mode. Jacobian

Let $f: \mathbb{R}^n \to \mathbb{R}^m$, we can compute the Jacobian matrix:

…using a a total of n evaluations

Which is good when *n* is small w.r.t. *m*

Forward mode: Jacobian-vector product

Let $\textbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ and let $\textbf{r} \in \mathbb{R}^n$. We can compute the product $\textbf{J}\, \textbf{r}$ without computing the Jacobian matrix

$$
\mathbf{Jr} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}
$$

Start the computation of the Forward Tangent Trace with $\dot{x}_1 = r_1, \dot{x}$ i.e., **x** = **r** $\dot{x}_1 = r_1, \dot{x}_2 = r_2, ...$
 $\dot{x} = r$

Dual Numbers

The forward-mode differentiation can be interpreted as working with an extension of the real numbers, called dual numbers

Dual numbers are of the form: $v + ic$

Where $\epsilon \neq 0$ but $\epsilon^2 = 0$

Notice that addition and multiplication works as expected:

 $(v + \dot{v}\epsilon) + (u + \dot{u}\epsilon) = (v + u) + (\dot{v} + \dot{u})\epsilon$

 $(v + \dot{v}\epsilon)(u + \dot{u}\epsilon) = vu + \dot{v}\dot{u}\epsilon + \dot{v}\dot{u}\epsilon + \dot{v}\dot{u}\epsilon^2$ $= vu + (v\dot{u} + \dot{v}u)\epsilon$

Dual Numbers

Suppose that for each function *f* the following holds:

 $f(v + \dot{v}\epsilon) = f(v) + f'(v)\dot{v}\epsilon$

Then two applications of the previous property give us the chain rule:

> $f(g(v + iv\epsilon)) = f(g(v) + g'(v)\dot{v}\epsilon)$ $= f(g(v)) + f'(g(v))g'(v)\dot{v}\epsilon$

Reverse-Mode AutoDiff

Fix one of the outputs *yj*

In reverse-mode we add to each variable the adjoint $\overline{\nu}_i=$ ∂*yj* ∂v_i

Notice that this time we change the variable w.r.t. the derivative is computed instead of keeping it fixed

Reverse mode

Forward Primal Trace

 $v_0 = 2$ $v_1 = v_0^2 = 2^2 = 4$ $v_2 = 5v_1 = 5 \times 4 = 20$ $v_3 = \cos v_2 = \cos 20 = 0.408$ Reverse Adjoint Trace

$$
\overline{v}_3 = 1
$$
\n
$$
\overline{v}_2 = \frac{\partial y}{\partial v_2} = \frac{\partial y}{\partial v_3} \frac{\partial v_3}{\partial v_2} = -\overline{v}_3 - \sin(v_2) = -0.913
$$
\n
$$
\overline{v}_1 = \frac{\partial y}{\partial v_1} = \frac{\partial y}{\partial v_2} \frac{\partial v_2}{\partial v_1} = \overline{v}_2 \frac{\partial v_2}{\partial v_1} = 5\overline{v}_2 = -4.565
$$
\n
$$
\overline{v}_0 = \frac{\partial y}{\partial v_0} = \frac{\partial y}{\partial v_1} \frac{\partial v_1}{\partial v_0} = \overline{v}_1 \frac{\partial v_1}{\partial v_0} = 2v_0 \overline{v}_1 = -18.259
$$

Reverse mode

Forward Primal Trace

 $v_{-1} = 2$ $v_0 = 3$ $v_1 = \cos v_{-1} = -0.416$ $v_2 = \ln v_{-1} = 0.693$ $v_3 = v_{-1}v_0 = 6$ $v_4 = v_0^3 = 27$ $v_5 = v_1 + v_3 = 5.584$ $v_6 = v_4 + v_2 = 27.693$ $v_7 = v_6 - v_0 = 24.693$

The two outputs $(y_1$ and y_2

Reverse Adjoint Trace $\overline{v}_5 = 1$ $\overline{v}_7 = 0$ $\overline{v}_6 = \partial y_1$ ∂*v*⁶ = ∂y_1 ∂*v*⁷ ∂v_7 ∂*v*⁶ $=\overline{v}_7$ ∂v_7 ∂*v*⁶ $= 0$ $\overline{v}_4 =$ ∂y_1 ∂v_4 $=$ ∂y_1 ∂*v*⁶ ∂*v*⁶ ∂v_4 $=$ \overline{v}_6 ∂*v*⁶ ∂*v*⁴ $= 0$ $\overline{v}_3 =$ ∂y_1 ∂v_3 = ∂y_1 ∂*v*⁵ ∂v_5 ∂v_3 $=\overline{v}_5$ ∂v_5 ∂v_3 $= 1$ $\overline{v}_2 =$ ∂y_1 ∂v_2 = ∂y_1 ∂*v*⁶ ∂v_6 ∂v_2 $=$ \overline{v}_6 $\partial v_6^{\vphantom{\dagger}}$ ∂v_2 $= 0$ $\overline{v}_1 =$ ∂y_1 $\frac{\partial v_1}{\partial v_2} \frac{\partial v_2}{\partial v_1}$ $\frac{\partial v_1}{\partial v_2}$ = *dy*₁ *dv*₅ $=\overline{v}_5$ ∂v_5 $= 1$ $\overline{v}_0 =$ ∂y_1 ∂v_{Q} = ∂y_1 ∂v_3 ∂v_3 ∂v_0 + ∂y_1 ∂v_4 ∂v_4 ∂*v*⁰ $=$ \overline{v}_3 ∂v_3 ∂v_0 $+\bar{v}_4$ ∂v_4 ∂v_0 $=$ $\overline{v}_3v_{-1} = 2$ $\overline{v}_{-1} =$ ∂y_1 ∂v_{-1} = ∂y_1 ∂v_1 ∂v_1 ∂v_{-1} + ∂y_1 ∂v_2 ∂v_2 ∂v_{-1} + ∂y_1 ∂v_3 ∂v_3 ∂v_{-1} $=$ \overline{v}_1 $\frac{\partial v_1}{\partial v_2} + \frac{\partial v_2}{\partial v_3} + \frac{\partial v_3}{\partial v_4}$ ∂v_{-1} $+\overline{v}_2$ ∂v_{-1} + \overline{v}_3 ∂v_{-1} $= -\sin(v_{-1}) + v_0 = 2.090$ Now we must decide the output that we want to differentiate (we select y_1) The derivatives and $\frac{\partial y_1}{\partial y_2}$ and $\frac{\partial y_1}{\partial y_1}$ ∂*x*² ∂x_1

Reverse-Mode: things to notice

- By setting $\overline{y}_i = 1$ and $\overline{y}_j = 0$ for all $j\neq i$ we can compute the derivatives of the output y_i w.r.t. all inputs
- To compute w.r.t. each output variable we must repeat the process multiple times

Reverse-Mode: things to notice

- The other observations done for forward-mode autodiff also holds for the reverse-mode autodiff
- You might have noticed that the procedure used is a generalisation of the one employed by backpropagation

Reverse mode: Jacobian

Let $f: \mathbb{R}^n \to \mathbb{R}^m$. We can compute the Jacobian matrix:

…using a a total of m evaluations

Which is good when *m* is small w.r.t. *n*

Each

com

 $J\alpha$

Reverse mode: transposed Jacobian-vector product

Let $\textbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ and let $\textbf{r} \in \mathbb{R}^m$. We can compute the product $\textbf{J}^T\textbf{r}$ without computing the transpose of the Jacobian matrix

$$
\mathbf{J}^{T}\mathbf{r} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}
$$

Start the computation of the Reverse Adjoint Trace with $\overline{y}_1 = r_1, \overline{y}_2 = r_2, ...$ i.e., **y** = **r**