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Differentiation: 
possible techniques

By hand


Numerical


Symbolic


Automatic Differentiation



Differentiation: 
by hand

The derivative is computed “offline”, 
the result is then coded


As done with the original 
backpropagation


You do not want to do it



Differentiation: 
numerical

You can approximate the derivative 

 with  for a small 

value of 


Pros: easy to implement

∂f
∂xi

f(x + hei) − f(x)
h

h



Differentiation: 
numerical

Cons: numerical instability

f(x + hei) − f(x)
h

Sum of a small number to a 
possibly large one Subtraction of two numbers 

of similar magnitude

Division by a number near zero

Some techniques allow to reduce 

the approximation error 

(but are far from perfect) 



Differentiation: 
numerical

Cons: computational cost

J =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

Let . We can compute the Jacobian matrix:f : ℝn → ℝm

Each derivative 
requires 2 evaluations 

of the function…

…for a total of 
2mn evaluations



Differentiation: 
symbolic

You can use a symbolic 
differentiation engine to compute 
exactly the derivative


Available in multiple libraries and 
CAS (e.g., Mathematica, SimPy, …)


Pros: no approximation!



Differentiation: 
symbolic

Cons: difficult to manage selection 
(if) and loops (for, while)


Cons: the symbolic representation of 
the derivative can grow too large!



Automatic 
Differentiation

A way to obtain the exact value of 
the derivative at a certain point


The computation is augmented by 
keeping track some additional 
values for all intermediate steps of 
the computation



Automatic 
Differentiation

Two (main) ways of performing 
automatic differentiation:


Forward mode 
(AKA Tangent Linear Mode)


Reverse mode 
(AKA Adjoint or Cotangent Linear 
Mode)



A (first) 
Running Example

We will use a function  
defined as follows:

g : ℝ → ℝ

g(x) = cos(5x2)

But, since we usually have 
multiple inputs and outputs…



A (second) 
Running Example

f2(x1, x2) = x3
2 + ln x1 − x2

We will use a function  
defined as follows:

f : ℝ2 → ℝ2

f1(x1, x2) = x1x2 + cos x1

f(x1, x2) = ( f1(x1, x2), f2(x1, x2))

With:



Computational 
graph

cos v2v2
0

v1
x
v0

5v1

v2 v3

We can represent the function  
with a graph where every 
intermediate operation is 
assigned to a variable

g



Computational 
graph

cos v−1

ln v−1

v−1v0

v3
0

v1

v2

v3

v4

v1 + v3

v4 + v2

v6

v6 − v0

v5

v7
x2

x1

v−1

v0

The same can be done with :f



Forward-Mode 
AutoDiff

The information “moves” from the 
inputs to the outputs


Suppose that we want to derive w.r.t. 
the input 


Then, each variable  has an 

associated value  which is 

xj

vi
·vi

∂vi

∂xj



Forward-Mode 
AutoDiff

We compute all , keeping track of 
the values  
(obtaining the forward primal trace)


We can compute all  using only the 
values in the primal trace and the 
already computed  for 

vi

·vi

·vk k < i



Forward mode

cos v2v2
0

v1
x
v0

5v1

v2 v3

Forward Primal Trace 

v0 = 2
v1 = v2

0 = 22 = 4
v2 = 5v1 = 5 × 4 = 20
v3 = cos v2 = cos 20 = 0.408

Forward Tangent Trace 










·v0 = 1
·v1 =

∂v1

∂v0
= 2v0 = 4

·v2 =
∂v2

∂v0
=

∂v2

∂v1

∂v1

∂v0
=

∂v2

∂v1

·v1 = 5·v0 = 20

·v3 =
∂v3

∂v0
=

∂v3

∂v2

∂v2

∂v0
=

∂v3

∂v2

·v2 = − sin(v2) ·v2 = − 18.259



Forward mode
Forward Primal Trace 

v−1 = 2
v0 = 3
v1 = cos v−1 = − 0.416
v2 = ln v−1 = 0.693
v3 = v−1v0 = 6
v4 = v3

0 = 27
v5 = v1 + v3 = 5.584
v6 = v4 + v2 = 27.693
v7 = v6 − v0 = 24.693

Forward Tangent Trace 
























·v−1 = 1
·v0 = 0
·v1 =

∂v1

∂v−1

·v−1 = − sin(v−1) ·v−1 = − 0.909

·v2 =
∂v2

∂v−1

·v−1 =
1

v−1

·v−1 = 0.5

·v3 =
∂v2

∂v−1

·v−1 +
∂v2

∂v0

·v0 = v0
·v−1 = 3

·v4 =
∂v4

∂v0

·v0 = 0

·v5 =
∂v5

∂v1

·v1 +
∂v5

∂v3

·v3 = ·v1 + ·v3 = 2.090

·v6 =
∂v6

∂v4

·v4 +
∂v6

∂v2

·v2 = ·v2 = 0.5

·v7 =
∂v7

∂v6

·v6 +
∂v7

∂v0

·v0 = ·v6 = 0.5

The two outputs 
(  and )y1 y2

Now we must decide if 
we want to differentiate 

w.r.t  or  
(we select )

x1 x2
x1

The derivatives 

 and  
∂y1

∂x1

∂y2

∂x1



Forward-Mode: 
things to notice

By setting  and  for all 
 we can compute the derivative 

of all outputs w.r.t. 


To compute w.r.t. each input variable 
we must repeat the process multiple 
times

·xi = 1 ·xj = 0
j ≠ i

xi



Forward-Mode: 
things to notice

All derivative are of simple “basic” 
operations (sums, products, 
trigonometric functions)


We can compute any composition of 
them via the forward-mode diff


The value obtained is the exact value 
of the derivative*
*There can still be floating point approximations, but they are of a different kind 
w.r.t. the one obtained when computing the derivative numerically



Forward-Mode: 
things to notice

There is no obstacle in performing 
the derivation with loops and 
conditionals


For the forward mode we can 
actually compute the derivatives at 
the same time as the computation of 
the forward primal trace



Forward mode: 
Jacobian

J =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

Let . We can compute the Jacobian matrix:f : ℝn → ℝm

…using a a total of 
n evaluations

Each “pass” allow us to 
compute a column of the 

Jacobian matrix…

Which is good when  is small w.r.t. n m



Forward mode: 
Jacobian-vector product

Jr =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

r1
r2
⋮
rn

Let  and let . We can compute the product  
without computing the Jacobian matrix

f : ℝn → ℝm r ∈ ℝn J r

Start the computation of 
the Forward Tangent Trace 
with  
i.e., 

·x1 = r1, ·x2 = r2, …
·x = r



Dual Numbers
The forward-mode differentiation can be interpreted as working 
with an extension of the real numbers, called dual numbers

v + ·vϵDual numbers are of the form:

Where  but ϵ ≠ 0 ϵ2 = 0

Notice that addition and multiplication works as expected:

(v + ·vϵ) + (u + ·uϵ) = (v + u) + ( ·v + ·u)ϵ

(v + ·vϵ)(u + ·uϵ) = vu + v ·uϵ + ·vuϵ + ·v ·uϵ2

= vu + (v ·u + ·vu)ϵ



Dual Numbers

f(v + ·vϵ) = f(v) + f′￼(v) ·vϵ

Suppose that for each function  the following holds:f

f(g(v + ·vϵ)) = f(g(v) + g′￼(v) ·vϵ)
= f(g(v)) + f′￼(g(v))g′￼(v) ·vϵ

Then two applications of the previous property 
give us the chain rule:



Reverse-Mode 
AutoDiff

Fix one of the outputs 


In reverse-mode we add to each 

variable the adjoint 


Notice that this time we change the 
variable w.r.t. the derivative is 
computed instead of keeping it fixed

yj

vi =
∂yj

∂vi



Reverse mode

cos v2v2
0

v1
x
v0

5v1

v2 v3

Forward Primal Trace 

v0 = 2
v1 = v2

0 = 22 = 4
v2 = 5v1 = 5 × 4 = 20
v3 = cos v2 = cos 20 = 0.408

Reverse Adjoint Trace 










v3 = 1

v2 =
∂y
∂v2

=
∂y
∂v3

∂v3

∂v2
= − v3 − sin(v2) = − 0.913

v1 =
∂y
∂v1

=
∂y
∂v2

∂v2

∂v1
= v2

∂v2

∂v1
= 5v2 = − 4.565

v0 =
∂y
∂v0

=
∂y
∂v1

∂v1

∂v0
= v1

∂v1

∂v0
= 2v0v1 = − 18.259



Reverse mode
Forward Primal Trace 

v−1 = 2
v0 = 3
v1 = cos v−1 = − 0.416
v2 = ln v−1 = 0.693
v3 = v−1v0 = 6
v4 = v3

0 = 27
v5 = v1 + v3 = 5.584
v6 = v4 + v2 = 27.693
v7 = v6 − v0 = 24.693

Reverse Adjoint Trace
























v5 = 1
v7 = 0

v6 =
∂y1

∂v6
=

∂y1

∂v7

∂v7

∂v6
= v7

∂v7

∂v6
= 0

v4 =
∂y1

∂v4
=

∂y1

∂v6

∂v6

∂v4
= v6

∂v6

∂v4
= 0

v3 =
∂y1

∂v3
=

∂y1

∂v5

∂v5

∂v3
= v5

∂v5

∂v3
= 1

v2 =
∂y1

∂v2
=

∂y1

∂v6

∂v6

∂v2
= v6

∂v6

∂v2
= 0

v1 =
∂y1

∂v1
=

∂y1

∂v5

∂v5

∂v1
= v5

∂v5

∂v1
= 1

v0 =
∂y1

∂v0
=

∂y1

∂v3

∂v3

∂v0
+

∂y1

∂v4

∂v4

∂v0
= v3

∂v3

∂v0
+ v4

∂v4

∂v0
= v3v−1 = 2

v−1 =
∂y1

∂v−1
=

∂y1

∂v1

∂v1

∂v−1
+

∂y1

∂v2

∂v2

∂v−1
+

∂y1

∂v3

∂v3

∂v−1

= v1
∂v1

∂v−1
+ v2

∂v2

∂v−1
+ v3

∂v3

∂v−1
= − sin(v−1) + v0 = 2.090

The two outputs 
(  and )y1 y2

Now we must decide 
the output that 

we want to differentiate 
(we select )y1

The derivatives 

 and  
∂y1

∂x2

∂y1

∂x1



Reverse-Mode: 
things to notice

By setting  and  for all 
 we can compute the derivatives 

of the output  w.r.t. all inputs


To compute w.r.t. each output 
variable we must repeat the process 
multiple times

yi = 1 yj = 0
j ≠ i

yi



Reverse-Mode: 
things to notice

The other observations done for 
forward-mode autodiff also holds 
for the reverse-mode autodiff


You might have noticed that the 
procedure used is a generalisation 
of the one employed by 
backpropagation



Reverse mode: 
Jacobian

J =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

Let . We can compute the Jacobian matrix:f : ℝn → ℝm

…using a a total of 
m evaluations

Each “pass” allow us to 
compute a row of the 

Jacobian matrix…

Which is good when  is small w.r.t. m n



Reverse mode: 
transposed Jacobian-vector 

product

JTr =

∂f1
∂x1

∂f2
∂x1

⋯
∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

⋯
∂fm
∂x2

⋮ ⋮
∂f1
∂xn

∂f2
∂xn

⋯
∂fm
∂xn

r1
r2
⋮
rm

Let  and let . We can compute the product  
without computing the transpose of the Jacobian matrix

f : ℝn → ℝm r ∈ ℝm JT r

Start the computation of 
the Reverse Adjoint Trace 
with  
i.e., 

y1 = r1, y2 = r2, …
y = r


