Introduction to Automatic Differentiation

Luca Manzoni

Differentiation: possible techniques

- o By hand
- o Numerical
- @ Symbolic
- Automatic Differentiation

- The derivative is computed "offline", the result is then coded
- As done with the original backpropagation
- @ You do not want to do it

Differentiation: numerical

Sou can approximate the derivative $\frac{\partial f}{\partial x_i} \quad \text{with} \quad \frac{f(x + he_i) - f(x)}{h} \quad \text{for a small}$ $\frac{\partial f}{\partial x_i} \quad h$

@ Pros: easy to implement

Differenciation: numerical

Cons: numerical instability

sum of a small number to a possibly large one

the approximation error

(but are far from perfect)

subtraction of two numbers of similar magnitude

 $f(x + h\mathbf{e}_i) - f(x)$ Some techniques allow to reduce

h

Division by a number near zero

Differentiation: numerical

Cons: computational cost

Let $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$. We can compute the Jacobian matrix:

 $\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$

...for a total of 2mn evaluations

Differentiation: symbolic

- You can use a symbolic
 differentiation engine to compute
 exactly the derivative
- Available in multiple libraries and
 CAS (e.g., Mathematica, SimPy, ...)
- @ Pros: no approximation!

Differentiation: symbolic

Cons: difficult to manage selection
 (if) and loops (for, while)

Cons: the symbolic representation of the derivative can grow too large!

Automatic Differentiation

- A way to obtain the exact value of the derivative at a certain point
- The computation is augmented by keeping track some additional values for all intermediate steps of the computation

Automatic Differentiation

- Two (main) ways of performing automatic differentiation:
 - Forward mode (AKA Tangent Linear Mode)
 - Reverse mode
 (AKA Adjoint or Cotangent Linear Mode)

We will use a function $g: \mathbb{R} \to \mathbb{R}$ defined as follows:

 $g(x) = \cos(5x^2)$

But, since we usually have multiple inputs and outputs...

A (second) Running Example We will use a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined as follows: $f(x_1, x_2) = (f_1(x_1, x_2), f_2(x_1, x_2))$ With: $f_1(x_1, x_2) = x_1 x_2 + \cos x_1$ $f_2(x_1, x_2) = x_2^3 + \ln x_1 - x_2$

Computational staph We can represent the function g with a graph where every intermediate operation is assigned to a variable

Computational graph The same can be done with f:

Forward-Mode Autobiff

- The information "moves" from the inputs to the outputs
- Suppose that we want to derive w.r.t.
 the input x_i
- Then, each variable v_i has an associated value \dot{v}_i which is $\frac{\partial v_i}{\partial x_j}$

Forward-Mode Autodiff

 We compute all v_i, keeping track of the values
 (obtaining the forward primal trace)

• We can compute all \dot{v}_i using only the values in the primal trace and the already computed \dot{v}_k for k < i

Forward mode

Forward Primal Trace

 $v_0 = 2$ $v_1 = v_0^2 = 2^2 = 4$ $v_2 = 5v_1 = 5 \times 4 = 20$ $v_3 = \cos v_2 = \cos 20 = 0.408$ Forward Tangent Trace

$$\dot{v}_0 = 1$$

$$\dot{v}_1 = \frac{\partial v_1}{\partial v_0} = 2v_0 = 4$$

$$\dot{v}_2 = \frac{\partial v_2}{\partial v_0} = \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial v_0} = \frac{\partial v_2}{\partial v_1} \dot{v}_1 = 5\dot{v}_0 = 20$$

$$\dot{v}_3 = \frac{\partial v_3}{\partial v_0} = \frac{\partial v_3}{\partial v_2} \frac{\partial v_2}{\partial v_0} = \frac{\partial v_3}{\partial v_2} \dot{v}_2 = -\sin(v_2)\dot{v}_2 = -18.259$$

Forward mode

Forward Primal Trace

 $v_{-1} = 2$ $v_0 = 3$ $v_1 = \cos v_{-1} = -0.416$ $v_2 = \ln v_{-1} = 0.693$ $v_3 = v_{-1}v_0 = 6$ $v_4 = v_0^3 = 27$ $v_5 = v_1 + v_3 = 5.584$ $v_6 = v_4 + v_2 = 27.693$ $v_7 = v_6 - v_0 = 24.693$

The two outputs $(y_1 \text{ and } y_2)$

Now we must decide if Forward Tangent Trace we want to differentiate w.r.t x_1 or x_2 $\dot{v}_{-1} = 1$ (we select x_1) $\dot{v}_{0} = 0$ $\dot{v}_1 = \frac{\partial v_1}{\partial v_{-1}} \dot{v}_{-1} = -\sin(v_{-1})\dot{v}_{-1} = -0.909$ $\dot{v}_{2} = \frac{\partial v_{2}}{\partial v_{-1}} \dot{v}_{-1} = \frac{1}{v_{-1}} \dot{v}_{-1} = 0.5$ $\dot{v}_{3} = \frac{\partial v_{2}}{\partial v_{-1}} \dot{v}_{-1} + \frac{\partial v_{2}}{\partial v_{0}} \dot{v}_{0} = v_{0} \dot{v}_{-1} = 3$ $\dot{v}_4 = \frac{\partial v_4}{\partial v_0} \dot{v}_0 = 0$ $\dot{v}_5 = \frac{\partial v_5}{\partial v_1} \dot{v}_1 + \frac{\partial v_5}{\partial v_3} \dot{v}_3 = \dot{v}_1 + \dot{v}_3 = 2.090 \checkmark$ The derivatives $\dot{v}_6 = \frac{\partial v_6}{\partial v_4} \dot{v}_4 + \frac{\partial v_6}{\partial v_2} \dot{v}_2 = \dot{v}_2 = 0.5$ $\frac{\partial y_1}{\partial x_1}$ and $\frac{\partial y_2}{\partial x_1}$ ∂x_1 $\dot{v}_7 = \frac{\partial v_7}{\partial v_6} \dot{v}_6 + \frac{\partial v_7}{\partial v_0} \dot{v}_0 = \dot{v}_6 = 0.5$

Forward-Mode: Chings to notice

- By setting $\dot{x}_i = 1$ and $\dot{x}_j = 0$ for all $j \neq i$ we can compute the derivative of all outputs w.r.t. x_i
- To compute w.r.t. each input variable
 we must repeat the process multiple
 times

Forward-Mode: Chings to notice

- All derivative are of simple "basic"
 operations (sums, products, trigonometric functions)
- We can compute any composition of them via the forward-mode diff
- The value obtained is the exact value of the derivative*

*There can still be floating point approximations, but they are of a different kind w.r.t. the one obtained when computing the derivative numerically Forward-Mode: Chings to notice

- There is no obstacle in performing
 the derivation with loops and
 conditionals
- For the forward mode we can actually compute the derivatives at the same time as the computation of the forward primal trace

Forward mode: Jacobian

Let $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$. We can compute the Jacobian matrix:

	∂f_1	∂f_1		∂f_1
	∂x_1	∂x_2	•••	∂x_n
	∂f_2	∂f_2		∂f_2
J =	∂x_1	∂x_2		∂x_n
Each "mass" allow us to	•			:
compute a column of the	∂f_m	∂f_m		∂f_m
Jacobian matrix	∂x_1	∂x_2		∂x_n

...using a a total of n evaluations

Which is good when n is small w.r.t. m

Forward mode: Jacobian-vector product

Let $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ and let $\mathbf{r} \in \mathbb{R}^n$. We can compute the product \mathbf{Jr} without computing the Jacobian matrix

start the computation of the Forward Tangent Trace

Dual Numbers

The forward-mode differentiation can be interpreted as working with an extension of the real numbers, called dual numbers

Dual numbers are of the form: $v + \dot{v}\epsilon$

Where $\epsilon \neq 0$ but $\epsilon^2 = 0$

Notice that addition and multiplication works as expected:

 $(v + \dot{v}\epsilon) + (u + \dot{u}\epsilon) = (v + u) + (\dot{v} + \dot{u})\epsilon$

 $(v + \dot{v}\epsilon)(u + \dot{u}\epsilon) = vu + v\dot{u}\epsilon + \dot{v}u\epsilon + \dot{v}\dot{u}\epsilon^{2}$ $= vu + (v\dot{u} + \dot{v}u)\epsilon$

Dual Numbers

Suppose that for each function f the following holds:

 $f(v + \dot{v}\epsilon) = f(v) + f'(v)\dot{v}\epsilon$

Then two applications of the previous property give us the chain rule:

 $f(g(v + \dot{v}\epsilon)) = f(g(v) + g'(v)\dot{v}\epsilon)$ $= f(g(v)) + f'(g(v))g'(v)\dot{v}\epsilon$

Reverse Mode Autoriff

@ Fix one of the outputs y_i

In reverse-mode we add to each variable the adjoint $\overline{v}_i = \frac{\partial y_j}{\partial v_i}$

 Notice that this time we change the variable w.r.t. the derivative is computed instead of keeping it fixed

Reverse mode

Forward Primal Trace

 $v_0 = 2$ $v_1 = v_0^2 = 2^2 = 4$ $v_2 = 5v_1 = 5 \times 4 = 20$ $v_3 = \cos v_2 = \cos 20 = 0.408$ Reverse Adjoint Trace

$$\overline{v}_{3} = 1$$

$$\overline{v}_{2} = \frac{\partial y}{\partial v_{2}} = \frac{\partial y}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{2}} = -\overline{v}_{3} - \sin(v_{2}) = -0.913$$

$$\overline{v}_{1} = \frac{\partial y}{\partial v_{1}} = \frac{\partial y}{\partial v_{2}} \frac{\partial v_{2}}{\partial v_{2}} = \overline{v}_{2} \frac{\partial v_{2}}{\partial v_{1}} = 5\overline{v}_{2} = -4.565$$

$$\overline{v}_{0} = \frac{\partial y}{\partial v_{0}} = \frac{\partial y}{\partial v_{1}} \frac{\partial v_{1}}{\partial v_{0}} = \overline{v}_{1} \frac{\partial v_{1}}{\partial v_{0}} = 2v_{0}\overline{v}_{1} = -18.259$$

Reverse mode

Forward Primal Trace

 $v_{-1} = 2$ $v_{0} = 3$ $v_{1} = \cos v_{-1} = -0.416$ $v_{2} = \ln v_{-1} = 0.693$ $v_{3} = v_{-1}v_{0} = 6$ $v_{4} = v_{0}^{3} = 27$ $v_{5} = v_{1} + v_{3} = 5.584$ $v_{6} = v_{4} + v_{2} = 27.693$ $v_{7} = v_{6} - v_{0} = 24.693$

The two outputs $(y_1 \text{ and } y_2)$

Now we must decide Reverse Adjoint Trace the output that $\overline{v}_5 = 1$ we want to differentiate $\overline{v}_7 = 0$ $\frac{\partial y_1}{\partial v_6} = \frac{\partial y_1}{\partial v_7} \frac{\partial v_7}{\partial v_6} = \overline{v}_7 \frac{\partial v_7}{\partial v_6} = 0$ (we select y_1) $\overline{v}_6 = \overline{v}_4 = \frac{\partial y_1}{\partial v_4} = \frac{\partial y_1}{\partial v_6} \frac{\partial v_6}{\partial v_4} = \overline{v}_6 \frac{\partial v_6}{\partial v_4} = 0$ $\overline{v}_3 = \frac{\partial y_1}{\partial v_3} = \frac{\partial y_1}{\partial v_5} \frac{\partial v_5}{\partial v_3} = \overline{v}_5 \frac{\partial v_5}{\partial v_3} = 1$ The derivatives $\overline{v}_2 = \frac{\partial y_1}{\partial v_2} = \frac{\partial y_1}{\partial v_6} \frac{\partial v_6}{\partial v_2} = \overline{v}_6 \frac{\partial v_6}{\partial v_2} = 0$ $\frac{\partial y_1}{\partial y_1}$ and ∂y_1 ∂x_2 $\overline{v}_{1} = \frac{\partial v_{1}}{\partial v_{1}} = \frac{\partial v_{1}}{\partial v_{5}} \frac{\partial v_{2}}{\partial v_{5}} = \overline{v}_{5} \frac{\partial v_{2}}{\partial v_{1}} = 1$ $\overline{v}_{0} = \frac{\partial y_{1}}{\partial v_{0}} = \frac{\partial y_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{0}} + \frac{\partial y_{1}}{\partial v_{4}} \frac{\partial v_{4}}{\partial v_{0}} = \overline{v}_{3} \frac{\partial v_{3}}{\partial v_{0}} + \overline{v}_{4} \frac{\partial v_{4}}{\partial v_{0}} = \overline{v}_{3} v_{-1} = \overline{v}_{1} = \frac{\partial y_{1}}{\partial v_{-1}} \frac{\partial v_{1}}{\partial v_{-1}} + \frac{\partial y_{1}}{\partial v_{2}} \frac{\partial v_{2}}{\partial v_{-1}} + \frac{\partial y_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-1}} = \frac{\partial y_{1}}{\partial v_{3}} \frac{\partial v_{1}}{\partial v_{-1}} + \frac{\partial y_{1}}{\partial v_{2}} \frac{\partial v_{2}}{\partial v_{-1}} + \frac{\partial y_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-1}} = \overline{v}_{1} + \frac{\partial v_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-1}} = \overline{v}_{1} + \frac{\partial v_{1}}{\partial v_{3}} \frac{\partial v_{2}}{\partial v_{-1}} + \frac{\partial v_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-1}} = \overline{v}_{1} + \frac{\partial v_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-1}} = \overline{v}_{1} + \frac{\partial v_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-1}} = \overline{v}_{1} + \frac{\partial v_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-1}} = \overline{v}_{1} + \frac{\partial v_{1}}{\partial v_{3}} \frac{\partial v_{3}}{\partial v_{-1}} = \overline{v}_{1} + \frac{\partial v_{1}}{\partial v_{3}} + \overline{v}_{2} + \frac{\partial v_{1}}{\partial v_{3}} + \overline{v}_{2} + \frac{\partial v_{1}}{\partial v_{3}} + \overline{v}_{2} + \frac{\partial v_{2}}{\partial v_{3}} + \overline{v}_{2} + \frac{\partial v_{1}}{\partial v_{3}} + \overline{v}_{2} + \frac{\partial v_{2}}{\partial v_{3}} + \overline{v}_{2} + \frac{\partial v_{2}}{\partial v_{3}} + \overline{v}_{3} + \frac{\partial v_{3}}{\partial v_{3}} +$ $=\overline{v}_1 \frac{\partial v_1}{\partial v_{-1}} + \overline{v}_2 \frac{\partial v_2}{\partial v_{-1}} + \overline{v}_3 \frac{\partial v_3}{\partial v_{-1}} = -\sin(v_{-1}) + v_0 = 2.090$

Reverse-Mode: Chings to notice

- By setting $\overline{y}_i = 1$ and $\overline{y}_j = 0$ for all $j \neq i$ we can compute the derivatives of the output y_i w.r.t. all inputs
- To compute w.r.t. each output
 variable we must repeat the process
 multiple times

Reverse-Mode: Chings to notice

- The other observations done for
 forward-mode autodiff also holds
 for the reverse-mode autodiff
- You might have noticed that the procedure used is a generalisation of the one employed by backpropagation

Reverse mode: Jacobian

Let $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$. We can compute the Jacobian matrix:

			*******	annimmen .
	∂f_1	∂f_1		∂f_1
	∂x_1	∂x_2		∂x_n
	∂f_2	∂f_2		∂f_2
J =	∂x_1	∂x_2		∂x_n
				:
ach pass allow us to	∂f_m	∂f_m		∂f_m
Jacobian matrix	∂x_1	∂x_2	•••	∂x_n

...using a a total of m evaluations

Which is good when m is small w.r.t. n

Reverse mode: transposed Jacobian-vector product

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and let $r \in \mathbb{R}^m$. We can compute the product $J^T r$ without computing the transpose of the Jacobian matrix

$$\mathbf{J}^{T}\mathbf{r} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{1}} \\ \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{2}} \\ \vdots & & \vdots \\ \frac{\partial f_{1}}{\partial x_{n}} & \frac{\partial f_{2}}{\partial x_{n}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{m} \end{bmatrix}$$

Start the computation of the Reverse Adjoint Trace with $\overline{y}_1 = r_1, \overline{y}_2 = r_2, ...$ i.e., $\overline{y} = r$