
Introduction to
Automatic Differentiation

Luca Manzoni

Differentiation:
possible techniques

By hand

Numerical

Symbolic

Automatic Differentiation

Differentiation: 
by hand

The derivative is computed “offline”, 
the result is then coded

As done with the original
backpropagation

You do not want to do it

Differentiation: 
numerical

You can approximate the derivative

 with for a small

value of

Pros: easy to implement

∂f
∂xi

f(x + hei) − f(x)
h

h

Differentiation: 
numerical

Cons: numerical instability

f(x + hei) − f(x)
h

Sum of a small number to a 
possibly large one Subtraction of two numbers 

of similar magnitude

Division by a number near zero

Some techniques allow to reduce 

the approximation error 

(but are far from perfect)

Differentiation: 
numerical

Cons: computational cost

J =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

Let . We can compute the Jacobian matrix:f : ℝn → ℝm

Each derivative 
requires 2 evaluations 

of the function…

…for a total of 
2mn evaluations

Differentiation: 
symbolic

You can use a symbolic
differentiation engine to compute
exactly the derivative

Available in multiple libraries and
CAS (e.g., Mathematica, SimPy, …)

Pros: no approximation!

Differentiation: 
symbolic

Cons: difficult to manage selection
(if) and loops (for, while)

Cons: the symbolic representation of
the derivative can grow too large!

Automatic
Differentiation

A way to obtain the exact value of
the derivative at a certain point

The computation is augmented by
keeping track some additional
values for all intermediate steps of
the computation

Automatic
Differentiation

Two (main) ways of performing
automatic differentiation:

Forward mode 
(AKA Tangent Linear Mode)

Reverse mode 
(AKA Adjoint or Cotangent Linear
Mode)

A (first) 
Running Example

We will use a function  
defined as follows:

g : ℝ → ℝ

g(x) = cos(5x2)

But, since we usually have
multiple inputs and outputs…

A (second)
Running Example

f2(x1, x2) = x3
2 + ln x1 − x2

We will use a function  
defined as follows:

f : ℝ2 → ℝ2

f1(x1, x2) = x1x2 + cos x1

f(x1, x2) = (f1(x1, x2), f2(x1, x2))

With:

Computational
graph

cos v2v2
0

v1
x
v0

5v1

v2 v3

We can represent the function
with a graph where every
intermediate operation is
assigned to a variable

g

Computational
graph

cos v−1

ln v−1

v−1v0

v3
0

v1

v2

v3

v4

v1 + v3

v4 + v2

v6

v6 − v0

v5

v7
x2

x1

v−1

v0

The same can be done with :f

Forward-Mode
AutoDiff

The information “moves” from the
inputs to the outputs

Suppose that we want to derive w.r.t.
the input

Then, each variable has an

associated value which is

xj

vi
·vi

∂vi

∂xj

Forward-Mode
AutoDiff

We compute all , keeping track of
the values  
(obtaining the forward primal trace)

We can compute all using only the
values in the primal trace and the
already computed for

vi

·vi

·vk k < i

Forward mode

cos v2v2
0

v1
x
v0

5v1

v2 v3

Forward Primal Trace 

v0 = 2
v1 = v2

0 = 22 = 4
v2 = 5v1 = 5 × 4 = 20
v3 = cos v2 = cos 20 = 0.408

Forward Tangent Trace 

·v0 = 1
·v1 =

∂v1

∂v0
= 2v0 = 4

·v2 =
∂v2

∂v0
=

∂v2

∂v1

∂v1

∂v0
=

∂v2

∂v1

·v1 = 5·v0 = 20

·v3 =
∂v3

∂v0
=

∂v3

∂v2

∂v2

∂v0
=

∂v3

∂v2

·v2 = − sin(v2) ·v2 = − 18.259

Forward mode
Forward Primal Trace 

v−1 = 2
v0 = 3
v1 = cos v−1 = − 0.416
v2 = ln v−1 = 0.693
v3 = v−1v0 = 6
v4 = v3

0 = 27
v5 = v1 + v3 = 5.584
v6 = v4 + v2 = 27.693
v7 = v6 − v0 = 24.693

Forward Tangent Trace 

·v−1 = 1
·v0 = 0
·v1 =

∂v1

∂v−1

·v−1 = − sin(v−1) ·v−1 = − 0.909

·v2 =
∂v2

∂v−1

·v−1 =
1

v−1

·v−1 = 0.5

·v3 =
∂v2

∂v−1

·v−1 +
∂v2

∂v0

·v0 = v0
·v−1 = 3

·v4 =
∂v4

∂v0

·v0 = 0

·v5 =
∂v5

∂v1

·v1 +
∂v5

∂v3

·v3 = ·v1 + ·v3 = 2.090

·v6 =
∂v6

∂v4

·v4 +
∂v6

∂v2

·v2 = ·v2 = 0.5

·v7 =
∂v7

∂v6

·v6 +
∂v7

∂v0

·v0 = ·v6 = 0.5

The two outputs 
(and)y1 y2

Now we must decide if 
we want to differentiate 

w.r.t or  
(we select)

x1 x2
x1

The derivatives 

 and
∂y1

∂x1

∂y2

∂x1

Forward-Mode:
things to notice

By setting and for all
 we can compute the derivative

of all outputs w.r.t.

To compute w.r.t. each input variable
we must repeat the process multiple
times

·xi = 1 ·xj = 0
j ≠ i

xi

Forward-Mode:
things to notice

All derivative are of simple “basic”
operations (sums, products,
trigonometric functions)

We can compute any composition of
them via the forward-mode diff

The value obtained is the exact value
of the derivative*
*There can still be floating point approximations, but they are of a different kind 
w.r.t. the one obtained when computing the derivative numerically

Forward-Mode:
things to notice

There is no obstacle in performing
the derivation with loops and
conditionals

For the forward mode we can
actually compute the derivatives at
the same time as the computation of
the forward primal trace

Forward mode: 
Jacobian

J =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

Let . We can compute the Jacobian matrix:f : ℝn → ℝm

…using a a total of 
n evaluations

Each “pass” allow us to 
compute a column of the 

Jacobian matrix…

Which is good when is small w.r.t. n m

Forward mode: 
Jacobian-vector product

Jr =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

r1
r2
⋮
rn

Let and let . We can compute the product  
without computing the Jacobian matrix

f : ℝn → ℝm r ∈ ℝn J r

Start the computation of 
the Forward Tangent Trace 
with  
i.e.,

·x1 = r1, ·x2 = r2, …
·x = r

Dual Numbers
The forward-mode differentiation can be interpreted as working 
with an extension of the real numbers, called dual numbers

v + ·vϵDual numbers are of the form:

Where but ϵ ≠ 0 ϵ2 = 0

Notice that addition and multiplication works as expected:

(v + ·vϵ) + (u + ·uϵ) = (v + u) + (·v + ·u)ϵ

(v + ·vϵ)(u + ·uϵ) = vu + v ·uϵ + ·vuϵ + ·v ·uϵ2

= vu + (v ·u + ·vu)ϵ

Dual Numbers

f(v + ·vϵ) = f(v) + f′￼(v) ·vϵ

Suppose that for each function the following holds:f

f(g(v + ·vϵ)) = f(g(v) + g′￼(v) ·vϵ)
= f(g(v)) + f′￼(g(v))g′￼(v) ·vϵ

Then two applications of the previous property 
give us the chain rule:

Reverse-Mode
AutoDiff

Fix one of the outputs

In reverse-mode we add to each

variable the adjoint

Notice that this time we change the
variable w.r.t. the derivative is
computed instead of keeping it fixed

yj

vi =
∂yj

∂vi

Reverse mode

cos v2v2
0

v1
x
v0

5v1

v2 v3

Forward Primal Trace 

v0 = 2
v1 = v2

0 = 22 = 4
v2 = 5v1 = 5 × 4 = 20
v3 = cos v2 = cos 20 = 0.408

Reverse Adjoint Trace 

v3 = 1

v2 =
∂y
∂v2

=
∂y
∂v3

∂v3

∂v2
= − v3 − sin(v2) = − 0.913

v1 =
∂y
∂v1

=
∂y
∂v2

∂v2

∂v1
= v2

∂v2

∂v1
= 5v2 = − 4.565

v0 =
∂y
∂v0

=
∂y
∂v1

∂v1

∂v0
= v1

∂v1

∂v0
= 2v0v1 = − 18.259

Reverse mode
Forward Primal Trace 

v−1 = 2
v0 = 3
v1 = cos v−1 = − 0.416
v2 = ln v−1 = 0.693
v3 = v−1v0 = 6
v4 = v3

0 = 27
v5 = v1 + v3 = 5.584
v6 = v4 + v2 = 27.693
v7 = v6 − v0 = 24.693

Reverse Adjoint Trace

v5 = 1
v7 = 0

v6 =
∂y1

∂v6
=

∂y1

∂v7

∂v7

∂v6
= v7

∂v7

∂v6
= 0

v4 =
∂y1

∂v4
=

∂y1

∂v6

∂v6

∂v4
= v6

∂v6

∂v4
= 0

v3 =
∂y1

∂v3
=

∂y1

∂v5

∂v5

∂v3
= v5

∂v5

∂v3
= 1

v2 =
∂y1

∂v2
=

∂y1

∂v6

∂v6

∂v2
= v6

∂v6

∂v2
= 0

v1 =
∂y1

∂v1
=

∂y1

∂v5

∂v5

∂v1
= v5

∂v5

∂v1
= 1

v0 =
∂y1

∂v0
=

∂y1

∂v3

∂v3

∂v0
+

∂y1

∂v4

∂v4

∂v0
= v3

∂v3

∂v0
+ v4

∂v4

∂v0
= v3v−1 = 2

v−1 =
∂y1

∂v−1
=

∂y1

∂v1

∂v1

∂v−1
+

∂y1

∂v2

∂v2

∂v−1
+

∂y1

∂v3

∂v3

∂v−1

= v1
∂v1

∂v−1
+ v2

∂v2

∂v−1
+ v3

∂v3

∂v−1
= − sin(v−1) + v0 = 2.090

The two outputs 
(and)y1 y2

Now we must decide 
the output that 

we want to differentiate 
(we select)y1

The derivatives 

 and
∂y1

∂x2

∂y1

∂x1

Reverse-Mode:
things to notice

By setting and for all
 we can compute the derivatives

of the output w.r.t. all inputs

To compute w.r.t. each output
variable we must repeat the process
multiple times

yi = 1 yj = 0
j ≠ i

yi

Reverse-Mode:
things to notice

The other observations done for
forward-mode autodiff also holds
for the reverse-mode autodiff

You might have noticed that the
procedure used is a generalisation
of the one employed by
backpropagation

Reverse mode: 
Jacobian

J =

∂f1
∂x1

∂f1
∂x2

⋯ ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

⋯ ∂f2
∂xn

⋮ ⋮
∂fm
∂x1

∂fm
∂x2

⋯
∂fm
∂xn

Let . We can compute the Jacobian matrix:f : ℝn → ℝm

…using a a total of 
m evaluations

Each “pass” allow us to 
compute a row of the 

Jacobian matrix…

Which is good when is small w.r.t. m n

Reverse mode: 
transposed Jacobian-vector

product

JTr =

∂f1
∂x1

∂f2
∂x1

⋯
∂fm
∂x1

∂f1
∂x2

∂f2
∂x2

⋯
∂fm
∂x2

⋮ ⋮
∂f1
∂xn

∂f2
∂xn

⋯
∂fm
∂xn

r1
r2
⋮
rm

Let and let . We can compute the product  
without computing the transpose of the Jacobian matrix

f : ℝn → ℝm r ∈ ℝm JT r

Start the computation of 
the Reverse Adjoint Trace 
with  
i.e.,

y1 = r1, y2 = r2, …
y = r

