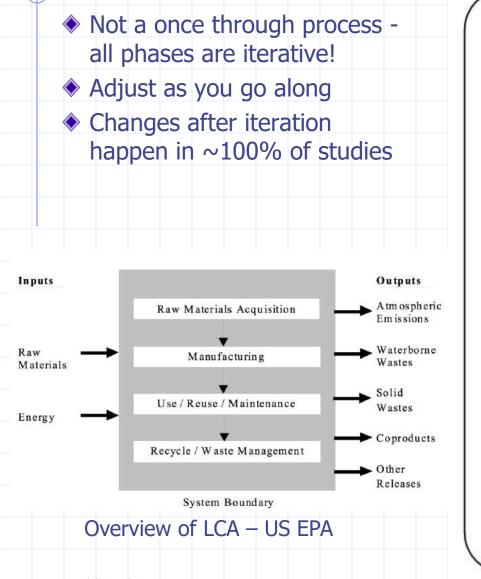
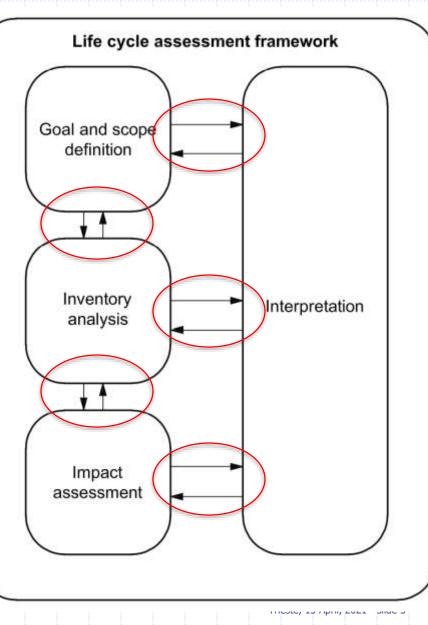
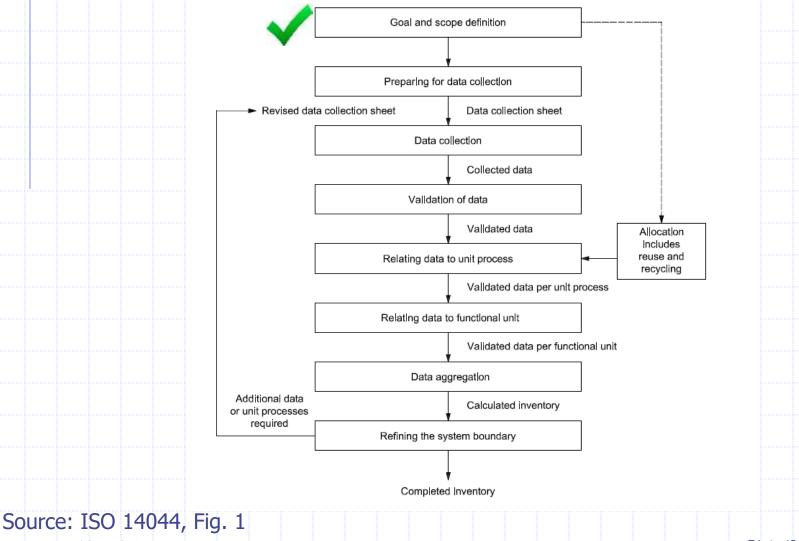
Life Cycle Assessment - LCA

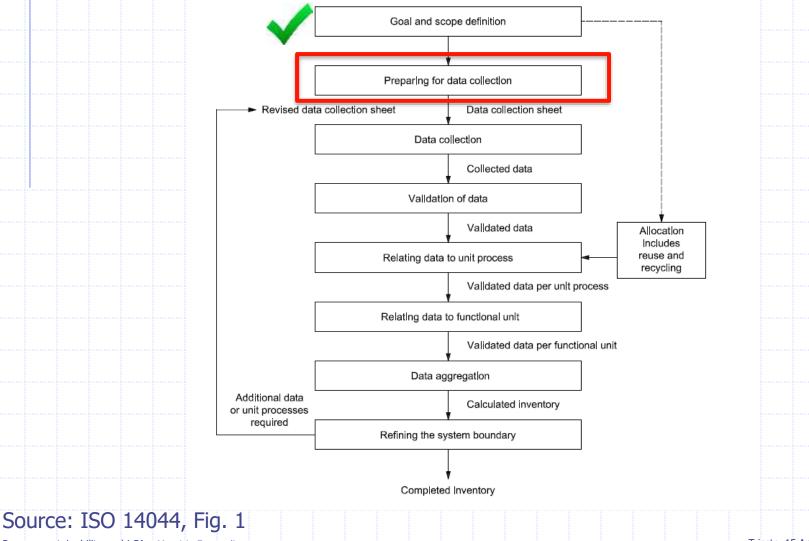

Maurizio Fermeglia


Maurizio.fermeglia@units.it Department of Engineering & Architecture University of Trieste

Agenda


- Life cycle thinking
- Quantitative methods and life cycle cost analysis
- The ISO LCA standard
- Life cycle inventory
 - Data needs and data quality
 - Data sources
 - Handling multifunction systems (disaggregation and allocation)
 - Uncertainty
 - Input-output LCA
- Impact assessment
- Conclusions

Phases of an LCA - Iterative


ISO Life Cycle Inventory Analysis Overview

Process sustainability and LCA – Maurizio Fermeglia

Trieste, 15 April, 2021 - slide 4

Step 1: preparing for data collection

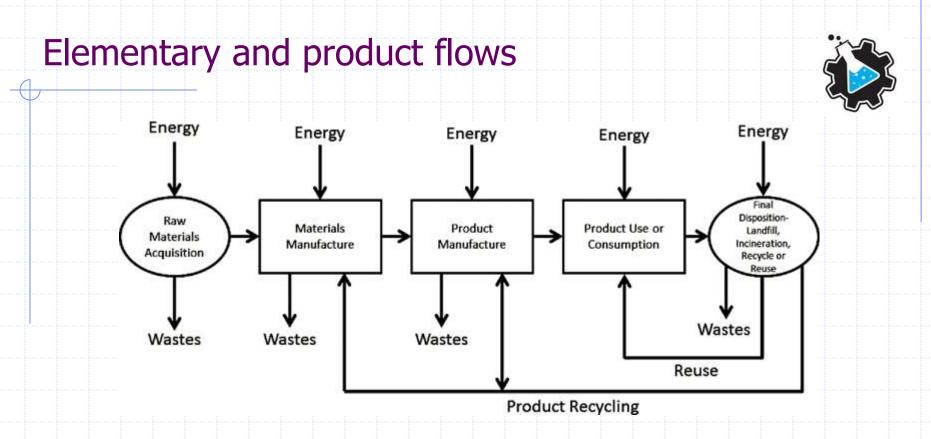
Process sustainability and LCA – Maurizio Fermeglia

Trieste, 15 April, 2021 - slide 5

Data needs overview

- Must know what you are tracking for your inventory
- Need data for all inputs and outputs
- Level of detail/aggregation may depend on:
 - Purpose of study
 - Data availability
 - Amount of uncertainty/variability
- Follow data quality requirements.
- Remember: data needs and goal/scope are set iteratively

Inventory scope


- We don't just choose "air emissions" or "water emissions"
 - We choose specific emissions of gases or substances
 - e.g., CO₂, SO₂, ..
- Can be guided by desired impact categories
 - Planned focus on fuel use, climate change, etc.

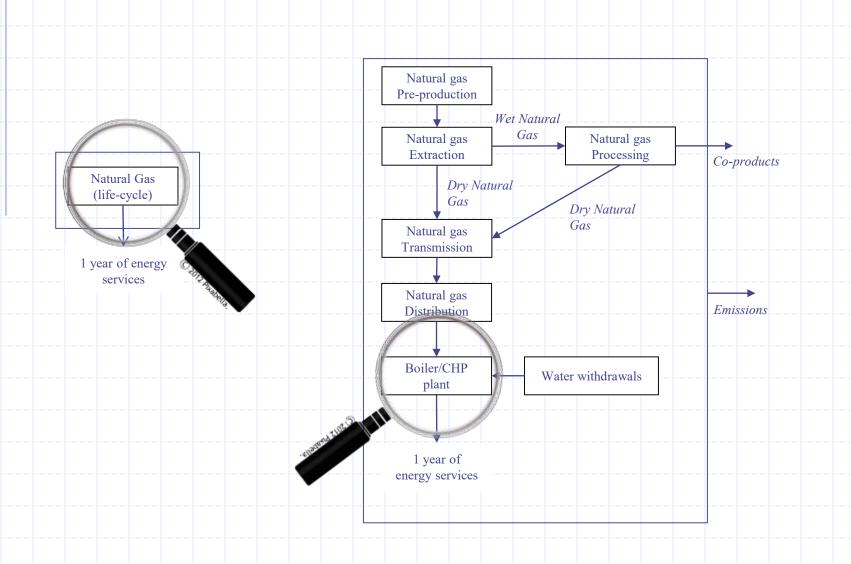
Data needs overview

Must know what you are tracking for your inventory

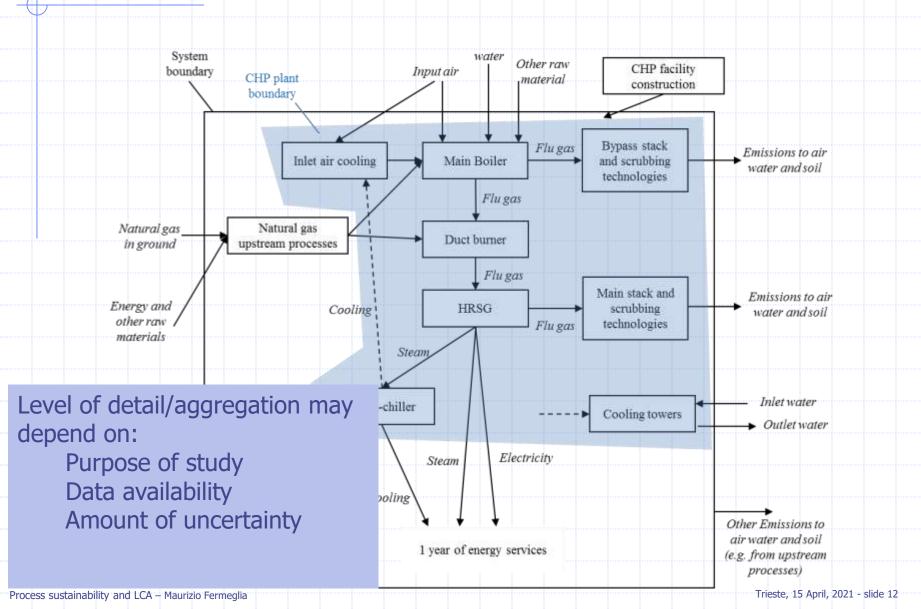
Need data for all inputs and outputs

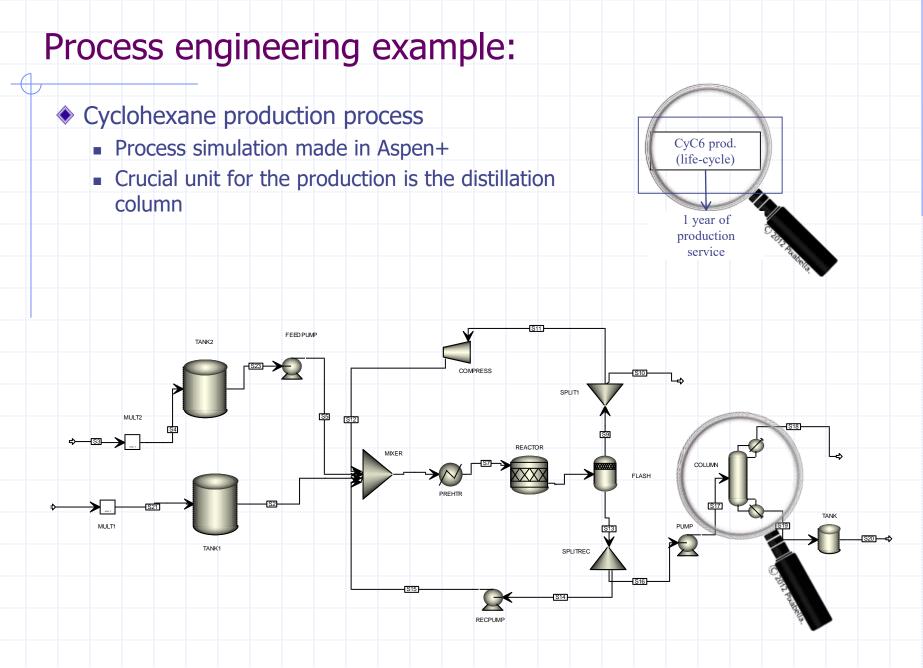
- Level of detail/aggregation may depend on:
 - Purpose of study
 - Data availability
 - Amount of uncertainty/variability
- Remember: data needs and goal/scope are set iteratively

From ISO 14044:

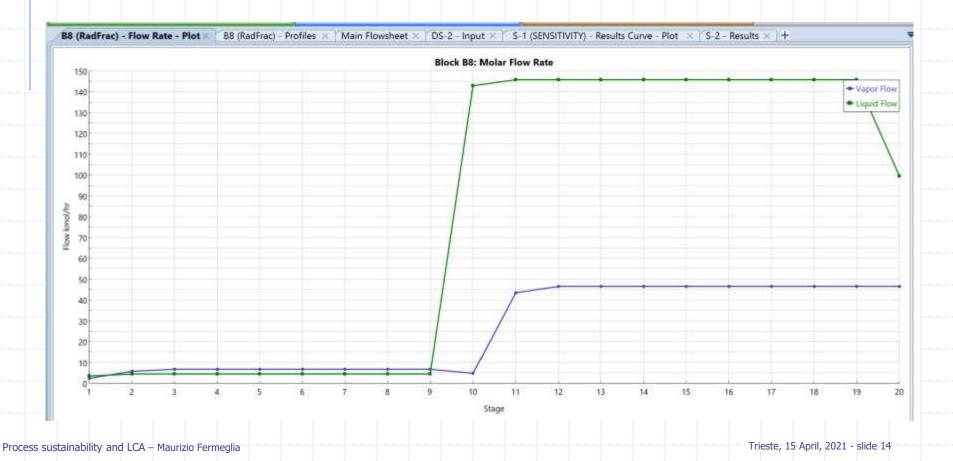

- Energy inputs, raw material inputs, ancillary inputs, other physical inputs
- Products, co-products and waste
- Releases to air, water and soil
- Other environmental aspects (noise, odor, land, resource depletion ...)

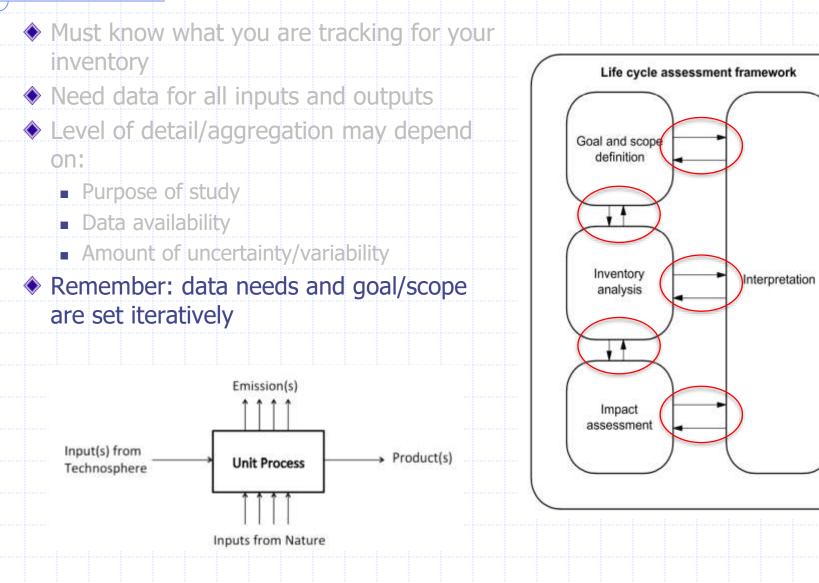
Data needs overview


- Must know what you are tracking for your inventory
 Need data for all inputs and outputs
- Level of detail/aggregation may depend on:
 - Purpose of study
 - Data availability
 - Amount of uncertainty

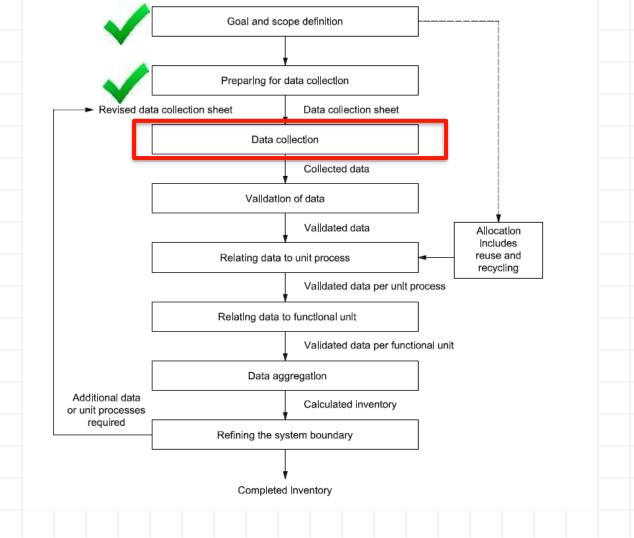

Remember: data needs and goal/scope are set iteratively

Aggregation: simplest models


Aggregation or more detail



Process engineering example:


- Cyclohexane production process
 - Flow rates of liquid and vapor in the column
 - RADFRAC profiles in Aspen+

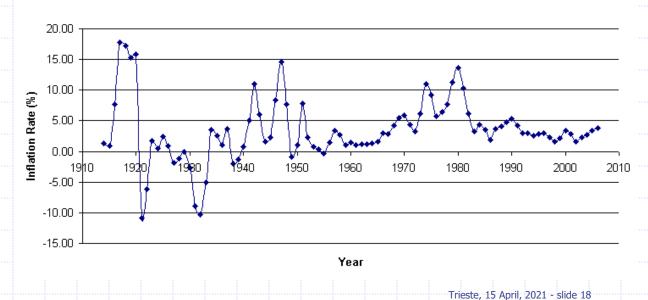
Data needs overview

Step 2: Data Collection

ISO 14044: 4.2.3.6

SDP: Data Quality Requirements

Fundamental expectations of needed data


- Temporal
- Geographical
- Technology
- Sources
- Precision
- Uncertainty
- Completeness
- See ISO 14044 for more

Data Quality Requirements: Temporal

- What is my year of analysis?
- Has the process changed recently?
- Is it likely to change in the near future?
- Have upstream/downstream processes changed?
- Has new information arisen recently?
- From what year is the data?
 - NOT the same as the year of publication!!!

U.S. Inflation Rate by Year

Data Quality Requirements: Geographical

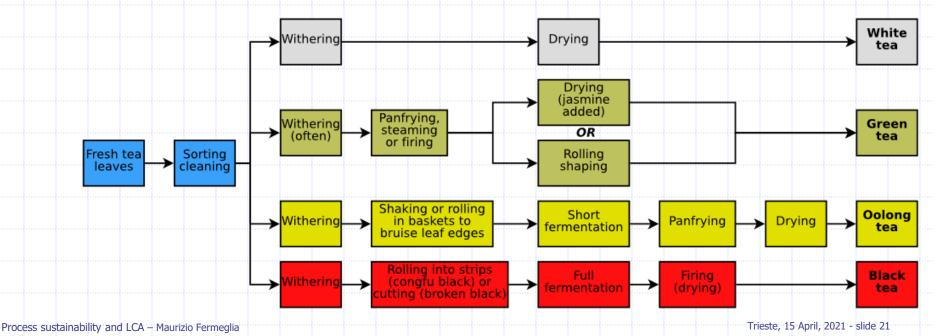
♦ Are you looking for a specific location? A general region? ...

Why does geography matter?

Data Quality Requirements: Geographical

Geography could affect:

- Regional emissions factors
- Technology choice
- Operational requirements
- Transportation
- Potential emissions / impact of emissions
- Transparency


....

Data Quality: Technology

- Different pathways to same product
 - Main technology and supporting technologies
- Possible criteria:
 - Specific company
 - Specific technology/technologies
 - Average technology mix
 - Representative technology

Tea (Cameillia Sinensis) Processing Chart

Data Quality: Data Sources

- Trustworthy source?
- Peer reviewed?
- Underlying assumptions?
- Type of data?
 - Measured?
 - Estimated?
 - Calculated?
 - Aggregated?
- Selecting multiple sources (why?)
 - Careful! What is the original data source? (may not provide independent data points!)
- Common data-driven Mistakes
 - Using data that is inconsistent with targeted process
 - Developing internally inconsistent models
 - Treating missing data as zero
 - Treating highly uncertain data as zero
 - Treating analytical detection limits as detections

Agenda

- Life cycle thinking
- Quantitative methods and life cycle cost analysis
- The ISO LCA standard
- Life cycle inventory
 - Data needs and data quality
 - Data sources
 - Handling multifunction systems (disaggregation and allocation)
 - Uncertainty
 - Input-output LCA
- Impact assessment
- Conclusions

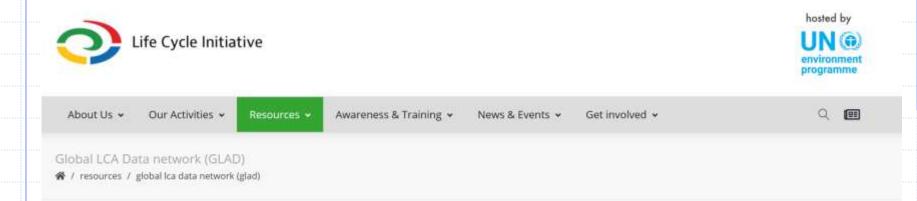
Data sources

Primary Data

- LCI Databases
- Government Sources
- Industry Reports
- Academic Literature
- Estimated

Data sources

- Primary Data
- LCI Databases
- Government Sources
 Industry Reports
 Academic Literature
- Estimated


LCA Databases

Don't despair, you do not need to collect all of your own data for LCAs:

- <u>US NREL LCI Database</u> (broad focus, using extensively, free)
- <u>Simapro databases</u> (broad focus, using extensively under CMU license, \$\$, includes ecoinvent)
- <u>BEES</u> (construction materials, free)
- Athena (building materials, etc. \$\$)
- GaBi (\$\$)
- Eco Invent (free)
- JRC EU commission (free)
- UN Environmental programme: Global LCA Data network (free)

UN Environmental programme: Global LCA Data network

Global LCA Data network (GLAD)

Life Cycle Assessment (LCA) data allow policy makers to develop sound sustainable consumption and production policies, and industries can base their innovation and strategic sustainability decisions on more robust information. Enhanced data accessibility and interoperability benefits the whole life cycle community and affects the way in which LCA goes mainstream.

The "Global LCA Data Access" network (GLAD) aims to achieve better data accessibility and interoperability. The network will be comprised of independently-operated LCA databases (nodes), providing users with an interface to find and access life cycle inventory datasets from different providers. GLAD will thus support life cycle assessment through easier access to data sources around the world.

One of the main functionalities of GLAD will be the conversion function which will allow users to convert a dataset from its native

LATEST STORIES

Extended deadline: Call for proposals to support project "Reduce marine plastics and plastic pollution in Latin American and Caribbean cities through a circular economy

Federal LCA Commons...

A central point of access to a collection of data repositories for use in Life Cycle Assessment

COMMONS		
Welcome to the LCA Commons data repository, a service of the	National Agricultural Library	
Search across all public repositories		Search
Federal LCA Commons/US electricity baseline 3169 data sets	National Renewable Energy Laboratory/USLCI 6047 data sets 💿	Federal LCA Commons/ReCiPe 168004 data sets @
	Unit & system life cycle inventory (LCI) datasets submitted to NREL by consulting, academia, & industry associations; > 600 process LCIs ranging from fuels combustion, transport, metals, chemicals, plastics, and glass to paper	
Browse	Browse	Browse
Federal LCA Commons/Elementary flow list	US Forest Service Forest Products Laboratory/Woody biomass	Federal LCA Commons/Federal LCA Commons core database
278790 data sets ④	79 data sets 🛞	692 data sets 💿
Browse	Browse	Browse

US NREL LCI Database

U.S. Life Cycle Inventory Database

R ... U.S. Life Cycle Inventory Database

About the Project

Federal Commons

Life Cycle Assessments

Related Links

NREL and its partners created the U.S. Life Cycle Inventory (USLCI) Database to help life cycle assessment practitioners answer questions about environmental impact.

The USLCI database provides individual gate-to-gate, cradle-to-gate, and cradle-to-grave accounting of the energy and material flows into and out of the environment that are associated with producing a material, component, or assembly in the U.S.

U.S. Life Cycle Inventory Database

ACCESS DATABASE

For video tutorials on how to use the database, view the NREL U.S. Life Cycle Inventory Database Quick Help Series.

The USLCI database provides supporting information on GitHub with links to many resources related to submission of data to and end-use of the USLCI Database, including:

- USLCI Data Submission Handbook (including metadata guidance)
- USLCI Database Archives (past release versions in various file formats)
- USLCI Release Change Log
- USLCI Update Press Release.

Transforming ENERGY

openLCA available databases: ecoinvent

openLCA Nexus

Your source for LCA and sustainability data.

Databases

ecoinvent UVEK LCI Data The Evah Pigments Database LCA Commons (complete) Environmental Footprints IMPACT World+ Ozl.Cl2019 idea Agri-footprint exiobase ARVI Agribalyse soca EuGeos' 15804-IA NEEDS PSILCA ESU World Food ELCD LC-Inventories.ch Social Hotspots ProBasbioenergiedat Ökobaudat openLCA LCIA methods

econvent Info Details Documents

!!!Update!!!

Releasing ecoinvent 3.7.1, an updated version of ecoinvent 3.7. The update rectifies two issues with version 3.7, for more details, please check ecoinvent website or you can also read the document on changes from 3.7 to 3.7.1 by clicking here.

A leading LCA database by the ecoinvent association, ecoinvent 3.7.1, the seventh update of ecoinvent version 3, includes more than 900 new datasets, among them 100 new products, and 1000 updated datasets. The new data covers: agriculture, building and construction materials, chemicals, electricity, fishing, metals, refineries, textiles, tourism, transport, waste treatment and recycling, and water supply.

We offer a fully valid econvent licence with full access to the econvent website and with databases specifically adapted to openLCA.

Ordering databases is also possible outside of Nexus. Additional fees may apply, Please see here for more details. If you are interested, send us a message.

SimaPro

SNexusDB@128.2.65.186\Default\Professional; test-09-01-2015

<u>File E</u>dit <u>C</u>alculate <u>T</u>ools <u>W</u>indow <u>H</u>elp

D 😅 🖆 🔛 🚭 🕺 🗈 🛍 🎤 🖬 🕮 👫 🛄 🛍 🗰 🍋

	🔜 LCA Explorer							
	Wizards	Processes	Name		Unit	Waste type	Pr 🔺	
	Wizards	🚊 Material 📃	Tetrafluoroethylene film, on glass {GLO} market for	Conseq, U	kg	Plastics	Ec	New
4	Goal and scope	. ⊕ · Agricultural	Tetrafluoroethylene {GLO} market for Conseq, U		kg	not defined	Ec	
	Description		Polyvinylidenchloride, granulate {GLO} market for C	onseq, U	kg	PVDC	Ec	Edit
	Libraries		Polyvinylchloride, suspension polymerised {GLO} mark	ket for Conseq, U	kg	PVC	Ec	
	Inventory		Polyvinylchloride, emulsion polymerised {GLO} market	: for Conseq, U	kg	PVC	Ec	⊻iew
	Processes		Polyvinylchloride, bulk polymerised {GLO} market for	Conseq, U	kg	PVC	Ec	Conu
	Product stages		Polystyrene, high impact {GLO} market for Conseq,	U	kg	PS	Ec	⊆opy
	Waste types	i Food ⊡-Fuels	Polystyrene, general purpose {GLO} market for Cor	iseq, U	kg	PS	Ec	Delete
	Parameters	⊕ Glass	Polystyrene, expandable {GLO} market for Conseq,	U	kg	PS	Ec	00000
	Impact assessment		Polystyrene scrap, post-consumer {GLO} market for	Conseq, U	kg	PS	Ec	Used by
	Methods	⊕ Metals	Polypropylene, granulate {GLO} market for Conseq	,U	kg	PP	Ec	
	Calculation setups	⊕ Minerals	Polyphenylene sulfide {GLO} market for Conseq, U		kg	Plastics	Ec	
	Interpretation		Polymethyl methacrylate, sheet {GLO} market for C	onseq, U	kg	Plastics	Ec	Show as list
	Interpretation		Polymethyl methacrylate, beads {GLO} market for C	•	kg	Plastics	Ec	
	Document Links	Plastics	Polyethylene, low density, granulate {GLO} market for	or Conseq, U	kg	PE	Ec	
	General data	. Biopolymers	Polyethylene, linear low density, granulate {GLO} ma	rket for Conseq, U	kg	PE	Ec 🚽	
	Literature references	. ∎. Rubbers						
	Substances	⊡ Thermoplasts	In this market, expert judgement was used to develo	a product charific transport distance estimations				
	Units	⊟ Market	The first market, expert judgement was used to develo	product specific transport distance estimations.				
Ш	Quantities	Infrast	Production volume: 0 kg					
	Images	⊡ Transforma	Technology level: 0 undefined Start date: 2011-01-01					
		H Thermosets	End date: 2014-12-31					
		+ Textiles	Is data valid for entire period: true					
		+ Water	Macro-economic scenario name: Business-as-Usual					
		F- Wood	Version: 3.0.3.0					
		Energy	Created: 2011-08-02T09:58:54					
		Biomass	Source: 9befbc63-1153-4924-99ea-eb4208d8e22b_4	e735e76-09eb-493b-87b9-e22d9550e4ad.spold				
		Electricity by fuel						
		. ⊕. Biofuel						
		Biomass						
Ш		E- Coal						
		i Market					-	
		🖃 - Transforma				1		
			Filter on	• and O or	Cle <u>a</u> r	198		
		72846 items	1 item selected					
I	carnegie mellon		Manager	8.0.4.26 Cla	ssroom Multi user			

_ 🗆 🗵

Data Sources - Heart of Tools

- All 'tools' such as SimaPro are 'front ends' to databases
 - Aggregate and calculate inventories
 - Do impact assessment
- The data is the important part
- The interface is just there to help

Examine data documentation and metadata to get what you need

Metadata in NREL USLCI

Return to Results List

Details for Polylactide Biopolymer Resin, at plant

Activity Modeling Administrative Exchanges Name Polylactide Biopolymer Resin, at plant Chemical Manufacturing - Plastics Material and Resin Manufacturing Category Data has been peer reviewed by Dr. I. Boustead from Boustead Consulting, UK. Data Description only represents Ingeo polylactide (PLA) resin production by NatureWorks LLC in Blair Nebraska and cannot be used for PLA production in general. Final review report is attached to the Data Module Report. RNA (RNA) Location Geography Comment North America Infrastructure Process False Quantitative Reference Polylactide Biopolymer Resin, at plant Start Date 2009-01-01 End Date 2009-01-01 Time description Technology Description Ingeo Polylactide polymer production technology developed by NatureWorks LLC

9

Metadata in NREL USLCI (continued)

Activity Modeling	Administrative Exchanges
LCI Method	
Modelling constants	
Data completeness	
Data selection	
Data treatment	
Sampling procedure	
Data collection period	
Reviewer	
Other evaluation	
Sources	
	E.T.H. Vink 2004 The life cycle of NatureWorks® Polylactide, Corn production inventory data and corn production eco-profile
	H. Shapouri 2002 The Energy Balance of Corn Ethanol: An Update, U.S. Department of Agriculture,
	Office of the Chief Economist, Office of Energy Policy and New Uses, Agricultural Economic Report No. 814,
	E.T.H. Vink 2006 The life cycle of NatureWorks® Polylactide, The production of dextrose via corn wet milling
	E.T.H. Vink 2005 Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production.
	P. Gruber 2002 Polylactides "NatureWorksTM PLA. In: Biopolymers in 10 volumes, Volume 4, Polyesters III, Applications and Commercial Products
	E.T.H. Vink 2007 The eco-profiles for current and near future NatureWorks® polylactide (PLA)
	production

Metadata in SimaPro

	\Default\Professional; test-09-01-2015 - [View m	aterial process 'Lactic acid {RER}	production Alloc Def, 5']
, <u>F</u> ile <u>E</u> dit <u>C</u> alculate <u>T</u> o			
🖻 🖆 🖨 😓	% 🗈 🛍 🔎 + III - III ABC A+B 🖥 🛄	📙 🗳 🛍	
cumentation Input/outpu	Parameters System description		
		Colorem.	
Project	Ecoinvent 3 - allocation, default - system	Category	Material
ireated on	11/14/2014	Last update on	11/14/2014
rocess type	System	Process identifier	EI3AD5Y561667501872
ame	lactic acid production RER		
tatus	None		
mage			
ime period	Unspecified		
eography	Unspecified		
echnology	Unspecified		
Representativeness Unspecified Multiple output allocation Unspecified			
ubstitution allocation	Unspecified		
ut-off rules	Unspecified		
System boundary Unspecified			
oundary with nature	Unspecified		
nfrastructure process	No		
ate	7/14/2014		
ecord	data entry by: Jürgen Sutter sutter.juergen@gmail.com	n is active author:	
Senerator	generated by: Jürgen Sutter j.sutter@oeko.de Rheinst		
Seneral reference and source			
iterature reference	Comment data published in: 0 Data as such	not published elsewbere (default)	
Ecoinvent 3	page numbers: chemicals	nes paesarios obornioro (soriasit)	
Ecoinvent 3			
Ecoinvent 3	is copyright protected: true		

Metadata in SimaPro (continued)

ocumentation Input/output	Parameters System description
Collection method	sampling procedure: Literature data
Data treatment	extrapolations: This dataset has been extrapolated from year 2010 to the year of the calculation (2014). The uncertainty has been adjusted accordingly.
Allocation rules	
Verification	
Comment	Lactic acid and some of its derivatives (salts and esters) are used in three main applications: foods, polymers, and industrial.
	Food Uses The food industry is the traditional large consumer of lactic acid and lactate salts. It is mainly used as an acidulant and preservative. Lactic acid has a mild acid taste and do not overpower weaker aromatic flavors. Since it occurs naturally, it does not introduce a foreign element into the food, and its salts are very soluble, thus giving the possibility of partially replacing the acid in buffering systems. Lactic acid and its salts are used in a variety of beverages, candies, meat, and sauces. Calcium lactate can be used in a variety of foods to make a calcium-enhanced product. Steroyl lactate and its sodium and calcium salts are used in bread.
	Polymers The fastest growing use for lactic acid is its use as a monomer for the production of polylactic acid or polylactide (PLA). NatureWorks LLC produces PLA via ring-opening polymerization of lactide [53]. Lactide is made by condensation of two lactic acid entities. Applications for PLA include containers for the food and beverage industries, films and rigid containers for packaging, and serviceware (cups, plates, utensils). The PLA polymer can also be spun into fibers and used in apparel, fiberfill (pillows, comforters), carpet, and nonwoven applications such as wipes.
	Industrial Uses There are a variety of industrial uses for lactic acid and its derivatives. It is used in metal plating, cosmetics, and the textile and leather industry. Lactate esters are used in the manufacture of paints and inks, electronics, and metal cleaning. Agricultural uses include animal feed.
	Frischknecht R., Jungbluth N., Althaus HJ., Doka G., Dones R., Heck T., Hellweg S., Hischier R., Nemecek T., Rebitzer G. and Spielmann M. (2007) Overview and Methodology. Final report ecoinvent v2.0 No. 1. Swiss Centre for Life Cycle Inventories, Dübendorf, CH, retrieved from: www.ecoinvent.org.
	Gendorf (2000) Umwelterklärung 2000, Werk Gendorf. Werk Gendorf, Burgkirchen as pdf-File under: http://www.gendorf.de/pdf/umwelterklaerung2000.pdf
	Surinder P. Chahal/John N. Starr: Lactic Acid. Published online: 2006. In: Ullmann's Encyclopedia of Industrial Chemistry, Seventh Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. Wiley InterScience, New York, Online-Version under: DOI: 10.1002/14356007.a15_097.pub2
	The process "lactic acid , at plant, RER" is modelled for the production of lactic acid from acetaldehyde in Europe. Raw materials are modelled with a stoechiometric calculation. Emissions are estimated. Energy consumptions, infrastructure and transports are calculated with standard values.
	Lactic acid (CH3CH(OH)COOH; CAS 50-21-5, 2-hydroxypropionic acid) is the simplest hydroxycarboxylic acid with an asymmetrical carbon atom. It occurs as a racemate (dl, and in two optically active forms, I-(+)-lactic acid and d-(-)-lactic acid. Lactic acid is produced on an industrial scale by fermentation or a synthetic method. Since ca. 1995, new lactic acid production capacity has employed the fermentation approach because it produces lactic acid with high chiral purity that is needed for the food and polymer markets.
	Synthesis of Lactic Acid Since the 1960s, racemic lactic acid has also been produced via synthetic routes. The present industrial synthesis of lactic acid is based on the reaction of acetaldehyde witl hydrogen cyanide followed by the hydrolysis of the resultant lactonitrile:
	Production volume: 5000000 kg Included activities end: production of lactic acid including materials, energy uses, infrastructure, and emissions Energy values: Undefined (default) Geography: The inventory is modelled for Europe. Technology level: 3 Current (default) Technology: hydrolysis of lactonitrile

Metadata in openLCA

B B B B B B B 0			11		0
Navigation 😽 🗢 🗆	A Welcome 23 P Elect	ricity, Texas US, 2014 - US	P 8	Problems	-
CorsoLCA Projects Product systems	P General informa	c	Description Path		
Processes Difference Processes	- General information	•			
> En Flows	Name				
 Indicators and parameters Impact assessment methods Social indicators Global parameters Data quality systems III Background data 	Description	quantity imported from Canada and Mexico. The production mix for the United States was calculated using 2014 data from the U.S. Department of Energy, Energy Information Administration (EIA 2015, forms EIA-906, EIA-920 and EIA- 923). Data for 2013 from the International Energy Agency (IEA 2016) were used for Mexico, as these were the most recently available. Since electricity imports from Mexico represent less than 1% of the total energy consumed in the U.S.,	~		
	Category	22: Utilities > 2211: Electric Power Generation, Transmission and Distribution			
	Version	00.00.012 🕒 🗇			
	UUID	842eac5c-e9fe-4cec-86db-da0da38ed7b2			
	Last change	2019-09-09706:28:11+0200			
	Infrastructure process				
		Create product system ODirect calculation			
	* Time				
	Start date 12/ 9/20	113 🔍 🛡 🕶			
	End date 12/ 9/20	114 💷 🕶			
	Description		-		
			-		
	- Geography				

What you can get from these tools

- Key inputs / outputs
- Unit process emissions and other inventory data
- Life-cycle emissions and other inventory data
- Data sources
- Impact Assessment

Data sources

- Primary Data
- LCI Databases

Government Sources

Industry Reports
 Academic Literature
 Estimated

Government Sources

- Sovernment databases are an excellent source of up-to-date information
- There is no central/comprehensive list of where to look.
 - Let's look at some examples

U.S. EIA: Fossil Fuel Data

U.S. EIA: Fossil Fuel Data (continued)

NATURAL GAS

DATA -

OVERVIEW

ANALYSIS & PROJECTIONS *

•

Natural Gas Gross Withdrawals and Production

(Volumes in Million Cubic Feet)

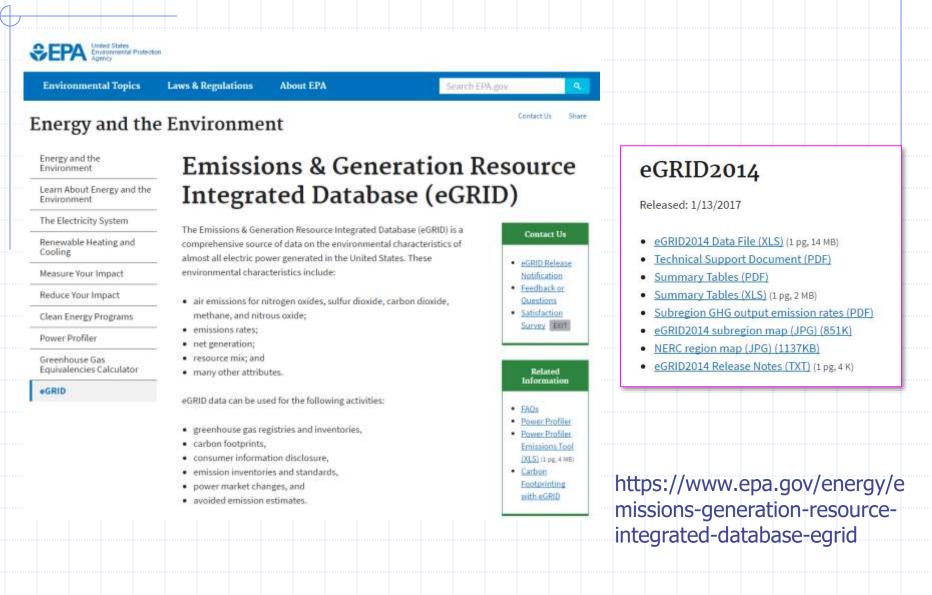
Area: U.S.

Period-Unit: Annual-Million Cubic Feet

•

Download Series History	Definition	ons, Sources & N	otes					
Show Data By: Data Series	Graph Clear	2010	2011	2012	2013	2014	2015	View History
Gross Withdrawals	* ** 🔟	26,816,085	28,479,026	29,542,313	29,522,551	31,405,381	32,894,727	1936-2015
From Gas Wells	*	13,247,498	12,291,070	12,504,227	10,759,545	10,123,418	9,784,840	1967-2015
From Oil Wells	*	5,834,703	5,907,919	4,965,833	5,404,699	5,999,955	6,452,680	1967-2015
From Shale Gas Wells	* ** 🔝	5,817,122	8,500,983	10,532,858	11,932,524	13,974,936	15,475,887	2007-2015
From Coalbed Wells	**	1,916,762	1,779,055	1,539,395	1,425,783	1,307,072	1,181,320	2002-2015
Repressuring	*	3,431,587	3,365,313	3,277,588	3,331,456	3,291,091	3,410,693	1936-2015
Vented and Flared	*	165,928	209,439	212,848	260,394	293 <mark>,</mark> 916	278,623	1936-2015
Nonhydrocarbon Gases Removed	*	836,698	867,922	768,598	368,469	322 <mark>,</mark> 620	452,477	1973-2015
Marketed Production	*	22,381,873	24,036,352	25,283,278	25,562,232	27,497,754	28,752,935	1900-2015
Dry Production	*	21,315,507	22,901,879	24,033,266	24,205,523	25,889,605	27,059,503	1930-2015

EIA has an enormous amount of data on a large range energyrelated topics


I click on the source key icon to learn how to download series into Excel, or to embed a chart or map on your website.

- = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

Notes: Beginning with monthly data for January 2006, "Other States" volumes include all of the natural gas producing states except. Alaska, Arkansas, California, Colorado, Kansas, Louisiana, Montana, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, Texas, Utah, West Virginia, Wyoming, and the Gulf of Mexico. Data for 2014 are estimated. Monthly preliminary (from January 2014 to present) state-level data for the production series, except marketed production, are not available until after the final annual reports for these series are collected and processed. Final annual data are generally available in the third quarter of the following year. For years prior to 2007, coalbed production data are included in Gas Well totals. For 2007-forward, gross production from coalbed methane and shale data are from PointLogic Energy. Prior to 1997, state production for Texas, Louisiana, and Alabama includes a portion of the Federal Offshore Gulf of Mexico production, Sources, and Notes link above for more information on this table.

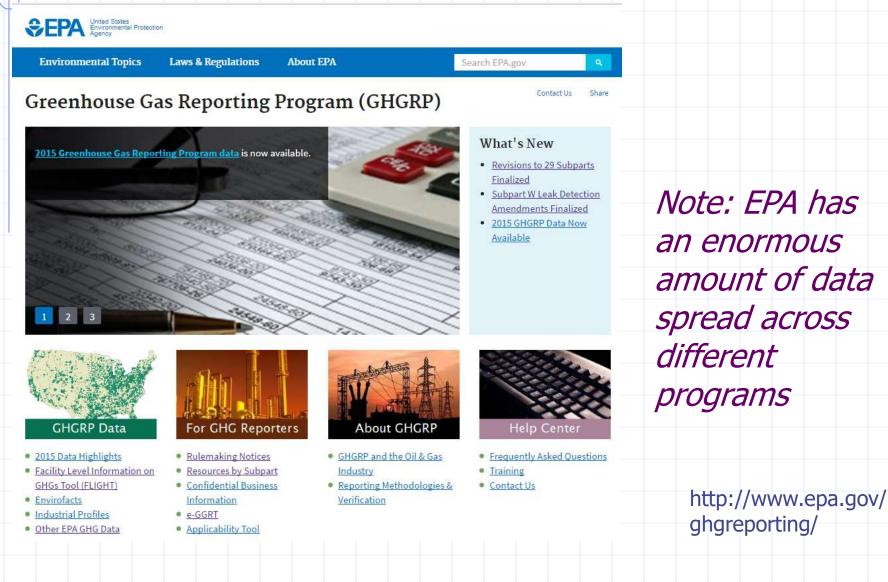
Release Date: 01/31/2017 Next Release Date: 02/28/2017 http://www.eia.gov/dnav/ng/ng_ prod_sum_dcu_NUS_a.htm

U.S. EPA: eGRID

U.S. EPA: Toxics Release Inventory

TRI is a resource for learning about toxic chemical releases and pollution prevention activities reported by industrial and federal facilities. TRI data support informed decision-making by communities, government agencies, companies, and others.

- Learn About TRI
- Basics of TRI Reporting
- Common TRI Terms Explained
- TRI 30th Anniversary


- 2015 TRI National Analysis Report
- Pollution Prevention (P2) Data
- Tools for TRI Data Analysis
- TRI for Communities

- Reporting Instructions and Guidance
- TRI Facilities Portal
- Determine if Your Facility Must Report
- Electronic Reporting with TRI-MEweb

http://www2.epa.gov/toxi cs-release-inventory-triprogram

U.S. EPA: Greenhouse Gas Reporting Program

USDA: Quick Stats

USDA United States Department of Agriculture National Agricultural Statistics Service

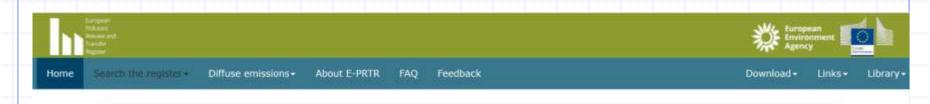
Quick Stats

Navigation History:

Select Commodity (one or more)

CENSUS _	ANIMALS & PRODUCTS	ANIMAL TOTALS		AG LAND
SURVEY	CROPS	AQUACULTURE		AG SERVICES
-24502509212234	DEMOGRAPHICS	CROP TOTALS		AG SERVICES & RENT
	ECONOMICS	DAIRY		ALCOHOL COPRODUCTS
	ENVIRONMENTAL	ENERGY		ALMONDS
	and the second second second second	EXPENSES		ALPACAS
		FARMS & LAND & ASSETS		AMARANTH
		FIELD CROPS		ANIMAL PRODUCTS, OTHER
*	*	FRUIT & TREE NUTS	•	ANIMAL SECTOR
		FRUIT & TREE NUTS		ANIMAL SECTOR

.


Geographic Level:	
AGRICULTURAL DISTRICT	- 4
COUNTY	
INTERNATIONAL	
NATIONAL	
REGION : MULTI-STATE	
REGION : SUB-STATE	
STATE	
WATERSHED	
ZIP CODE	×

Select Time (one or more)

Select Time (one or more)	1							http	o://c	quic	kst	at
Year:									ass.I	1		
2017 2016 2015 2014 2013 2012 2011 2010 2010								/			Ĭ	
2013 2012 2011								/				
2010 2009 •												

Process sustainability and LCA - Maurizio Fermeglia

European Pollutant Release and Transfer Register

A new EU industrial reporting portal is under development. Later in 2020 this will contain E-PRTR data but until then the newest data can be found here.

Welcome

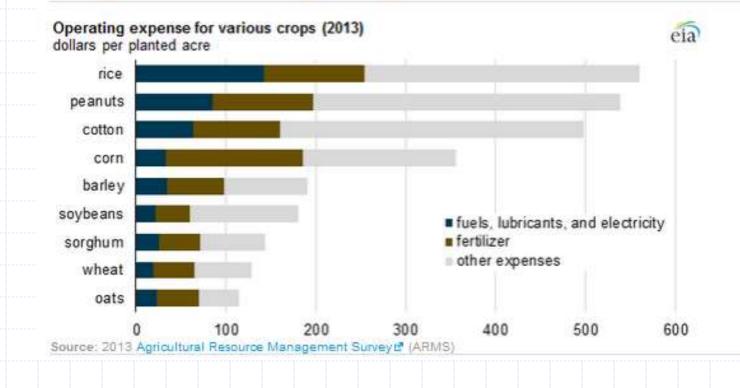
The European Pollutant Release and Transfer Register (E-PRTR) is the Europe-wide register that provides easily accessible key environmental data from industrial facilities in European Union Member States and in Iceland, Liechtenstein, Norway, Serbia and Switzerland. It replaced and improved upon the previous European Pollutant Emission Register (EPER). The new register contains data reported annually by more than 30,000 industrial facilities covering 65 economic activities across Europe. For ..., more

LIII Search the register

Facility Level - Industrial Activity - Area Overview -Pollutari Rélinases - Pollutarit Transfers - Waste Transfers

Diffuse emissions

Releases to air · Releases to water


E-PRTR Facilities

Government Sources

- Lots of other sources
- Be creative!

Energy for growing and harvesting crops is a large component of farm operating costs

Data sources

- Primary Data
- LCI Databases
- Government Sources

Industry Reports

Academic Literature

Estimated

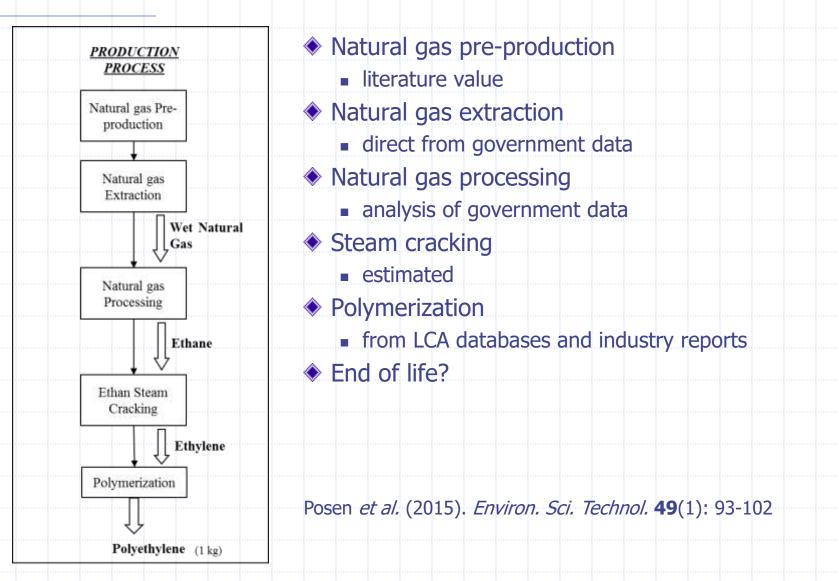
Data sources

- Primary Data
- LCI Databases
- Government Sources
- Industry Reports
- Academic Literature
- Estimated

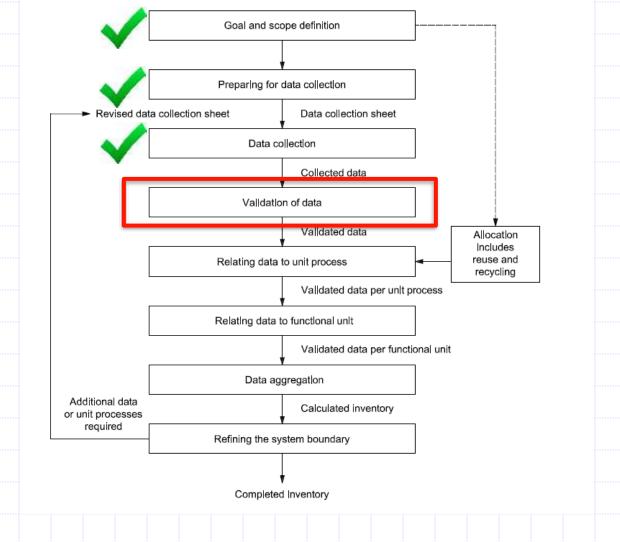
Academic Literature

- Academic literature is an important source of LCA information
 - Complete inventories from existing LCA studies
 - Inventories from unit processes
 - Can be useful even if study relates to a different system
 - Reporting of primary data not available elsewhere
 - Estimation of difficult parameters
 - May not necessarily be an LCA study
 - See how similar studies were scoped out
- Find using databases, Google Scholar, Web of Science, etc.
- CMU Library Xiaoju (Julie) Chen is our resource!

Data sources

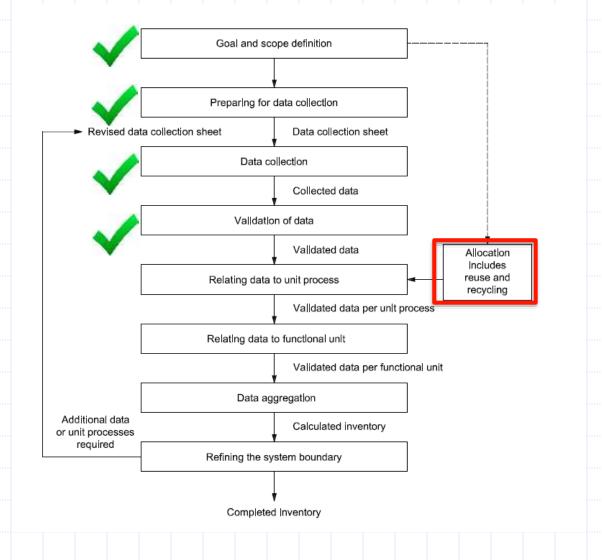

- Primary Data
- LCI Databases
- Government Sources
- Industry Reports
- Academic Literature
- Estimated

Data "Collection"


- LCA rarely is primary data only
 - Usually have to use at least some secondary sources!
 - Many studies are 100% based on secondary sources
- This is usually the longest, most labor intensive part of an LCA study.

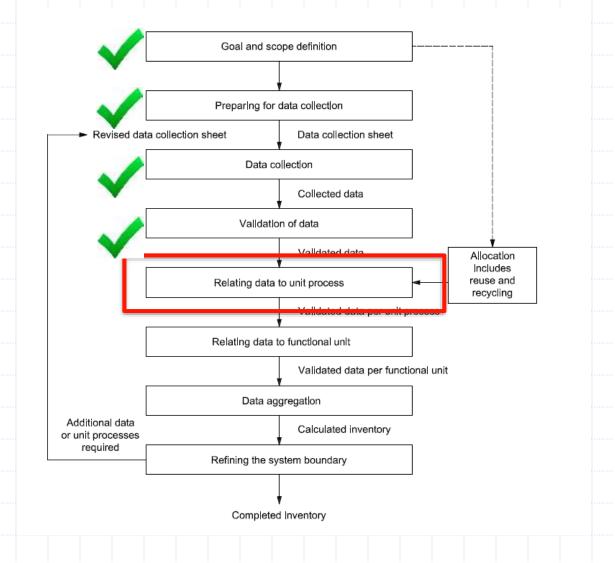
Example: Greenhouse Gas Emissions From Polyethylene Plastic Production

Step 3: Data Validation


Data Validation

After collecting data, pause, assess

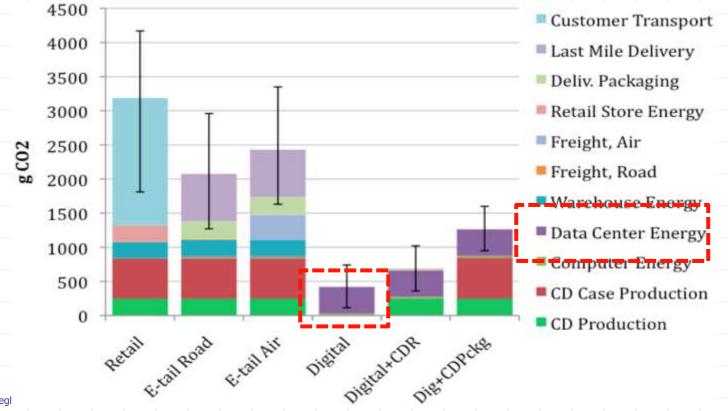
- Meeting data quality requirements?
- Within range expected?
- Mass balance maintained?
- Comparable to other processes?
- Modification of scope needed?
- Results go in your report


Step 4: data allocation (if needed)

ISO 14040: 5.3 ISO 14044: 4.3 (focus on 4.3.1-4.3.3 for now)

Step 4: relating data to unit process

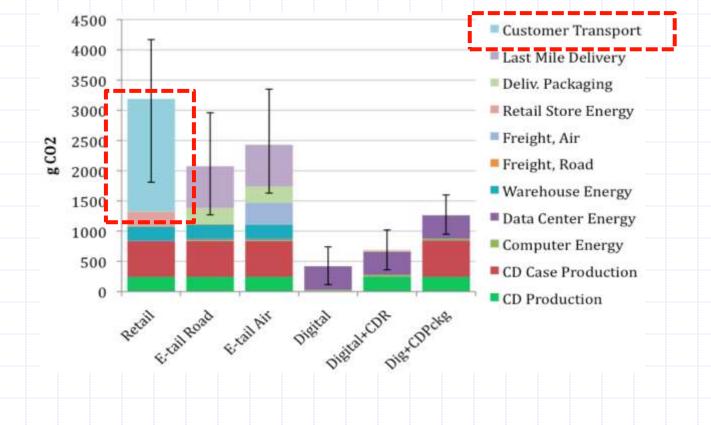
ISO 14040: 5.3 ISO 14044: 4.3 (focus on 4.3.1-4.3.3 for now)



Example: Music Delivery Case Study

- a SW company decided to study energy and CO2 impacts of downloading music
- Goal: Compare methods of delivering music to consumers
 - CDs vs. downloads
 - Additional distinction for CDs: buy at retail store or online
 - CO2 impact

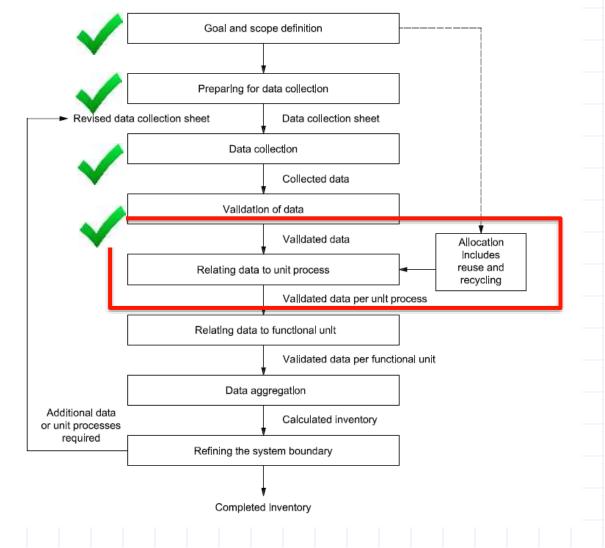
use


Dematerialization increases environmental performance, partially offset by internet energy

Process sustainability and LCA – Maurizio Fermegl

Discussion

- Sensitivity what parameters could flip result
 - Retail with zero customer transport emissions (bicycle/walk)
 - 5 hours of web browsing for online shopping
 - 260 MB data transfer (lossless files)

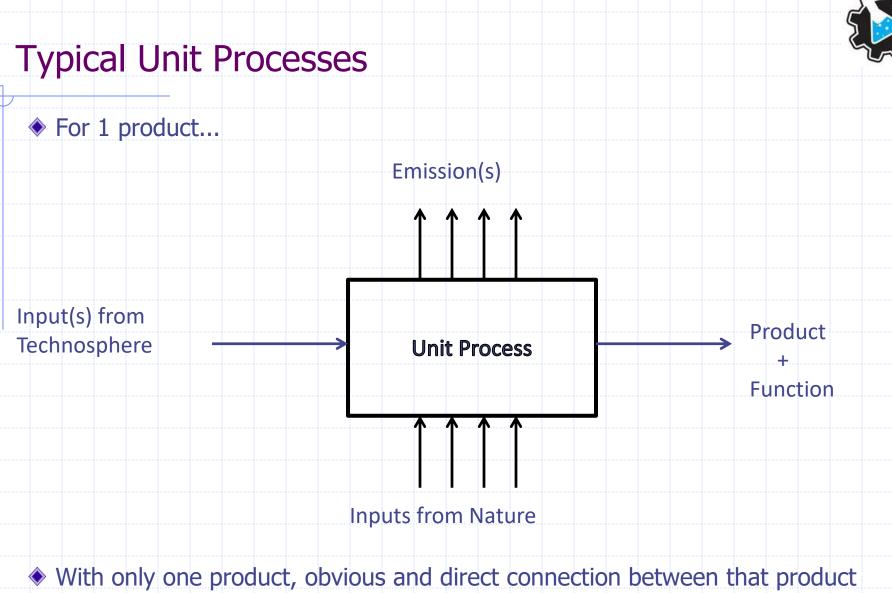


Agenda

- Life cycle thinking
- Quantitative methods and life cycle cost analysis
- The ISO LCA standard
- Life cycle inventory
 - Data needs and data quality
 - Data sources
 - Handling multifunction systems (disaggregation and allocation)
 - Uncertainty
 - Input-output LCA
- Impact assessment
- Conclusions

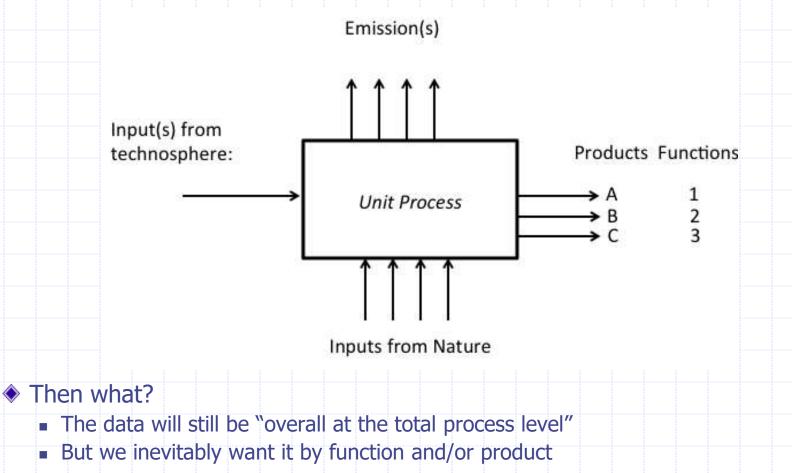
Life Cycle Inventory

ISO 14040: 5.3 ISO 14044: 4.3 (focus on 4.3.1-4.3.3 for now)


Process sustainability and LCA – Maurizio Fermeglia

Trieste, 15 April, 2021 - slide 63

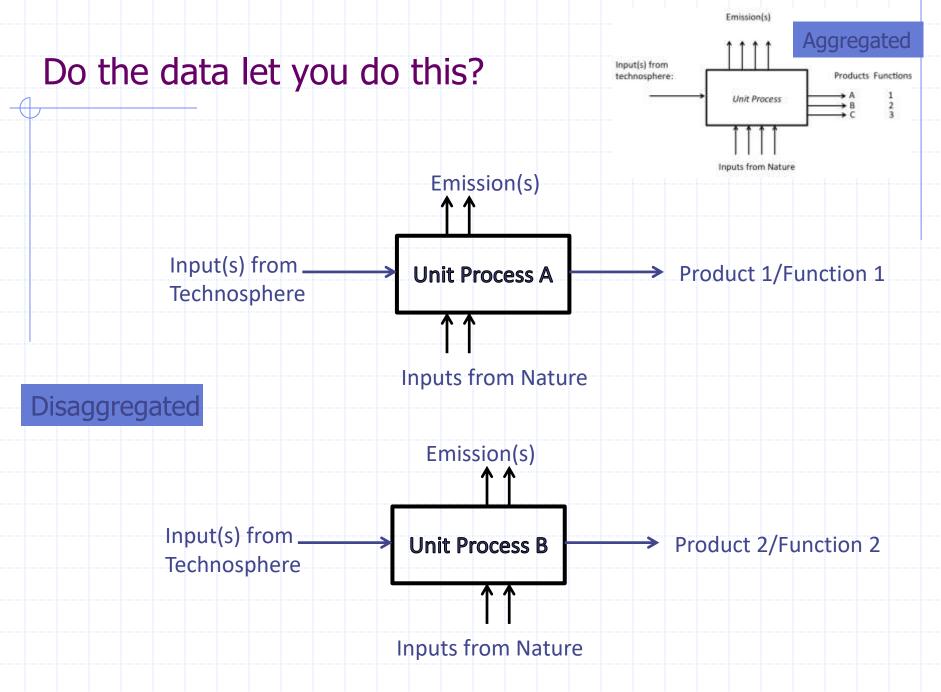
Structure of a Process-based LCA Model



and its input and output flows

Multifunction systems

- May be multiple products / co-products
- More importantly, may have multiple functions


ISO Ranks Three Options

- Disaggregation
 - ISO prefers
- System expansion
 - "Changing the rules" by redefining the system boundary to avoid allocation
 - ISO encourages when disaggregation can't be done
- Allocation
 - Attributing the input and output flows via some mathematical relationship to the various products
 - ISO does not prefer

Disaggregation

- Zoom in as far as the data will let you
- Does more granularity let you isolate functions?

Disaggregation challenge?

- Data at this fine level of detail may not exist
- Processes may be too intertwined to pull apart
- ISO suggests "system expansion" as the fallback approach
- If system expansion isn't possible, ISO grudgingly identifies "allocation" as an option
 - Different allocation methods give different results
 - Caveats, documentation, sensitivity analyses

Allocation Basics

- Need to assign inputs and/or outputs to the various products of the system
 - If only one product, don't need to allocate!
 - Must be documented/justified
 - Generally method (math) is simple deriving allocation factors
 - ***Original in/out must equal sum of allocated values

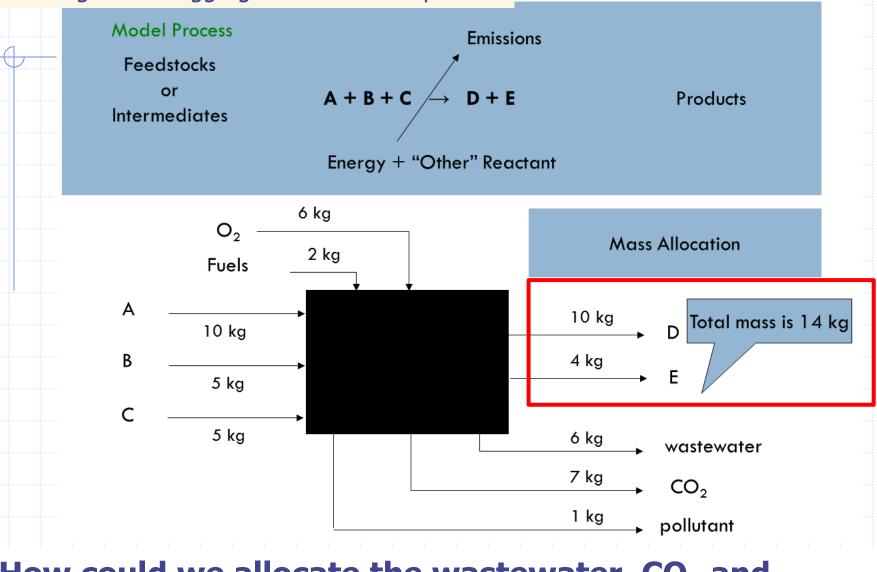
Use sensitivity analysis to assess effect of alternative allocations

Allocation Steps (from ISO)

- 1) Try to avoid allocation!
 - Disaggregation?
 - System expansion?
 - If not feasible, then...
- 2) Allocate by partitioning inputs/outputs to products based on "underlying physical relationships"
 - Mass, volume, heat content, etc.
 - Allocate proportionately.
- 3) If allocation cannot be based on physical characteristics, other methods can be used
 - e.g., by economic value (this is NOT a default choice of method)
 - How much is A worth vs. B?
- Generally use consistent allocation across system (not 'picking and choosing' for each)
- Special rules for recycling, etc. we will see later
- Use sensitivity analysis to compare allocation methods (mass or energy based allocation)

Allocation examples

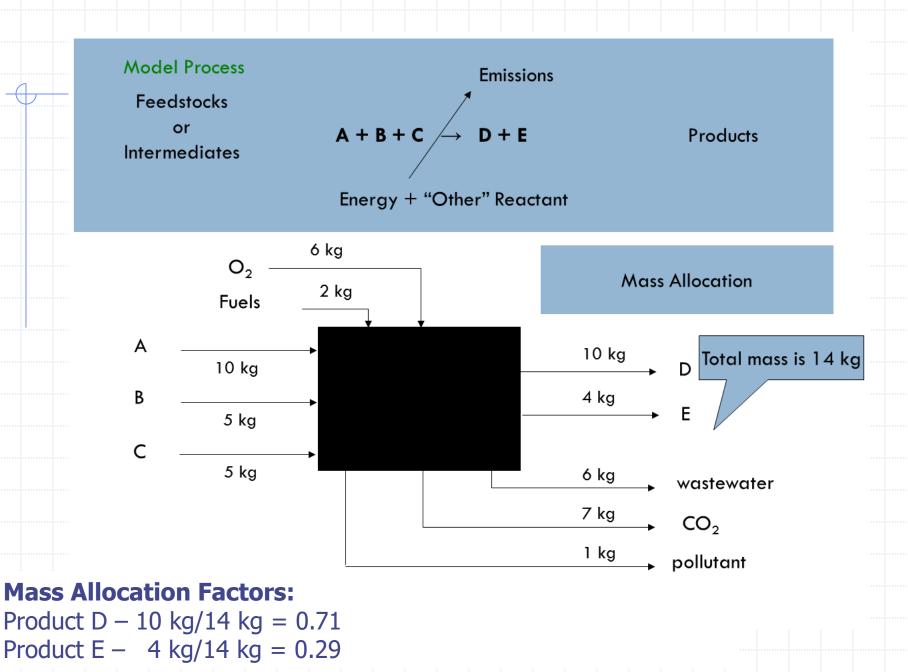
Consider a truck transporting different fruits and vegetables.
 The truck consumes 5 liters of diesel fuel and emits pollutants


Summary info

	Items	Μ	lass	Mark	xet Value		
	Pieces	Per Piece	Per Type	Per Piece	Per Type		
Apples	100	0.2 kg	20 kg	\$0.40	\$40		
Watermelon	25	2 kg	50 kg	\$4	\$100		
Lettuce	50	0.4 kg	20 kg	\$1	\$50		
Total	175 pieces	-	90 kg	-	\$190		

Allocation factors and allocation flows of diesel fuel (5 liters) per type of product

	Ite	m	Mass		Economic			
	Allocation Allocated factor flow				Allocation factor	Allocated flow		
		(liters)		(liters)		(liters)		
Apples	1 itam *		0.2 kg * 1/90 kg	0.011	\$0.40 *1/\$190	0.011		
Watermelon	Watermelon1 item *Lettuce1/175 item	0.029	2 kg * 1/90 kg	0.11	\$4 *1/\$190	0.11		
Lettuce			0.4 kg * 1/90 kg	0.022	\$1 *1/\$190	0.026		


Now, assume processes for D and E cannot be disentangled... disaggregation is not an option

How could we allocate the wastewater, CO₂ and pollutant to the 2 different products on a mass basis?

Process sustainability and LCA – Maurizio Fermeglia

Trieste, 15 April, 2021 - slide 74

Process sustainability and LCA – Maurizio Fermeglia

Avoiding Allocation

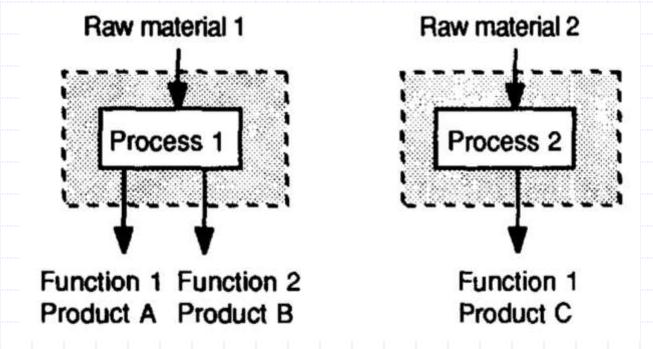
- Allocation is easy, but not preferred because we are making assumptions about physical relationships rather than digging into the process
- What we'll discuss next is system expansion, which is a way to avoid allocation by considering the multiple products and functions more broadly.

When disaggregation isn't feasible...

- Common finding that data don't exist in enough detail to support disaggregation
 - But worth a look!
- ISO says... try "System Expansion" next
 - You may be able to shift your system boundary to isolate your targeted function

System expansion is "expanding the product system to include the additional functions related to coproducts"

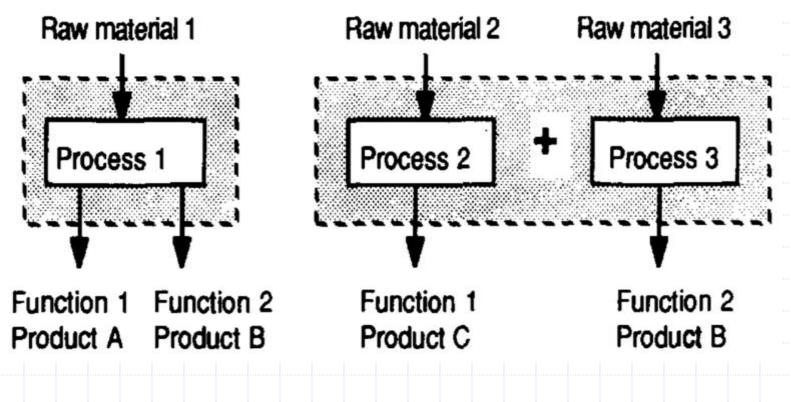
- Little details in the standard ISO
- System expansion adds production of outputs to product systems so that theu can be compared on the basis of having equivalent functions.

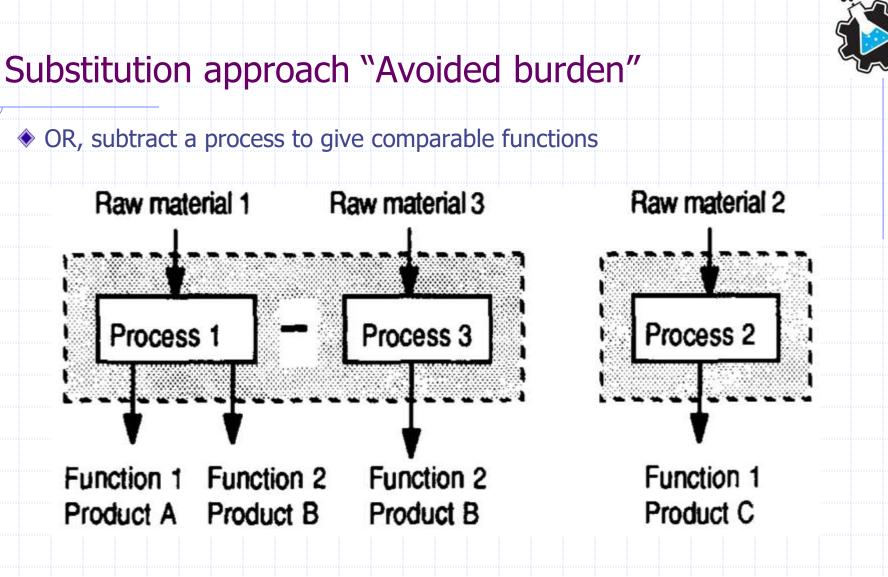


What is System Expansion?

Typically easiest to motivate and explain in context of a comparison of systems

Example:


- system producing heat and electric power, each of these products provides a different function
 - the ability to provide warmth and the ability to provide power.
- In a hypothetical analysis based only on a functional unit of electricity, comparing a CHP system with a process producing only electricity would be unequal



System expansion

- Add an appropriate process to have comparable functions
- Function 1 provides power and Function 2 provides heat
 - system expansion allows the product systems to be compared by adding processes representing the production of heat to the system (making Product B).
 - Note: scope is now different (iterate through SDP)

Note: this is still "system expansion" even though we are subtracting a process

System expansions

- Modeled systems provide same functions
- Additional functions may represent identical or alternate products, technologies or production processes
- Consider alternative technology assumptions for system expansion in sensitivity analysis
- The determining product controls production volumes; dependent product cannot control it
 - Determining product may or not be target of the LCA
 - Only the dependent product can be expanded for.

Impact allocation Methods: impacts are divided

Physical allocation (this is what ISO says)

- By energy content of products
- By economic value (to be evaluated carefully)
- By Mass (preferable)

System Expansion

- Which is the primary product?
- What is the secondary displacing?

Examples

- Process pricing gold and rocks: allocating between gold and rocks on mass basis won't work (economical basis should be used)
- A cow produces milk, meat and skin: allocating on mass basis won't work
- Industrial plastic extruder: physical allocation by mass.

Agenda

- Life cycle thinking
- Quantitative methods and life cycle cost analysis
- The ISO LCA standard
- Life cycle inventory
 - Data needs and data quality
 - Data sources
 - Handling multifunction systems (disaggregation and allocation)
 - Uncertainty
 - Input-output LCA
- Impact assessment
- Conclusions

Uncertainty vs. Variability

- Uncertainty: exists because of ignorance or lack of data
 - Likely reducible with further study
- Variability: exists because of heterogeneity or diversity
 - Unlikely to be reducible with more study
- We assume they are the same, and call them both uncertainty
- And do "uncertainty analysis"

ISO 14040 says...

- LCA addresses potential environmental impacts; LCA does not predict absolute or precise environmental impacts due to:
 - relative expression of potential environmental impacts to a reference unit
 - integration of environmental data over space and time
 - inherent uncertainty in modelling environmental impacts
 - some possible environmental impacts are clearly **future** impacts
- Data quality requirements should address uncertainty of information
 - data, models, and assumptions
- Uncertainty analysis and sensitivity analysis shall be done for comparative studies intended for public release."

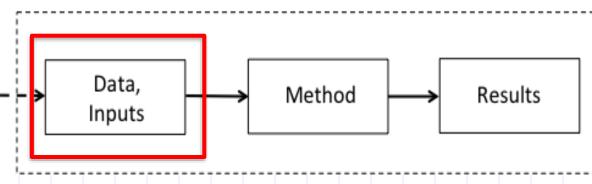
Paper vs. plastic

- Lave et al compared energy use (electricity only) of plastic and paper cups (1995)
- Plastic cup consumed ~50% less electricity
 - plastic cup: 4,400 kWh = 0.015 TJ
 - paper cup: 8,600 kWh = 0.086 TJ
- Updated to consider uncertainty (and total energy) (Chen, 2017):
 - plastic cup: 0.3 0.7 TJ
 - paper cup: 0.3 0.4 TJ
 - Original conclusions change
 - Overlapping range suggest high potential for ~ same energy use, or for lower energy use for paper cup

Back to the decision context

- Use care in using simplistic methods to support decisions
- * "A decision made without taking uncertainty into account is barely worth calling a decision." (Wilson, 1985)
- Would you really want to redesign a process around the result of a deterministic LCA?

Measurement vs. Accounting

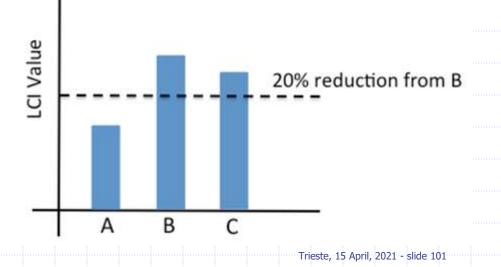

- Measurement: observable quantity with an ideal way to measure; limits to precision
 - Uncertainty range might be described as +/- 1%
 - Could be improved with better measurement tools
- LCI accounting: may lack primary data, raw data leveraged to estimate flows
 - Uncertainty ranges likely to be appreciable
 - Results roll up many, many processes

Data or input uncertainty

- Measurement uncertainty
- Parameter uncertainty
 - Survey errors
 - Incomplete and missing data
 - Unit conversions
- Geospatial uncertainty
- Temporal uncertainty
 - Old data
 - Forecasting

Methods to address uncertainty: qualitative

- Discus sources of uncertainty
- Textual summary without quantification


Reliability: "All data for key processes are based on measurements (primary data), so uncertainty is deemed to be relatively low for this category."
 Completeness: "Various processes include only effects of direct production, leading to some cutoff uncertainty."

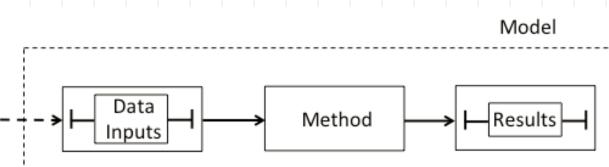
Methods to address uncertainty: semi-quantitative, Heuristics

- Rule of thumb, preset "rule" for comparisons
 - Example: uncertainties of energy and carbon emissions ~20%; other LCI categories more uncertain
 - Differences <20% ... inconclusive
 - No solid science behind "20%", but a useful screening tool
- True quantitative better!

Maintain enough significant digits for comparison:

```
0.6 and 1.4, not 1 and 1
```


Process sustainability and LCA – Maurizio Fermeglia


Methods to address uncertainty: quantitative methods

- Ranges
- Sensitivity analysis
- Probabilistic methods and simulation

Using ranges to understand uncertainty

Use ranges for inputs or outputs

Recommended: use multiple data sources, not single values

 Ranges quantitatively represents effects of different assumptions/boundaries in underlying data

helping to show when they matter

Appropriate graphical range representation: "uncertainty bars"

 Linear representation of ranges of results with upper and lower bounds - AKA "error bars" in Excel

Val	L
D	L

• A

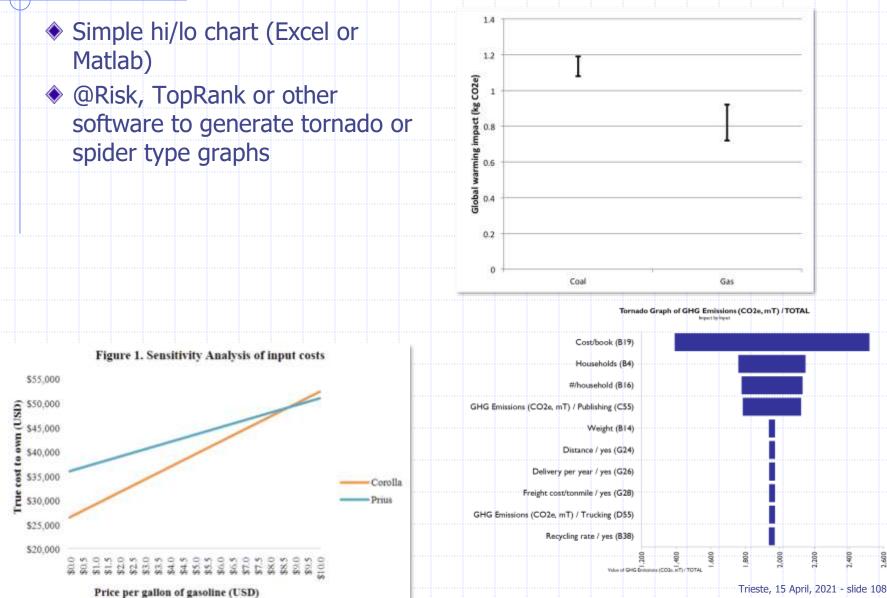
Sensitivity analysis

- Quantitative method
- Assess effect on results from changing a single input
 - Change one variable at a time; hold all others constant
- Other methods, such as multi-way sensitivity analysis and simulation, can show effects of changing more than one variable at a time

ISO and Sensitivity Analysis

- 14040:3.31 sensitivity analysis systematic procedures for estimating the effects of the choices made regarding methods and data on the outcome of a study
- 14044:4.3.3.4 Refining the system boundary "Reflecting the iterative nature of LCA, decisions regarding the data to be included shall be based on a sensitivity analysis to determine their significance..."
- "The sensitivity analysis may result in
 - exclusion of life cycle stages or unit processes when lack of significance can be shown by the sensitivity analysis,
 - exclusion of inputs and outputs that lack significance to the results of the study, or
 - inclusion of new unit processes, inputs and outputs that are shown to be significant in the sensitivity analysis."

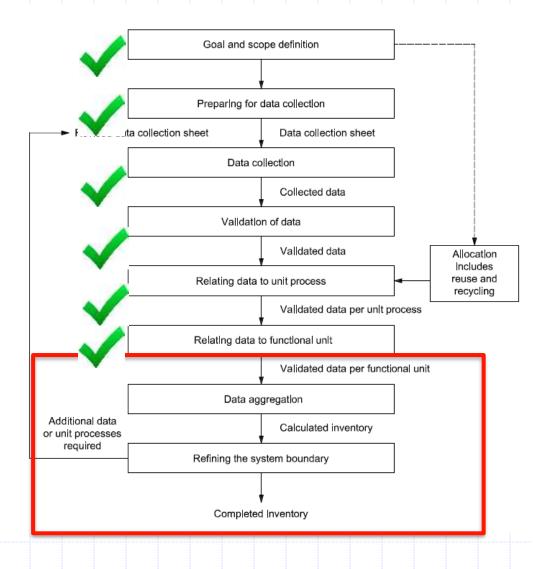
ISO and Sensitivity Analysis


- 14044:4.3.4.1: Allocation "...Whenever several alternative allocation procedures seem applicable, a sensitivity analysis shall be conducted to illustrate the consequences of the departure from the selected approach."
- And in LCIA to show impact of different modeling choices (normalization, weighting)
- Required for "comparative assertions intended to be disclosed to the public"

Sensitivity analysis

- * "By hand" or using sensitivity analysis tools in Matlab, @Risk, Excel (What-If analysis), SimaPro (if you have a higher level license than the course license), etc.
- Applies to inputs and assumptions (parameter choices, allocation methods, etc.)
- Choose appropriate sensitivity ranges
 - What makes sense?
 - Not just automatic acceptance of +/-50% defaults

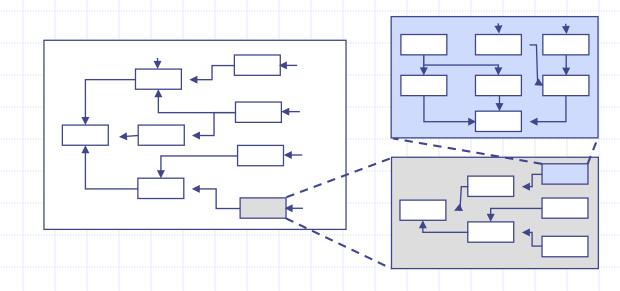
Depicting sensitivity analysis


2,600

P

Agenda

- Life cycle thinking
- Quantitative methods and life cycle cost analysis
- The ISO LCA standard
- Life cycle inventory
 - Data needs and data quality
 - Data sources
 - Handling multifunction systems (disaggregation and allocation)
 - Uncertainty
 - Input-output LCA
- Impact assessment
- Conclusions


Life Cycle Inventory

Conceptual View

- So far, we have
 - process flow diagrams
 - *input-output* based methods
- Process flow diagrams are specific, but limited by need to add processes "by hand"
- IO models are general, but give top-down, comprehensive views of system (entire production economy!)

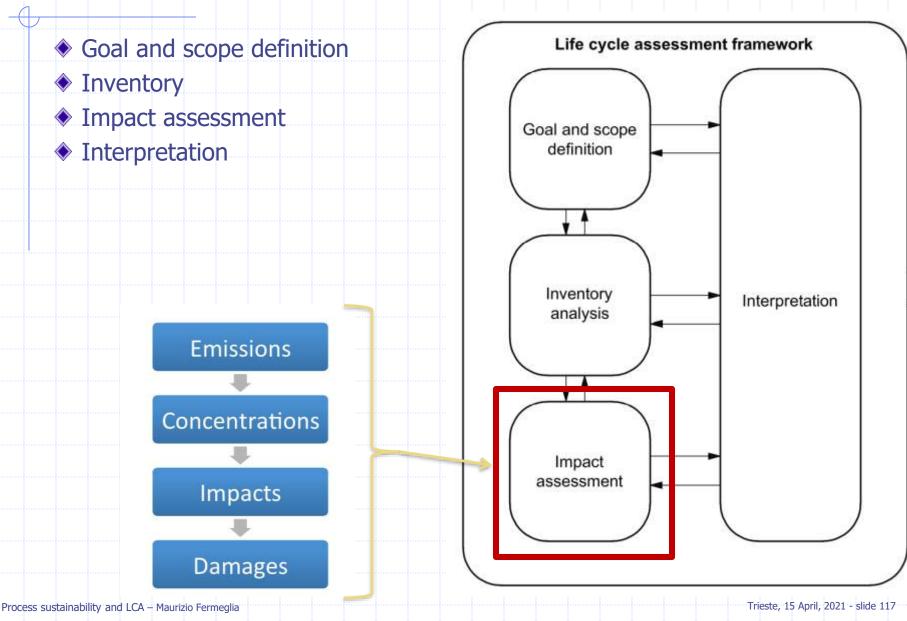
Process Matrix Analysis for Life Cycle Inventory (LCI)

- Develops network by selecting most important processes, and combining data about their resource use, emissions, etc. to obtain life cycle consumption
- Relies on data about specific industrial or manufacturing processes
 - Available as industrial data or via simulation
- Systematic approach for combining modular process data

Adding processes

- Can add as many processes as you have time/resources to consider
- Could expand process boundary to include refining petroleum, and capture effects of diesel inputs adding rows and columns to A and B matrices
 - Matrix representation of process flow diagram with interconnected upstream flows
- Can use Excel, MATLAB, etc. to manage data and matrix math
- Know how to make process matrix models using LCI data
 - Would take a long time, and require lots of repeated effort
 - US LCI has ~1,000 processes. Do you really want to build that model?
 - Same challenge as before when to stop adding?
- SimaPro, OpenLCA, Gabi have already built these models
 - Complete, comprehensive matrix based versions of these process based databases (e.g., US LCI, ecoinvent)

thinkstep **GaBi**


umberto[®]

Agenda

- Life cycle thinking
- Quantitative methods and life cycle cost analysis
- The ISO LCA standard
- Life cycle inventory
 - Data needs and data quality
 - Data sources
 - Handling multifunction systems (disaggregation and allocation)
 - Uncertainty
 - Input-output LCA
- Impact assessment
- Conclusions

ISO 14040: Figure 1

Phases of an LCA

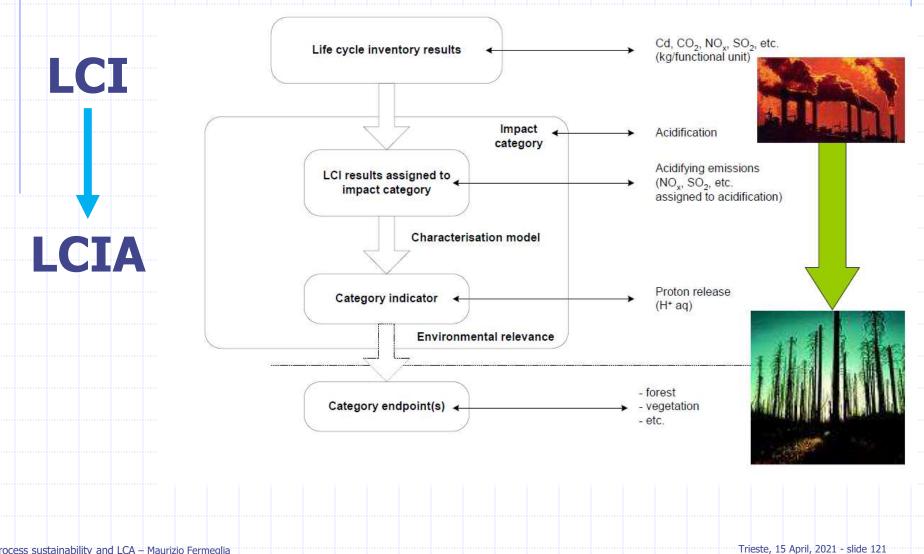
Life Cycle Impact Assessment - LCIA

Impact assessment considers actual effects

- On humans, ecosystems, and resources
- Not just tracking quantities (tons of emissions, gallons of fuel consumed as a result of production)
- Indicators of impacts:
 - Why do we care about GHG emissions?
 - Potential to change our climate
 - Why care about sulfur dioxide emissions?
 - Potential to acidify rain, waterways
 - Why care about particulate emissions?
 - Potential to harm health
- Impact assessment not new
 - Environmental impact assessment
 - Risk assessment
 - Performance benchmarking, etc.
- Key feature of LCIA:
 - Link to a particular functional unit
 - Entire life cycle as a boundary
 - Focuses attention on impacts as a function of that specific normalized quantity

Environmental impact categories: how to choose

Table reports a typical result of Inventory analysis


Flux	Compartment	Unit	Option A	Option B
Carbon dioxide, fossil (CO ₂)	Air	Kg	5	2
Sulfur dioxide (SO ₂)	Air	Kg	2	5
Oil			10	8

Statement "A is always better then B" is not always obvious

Particularly in different scenarios

In presence of more fluxes (CO₂, SO₂, oil) which one should be chosen?

From LCI to LCIA: the impact categories

Impact Categories

Global warming

- Global in scale
- CO₂, CH₄, N₂0, as well as chlorofluorocarbons and other halogenated hydrocarbons
- Stratospheric ozone depletion
 - Global in scale
 - Chlorofluorocarbons and other halogenated hydrocarbons
- Acidification
 - Regional or local in scale
 - Sulfur oxides, nitrogen oxides, hydrochloric acid, hydrofluoric acid, ammonia

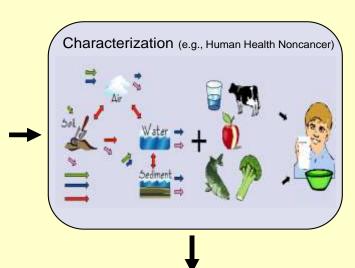
♦ And more See table

Impact Category	Scale	Examples of LCI Data (i.e. classification)
Global Warming	Global	Carbon Dioxide (CO ₂), Nitrous Oxide (N ₂ O), Methane (CH4), Chlorofluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs), Methyl Bromide (CH ₃ Br)
Stratospheric Ozone Depletion	Global	Chlorofluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs), Halons, Methyl Bromide (CH3Br)
Acidification	Regional, Local	Sulfur Oxides (SO _x), Nitrogen Oxides (NOx), Hydrochloric Acid (HCl), Hydrofluoric Acid (HF), Ammonia (NH ₄)
Eutrophication	Local	Phosphate (PO ₄), Nitrogen Oxide (NO), Nitrogen Dioxide (NO ₂), Nitrates, Ammonia (NH4)
Photochemical Smog	Local	Non-methane hydrocarbon (NMHC)
Terrestrial Toxicity	Local	Toxic chemicals with a reported lethal concentration to rodents
Aquatic Toxicity	Local	Toxic chemicals with a reported lethal concentration to fish
Human Health	Global, Regional, Local	Total releases to air, water, and soil.
Resource Depletion	Global, Regional, Local	Quantity of minerals used, Quantity of fossil fuels used
Land Use	Global, Regional, Local	Quantity disposed of in a landfill or other land modifications
Water Use	Regional, Local	Water used or consumed

Figure 10-2: Summary of Impact Categories (US EPA 2006)

Impact Assessment Models

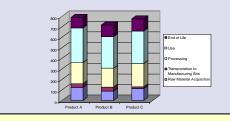
- Various impact assessment models
 - Some are single category
 - Cumulative Energy Demand resource consumption
 - IPCC climate change
 - Other models cover wide range of categories
 - TRACI US-focused
 - ReCiPe
 - Eco-indicator 99
- Tools like SimaPro / Gabi / openLCA incorporate many models
- Impact assessment model choice
 - No need to choose look at multiple results
 - Understand breadth of impacts of your system
 - Surprises?
 - Convergence of conclusions?
 - New avenues of research?
 - Particularly useful for comparative LCAs


Models and Impact categories

Model	Climate change	Ozone depletion	Respiratory inorganics	Human toxicity	Ionising radiation	Ecotoxicity	Ozone formation	Acidification	Terrest. eutrophication	Aquatic eutrophication	Land use	Resource consumption
CED												Х
CML2002	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х
Eco-indicator 99	Х	Х	Х	х	х		Х	Х	х		Х	х
EDIP 2003/EDIP976	Х	х	Х	х	Х	х	Х	Х	Х	Х		Х
EPS 2000	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Impact 2002+	Х	х	Х	Х	Х	Х	Х	Х		Х	Х	Х
IPCC	Х											
LIME	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
LUCAS	Х	Х		Х		Х	Х	Х	Х	Х	Х	Х
MEEuP	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х
ReCiPe	Х	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х
Swiss Ecoscarcity 07	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
TRACI	Х	Х	Х	Х		Х	Х	Х	Х	х		х
USEtox				Х		Х						

Figure 10-3: Summary of Impact Categories (Characterization Models) Available in Popular LCIA Methods (modified from ILCD 2010)

The TRACI LCIA Model

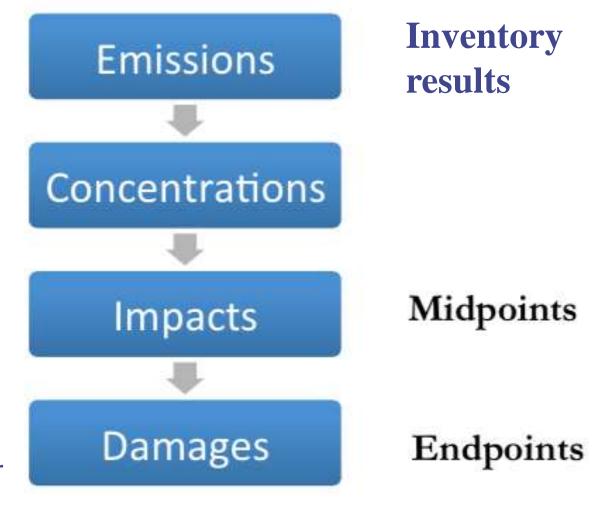

Inventory of Stressors Chemical Emissions Fossil Fuel Use Land Use Water Use Impact Categories Ozone Depletion Global Warming Acidification Eutrophication Smog Formation Human Health Particulate Cancer Noncancer Ecotoxicity Fossil Fuel Use Land Use Water Use

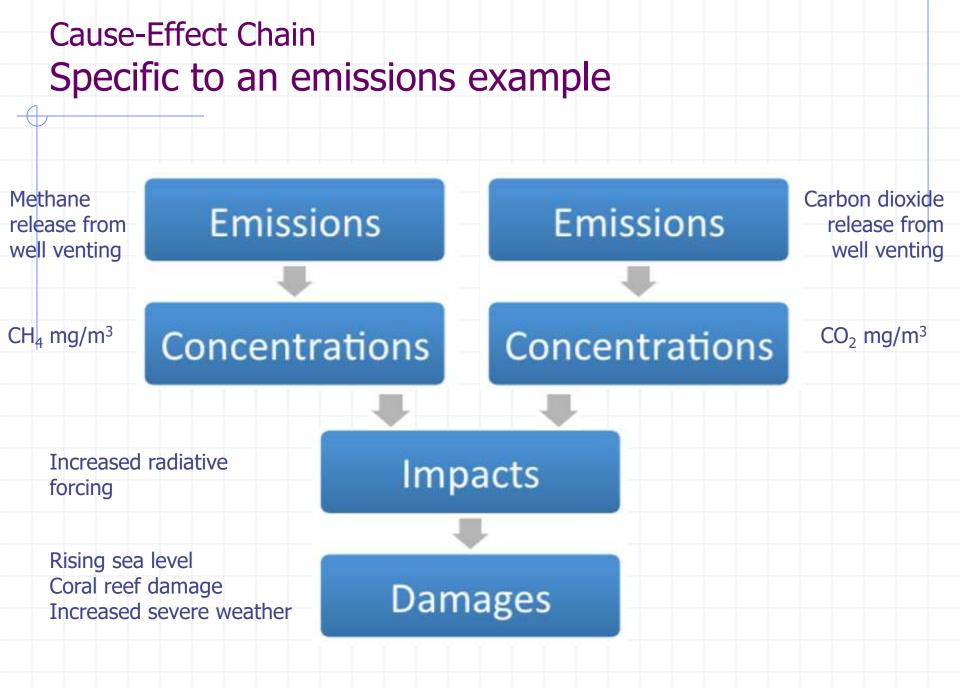
Ozone Depletion Global Warming

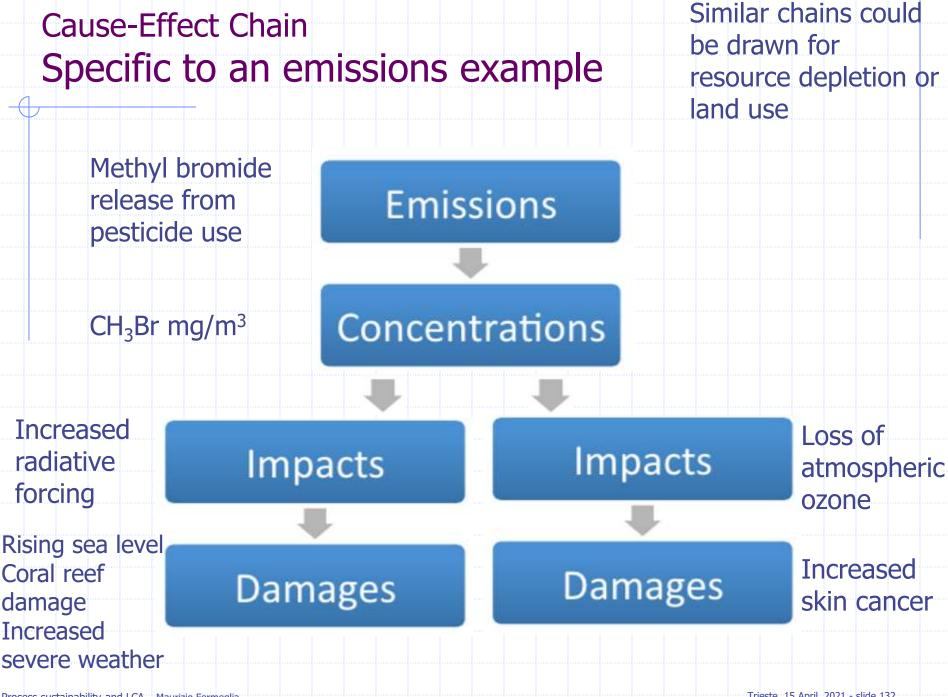
Human Health Noncancer

TRACI Tool for the Reduction and Assessment of Chemical and other environmental Impacts

Process sustainability and LCA – Maurizio Fermeglia


Cause-Effect Chain Specific to an emissions example


Methane release from well venting

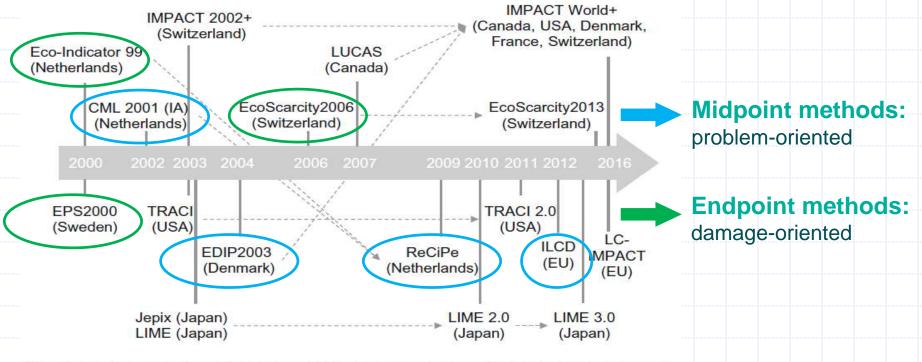
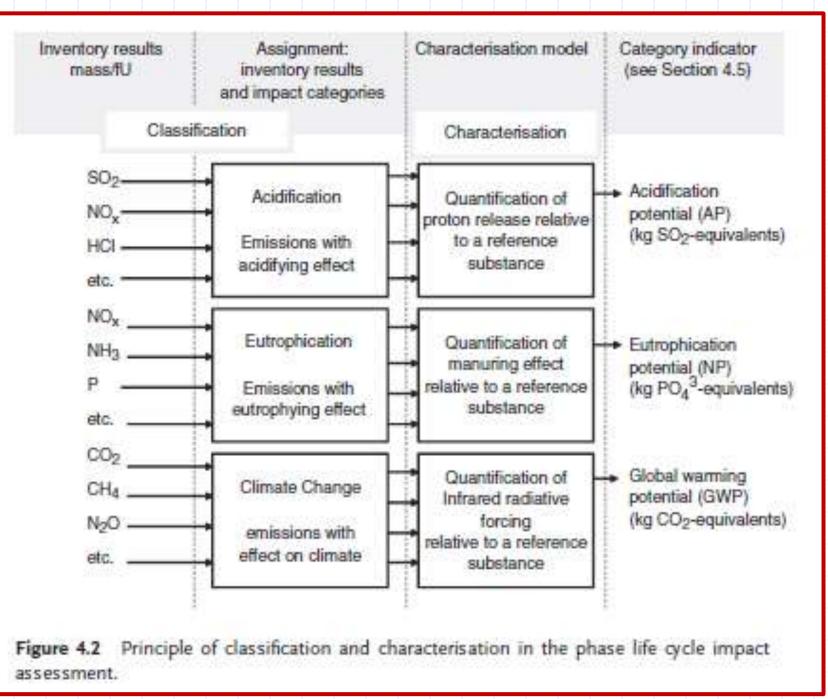

 $CH_4 mg/m^3$

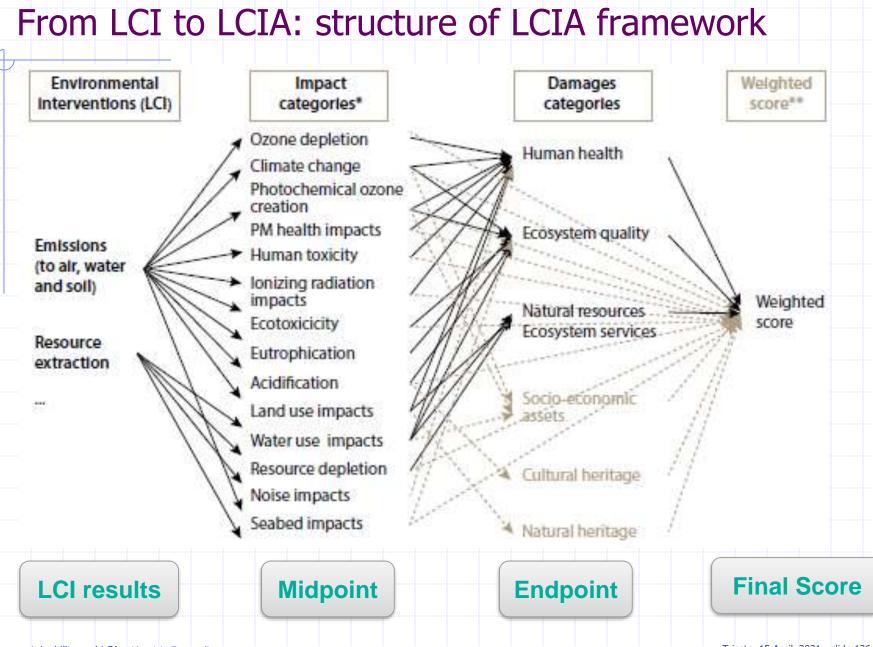
Increased radiative forcing

Rising sea level Coral reef damage Increased severe weather

Midpoints vs. Endpoints

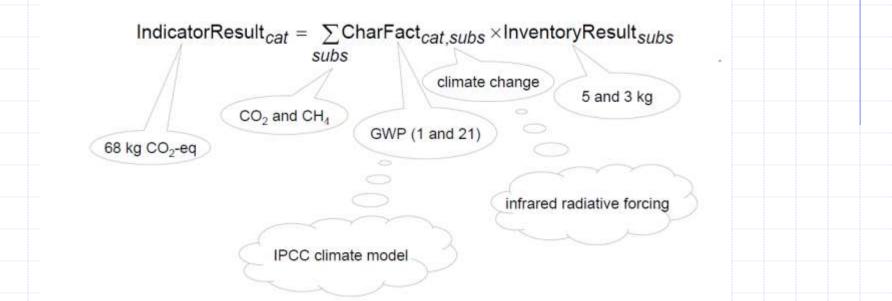
- Typical LCI result is `an emission, waste generation, etc.'
- An emission creates higher concentrations in environment
- Higher concentrations impact people or ecosystems exposed to those concentrations – leads to a midpoint
- Exposure potentially leads to health effects and damages these are endpoints


Fig. 10.1 LCIA methods published since 2000 with country/region of origin in *brackets*. *Dotted* arrows represent methodology updates (Rosenbaum 2017)

Commonly used life	e-cycle impact categories using midp	point modeling and example endpoints	
Life-cycle impact	Relevant inventory data	Midpoint modeling	Example endpoints
Global impacts			
Global warming	Carbon dioxide (CO ₂) Nitrogen dioxide (NO ₂) Methane (CH4) Chlorofluorocarbons (CFC8) Hydrochlorofluorocarbons (HCFC8) Methyl bromide (CH3Br)	Converts released at a to carbon dioxide (CO2) equivalents Note: global warming potentials can be 50, 100, or 500 year potentials	Polar melt Soil moisture loss Longer seasons Forest loss/change Change in wind and ocean patterns
Stratospheric zone depletion	Chlorofluorocarbons (CFC8) Hydrochlorofluorocarbons (HCFC8) Halons Methyl bromide (CH3Br)	Converts release data to trichlorofluoromethane (CFC-11) equilavents	Increased UV radiation Skin cancer Cataracts Crop damage Marine life damage Immune system depression Decreased resources for future generations
Regional impacts			
Photochemical smog	Nonmethane hydrocarbons (NMHC)	Converts release data to ethane (C2H8) equivalents	Decreased visibility Eye irritation Respiratory distress Vegetation damage
Acidification	Sulfur oxides (SO _X) Nitrogen oxides (NOx) Hydrochloricacid (HCI) Hydrofluoric acid (HF) Ammonia (NH3)	Converts data to hydrogen (H ⁺) ion equivalents	Building corrosion Vegetation damage Soil quality decrease
Eutrophication	Phosphate (PO4 ³⁻) Nitrogen oxide (NO) Nitrogen dioxide (NO2) Nitretes Ammonia (NH3)	Converts data to phosphate (PO4 ³⁻) equivalents	Excessive plant growth Oxygen depletion Continua >

Process sustainability and LCA – Maurizio Fermeglia


Process sustainability and LCA – Maurizio Fermeglia

Process sustainability and LCA – Maurizio Fermeglia

Trieste, 15 April, 2021 - slide 136

Environmental impact categories : example

Compartment	Substance	Result	unit
Air	Carbon dioxide, fossil	5	kg
Air	Sulfur dioxide	2	g
Air	Methane	10	g
Air	Ammonia	5	kg
Water	Nitrate	8	kg
Air	Nitrogen dioxide	15	g
Air	Ethane, 1,1,1,2-tetrafluoro-, HFC-134a	2	g
Soil	Carbon dioxide, to soil or biomass stoc	k 1,5	kg

Characterization Factor «carbon dioxide, fossil»	= 1 kg CO ₂ eq. / kg
Characterization factor «Methane»	= 28 kg CO ₂ eq. / kg
Result Global Warming Po = $5 \times 1 + 0,010 \times 28 =$	
carbon Methane dioxide, fossil	

Trieste, 15 April, 2021 - slide 137

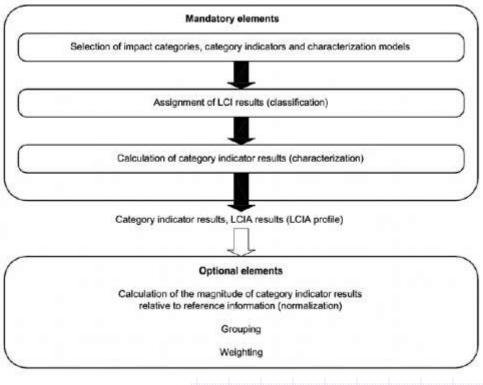
LCIA is...

- Complicated!
- Many studies stop at LCI stage (not full LCA)!
- Others focus on straightforward impacts
 - Cumulative energy demand
 - GHG
 - Water requirements
- LCIA tools (TRACI, ReCiPe, etc.) do most of the work
 - No need to be intimidated
 - Tools convert detailed inventory information into estimates of associated impacts

ISO requirements for LCIA - ISO says...

ISO 14040: 5.4.1 General ISO 14040: 4.4.1 General

- Impact assessment phase evaluates significance of potential environmental impacts using LCI results
 - Associates inventory data with impact categories and indicators, in order to understand impacts
- Provides information for Interpretation phase
 - Have goal and scope objectives been met?
- Impact choices, modelling and evaluation can introduce subjectivity
 - Transparency is critical
 - Assumptions must be clearly described and reported
- Coordinate LCIA with other LCA phases to account for possible omissions and sources of uncertainty:
 - Is quality of LCI data/results sufficient to conduct LCIA in accordance with goal and scope?
 - Has system boundary and data cut-off decisions been sufficiently reviewed to ensure availability of LCI results necessary to calculate LCIA indicator results?
 - Is environmental relevance of LCIA results decreased due to LCI functional unit calculation, system wide averaging, aggregation and allocation?


Impact Assessment in the ISO LCA Framework (LCIA)

Mandatory Elements:

- Selection (impact categories, their indicators, and characterization models)
- Classification (assigning LCI results to categories)
- Characterization (calculation of category results)
 - at least get things into correct categories

Optional Elements:

- Normalization
 - (comparing to reference info)
- Grouping
 - (sorting/ranking impact categories)
- Weighting
 - (with numerical factors/value choices)
- Data Quality Analysis
 - (uncertainty/sensitivity)

LIFE CYCLE IMPACT ASSESSMENT

(Source: ISO 14040:2006)

Selection

- Select and explain:
 - Impact categories
 - Their indicators
 - Expected characterization models and methods to be used
- ISO says to "choose impact categories consistent with scope" and "reference your work"
 - No prescribed categories/impacts that must be included (e.g., global warming)
- ISO says impact assessment should encompass "a comprehensive set of environmental issues"
 - Study should not be narrowly focused
- Methods should be geographically relevant to your scope
- Climate change, ozone depletion, respiratory inorganics, human toxicity, ionizing radiation, ecotoxicity, ozone formation, acidification, terrestrial eutrophication, aquatic eutrophication, land use, resource consumption...

Mandatory

Next, Classification

Your inventory of flows can now be organized

> Outputs to Nature

Acids, unspecified	water	unspecified	No	kg	6.10E-05
BOD5, Biological Oxygen Demand	water	unspecified	No	kg	6.10E-15
Calcium, ion	water	unspecified	No	kg	5.80E-06
CFCs and HCFCs, unspecified	air	unspecified	No	kg	6.70E-10
Chloride	water	unspecified	No	kg	7.60E-06
COD, Chemical Oxygen Demand	water	unspecified	No	kg	4.60E-05
Dinitrogen monoxide	air	unspecified	No	kg	2.20E-07
Dissolved solids	water	unspecified	No	kg	1.00E-05
Fluoride	water	unspecified	No	kg	7.90E-07
Iron	water	unspecified	No	kg	1.60E-08
Mercury	air	unspecified	No	kg	2.10E-08
Mercury	water	unspecified	No	kg	6.10E-10
Metallic ions, unspecified	water	unspecified	No	kg	6.90E-05
Methane	air	unspecified	No	kg	1.70E-05
NMVOC, non- methane volatile organic compounds, unspecified origin	air	unspecified	No	kg	4.70E-05
Oils, unspecified	water	unspecified	No	kg	3.90E-07
Particulates, unspecified	air	unspecified	No	kg	4.50E-04
Phenol	water	unspecified	No	kg	3.90E-10
Sodium, ion	water	unspecified	No	kg	1.96E-03
Sulfate	water	unspecified	No	kg	1.75E-03
Suspended solids, unspecified	water	unspecified	No	kg	1.30E-04

Classification

- Taking huge list of inventory flows and making smaller more manageable piles
 - GHGs all in one pile. Ozone depleters, etc.
 - `copy' (not `move') into these piles
 - Why? Some in several piles, e.g., NOx (toxic, acidic, eutrophication)

Classifying Greenhouse Gases

IPCC (100-year) method Example

	Chemical	
Name	Formula	
Carbon dioxide	CO ₂	
Methane	CH_4	
Nitrous oxide	N_2O	
CFC-11	CCl ₃ F	
CFC-12	CCl ₂ F ₂	
CFC-13	CCIF ₃	
CFC-113	CCl ₂ FCClF ₂	The option
CFC-114	CClF ₂ CClF ₂	
CFC-115	CClF ₂ CF ₃	
Halon-1301	CBrF ₃	
Halon-1211	CBrClF ₂	
Halon-2402	CBrF ₂ CBrF ₂	
Carbon tetrachloride	CCl ₄	
Methyl bromide	CH ₃ Br	
Methyl chloroform	CH ₃ CCl ₃	
HCFC-22	CHClF ₂	1
HCFC-123	CHCl ₂ CF ₃	
HCFC-124	CHClFCF ₃	
HCFC-141b	CH ₃ CCl ₂ F	
HCFC-142b	CH ₃ CClF ₂	
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	
HCFC-225cb	CHClFCF ₂ CClF ₂	

Figure 10-7: (Abridged) List of Substances Classified into IPCC (2007) LCIA Method

Classifying Energy Demand

Cumulative Energy Demand (CED) LCIA Method

Category	Subcategory	Included Energy Sources
	fossil	hard coal, lignite, crude oil, natural gas, coal mining off-gas, peat
Non-renewable resources	nuclear	uranium
	primary forest	wood and biomass from primary forests
	biomass	wood, food products, biomass from agriculture, e.g. straw
	wind	wind energy
Renewable resources	solar	solar energy (used for heat & electricity)
	geothermal	geothermal energy (shallow: 100-300 m)
	water	run-of-river hydro power, reservoir hydro power

Figure 10-8: Energy Sources Classified into Cumulative Energy Demand (CED) LCIA Method (Source: Hischier 2010)

Mandatory

Classification of Initial Inventory

B

Classi	fication: Climate Chan	ge Impact Categor	ry (IPCC)	
Flow	Compartment	Units	Option A	Option B
Carbon dioxide, fossil	air	kg	5	2
C	lassification: Energy In	npact Category (C	CED)	
Crude oil		kg	10	8

♦ Where is SO₂?

What if one of our flows belonged in two categories?

Mandatory

Classification Issues

- Depending on scope, you might have no flows (or too few) to classify into your LCIA methods
 - Ex 1: you want to study global warming but you have no GHG emissions in inventory
 - Ex 2: your inventory is too narrow to support a robust LCIA effort (e.g., only have fossil CO₂ emissions not methane, etc.)
- If so, "impact results" will be zero or less than expected due to data gaps, not representative of product system
- This is why process matrix methods are so useful they basically ensure you have sufficient flows (done by SW)
- Classification by hand can introduce errors
 - Variation in naming conventions
 - Scope of methods
 - Misclassification
- Mostly handled by software, matching by Chemical Abstract System (CAS) Numbers
 - e.g., formaldehyde is 50-00-0
- Many classification issues can be avoided by keeping your scope broad

Mandatory

Next step: Characterization

- Transforms classified flows into impact category indicators via characterization factors
 - Impact categories could include: resources, ecosystems, human health
 - Indicators convert multiple flows (maybe with different units) into a single common unit
 - Allows for comparison
- Characterization factors are available from separate scientific studies on impact assessment
 - Not done for a single LCA study
 - We'll use existing factors (and don't need to create them)

Characterization

• GHGs – obvious example. Use GWP weights! (e.g., CO_2 -equivalents or CO_2e)

- CO_2 : 1 kg of CO_2 = 1 kg of CO_2 e
- CH_4 : 1 kg of CO_2 = 28 kg of CO_2e
- N_2O : 1 kg of CO_2 = 265 kg of CO_2e
- Sum up individual effects (units CO₂e)

For many studies the only LCIA done is global warming (e.g., "carbon footprinting")

Characterized flow = flow (inventory unit) * char. factor $\left(\frac{characterized units}{characterized inventory unit}\right)$

inventory unit

IPCC 5th Assessment Report

Not just a single set of values!

Name	Chemical Formula	Characteria	zation Factor	
IName	Chemical Formula	(kg CO ₂ -eq / kg of substance)		
		20 years	100 years	
Carbon dioxide	CO ₂	1	1	
Methane	CH_4	84	28	
Methane, fossil	CH_4	85	30	
Nitrous oxide	N_2O	264	265	
CFC-11	CCl ₃ F	6,900	4,660	
CFC-12	CCl_2F_2	10,800	10,200	
CFC-13	CClF ₃	10,900	13,900	
CFC-113	CCl_2FCClF_2	6,490	5,820	
CFC-114	$CClF_2CClF_2$	7,710	8,590	
CFC-115	$CClF_2CF_3$	5,860	7,670	
Halon-1301	$CBrF_3$	7,800	6,290	
Halon-1211	$CBrClF_2$	4,590	1,750	
ss sustainability and LCA – Maurizio Fermeg			Trieste, 15 April, 2021 - slide 1	

LCIA 'Model' Example

Table 1 — Example of terms

Term	Example
Impact category	Climate change
LCI results	Greenhouse gases
Characterization model	IPCC ^a model
Category indicator	Infrared radiative forcing (W/m ²)
Characterization factor	Global warming potential for each greenhouse gas (kg CO ₂ -equivalents/kg gas)
Indicator result	kg of CO2-equivalents
Category endpoints	Coral reefs, forest, crops
Environmental reference	Degree of linkage between category indicator and category endpoint
NOTE Further examples are provided in ISO/TR 14047 [1].	
^a Intergovernmental Panel on Climate Change.	

Source: ISO 14044 (2006)

Should have a comprehensive set of impact categories/ indicators
 Your own "values" should not bias your model

Environmental impact categories: how to choose

Table reports a typical result of Inventory analysis

Flux	Compartment	Unit	Option A	Option B
Carbon dioxide, fossil (CO ₂)	Air	Kg	5	2
Sulfur dioxide (SO ₂)	Air	Kg	2	5
Oil			10	8

- Statement "A is always better then B" is not always obvious
 - Particularly in different scenarios
- In presence of more fluxes (CO₂, SO₂, oil) which one should be chosen?
- Difficult to prefer one over the other
- Next step: Summarize LCIA results for GHG and CED

LCIA Profile (aka category indicator results)

Summary of all indicator category values

Using IPCC and CED values, our inventory is...

Recall IPCC GWP of 1 for CO₂, CED 45.8 MJ-eq. for crude oil (fossil category)

Characterization: Climate Change (IPCC 2013)							
Indicator Units Option A Option							
Equivalent releases CO ₂	kg CO ₂ equiv.	5	2				
Charac	Characterization: Energy (CED)						
Non-renewable fossil	MJ-eq.	458	366				
Non-renewable nuclear	MJ-eq.	0	0				
Non-renewable forest	MJ-eq.	0	0				
Non-renewable total	MJ-eq.	458	366				
Renewable total	MJ-eq.	0	0				

Figure 10-12: LCIA Profile of Hypothetical Example

Exercise: Expand Example Profile

Flux	Compartment	Unit	Option A	Option B
Carbon dioxide, fossil (CO ₂)	Air	Kg	5	2
Sulfur dioxide (SO ₂)	Air	Kg	2	5
Oil			10	8

CO₂ and Crude oil are done – now add SO₂ to the profile using following info

Flow		Acidification Air (kg H+ moles eq	Human Health - Criteria Air (kg PM10 eq / kg
		/ kg substance)	substance)
Sulfur die	oxide	50.8	0.167

Figure 10-23: Excerpted Characterization Factors for Sulfur Dioxide

Exercise: Expand Example Profile

Characterizati	ion: Climate Change (IP	CC 2013)	
Indicator	Units	Option A	Option B
Equivalent releases CO ₂	kg CO ₂ equiv.	5	2
Charao	cterization: Energy (CED)	
Non-renewable fossil	MJ-eq.	458	366
Non-renewable nuclear	MJ-eq.	0	0
Non-renewable forest	MJ-eq.	0	0
Non-renewable total	MJ-eq.	458	366
Renewable total	MJ-eq.	0	0
Charac	terization: Acidification		
Characterization	n: Human Health – Criteri	a Air	

Exercise: Expand Example Profile

Characterizati	on: Climate Change (IPC	CC 2013)	
Indicator	Units	Option A	Option B
Equivalent releases CO ₂	kg CO ₂ equiv.	5	2
Charac	cterization: Energy (CED)		
Non-renewable fossil	MJ-eq.	458	366
Non-renewable nuclear	MJ-eq.	0	0
Non-renewable forest	MJ-eq.	0	0
Non-renewable total	MJ-eq.	458	366
Renewable total	MJ-eq.	0	0
Charac	terization: Acidification	Air	
SO ₂	kg H+ moles eq	101	254
Characterization	n: Human Health – Criteria	Air	
SO ₂	kg PM10 eq	0.33	0.84
Then, compare re	esults for Option	ns A and	B

Process sustainability and LCA – Maurizio Fermeglia

Trieste, 15 April, 2021 - slide 158

Is A preferable over B?

- It depends (as usual)
 - Discuss
- Are these results significant?
 - Magnitude
- Are they significantly different?
 - Uncertainty
- Are there model parameters which impact choice?
 - Scenarios
- Other things to think about?

Intermediate Summary

- Those are the mandatory elements (selection, classification, characterization)
 - Makes sense. If conducting LCIA, need to do at least these things
- Many studies are only LCI
- Likewise, many studies stop LCIA HERE (i.e., don't do optional steps)

If stop here, then need to interpret results (as done with inventory step)
 Don't just discuss numbers, talk about tradeoffs!

Next (optional)

- Classification of flows related to specific impact
- Characterization of impacts, i.e. calculation of contribution to final score
- ptional
- Normalization
 Grouping
- Weighting

- Divide the values of the impact category by a reference number (year, region, person, ...)
- Group similar impacts into the same contribution
- Assign a specific parameter to weight differently various contribution

According to ISO 14040-44

Optional Step – Normalization

- "Normalizes" against (divide by) reference value
 - Reference values specific to each impact
- Provides some perspective
 - Global warming impact is 50 tons. Is that significant?
- Can be a helpful way to validate results
- ISO does not provide these values
 - But others have generated values that often used
 - Integrated into software
- Various ways to normalize:
 - Total effect of a person per year
 - Total in a country or region
 - Total per-capita
 - Against another option being studied (A vs B)
- Downside normalizing on total effects generally yields negligible values
 - Alternative: adjust scale, normalize against hourly rate? Regional rates? Etc.

Optional Step – Grouping

- Sorting and/or ranking the characterized LCIA results (or normalized, optional)
 - Sorting along dimensions of the values, spatial scales, etc.
 - Ranking based on hierarchy to place the impacts into context with each other
 - (e.g., subjectively-defined high-medium-low impacts)
- Relies on value choices and thus is subjective
 - Could be inconsistent with what others choose
- More useful with multiple impact categories
 - Look at these first, then those

Optional Step – Weighting

- Most subjective of optional elements
- Weighting factors to allow for rolling up effects to a single (or a few) impact scores
- Comparative weighting of effects against each other (via relative importance of the effect)

Evaluation, Reporting and iteration

- Evaluation & reporting
 - Last LCIA step
 - Include all intermediate profile results
 - Transparency
 - Gives greatest future utility (comparison to other studies)
- Iterate through interpretation
 - Are results consistent with goal and scope?
 - Is inventory robust enough to support impact assessments?

LCIA Limitations

- Scientific method combined with values
- Lack of comprehensive focus/boundary
- Category indicators not equally important or precise
- Lack of complete data
- All of this very subjective compared to LCI
- Uncertainty!!

This is a major area of research right now

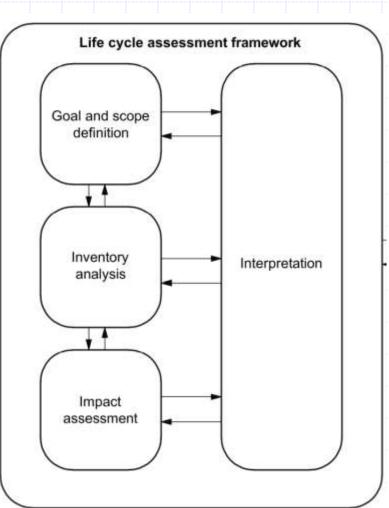
Agenda

- Life cycle thinking
- Quantitative methods and life cycle cost analysis
- The ISO LCA standard
- Life cycle inventory
 - Data needs and data quality
 - Data sources
 - Handling multifunction systems (disaggregation and allocation)
 - Uncertainty
 - Input-output LCA
- Impact assessment
 - Conclusions

Putting All the Pieces Together

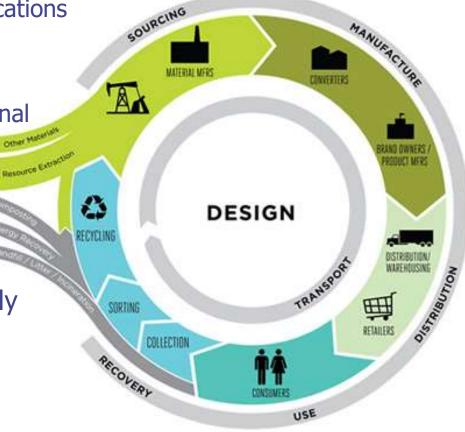
- LCA for Big Decisions
 - Recall title of LCA book...
- Easy to do small scale LCIs/LCAs
 - low chance for messing up and it mattering
- Recall initial LCA examples mentioned: zero emission electric vehicles, bottled versus tap water, etc.
 - Several of these were "big decisions"!
 - What have we learned from attacking these questions?

Life Cycle Assessment:


Quantitative Approaches for Decisions That Matter

H. Scott Matthews Chris T. Hendrickson Deanna H. Matthews

In summary ...


- Rigorous attention to data and quality
- Careful uncertainty assessment
- Context/Perspective important
- Carefully read and study ISO standard
- ♦ → Can we bring rigorous LCA methods to help inform big decisions?
 ■ YES

In conclusion

- LCA is a well developed high profile tool
 - LCA practice is increasingly being harmonized
 - It has a broad spectrum of applications
- LCA has clear limitations it is no "super-tool2:
 - There is a strong need of additional tools in the life cycle context
 - When augmented by tools that monitor economic and social performance, LCA supports sustainable analysis

 LCA and certification are mutually supported activities

Appendix: EPD

-1

Esempio di flussi energetici = Comulative Energy Demand methods

Category	Subcategory	Included Energy Sources
	fossil	hard coal, lignite, crude oil, natural gas, coal mining off-gas, peat
Non-renewable resources	nuclear	uranium
	primary forest	wood and biomass from primary forests
Renewable resources	biomass	wood, food products, biomass from agriculture, e.g. straw
	wind	wind energy
	solar	solar energy (used for heat & electricity)
	geothermal	geothermal energy (shallow: 100-300 m)
	water	run-of-river hydro power, reservoir hydro power

Figure 10-8: Energy Sources Classified into Cumulative Energy Demand (CED) LCIA Method (Source: Hischier 2010)

							Categorie di impatto	Fattori di caratterizzazione	Riferimenti
							Acidification potential (kg SO2 eq.)	AP, <u>CML 2001 non-baseline</u> (fate not included), Version: January 2016.	<u>Hauschild &</u> Wenzel (1998)
				EP	D [®]		Eutrophication potential (kg PO43- eq.)	EP, <u>CML 2001 baseline</u> (fate not included), Version: January 2016.	Heijungs et al. (1992)
	THE	NTERNA	TIONAL	- EPD® S`	YSTEM		Global warming potential (kg CO2 eq.)	GWP100, <u>CML</u> 2001 baseline Version: January 2016.	IPCC (2013) Updated January 2016
							Photochemical oxidant formation potential (kg NMVOC eq.)	POFP, LOTOS-EUROS as	Van Zelm et al 2008
								applied in ReCiPe 2008	ReCiPe 2008
							Water Scarcity Footprint (WSF) (m3 H2O eq)	AWARE Method: WULCA Characterization model for WSF 2015, 2017.	<u>Boulay et al</u> (2017
PARAMETE	R	UNIT		INSTRUCTION P		CONSTRUCTION PRODUCTS: A1/A2/A3, ETC.	Abiotic depletion potential – Elements (kg Sb eq.)	ADPelements, CML 2001, baseline	Oers, et al (2002
	Fossil	kg CO2 eq.			-		Abiotic depletion potential –	ADPfossil fuels, CML 2001,	
Globai warming	Biogenic	kg CO2 eq.					Fossil fuels (MJ, net calorific value)	baseline	Oers, et al (2002
(GWP)	Land use and land transformation	kg CO ₂ eq.							
	TOTAL	kg CO2 eq.							
Acidification	potential (AP)	kg SO ₂ eq.					https://www.environdec.com/Creat		
Eutrophicati	on potential (EP)	kg POx3- eq.					study/Characterisation-factors-for-c	<u>aerauit-impact-assessment-categ</u>	<u>ories/</u>
Formation p tropospheric	otential of cozone (POCP)	kg C2H4 eq.							
Abiotic depl	etion potentiai -	kg Sb eq.							
		MJ, net							
Elements	etion potential -	calorific value							

Table 4. Indicators describing potential environmental impacts

EPD[®] THE INTERNATIONAL EPD® SYSTEM NON-CONSTRUCTION PRODUCTS. CONSTRUCTION PRODUCTS. PARAMETER UNIT UPSTREAM/CORE/DOWNSTREAM/TOTA A1/A2/A3, ETC. Use as energy MJ not Carrier calonfic value Printary energy Used as raw MJ, net Institutors materials calorfic value Renewable MJ, net TOTAL calorific value Lise as energy M.L. mail calorfic value carrier Printary energy Lised as raw MJ: pát. resources - Nonmaterials calorfic value renewable Mil net TOTAL. calorific value Secondary material 80 MJ; net Renewable secondary fuels calorfic value MJ mit Non-renewable secondary fuels calorific value Net use of fresh water mil Table 5. Indicators describing use of primary and secondary resources

Attenzione alla feedstock energy nei polimeri!!

Da calcolare con il CED – **Comulative Energy Demand**

Flussi di materia ed energia uscenti dal sistema prodotto

Da calcolare con ReCiPe 2008 «water deplation»

https://www.environdec.com/Creating-EPDs/

EPD[®]

THE INTERNATIONAL EPD® SYSTEM

PARAMETER	UNIT	NON-CONSTRUCTION PRODUCTS: UPSTREAM/CORE/DOWNSTREAM/TOTAL	CONSTRUCTION PRODUCTS: A1/A2/A3, ETC.
Hazardous waste disposed	kg		
Non-hazardous waste disposed	kg		
Radioactive waste disposed	Ng.		

Table 6. Indicators describing waste production.

PARAMETER	UNIT	NON-CONSTRUCTION PRODUCTS: UPSTREAM/CORE/DOWNSTREAM/TOTAL	CONSTRUCTION PRODUCTS: A1/A2/A3, ETC.
Components for reuse	kg		
Material for recycling	kg		
Materials for energy recovery	kg		
Exported energy, electricity	MJ		
Exported energy, thermal	MJ		

Da calcolare con il modello EDIP 2003 utilizzando i flussi di rifiuti

Tipologia di energia e di rifiuti dei rifiuti uscenti dal sistema prodotto

https://www.environdec.com/Creating-EPDs/