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Abstract
Overfishing may seriously impact fish populations and ecosystems. Marine protected 
areas (MPAs) are key tools for biodiversity conservation and fisheries management, 
yet the fisheries benefits remain debateable. Many MPAs include a fully protected 
area (FPA), restricting all activities, within a partially protected area (PPA) where po-
tentially sustainable activities are permitted. An effective tool for biodiversity con-
servation, FPAs, can sustain local fisheries via spillover, that is the outward export 
of individuals from FPAs. Spillover refers to both: “ecological spillover”: outward net 
emigration of juveniles, subadults and/or adults from the FPA; and “fishery spillover”: 
the fraction of ecological spillover that directly benefits fishery yields and revenues 
through fishable biomass. Yet, how common is spillover remains controversial. We 
present a meta-analysis of a unique global database covering 23 FPAs worldwide, 
using published literature and purposely collected field data, to assess the capacity of 
FPAs to export biomass and whether this response was mediated by specific FPA fea-
tures (e.g. size, age) or species characteristics (e.g. mobility, economic value). Results 
show fish biomass and abundance outside FPAs was higher: (a) in locations close to 
FPA borders (<200 m) than further away (>200 m); (b) for species with a high commer-
cial value; and (c) in the presence of PPA surrounding the FPA. Spillover was slightly 
higher in FPAs that were larger and older and for more mobile species. Based on the 
broadest data set compiled to date on marine species ecological spillover beyond 
FPAs' borders, our work highlights elements that could guide strategies to enhance 
local fishery management using MPAs.
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1  | INTRODUC TION

Human activities are leading to dramatic modifications of the 
ocean (McCauley et  al.,  2015), and overfishing is among the most 
damaging stressors for marine biodiversity (Díaz et al., 2019). 
However, fisheries, especially small-scale fisheries (SSFs), are valu-
able economic activities, often vital for food security and poverty 
alleviation, and sources of livelihood with strong socio-cultural im-
plications in coastal areas worldwide (Cisneros-Montemayor, Pauly, 
& Weatherdon, 2016). There is, therefore, an urgent need to identify 
management strategies able to reconcile conservation and fisheries 
goals by both protecting marine biodiversity and enhancing fish-
ing yields/revenues (Gaines, Lester, Grorud-Colvert, Costello, & 
Pollnac, 2010; Jupiter et al., 2017).

Although marine protected areas (MPAs) are widely recog-
nized as an important tool for biodiversity conservation (Claudet 
et al., 2008; Edgar et al., 2014; Giakoumi et al., 2017) and fisheries 
management (Abesamis, Russ, & Alcala, 2006; Goñi et al., 2008; 
Russ & Alcala, 2011), the prevalence of fisheries benefits delivered 
by MPAs is still largely debated (Hilborn, 2016; Kerwath, Winker, 
Götz, & Attwood, 2013; Sale et al., 2005). Many MPAs embed a 
fully protected area (FPA), aiming to preserve natural populations 
and ecosystems, within a partially protected area (PPA) where 
potentially sustainable activities are allowed. There is a body of 
evidence suggesting that FPAs can play an important role for 
fisheries management, especially for SSFs (Di Franco et al., 2016; 
Januchowski-Hartley, Graham, Cinner, & Russ,  2013; Russ & 
Alcala,  2011). Two ecological processes can drive fishery bene-
fits of FPAs: population replenishment through larval subsidies 
(Manel et al., 2019; Marshall, Gaines, Warner, Barneche, & Bode, 
2019) and the spillover of fish biomass from protected areas to 
surrounding fishing grounds (Rowley, 1994). While both processes 
require populations to firstly recover within the boundaries of the 
FPAs, generally the former is key to the long-term persistence of 
exploited populations also at relatively large distances from the 
MPA (i.e. hundreds of kilometres, Manel et al., 2019), while the 
latter produces faster benefits to fisheries mainly across shorter 
distances (Halpern, Lester, & Kellner, 2010). The spatio-temporal 
scale of these two processes is species-specific (Green et al., 2015; 
McCauley et al., 2015).

The occurrence and magnitude of spillover is variable and con-
text-dependent (Di Lorenzo, Claudet, & Guidetti, 2016). The maxi-
mum distance from FPA borders at which spillover effects are still 
detectable is a crucial issue to better understand the spatial extent 
of FPA benefits to local fisheries. Most studies found that spillover 
occurs at distances of about 200 m from FPAs' borders, and all agree 
that it does not exceed 1  km (Abesamis et  al.,  2006; Abesamis & 
Russ,  2005; Guidetti,  2007; Halpern et  al.,  2010; Marques, Hill, 
Shimadzu, Soares & Dornelas, 2015; Russ & Alcala, 2011). According 
to Di Lorenzo et  al.  (2016), two types of spillover should be con-
sidered based on the measurable benefits generated: “ecological 
spillover” encompassing all forms of net emigration of juveniles, 

subadults and/or adults from the MPA outwards; and “fishery spill-
over”, that is the fraction of ecological spillover that can directly ben-
efit fishery yields and revenues through the marine species biomass 
that can be fished (Di Lorenzo et al., 2016).

Spillover is not only important for local SSFs, but also for tour-
ism-based blue economy. More abundant and larger fish exported 
from FPAs (where scuba diving is often forbidden) attract more div-
ers, thus supporting the local economy (Micheli & Niccolini, 2013; 
Roncin et al., 2008).

The overall relative contribution of potential drivers of spill-
over is poorly known. Two main categories of drivers may facilitate 
spillover: (a) MPA features—age, design (e.g. size, shape, location), 
presence of PPAs, the level of enforcement and habitat continu-
ity/discontinuity across FPA borders (Goñi et al., 2008; Harmelin-
Vivien et  al.,  2008; Kaunda-Arara & Rose,  2004; Kay, Lenihan, 
Kotchen, & Miller, 2012); and (b) species characteristics—the spe-
cies-specific ability to move across the FPA borders related, for 
example, to the intraspecific behaviour of individuals, habitat pref-
erences, species mobility, commercial value and fishing pressure 
(Kaunda-Arara & Rose, 2004). Some studies reported that spillover 
may require many years (>10 years) to take place after a FPA is es-
tablished (Abesamis et al., 2006; Harmelin-Vivien et al., 2008; Russ 
& Alcala, 1996; Russ, Alcala, & Maypa, 2003), while others detected 
spillover after only a few years from FPA establishment (<5 years) 
(Francini-Filho & Moura,  2008; Guidetti,  2007). Spillover has 
been observed from FPAs surrounded or not by a PPA (Abesamis 
et  al.,  2006; Francini-Filho & Moura,  2008; Harmelin-Vivien 
et al., 2008; Zeller, Stoute, & Russ, 2003) and detected from both 
small (< 1km2) (Abesamis et al., 2006; Harmelin-Vivien et al., 2008; 
Russ & Alcala, 1996; Russ et al., 2003) and large FPAs (Ashworth & 
Ormond, 2005; Fisher & Frank, 2002; Stobart et al., 2009). Habitat 
continuity inside and outside the FPA is thought to facilitate spill-
over (Abesamis & Russ,  2005; Kaunda-Arara & Rose,  2004), but 
several studies detected spillover also where the habitat was dis-
continuous across FPA borders (Goñi, Quetglas, & Reñones, 2006; 
Guidetti,  2007; Harmelin-Vivien et  al.,  2008; Kay et  al.,  2012). 
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Spillover is expected to mostly occur for relatively mobile spe-
cies (Buxton, Hartmann, Kearney, & Gardner,  2014; Halpern 
et al., 2010), but some studies showed that also sedentary species 
(Chapman & Kramer,  1999; Eggleston & Parsons,  2008; Forcada 
et  al.,  2009; Goñi et  al.,  2006, 2008; Zeller et  al.,  2003), as well 
as vagile (Abesamis et  al.,  2006; Forcada, Bayle-Sempere, Valle, 
& Sánchez-Jerez, 2008; Guidetti,  2007) and highly vagile species 
(Chapman & Kramer,  1999; Kaunda-Arara & Rose,  2004; Stobart 
et al., 2009), may spillover beyond FPA borders.

Here, we performed a meta-analysis to (a) investigate the extent 
of spillover occurrence from FPAs globally and (b) assess which FPA 
features and species characteristics mainly drive spillover. To do so, 
we compiled the most complete global database on spillover to date, 
covering 23 FPAs in 12 countries, combining information from re-
viewed literature and data gathered from underwater visual census 
samplings purposely carried out in the field.

2  | METHODS

2.1 | Data collection

We assembled our data set using two different approaches: extract-
ing data from existing literature and performing ad hoc field activi-
ties to collect new data.

Articles on spillover from published peer-reviewed literature were 
collected through Web of Science back to 1994, when the term spill-
over was used for the first time (Rowley, 1994). The following search 
string was used: (“spillover” OR "spill-over" OR "spill over") AND 
("marine protected area*" OR "marine reserve*" OR "no-take zone*" 
OR "fisher* closure*” OR “fully protected area*”). It was decided to 
focus strictly on FPAs as this protection level is the most likely to 
produce spillover effects (Di Lorenzo et  al.,  2016 and references 
therein). Sixty-three studies of empirical assessments of spillover 

TA B L E  1   Empirical studies and data that met the selection criteria of our meta-analysis

Fully protected area 
name (Country)

Years since 
enforcement

Enforcement 
level

Reserve Size 
(km2)

Presence of a partially 
protected area (PPA)

Number of 
studied species Source

Apo (Philppines) 16 High 0.11 No 1, Assemblage 1,2,3,4,5

Asinara (Italy) 9 Medium 2.45 Yes 17 6

Balicasag (Philppines) 16 High 0.08 No 1 4

Barbados (Caribbean) 15 High 2.3 No Assemblage 7

Bonifacio (France) 19 High 0.74 Yes 13 6

Cabo de Palos (Spain) 23 High 2.68 Yes 18 6

Cabrera (Spain) 22 High 0.85 Yes Assemblage 8,9

Cap Roux (France) 15 Low 0.44 No 12 6

Capo Carbonara (Italy) 6 Medium 0.6 Yes 16 6

Channel Islands 
(California)

7 High 3807.2 No 1 10

Columbretes (Spain) 12 High 44 No 1 11

Cote Bleue (France) 32 High 0.85 No 12 6

Egadi (Italy) 27 High 6.63 Yes 13 6

Mombasa (Kenya) 6 High 10 No Assemblage 12

Portofino (Italy) 19 High 0.18 Yes 15 6

Pupukea-Waimea 
(Hawaii)

17 High 0.71 No Assemblage 13

Strunjan (Slovenia) 10 High 0.46 Yes 7 6

Su Pallosu (Italy) 11 High 4 No 1 14

Tabarca (Spain) 20 High 14 Yes 1 15

Telascica (Croatia) 30 Medium 0.12 Yes 13 6

Tonga (Tonga) 7 High 18.35 No 1 16

Torre Guaceto (Italy) 18 High 1.38 Yes 12 17,6

Zakyntos (Greece) 19 Medium 8 Yes 10 6

Note: For further details, see the Supporting Information. Source: (1) Russ & Alcala (1996); (2) Russ et al. (2003); (3) Abesamis and Russ (2005); (4) 
Abesamis et al. (2006); (5) Russ and Alcala (2011); (6) Data collection; (7) Chapman & Kramer (1999); (8) Harmelin-Vivien et al. (2008); (9) Bellier et al. 
(2013); (10) Kay et al. (2012); (11) Goñi et al. (2006); (12) McClanahan and Mangi (2000); (13) Stamoulis & Friedlander (2013); (14) Follesa et al. (2011); 
(15) Forcada et al. (2008); (16) Davidson et al. (2002); and (17) Guidetti (2007). Information on enforcement level was obtained from primary 
literature, from Giakoumi et al. (2017) and, when no information was available, from expert judgement by the authors.
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were found. They were either based on underwater visual census, 
catch or tagging abundance and/or biomass data. Spillover has been 
modelled in various ways in the literature, such as using linear gra-
dients of abundance/biomass decline from FPA borders (e.g. Goñi 
et al., 2006; Harmelin-Vivien et al., 2008) or tracking individual move-
ments across FPA borders (Afonso, Morato, & Santos, 2008; Barrett, 
Buxton, & Gardner,  2009; Follesa et  al.,  2011; Kay et  al.,  2012; 
Kerwath et al., 2013). In order to keep the maximum number of stud-
ies, we built a model of spillover that would be as inclusive as possi-
ble in terms of different measurements and ways to report the data. 
Data from papers were extracted either from tables or from graphs 
using ImageJ (http://imagej.nih.gov/ij). Contextual information about 
the FPAs was recorded from the articles and/or by contacting their 
authors: FPA age and size, whether the FPA was situated on an island 
or along a coastline, presence of PPA surrounding the FPA and habitat 
continuity/discontinuity along FPA borders (Table 1). Information on 
species mobility (sedentary or vagile) and economic value (commer-
cial, low commercial or not commercial) was also collected from the 
papers or FishBase (http://www.fishb​ase.org). It is worth noting that 
this study focused only on species that benefit most from protection 
and that are also targeted by SSFs; thus included only sedentary and 
vagile species. Mobility was not used when data were reported for 

higher taxonomic levels than genus. Subadults of target species were 
also included in the low commercial category as during that life stage 
they are not fishery targets.

To enhance the data set, we conducted additional fieldwork in 
13 FPAs in six countries. Data were gathered using underwater vi-
sual census. Scuba diving was carried out on rocky substrates be-
tween 5 and 15 m deep, using 25 x 5 m strip transects parallel to 
the coast. Along each transect, the divers swam one way at constant 
speed, identifying all fishes encountered to the lowest taxonomic 
level possible and recording their number and size. Fish size was es-
timated visually in 2 cm increments of total length (TL) for most of 
the species and within 5 cm size classes for large-sized species (i.e. 
with maximum size >50 cm). Fish biomass was estimated from size 
data by means of length–weight relationships from the available lit-
erature and existing databases. Underwater visual census replicates 
(from 6 to 12 transects) were carried out both close and far from 
FPAs borders, according to the rationale we used to detect spillover 
(see Section 2.2).

Only one study used fisheries yield to assess spillover. Due to the 
absence of replication, we could not account for fisheries spillover 
and had to restrict our analysis to ecological spillover (Di Lorenzo 
et al., 2016). A total of 334 assessments from 23 MPAs (most of them 

F I G U R E  1   MPA-level and species-level drivers of spillover. The spillover indicator is the log-transformed ratio of fish biomass or 
abundance between close and far from fully protected area boundaries (average weighted effect size ± 95% CI). Green dots indicate effect 
sizes that do not overlap zero and red dots those that overlap zero. Cont., continuous; Discon., discontinuous. Figure appears in colour in the 
online version only. [Colour figure can be viewed at wileyonlinelibrary.com]

http://imagej.nih.gov/ij
http://www.fishbase.org
www.wileyonlinelibrary.com
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reported as having a high level of enforcement Table 1) and 31 tax-
onomic groups (including species, genus or family) worldwide were 
finally used in the meta-analysis (Table 1; Table S1).

2.2 | Data analysis

A meta-analytical approach was used to investigate spillover oc-
currence and its drivers in our database. We used as effect size 
the log-relative difference in mean fish abundance and biomass 
between locations close (<200  m) and far (>200  m) from the FPA 
borders. We set the threshold at 200 m according to the distance up 
to which spillover is generally observed in the literature (Abesamis 
et  al.,  2006; Guidetti,  2007; Harmelin-Vivien et  al.,  2008; Russ & 
Alcala, 2011; Russ et al., 2003). This approach is conservative in the 
sense that it favours false negatives (absence of detection of spillo-
ver if it occurs over larger spatial extents) over false positives (detec-
tion of spillover when it does not occur, or over spatial extents with 
no significance for SSF management).

We used a weighted mixed-effects meta-analysis (Gurevitch & 
Hedges, 1999) to quantify the magnitude of spillover and asses its 
drivers. Two different meta-analyses were done on abundance and 
biomass. For each study i, the spillover effect size Ri of the stud-
ied species across the studied FPA was modelled as the natural 
logarithm response ratio (Gurevitch & Hedges,  1999; Osenberg, 
Sarnelle, & Cooper, 1997) of the mean abundance or biomass mea-
sured within 200 m (

‼

Xclose,i ) and over 200 metres (
‼

Xfar,i ) from the 
FPA boundary:

The within-study variance vi associated with the effect sizes was 
calculated as follows:

where SD2
close,i and SD2

far,i are the standard deviations of 
‼

Xclose,i and 
‼

Xfar,i, respectively, and where nclose,i and nfar,i are the associated sam-
ple sizes.

All effect sizes were weighted, accounting for both the within- 
and among-study variance components (Hedges & Vevea,  1998). 
Models were fitted, and heterogeneity tests were run to assess 
how MPA-level (FPA age and size, island or coastline FPA, pres-
ence of a PPA, habitat continuity/discontinuity along FPA borders) 
and species-level (mobility and economic) drivers could medi-
ate spillover from FPAs (Table 1). All analyses were done in R (R 
Core Team 2016) and weighted mixed-effects model fitting, and 
heterogeneity tests were carried out using the metaphor package 
(Viechtbauer, 2015).

3  | RESULTS

Overall, we found 33% higher fish abundance and 54% higher bio-
mass close to the FPA borders (<200 m) compared to further away 
(
−
−

R = 0.29 ± 0.15 95% CI and 
−
−

R = 0.43 ± 0.21 95% CI, respectively), 
indicating the general occurrence of spillover. However, effect 
sizes were heterogeneous across assessments (QT = 7,314, df = 167, 
p < .001; QT = 7,777, df = 164, p < .001, respectively) (Table S2).

The presence of a PPA around FPAs played an important role. 
Spillover was observed more often from those FPAs surrounded by 
or next to a PPA (Figure 1). Abundance and biomass in FPAs with a 
PPA were 37% and 84% higher, respectively, closer to rather than 
further away from the FPA boundaries (Table S3).

For abundance data, spillover was mostly observed in FPAs es-
tablished along coastlines rather than in FPAs surrounding a whole 
island (Figure 1). This difference was not observed when considering 
biomass data (Figure 1; Table S2).

The occurrence and magnitude of spillover was only slightly 
affected by the age or the size of the FPA. Although statistically 
significant, the effect of age was marginal for both abundance 
(
‼

R = 0.008 ± 0.007 95% CI) and biomass (
‼

R = 0.014 ± 0.010 95% CI). 
The effect of the size of the FPA played a limited but detectable role 
only in the case of abundance (

‼

R = 0.04 ± 0.03 95% CI for abundance; 
‼

R = 0.02 ± 0.03 95% CI for biomass).
Habitat continuity/discontinuity across FPA borders did not 

seem to affect the occurrence of spillover, for both abundance 
(QE  =  6,767.35; df  =  165; p  =  .0001) and biomass (QE  =  7,299.05; 
df = 163; p = .0001; Figure 1).

Spillover density and biomass was detected for both sedentary 
and vagile species (Figure 1; Table S1). Only species with high com-
mercial value showed a spillover effect from FPAs both in terms of 
abundance and biomass (Figure 1; Table S1).

4  | DISCUSSION

Our results showed that spillover of marine species, both in terms 
of abundance and biomass, can be expected as a general response 
of FPAs. Based on the data collected, the present study focused on 
ecological spillover (sensu Di Lorenzo et al., 2016). We showed that 
both fish biomass and abundance outside FPAs are higher in loca-
tions close to FPA borders (<200 m) than in locations further away 
(>200 m), for species with a high commercial value, and that it is oc-
curring more in the presence of a partially protected area (PPA) sur-
rounding the FPA. Spillover was slightly higher for larger and older 
FPAs and for more mobile species.

To the best of our knowledge, this is the first study using a me-
ta-analytical approach considering the presence of PPAs as a po-
tential driver of spillover, as well as benthic habitat continuity. Our 
findings suggest that the presence of a PPA might help detect the 
net export of biomass and fish abundance through spillover from 
the FPA. However, it is crucial to highlight that these patterns can 
be affected/altered by the magnitude of fishing effort around FPAs 

Ri = ln

⎛
⎜
⎜
⎜
⎝

‼

Xclose,i

‼

Xfar,i

⎞
⎟
⎟
⎟
⎠

.

vi =
SD

2
close,i

nclose,i ∗

‼

Xclose,i

+

SD
2
far,i

nfar,i ∗

‼

Xfar,i

,
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(in PPAs or in unprotected areas, depending on MPA zonation 
schemes). Fishing the line, that is fishers' tendency to fish close to 
the boundaries of FPAs (Kellner, Tetreault, Gaines, & Nisbet, 2007), 
is a recognized activity occurring around FPAs. In the absence of 
a PPA, fishery activities around FPAs' borders are not subject to 
strict spatially explicit regulations beside the ones imposed by na-
tional and international laws, generally resulting in a higher concen-
tration of the fishing effort close to the FPA borders (Abesamis & 
Russ, 2005; Chapman & Kramer, 1999; Davidson, Villouta, Cole, & 
Barrier, 2002; Follesa et al., 2011; Russ & Alcala, 2011; Stamoulis & 
Friedlander, 2013). The recorded magnitude of ecological spillover 
can be reduced by fishing pressure in the unprotected areas (Nillos 
Kleiven et al., 2019), but high fishing effort can also be concentrated 
within PPAs (in the absence of specific regulations limiting the fish-
ing effort) which also has negative consequences for potential eco-
logical and fishery spillover (Figure 2) (Zupan, Bulleri, et al., 2018).

Our findings can shed light on the results observed in a recent 
global meta-analysis assessing the ecological effectiveness of dif-
ferent levels of protection (highly, moderately and weakly) in PPAs 
(Zupan, Fragkopoulou, et al., 2018). While the authors observed 
that fully and highly protected PPAs harbour higher fish abundance 
and biomass than surrounding unprotected areas, they found that 
moderately PPAs are effective only when adjacent to a FPA (Zupan, 
Fragkopoulou, et al., 2018). A possible explanation for this could be 

that in the absence of a FPA providing spillover, such moderately 
protected areas permit too much fishing to be effective. Spillover 
can thus be an important component driving the effectiveness of 
multizoned MPAs, allowing combinations of protection levels (in-
cluding FPAs and PPAs) to favour both conservation and fisheries 
outcomes (Zupan, Bulleri, et al., 2018).

We observed a slight influence of time since protection (i.e. MPA 
age) on ecological spillover, in agreement with what has been ob-
served for the response to protection within the FPA boundaries 
(Claudet et  al.,  2008; Edgar et  al.,  2014; Molloy, McLean, & Côté, 
2009).

The fact that only species with a high commercial value dis-
play spillover is not surprising as they are the ones responding 
more favourably to protection and most rapidly to MPA establish-
ment (Babcock et al., 2010; Claudet, Pelletier, Jouvenel, Bachet, & 
Galzin, 2006; Kerwath et al., 2013) hence the ones most likely ex-
porting adults from the FPA boundaries. An important difference 
between our synthesis and a previous meta-analysis by Halpern 
et  al.  (2010) is that while their study focussed on highly valued 
fish species only, our analysis, for the first time, integrated data 
from three commercial value categories of species (i.e. no value, 
low and high).

A slight effect of FPA size on spillover was also found; it suggests 
that the set of MPAs included in our study covers a range of sizes 

F I G U R E  2   This generic conceptual framework illustrates the potential effects of presence and absence of partially protected areas 
(PPAs) surrounding fully protected areas (FPAs) for spillover. Three different scenarios are shown: (a) high fishing pressure could reduce the 
ecological and fishery spillover recorded in fished areas around FPAs; (b) high fishing pressure in weakly regulated PPA could reduce the 
ecological (standing stock biomass) and fishery (catches) spillover recorded within PPAs surrounding the FPAs and nullifies both spillover 
recorded in fished area; and (c) low fishing pressure could increase the ecological and fishery spillover recorded within PPAs surrounding the 
FPAs and enhances ecological and fishery spillover assessment in the fished area. Figure appears in colour in the online version only. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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representing a trade-off between the inclusion of the home ranges 
of most species and the optimal size for spillover to neighbouring 
areas. In fact, the size of a FPA should include the full home ranges 
of the species that you intend to protect in order to obtain high con-
servation benefits (Di Franco et  al.,  2018; Weeks, Green, Joseph, 
Peterson, & Terk, 2017).

While several experimental studies have shown that habitat con-
tinuity inside and outside FPAs may play a role in facilitating spillover 
(Forcada et al., 2008; Goñi et al., 2008; Halpern et al., 2010; Kaunda-
Arara & Rose, 2004), our meta-analysis showed that spillover could 
occur where the habitat across FPA borders is either continuous or 
discontinuous. Landscape connectivity theory (“the degree to which 
the landscape facilitates or impedes movement among resource 
patches”; Taylor, Fahrig, Henein, & Merriam,  1993) suggests that 
similar habitat types across FPAs and fished areas may enhance the 
border permeability (Bartholomew et  al.,  2008). However, our re-
sults suggest that the likelihood that fish cross a different habitat 
rather than the preferred one also depends on how fish can perceive 
and respond behaviourally to integrate the patched habitat to mini-
mize overall costs (Bélisle, 2005; Wiens, 2008). Therefore, although 
different habitats outside FPAs could be a barrier to fish movements 
(due, e.g., to the increased risk of predation), individuals may be able 
to move beyond FPA borders when a threshold level of population 
density/biomass (i.e. competition for local resources such as preys 
and refuges) is exceeded.

Here, we observed that species, regardless of their mobility, are 
able to perform spillover. The fact that any species with different 
mobility levels can display spillover may support the use of FPA for 
SSF management, as these fisheries are multispecific and usually tar-
get both sedentary and vagile species (Claudet, Guidetti, Mouillot, & 
Shears, 2011).

As in any qualitative review or quantitative synthesis or me-
ta-analysis, our study may have a publication bias. For example, 
studies supporting spillover could be more likely to be published 
than those where no spillover is observed and this would therefore 
translate in some overestimation of spillover. However, the way we 
modelled spillover is rather conservative in the sense that it favours 
false negatives over false positives (see Section 2.2). In addition, 
our sample covers a large array of species, MPA types, and biogeo-
graphic regions and is well representative of spillover assessment 
in marine protection worldwide. We are thus quite confident that 
MPAs, through spillover and larval subsidy (Marshall et al., 2019), can 
play a significant role in replenishing surrounding areas, therefore 
enhancing fisheries and non-extractive activities that may benefit 
from increased fish density and biomass (e.g. scuba diving and tour-
ism in general).

In terms of socio-economic implications, the potential benefits 
induced by spillover could raise expectations in stakeholders (e.g. 
fishers, divers, tourists) that, if shattered, could induce a negative 
attitude and finally reduce support towards conservation initia-
tives and potentially foster non-compliant behaviours (e.g. poach-
ing) (Bergseth, Russ, & Cinner, 2015; Di Franco et al. 2020). In our 
study, we use a conservative approach to assess spillover occurrence 

(i.e. spillover might have been underestimated in some cases), and 
in addition, we point out the circumstances under which spillover 
could occur, which is more appropriate from a management point 
of view as deception can be dramatic when a management tool is 
oversold (Chaigneau & Brown, 2016; Hogg, Gray, Noguera-Méndez, 
Semitiel-García, & Young, 2019). This can allow a clear message to 
be delivered to stakeholders and avoid overselling the occurrence of 
spillover, preventing unrealistic expectations, and as a consequence 
help foster support to conservation initiatives (Bennett et al., 2019; 
Di Franco et al. 2020).

Our findings highlight under which conditions ecological spill-
over may be expected, allowing MPA managers and policy-makers 
to develop sound strategies to eventually maximize the exploita-
tion of fishable biomass exported by FPAs. While the foundation 
for the ecological effectiveness of full protection is clearly evi-
denced (i.e. the removal of fishing mortality; Claudet et al., 2008; 
Lester et al., 2009), how to adapt in each partially protected area, 
the types of use that are allowed or not (Zupan, Fragkopoulou, 
et al., 2018) and their respective intensity (Zupan, Bulleri, et al., 
2018) remain unclear. Globally PPAs include a variety of manage-
ment measures that range from almost unprotected areas (with 
no regulations implemented) to practically FPAs (Horta e Costa 
et al., 2016; Zupan, Fragkopoulou, et al., 2018). From this per-
spective, an effort should be made through further research to 
assess under which conditions PPAs can benefit local communities 
within multiuse MPAs. Here, all MPAs with multiple zones had a 
fully protected area, surrounded by at least a highly protected area 
(Claudet, Loiseau, Sostres, & Zupan, 2020). Future investigations 
that include the different levels of fishing intensity inside these 
areas based on the current regulations and levels of enforcement 
would help guide more effective management strategies. As PPAs 
currently lack a consistent and well-designed set of regulations 
worldwide (Horta e Costa et  al.,  2016), MPAs, mainly aimed to 
maximize fishery benefits, should assess the fisheries yield within 
PPAs and fished areas integrated with fishing effort data in order 
to optimize spillover (Figure 2).
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