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1 Using SAC

Introduction

Overview

SAC (Seismic Analysis Code) is a general-purpose interactive program designed for the study of
sequential signals, especially time-series data. Emphasis has been placed on analysis tools used by
research seismologists in the detailed study of seismic events. Analysis capabilities include general
arithmetic operations, Fourier transforms, three spectral estimation techniques, IIR and FIR filtering,
signal stacking, decimation, interpolation, correlation, and seismic phase picking. SAC also contains
an extensive graphics capability. Binary versions are available for Intel Mac and Linux, but SAC can
be built from the source code for other computer operating systems. The source code is written in
C. For further details regarding requirements to build and run SAC, see the README file that comes
with the distribution.

SAC was developed at Lawrence Livermore National Laboratory and is copyrighted by the University
of California. It is currently begin developed and maintained by a small group of developers working
in cooperation with IRIS.

In all version of SAC through and including v101.6a, all reals in the SAC header/data are single-
precision (32 bits; 4 bytes). SAC v102.0 includes double-precision for both time and distance calcula-
tions using header variables, and does so in a way that maximizes compatibility so that existing SAC
data files can still be used. There is a detailed discussion in the section on Floating-Point Precision
in SAC in TUTORIAL.

Starting in version 102.0, SAC is capable of viewing and downloading event, station, and response
metadata and downloading waveforms from the IRIS online Web services. See Data Access for an
overview.

Through version 101.6a, epicentral distances were calculated using an Earth spheroid defined by a:
6378160.0 m and f: 0.00335293. In version 102.0, a header variable IBODY has been added to allow
for distance calculations on terrestrial planets, the Sun, and the Moon. Options for IBODY are given
in the Event Field section of SAC Data File Format, and an example (macro and output) has been
added in ${SACHOME}/macros.

When testing and demonstrating SAC commands, it is useful to have an easily-accessible set of
seismograms. The one seismogram most used is from command FUNCGEN: fg seismo. However, all
one gets is the first several seconds of a not-very-interesting P arrival. Command DATAGEN has given
access to seismograms from three events: a local event, a regional-distance event, and an epicentral
event. In SAC v102.0, a new event has been added: ${SACHOME}/aux/datagen/SUB/DEEP/:
three-component seismograms from eight broadband stations. The arrivals are impulsive, and one
can see many converted phase. The help files SAC_MACROS and TRAVELTIME have examples
using DATAGEN seismograms. (The TRAVELTIME command has been improved and expanded in
version 102.0.)

The Using SAC part of the SAC Users Manual contains general information for the new user about
what SAC can do, how it works, and how to get started. It also contains detailed information for the
more experienced user on topics such as how to use SAC macros, how to read and write SAC data
files from C or FORTRAN programs, and how the SAC program is structured.

The Users Manual will be periodically updated to include new descriptions and to revise old ones.
Please report any errors in this manual to the sac-help listserv: <sac-help@lists.ds.iris.edu>. Although
the version of the manual that comes with the binary or source distribution will be updated only when
a new version comes out, the online version of the manual at <http://ds.iris.edu/files/ sac-manual/>
can be updated at any time.
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Contents of Using SAC

∙ Introduction (this file)

∙ Tutorial for New Users

∙ SAC Analysis Capabilities

∙ Data Access (Get Data, Events, Stations, Responses, Traveltimes, ...)

∙ SAC Macros

∙ SAC Inline Functions

∙ SAC Data File Format

∙ SAC Reading and Writing Routines

∙ Using the SAC Libraries

∙ Blackboard Variables in SAC

∙ Graphics in SAC

∙ SAC Graphics File (SGF)

∙ Calling SAC from Scripts

∙ SAC Error Messages

Other Sections

Command Reference Manual contains detailed descriptions of each SAC command including purpose,
syntax, default values, and examples. This manual also contains lists of SAC commands sorted
alphabetically and functionally.

Spectral-Estimation Subprocess Manual describes a subprocess for the study of stationary random
processes. A subprocess is like a small separate program within the main SAC program.

Signal-Stacking Subprocess Manual describes a subprocess for performing signal stacking with delays,
traveltimes, and record section plots.

Notation

Repeating an important point made above, you may enter keywords and options in either uppercase
or lowercase. SAC converts these to uppercase before interpreting them. The exceptions to this rule
are text appearing within single or double quotes and the names of directories and files. The case of
these items is not changed. They are interpreted literally.

LATEST REVISION

Version 102.0
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SAC Tutorial Guide for New Users

OVERVIEW

SAC was designed as an aid to research seismologists in the study of seismic events. As such, it is used for quick
preliminary analyses, for routine processing, for testing new techniques, for detailed research, and for creating
publication quality graphics. It is used by both computer novices and experts. In order to make SAC quick to
learn and easy to use, default values for all operational parameters were carefully chosen. At the same time,
almost all of these parameters are under direct user control. This design combines ease of use with significant
flexibility.

README

The first step is to study the README file that is in the top directory of the distribution: sac. It gives de-
tailed instructions about setting up the environmental variables necessary to run SAC and other pieces of useful
information.

USER INTERFACE

SAC is an interactive command-driven program. Commands may be typed at the terminal or placed in a macro file.
SAC commands fall into three main categories: parameter-setting, action-producing and data-set manipulation.
The parameter-setting commands change values of internal SAC parameters. Action-producing commands perform
some operation on the signals currently in selected memory based upon the values of these parameters. Data-
set commands determine which files are in active (selected) memory and therefore will be acted upon (data-set
commands are not currently operational).

Within a single SAC session, the effect of a parameter-setting command remains in effect until that parameter is
reset. The effect of an action-producing command is immediate and transitory. Action-producing commands also
have options which normally remain in effect until reset (for that particular command).

When you start up SAC, default values are defined for all of these parameters. SAC can be reinitialized to this
default state at any time by executing the INICM command.

MODE OF OPERATION

Each signal is stored in a separate data file. Each data file contains a header that describes the contents of
that file. See the section on sac data file format for details. Signals are read from disk into memory using the
READ command. CSS 3.0 formated flat files can be read using the READCSS command. SAC can process up
to 200 signals of arbitrary size at a time. Once data is in memory other commands are typed at the terminal (or
read from a macro file) to perform operations on these signals. All operations work concurrently on all signals
in memory. You can look at the results at any time using the plot commands. There are several plot formats to
choose from. You have control over titles and labels, plot limits, file identifications, axes and tick mark locations,
etc. You can also save the results of these operations at any time using the WRITE command.

HOW SAC HANDLES TIME

The SAC header contains a reference or zero time, stored as six integers (NZYEAR, NZJDAY, NZHOUR, NZMIN,
NZSEC, NZMSEC), but normally printed in an equivalent alphanumeric format (KZDATE and KZTIME). This
can be set to any reference time you wish. It is often the time of the first data point, but can also be the origin
time of the event, midnight, your birthday, etc. It does not even have to be a time encompassed by the data itself.
All other times are offsets in seconds from this reference time and are stored as single-precision floating-point
values in the header:

B: Begin time of the file.
E: End time of the file.
O: Event origin time.
A: First arrival time.
F: Fini (end of signal.)

12



Tn: Time markers, where n is an integer from 0 to 9.

ANALYSIS CAPABILITIES

SAC Analysis Capabilities provides an introduction to these features. Command Reference Manual lists all the
commands and has links to help files for them.

GETTING STARTED

SAC will then print a short headline including the number and date of the version you have on your system. It
may also print a bulletin giving some current information. SAC will then ask you for input by sending the prompt
"SAC>".:

% sac
SEISMIC ANALYSIS CODE [08/15/2006 (Version 100.1)]
Copyright 1995 Regents of the University of California

SAC>

INTERACTION

SAC is an interactive command driven program. This means that you must type a command to get SAC to do
something. It does not prompt you for input. Commands may be typed at the terminal or placed in a command
file. Symbols within a command are separated by spaces and commands within a given line may be separated by
a semicolon.

We’ll start by creating a simple function:

SAC> FUNCGEN impulse

This generates an impulse function and stores it in SAC’s memory. To see what this function looks like on your
screen type:

SAC> PLOT

ABBREVIATIONS

There are abbreviations for the most used SAC commands. For example, fg and p are the abbreviations for
FUNCGEN and PLOT respectively.

For a complete listing of the abbreviations, please consult the ABBREV help file or run help abbrev while in
SAC

CHANGING OPTIONS IN REPEATED CALLS TO SAC COMMANDS

As an example, the FUNCGEN command can generate a number of different functions. To see them, use the
HELP command:

SAC> help fg

Using fg can be very useful when first learning how to use SAC because you can see how the other SAC operations
work on these functions. For example:

SAC> fg sine 2 npts 200 delta 0.01

13



This generates a 2 Hz sine wave in SAC’s memory. The function will contain 200 data points and have a sampling
interval of 0.01 seconds. You can use the PLOT command to plot this function also.

When you specify a value for a particular option, this becomes the new current value, which means you don’t
have to keep entering values for options that you don’t want to change. For example, you can now generate this
same 2 Hz sine wave using the same sampling interval but with 400 data points by simply typing:

SAC> fg npts 400

SAC remembers sine as the function called most recently by fg. This is common for most commands in SAC:
if a new argument for an option is not given, SAC uses the most recently used value in the current session.
(Sometimes one forget that an option had been used, so one may not correctly anticipate correctly the result of
the operation.)

DEFAULT VALUES

All commands have "nice" default values for most options. The use of current and default values for command
options can save you a lot of typing. For example, let’s look at the BANDPASS command. This command applies
a bandpass filter to the data currently in memory:

SAC> fg impulse npts 100 delta 0.01
SAC> bandpass bessel corner 0.1 0.3 npole 4

These two commands generate an impulse function and then apply a bandpass filter to that impulse. The filter
is a four-pole Bessel filter with corner frequencies at 0.1 and 0.3 Hz. (To see the default values for BANDPASS,
enter HELP BANDPASS.) You can see the result in the time domain by typing PLOT or you can see the amplitude
response by taking the Fourier transform and using the PLOTSP command:

SAC> fft
SAC> plotsp am

You can now try a different set of corner frequencies very easily:

SAC> fg
SAC> bandpass corner 0.2 0.5

SAC generates the same impulse function and applies the same Bessel filter except for the new corner frequencies.

SAC DATA FILES

SAC is a program to examine, analyze, and plot data. This data is stored on disk as SAC data files. Each
data file contains a single data set. For seismic data this means a single data component recorded at a single
seismic station. SAC does not currently work on multiplexed data. The data will generally be evenly spaced time
series data. SAC can also handle unevenly spaced data and spectral data. The spectral data can be in either
real-imaginary or amplitude-phase format. Use help bandpass to see the defaults.

SAC HEADER

Each data file also contains a header record which describes the contents of that file. Certain header entries are
always present (e.g., the number of data points, the file type.) Others are always present for certain file types (e.g.,
sampling interval, begin time, etc. for evenly spaced time series files.) Other header variables provide information
needed by a particular operation (e.g., seismic component orientation used by the ROTATE command.) Still
others are not used by SAC at all. They are simply informational. Section sac data file format lists and discusses
all header values. The LISTHDR command displays the contents of the headers for the data files currently in
memory. You may wish to examine the header from the sample seismogram mentioned earlier:
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SAC> FG seismogram
SAC> LH

If a particular header variable does not have a value for a particular file, then that variable is said to be "undefined"
for that file. The LISTHDR command does not list undefined header variables, unless it is invoked with the INC
or INCLUSIVE option (which includes undefined header variables). (Entr help lh to see the options.)

A few important header variables are listed below:

NVHDR: If 7, Double-precision used for internal calculations with header variables
B: Beginning value of the independent variable;
IFTYPE: Type of file;
LEVEN: TRUE if data set is evenly spaced;
DELTA: Increment between evenly spaced samples;
IDEP: Type of dependent variable;
KZDATE: Alphanumeric form of GMT reference date;
KZTIME: Alphanumeric form of GMT reference time;
A: First arrival time (seconds relative to reference time);
T n: User defined time picks or markers, n=0,9.

READING AND WRITING DATA FILES

Reading Data Files

SAC commands work on data already in SAC’s working memory, not data on disk. The READ command is
used to transfer data from disk to memory. Up to 100 data files can be in memory at the same time, and this
limitation should be removed in upcoming versions. These can be of any size up the maximum size of SAC’s
working memory. You can use wildcard characters in the READ command to represent groups of files which have
a similar set of characters in their names. Each time you use the READ command to transfer data from disk to
memory the data currently in memory is destroyed. If you want this data saved, you must write it to disk before
reading more data into memory. There is an option called MORE in the READ command that lets you read data
into memory without destroying the old data. See the Command Reference Manual for details.

Writing Data Files

At any time during your analysis, you may transfer this modified data back to disk using the WRITE command.
You may overwrite the old data files on disk using the OVER option or create new ones by specifying their file
names. Action commands (such as ADD, DECIMATE, and FFT) modify the data that is currently in memory.
The data files on disk are not modified.

Reading and Writing Examples

A complete discussion of reading and writing SAC data files is given in sac reading and writing routines.

The examples below demonstrates several uses of the READ and WRITE commands.

Scaling Example

The first example reads two files into memory, multiplies each data point in each file by a constant, and then
writes the results to disk in two new files:

SAC> R file1 file2
SAC> MUL 10 20
SAC> W file3 file4
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Decimation Example

The next example reads a single file into memory, desamples the data by a factor of five ( DECIMATE also applies
an anti-aliasing filter), and then writes the results back to disk using the same file name:

SAC> R file1 file2 file3 file4
SAC> DECIMATE 5
SAC> WRITE OVER

Sample Data Files

You’re going to need some data files for use in the next section on plotting. You’ll also need them if you want to
try any of the other commands discussed later in this guide. If you don’t have any sample SAC data files around
to play with, you can use FUNCGEN to generate some. This is shown in the example below:

SAC> fg triangle npts 200 delta 1.0
SAC> write file1
SAC> fg boxcar
SAC> write file2
SAC> fg step
SAC> write file3

This results in you having three files in your directory called file1, file2, file3 which contain the triangle, boxcar,
and step functions respectively. Each will have 200 data points in them and be sampled at 1 sample per second.
If you already had files in your directory by those names, they would be replaced by these new ones.

PLOTTING IN SAC

Displaying the Results

After reading data into SAC you can see it on your screen in several different formats using the various plot
commands. Default values for each of the graphics display commands have been chosen to make it as easy as
possible to display your data. By changing these default values before plotting, you also have complete control
over the details of how each plot will look.

You’ve already used PLOT to display data files. With this command, each data file is plotted one at a time. SAC
pauses between files to give you a chance to examine the data. This is shown in the following example.:

SAC> read file1 file2 file3
SAC> plot
Waiting [press return]
Waiting [press return]
Waiting [press return]
SAC>

Typing a "q" and then return will exit the plot command and not plot the remainder of the files in memory.

Additional Plot Commands

Several other canned plot formats are available. PLOT1 plots each file along a common x axis but with a separate
y axes. By default all files are placed on the same plot. Try this with the three files from the example above.
PLOT2 is an overlay plot. Again all files are plotted together, this time using both a common x and a common y
axis. PLOTPK uses a format similar to PLOT1. It lets you use the cursor to blow up parts of the plot, determine
values of selected data points, pick phase arrival times, etc.

16



Figure 1: Figure (1): the bit structure of a single-precision floating-point number.

Display Options

By default, all SAC plots are self-scaling. SAC determines what limits to use for the x and y axes. If you want to
set these limits yourself, you may do so using the XLIM and YLIM commands. If you wish, you may also change
the location of annotated axes, change the linestyle, select a symbol to be plotted at each data point, create titles
and labels, make logarithmic plots, change the size and type of text, and control a number of other even more
exotic aspects of the plot. These commands are part of the Graphics Environment Module, and are defined in
links from the Command Reference Manual.

An Overview of Graphics Capability in SAC

File Graphics in SAC has an overview of graphics in SAC. Of particular interest may be the command SAVEIMG
that allows one to save displayed plots in several formats.

FLOATING-POINT PRECISION IN SAC

Background

In all version of SAC through and including v101.6a, all reals in the SAC header/data are single-precision (32
bits; 4 bytes). The smallest time increment within SAC I/O is 0.001 s (header variable NZMSEC is milliseconds).
When SAC was written 30+ years ago, a sampling rate of 0.01 s was about as high as the technology allowed,
and single SAC files used in analysis were at most several minutes in duration. Now thanks to GPS and advances
in both hardware and software, many experiments routinely have sampling rates of 0.001 s, and single SAC data
files can be up to hours/days in duration. If SAC is to remain useful for such data sets, single-precision is not
sufficient. SAC v102.0 includes double-precision for both time and distance calculations using header variables,
and does so in a way that maximizes compatibility so that existing SAC data files can still be used.

We discuss floating-point precision in SAC and give examples showing errors at large times due to the limitations
of single-precision for header variables and how these have been resolved using the modified SAC data file structure
introduced in v102.0.

Single-Precision in SAC

In a 32-bit floating-point number, 23 bits define the maximum precision. For all floating-point numbers with a
size between 2n−1 and 2n floating-point values are separated by δ (n), given by

δ (n) =
2n−1

223 =
t(n)re f

223 ,

where, in our applications of the above equation, δ (n) and the reference time t(n)re f are times in seconds. For
n=17, t(17)re f = 65,536 s and δ (17) = 0.0078 s. Incrementing n by 1 doubles the floating-point increment.

In the examples below, we use the following macro that sets DELTA = 0.01 s and B = 48 hours = 172,800.00 s,
(for which t(18)re f = 131,072 s and the floating-point increment δ (18) = 0.0156 s = 156% DELTA):

fg sine 2.0 delta 0.01 npts 13
symbol 2
fileid location ul
ch b 172800
ch t0 (&1,b + &1,delta * 1)
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Figure 2: Figure (2): SAC v101.6a using the above macro.

ch t1 (&1,b + &1,delta * 2)
ch t2 (&1,b + &1,delta * 3)
ch t3 (&1,b + &1,delta * 4)
ch t4 (&1,b + &1,delta * 5)
ch t5 (&1,b + &1,delta * 6)
ch t6 (&1,b + &1,delta * 7)
ch t7 (&1,b + &1,delta * 8)
ch t8 (&1,b + &1,delta * 9)
ch t9 (&1,b + &1,delta * 10)
lh picks

From the macro, we see that waveform times (squares) should be at 176,800.00, 176,800.01, ... ; and the ten
time picks should be at 176,800.01, 176,800.02, ... .

In v101.6a, SAC used double-precision for some internal calculations, but not in calculations used to increment
times when plotting waveforms or in producing the time labels in plots. In Fig. (2), the time picks and the
symbols are at the same times, which is because they were both calculated using single precision. (Even though
the time-plot labels in Figure 2 are distracting, we can ignore them as they were not calculated the same way as
the plotted times.)

The separation between all the squares is supposed to be DELTA = 0.01 s, but δ (18) = 0.0156 s is the minimum
separation between neighboring values. The first time point is at 176,800.00 s. The plotted time for the symbol
of the next point will be at the nearest floating-point neighbor to 176,800.01 s, which is 176,800.0156 s rather
than 176,800.00 s so that is where the next symbol is plotted. 176,800.02 s is closer to 176,800.0146 s than to
176,800.0312 s, so that symbol is at the same time as the previous symbol − and time picks T0 and T1 overlap
at that same time as the symbols).

In 2017 the problems with the time plot labels and waveform times were fixed, which was possible with the
existing SAC data-file format because the calculations of those times are done internally so could be done in
double precision. Because B, DELTA, T0 ... T9 are header variables, they could not be changed to double
precision.

Figure (3) uses double precision for the internal calculations for times but uses the same procedure as used in
Fig. (2) for time picks. The waveform time symbols (and the time axis) are now "correct", but the time picks
are unchanged from Figure 2.

Upgrade To Double Precision

Header variable NVHDR is the SAC version number. For the past several decades NVHDR = 6. In SAC v102.0,
the file structure has been changed to address the precision problem. The change is done in such a way that
existing SAC files can be read and processed as before.

The file structure when NVDHR = 7 is discussed in sac data file format; when NVDHR = 7 there is a "footer" in
the file structure that contains double-precision versions of 22 time/distance (single-precision) header variables.
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Figure 3: Figure (3): SAC v101.6a but double-precision internal calculations for times.

These 22 variables are DELTA, B, E, O, A, T0 ... T9, F, EVLO, EVLA, STLO, STLA, and internal variables SB and
SDELTA. The names are the same as in the header; SAC distinguishes between the single- and double-precision
variables in internal calculations by their location in the file.

If a SAC file with NVHDR = 6 is read into memory using SAC v102.0, double-precision copies of those 22 header
variables are stored in memory, but the single-precision version of those header variables is still used so long as
NVHDR = 6. However, if one enters CH NVDHR 7, one has the potential of changing the precision of variable
like DELTA for internal calculations.

Important

Switching a file from NVHDR = 6 to 7 does not magically produce a proper double-precision value.
Values stored in 32 and 64 bits will only be modified when a value is changed through CHNHDR or
equivalent methods.

SAC v102.0 introduces OUTPUT_FORMAT, which can change the format for floating-point variables in SAC
commands LISTHDR, MESSAGE, and EVALUATE.

Setting NVHDR = 7 leads to time picks being calculated and stored in double precision. Using the default for
OUTPUT_FORMAT does not show enough significant figures to distinguish between the values for NVHDR 6
or 7. Using longE for the output format shows the difference:

SAC> fg impulse
SAC> setbb OUTPUT_FORMAT longE
SAC> ch t0 (1.0/3.0)
SAC> lh nvhdr t0

nvhdr = 6
t0 = 3.333333432674408e-01

SAC> ch nvhdr 7
SAC> lh nvhdr t0

nvhdr = 7
t0 = 3.333333333333333e-01

If one ran the above macro in SAC v102.0, one gets the same result ass shown in Fig. (3). If one then enters CH
NVHDR 7 ; P1 one gets the plot shown in Fig. (4). If one then enters SETBB OUTPUT_FORNMAT longE ; LH,
one can see the differences in T0, T1, T2, etc. See GETBB for more information about OUTPUT_FORMAT.

In Figure 4, the times/picks, and tic-marks are all lined up.

For an unevenly-spaced, time-series file (IFTYPE=ITIME[1] and LEVEN=False[0]), the time data are single-
precision, so for times ≥ 1e7 seconds, the times will be incorrect.
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Figure 4: Fig. (4): SAC v102.0 with ch NVHDR 7 preceding P1.

Distance And Geographic Variables Precision

There are several distance-related variables in the header, but DIST, AZ, BAZ, and GCARC are not used as input
for internal computation; they are derived from the header variables EVLA, EVLO STLA, and STLO„ which is
why only those four are in the footer.

Distance precision using real*4 (32-bits) is less restrictive than for time precision. Half the circumference of the
Earth is about 20,000 km, so if the numerator in the right-hand side of the above equation is a distance reference
in meters, ∆(n)re f , the half circumference has a distance reference ∆(24)re f with a δ (24) = 2 m. The largest
relative latitude or longitude for that distance would be about 180 degrees in longitude at the equator, which has
a similar reference. A more significant limitation for such distances is probably the accuracy of of the reference
ellipsoid. Promoting the station and hypocenter latitudes and longitudes removes any potential distance-related
precision problems.

Dynamic Range

20 years ago, 16 bits was the standard for data. Today 24 bits is standard. 224 = 16,777,216. Using single
precision for the SAC amplitude data is sufficient.

Maximum Number Of Points

Integer header variable NPTS has 4 bytes (32 bits). The SAC header uses signed integers, so the maximum value
is 231 - 1 = 2,147,483,647. If the sampling rate is 0.001 s, the maximum record length is 24.85 days.
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SAC Analysis Capabilities

Overview

SAC is logically divided into functional modules. Each functional module performs a related set of
tasks. This section briefly describes the commands in each of these modules. The full command
names are used in these descriptions. Most of the commands have convenient abbreviations. See the
SAC Command Reference Manual for details.

Function Module

Once you have successfully started SAC, you need to know how to get rid of it! This is done with the
QUIT command. END, EXIT, and DONE are also allowed so you shouldn’t have any problems.

FUNCGEN lets you generate various functions in memory. It is useful for testing the other commands
on known functions.

DATAGEN lets you read sample data from four events (one local, one regional, one teleseismic and
shallow, and one teleseismic and deep) into memory. This lets you play with some real seismic data
while you are getting your own data converted to the SAC data file format. Examples in help files
SAC_MACROS and TRAVELTIME use the deep teleseismic event.

Files README, HISTORY, and CHANGES in the top directory of SAC give general information
about the current version of SAC and previous versions. HELP gives you information about a specific
command, and REPORT gives you the current values of important parameters. SAC has an extensive
macro capability that is described in SAC Macros. A macro lets you execute a set of SAC commands
from a file you write. You can define arguments complete with default values, perform simple arith-
metic calculations, store and retrieve information, and control the flow of command execution with
if-tests and do-loops.

∙ MACRO executes a macro file.

∙ SETMACRO defines the search path to be used to find a macro file.

∙ INSTALLMACRO lets you make a macro available for use by anyone else on your system.

An inline function is one that is enclosed in parenthesis and placed within a regular SAC command.
SAC Inline Functions can be used both within macros or within regular SAC code.

You can store (SETBB) and retrieve (GETBB) information and do arithmetic calculations (EVALU-
ATE) using the "blackboard." You can also save (WRITEBBF) and restore (READBBF) information
in the blackboard into a disk file. See Blackboard Variables in SAC for more information about
blackboard variables.

Other commands that are useful in a macro include the ability to send a message to the terminal
(MESSAGE), echo commands to the terminal (ECHO), and temporarily suspend the execution of a
macro (PAUSE).

Using SAC Reading and Writing Routines, one can write stand-alone codes in C or FORTRAN to
read and write SAC-formatted data files.

You can write your own SAC command in FORTRAN or C routines that can be loaded into SAC
(LOAD), and executed thereafter just like an indigenous SAC command (see Notes and exter-
nal_interface in aux/external).

∙ TRACE can be used to have SAC trace header and blackboard variables, reporting to the screen
when a variable changes values.

∙ TRANSCRIPT controls SAC’s transcription capabilities, saving commands, and/or error mes-
sages, and/or warnings, and/or other output to a text file.
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∙ COMCOR provides command correction. When SAC detects an error during the course of
executing a command, if this option is set, SAC will allow the user to correct the command and
continue execution.

∙ CD changes SAC’s current working directory.

The SAC program can be run from a variety of scripting languages and shells. See Calling SAC from
Scripts.

Finally, you can execute operating system commands while running SAC (SYSTEMCOMMAND) and
reinitialize SAC to its default state (INICM).

Execution Module

This module provide commands which control the flow of commands. These commands can only be
called from within a macro, and are discussed in greater detail in the section on SAC macros. The
commands in this module are IF, ELSEIF, ELSE, ENDIF,DO, WHILE, ENDDO, and BREAK. These
are discussed in Sac Inline Functions, Blackboard Variables in SAC, and SAC Macros.

Data File Module

This module is used to read, write, and access SAC data files. These data files are described in detail
in a later section.

∙ READ reads data files from disk into memory and WRITE writes the data currently in memory
to disk.

∙ CUT defines how much of a data file is to be read.
∙ CUTIM applies CUT to multiple segments in each file in memory
∙ READERR controls errors that occur while files are being read and
∙ CUTERR controls errors due to bad cut parameters.

Each data file has a header which describes the contents of the file. You can read and write these
headers without the data using READHDR and WRITEHDR.

You can also list the contents (LISTHDR), change values (CHNHDR), and copy header values from
one file to the others in memory (COPYHDR).

The SYNCHRONIZE command changes the headers in memory so that they all have the same
reference time. You must first use this command before using the CUT command on files with
different reference times.

You can use READTABLE to read almost any alphanumeric data file directly into SAC.

The read commands let you use wildcard characters to easily read in groups of files that contain the
same pattern of characters.

The WILD command controls certain aspects of this wildcard filename expansion.

The SAC data file is stored in binary format for fast reading and writing. There is also an alphanumeric
equivalent of this binary format. This is useful when transferring SAC data files from one kind of
computer to another kind.

∙ CONVERT can be used to convert between the binary and alphanumeric formats.
∙ READCSS reads CSS 3.0 formatted flat files. Preferences for the way picks are read in are set

in a preferences file but can be modified using the PICKAUTHOR and PICKPHASE command.
∙ WRITECSS writes the data to flat files. WRITECSS is currently not working as comprehensively

as READCSS.
∙ DELETECHANNEL allows you to delete one or more files from memory.
∙ READSDD and WRITESDD allow reading and writing of SDD data files.
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Spectral Analysis Module

You can do a discrete Fourier transform (FFT) and an inverse transform (IFFT). You can also com-
pute the amplitude and unwrapped phase of a signal (UNWRAP). This is an implementation of the
algorithm due to Tribolet.

There is a set of Infinite Impulse Response filters (BANDPASS, BANDREJ, LOWPASS, and HIGH-
PASS), a Finite Impulse Response filter (FIR), an adaptive Wiener filter (WIENER), and two special-
ized filters (BENIOFF and KHRONHITE) used at LLNL.

∙ CORRELATE computes the auto- and cross-correlation functions.

∙ CONVOLVE computes the auto- and cross-convolution functions.

∙ FFT and UNWRAP commands produce spectral data in memory. You can plot this spectral data
(PLOTSP), write it to disk as "normal" data (WRITESP), and read in back in again (READSP).
You can also perform integration (DIVOMEGA) and differentiation (MULOMEGA) directly in
the frequency domain.

∙ HANNING applies a "hanning" window to each data file.

∙ HILBERT applies a Hilbert transform.

∙ ENVELOPE computes the envelope function using a Hilbert transform.

∙ KEEPAM keeps amplitude component of spectral files (of either the AMPH or RLIM format) in
SAC memory.

Unary-Operations Module

The commands in this module perform some arithmetic operation on each data point of the signals in
memory. You can add a constant (ADD), subtract a constant (SUB), multiply by a constant (MUL),
or divide by a constant (DIV). You can square each data point (SQR), take the square root (SQRT),
or take the absolute value (ABS). You can take the natural (LOG) or base 10 (LOG10) logarithm of
each data point. You can also compute the exponential (EXP) or base 10 exponential (EXP10) of
each data point. Lastly you can perform integration (INT) and differentiation (DIF).

Binary-Operations Module

These commands perform operations on pairs of data files.

∙ MERGE merges (concatenates) a set of files to the data in memory.

∙ ADDF adds a set of data files to the data in memory.

∙ SUBF subtracts a set of data files from the ones in memory.

∙ MULF multiplies a set of data files by the data in memory.

∙ DIVF divides the data in memory by a set of files.

∙ BINOPERR controls errors that can occur during these binary operations.

Signal-Correction Module

These commands let you perform certain signal correction operations.

∙ RQ removes the seismic Q factor from spectral data.

∙ RTREND and RMEAN remove the linear trend and the mean from data respectively.

∙ RGLITCHES removes glitches and timing marks.
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∙ TAPER applies a symmetric taper to each end of the data and SMOOTH applies an arithmetic
smoothing algorithm.

∙ STRETCH upsamples data, including an optional interpolating FIR filter, while

∙ DECIMATE downsamples data, including an optional anti-aliasing FIR filter.

∙ INTERPOLATE You can interpolate evenly or unevenly spaced data to a new sampling interval
using the INTERPOLATE command.

∙ LINEFIT computes the best straight line fit to the data in memory and writes the results to
header blackboard variables.

∙ QUANTIZE converts continuous data into its quantized equivalent.

∙ REVERSE reverses the order of data points.

∙ ROTATE Finally, you can rotate pairs of data components through a specified angle with the
ROTATE command.

Event-Analysis Module

This module is used to pick seismic phases. An automatic phase picking algorithm can be applied
using APK. You can also use PPK to pick phases using the graphics cursor. ( PPK is described in the
section on Graphics Capabilities). The TRAVELTIME command can be used to associate observed
arrivals with predicted body-wave phases. These picks can be saved in HYPO format using the OHPF
(open HYPO pick file) and CHPF (close HYPO pick file) commands; WHPF writes auxiliary cards
into the HYPO pick file. These picks can also be saved in a more general Alphanumeric format using
the OAPF (open alphanumeric pick file) and CAPF (close alphanumeric pick file) commands. The
picks are also saved in the headers.

Signal-Measurement Module

These commands measure and "mark" selected attributes about the data in memory. These marks
are stored in the headers.

∙ MARKTIMES marks the data in memory with travel times from a velocity set.

∙ MARKPTP measures and marks the maximum peak to peak amplitude.

∙ MARKVALUE searches for and marks selected values in a signal.

∙ MTW sets the "measurement time window" option.

When this option is on, the measurements are made within this window only. Otherwise the measure-
ments are made on the entire signal.

MTW applies to the MARKPTP and MARKVALUE commands only. RMS computes the root mean
square of the data within the measurement time window.

Instrument-Correction Module

This module currently contains only one command, TRANSFER. TRANSFER performs a deconvolu-
tion to remove one instrument response followed a convolution to apply another instrument response.
Over 40 predefined instrument responses are available. A general instrument response can also be
specified in terms of its poles and zeros, frequency-amplitude-phase files, or the EVALRESP package.

24



XYZ Data-Processing Module

The commands in this module produce output that is a function of two input domains.

∙ SPECTROGRAM calculates a spectrogram using all of the data in memory.
∙ GRAYSCALE produces grayscale images of data in memory.
∙ CONTOUR produces contour plots of data in memory.
∙ ZLEVELS controls the contour line spacing in subsequent contour plots.
∙ ZLINES controls the contour linestyles in subsequent contour plots.
∙ ZTICKS controls the labeling of contour lines with directional tick marks.
∙ ZLABELS controls the labeling of contour lines with contour level values.
∙ ZCOLORS controls the color display of contour lines.
∙ IMAGE produces color sampled image plots of data in memory.
∙ SONOGRAM calculates a spectrogram equal to the difference between two smoothed versions

of the same spectrogram.

Frequency-waveform Spectral Analysis Module

Most of the command in this module are algorithms to extract wavefield parameters from a suite of
seismograms.

∙ ARRAYMAP produces a map of the array or "coarray" using all files in SAC memory.
∙ BBFK computes the broadband frequency-wavenumber (FK) spectral estimate, using all files in

SAC memory.
∙ BEAM computes the beam using all data files in SAC memory.
∙ MAP generates a GMT (Generic Mapping Tools) map with station/event symbols using all the

files in SAC memory and an event file specified on the command line.

Matlab Module

This module provides an interface between SAC and MATLAB, allowing users who have MATLAB
the ability to utilize its facilities and m-files on SAC files.

∙ 3C launches a Matlab GUI for manipulating 3-component data.
∙ MAT allows processing of SAC data from within SAC using the MATLAB engine.

See README_buildsac for information about some macros provided by a user to interface between
SAC and MATLAB.

Neural Network Module

This module has only one command, WRITENN, which writes data files to disk in neural net format.

Subprocesses

A subprocess is like a small program within the larger SAC program. It works like SAC in many ways
but the differences are such that it could not be included in the main program. Once invoked, only the
commands within that subprocess plus a selected group of commands from the main SAC program
can be executed. The prompt changes to include the name of the subprocess. When done you can
return to the main SAC program using the QUITSUB command or terminate SAC using the QUIT
command.
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Spectral-Estimation Subprocess Manual

This subprocess is for the study of stationary random processes (i.e. noise). Three spectral estimation
techniques are available: the maximum entropy method, the maximum likelihood method, and the
power density spectra method.

Signal-Stacking Subprocess Manual

This subprocess is for performing signal stacking with delays. The delays can be static or dynamic.
Two velocity models are available. The signals can be individually weighted. Traveltimes can be
computed, or read from a file. A record section plot is also part of this subprocess.
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SAC Macros

Overview

A SAC macro is a file that contains a set of SAC commands to be executed together. As well as regular commands
and inline functions, a SAC macro file can contain references to SAC header variables and blackboard variables
that are evaluated and substituted into the command before it is executed. SAC macros can also have arguments
that are evaluated as the macro is executed. Control flow features such as "if tests" and "do loops" are also
available. These features let you control and alter the order of execution of commands within a macro. All of
these features are discussed later in this section.

A Simple Example

Assume that you have a set of commands that you execute repeatedly. A macro file is the obvious solution.
Simply fire up your favorite text editor, put the commands into a file, and then have SAC execute them using the
MACRO command. Let’s say you wanted to read repeatedly the same three files, multiply each file by a different
value, plot the results, and save the plot. QUITMACRO exits the macro. The macro file would look like this:

* a simple macro
datagen sub deep kev.z kev.r kev.t
rtr
mul 1.0 1.0 1.5
FILEID LOCATION UL TYPE LIST KSTCMP
title "mul 1.0 1.0 1.5"
p1
save macrotest-kev.pdf
quitmacro

If the file is named test.sm the command sequence for the above macro would be:

SAC> macro test.sm

Note that commands in a macro file are not normally echoed to the terminal as they are executed. You can use
the ECHO command to turn command echoing on if you wish. Also note that an asterisk in the first column of
a line denotes a comment line and is not processed by SAC.

We chose to use data files read in through DATAGEN so that the lines above can be copied and pasted into a
file named test.sm and run by the user. This is true for most of the macros given below.

Order-Dependent Arguments

The above example while simple is not very flexible. If you wanted to read a different set of files or use a
different set of multiplicative values, you have to edit the file. Allowing macros to have arguments that you
enter at execution time greatly increases their flexibility. We will modify the previous macro to allow for different
multiplication factors:

datagen sub deep $1 $2 $3
rtr
mul $4 $5 $6
FILEID LOCATION UL TYPE LIST KSTCMP
title "mul $4 $5 $6"
p1
quitmacro
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The dollar sign $ is used to delineate arguments in a macro file. $1 is the first argument, $2 the second, $3 the
third, and so on. To execute this modified macro from SAC type:

SAC> M test.sm kev.z kev.r kev.t 1.0 1.0 1.5

Note that the station name appears in the plot because of the FILEID command. The macro exits after the P1
command in this case. The plot is still on the screen, so one can save it if one wants to.

Keyword-Driven Arguments

Keyword-driven arguments let one enter arguments in any order and also makes the body of a macro easier to
understand. This becomes increasingly important as the number of arguments and the size of the macro increase.
Let’s again modify our example to accept a list of files and also a list of multiplicative values:

$KEYS FILES VALUES
datagen sub deep $FILES
rtr
mul $VALUES
FILEID LOCATION UL TYPE LIST KSTCMP
title "mul $VALUES"
p1
quitmacro

This simple change has increased both the flexibility and the readability of the macro. The first line says that
there are two keywords, one called FILES and the other called VALUES. To execute it you could type:

SAC> m test.sm VALUES 1.0 1.0 1.5 FILES kev.z kev.r kev.t

Note that VALUES precedes FILES -- the order does not matter. We chose DATAGEN for the example because
the waveforms are accessible. One could replace the DATAGEN SUB DEEP command with READ, if the user
want to use other files.

Default Argument Values

There are times when you have a macro where some arguments often (but not always) have the same value from
one execution to the next. Providing default values for such arguments eliminates the need to enter the same
values each time but allows you the flexibility to enter them when needed. This is demonstrated in the next
example:

$KEYS FILES VALUES
$DEFAULT VALUES 1.0 1.0 1.5
datagen sub deep $FILES
mul $VALUES
FILEID LOCATION UL TYPE LIST KSTCMP
title "mul $VALUES"
p1
quitmacro

The second line in the macro specifies a default value to be used for the variable VALUES if you don’t enter one
on the execute line:
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SAC> m test.sm FILES kev.z kev.r kev.t

If you wanted to use a different set of values you could type:

SAC> m test.sm VALUES 1.5 1.5 1.2 FILES kev.z kev.r kev.t

Argument Querying

If you fail to enter a value for an argument on the execute line and it has no default value, SAC will ask you to
enter a value from the terminal. Using the macro in the previous section, assume that you forgot to enter the
filelist:

SAC> MACRO test.sm
FILES? kev.z kev.r kev.t

SAC does not query for a value until it first tries to evaluate the argument and finds that there is no default or
input value. Note that SAC did not query for VALUES because it had a default set of values. This allows part of
the macro to execute showing you some partial results before asking you to enter values for an argument.

Blackboard Variables

SAC has a Blackboard feature that can be used to temporarily store and retrieve information. A Blackboard entry
consists of a name and a value. Blackboard entries are created using the SETBB and EVALUATE commands.
The value of a Blackboard variable can be obtained using the GETBB command. You can also substitute the
value of a Blackboard variable directly in other commands by preceding its name with a percent sign, %, as shown
below:

SAC> SETBB C1 2.45
SAC> SETBB C2 4.94
SAC> BANDPASS CORNERS %C1 %C2
FILEID LOCATION UL TYPE LIST KSTCMP
title "mul $VALUES"
p1
quitmacro

Now let’s see how Blackboard variables can be used in macros. (You are probably getting tired of endless variations
on our original macro, but we are almost done with it.) Assume that only the first value was a variable, i.e. the
other values could be calculated from the first as shown below:

$KEYS FILES VALUE1
$DEFAULT VALUE1 1.0
datagen sub deep $FILES
EVALUATE TO VALUE2 $VALUE1 * 1
EVALUATE TO VALUE3 %VALUE2 + 1.5
MUL $VALUE1 %VALUE2 %VALUE3

Now only the first value is input to the macro and only if it differs from the default value:

SAC> m test.sm VALUE1 1 FILES kev.z kev.r kev.t

See Blackboard Variables in SAC for further discussion and examples.
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Header Variables

SAC Header variables can also be evaluated and substituted directly in commands much like Blackboard variables.
You must specify which file (by name or number) and which variable to be evaluated. You must proceed this
specification with an ampersand, &, and you must separate the file and variable with a comma as shown below:

SAC> READ ABC
SAC> EVALUATE TO TEMP1 &ABC,A + 10
SAC> EVALUATE TO TEMP2 &1,DEPMAX * 2
SAC> CHNHDR T5 %TEMP1
SAC> CHNHDR USER0 %TEMP2

In the above example a file is read in and several temporary Blackboard variables are calculated using header
variables from the file itself. The first header reference is by file name and the second by file number. New header
variables are then defined using these Blackboard variables.

Concatenation

You can append or prepend any text string to a macro argument, Blackboard variable, or Header variable. To
prepend simply concatenate the text string with the argument or variable. To append you must repeat the delimiter
($, %, or &) after the argument or variable and before the text string. Sounds confusing? See the examples below
for some clarification:

Assume that the macro argument STATION has the value ABC. Then value of $STATION$.Z would be ABC.Z.

Assume that the Blackboard variable TEMP has the value ABC. Then value of XYZ%TEMP would be XYZABC
and the value of %TEMP%XYZ would be ABCXYZ.

Assume that the Header variable KA for file Z has the value IPU0. Then value of (& Z,KA &) would be
(IPU0).

Nesting and Recursion

When a macro can call another macro which can call another macro, etc., this is often referred to as nesting.
When one macro calls another, the second macro is said to be operating at a new (lower) level of execution. The
top level of execution is always interactive input from the terminal. When a macro can call itself, then it is said to
be recursive. The SAC macro capability supports nesting but not recursion. SAC does not check to ensure that
macro calls are not recursive. It is the responsibility of the user to make sure a macro is not directly or indirectly
calling itself.

Interrupting a MACRO

There are occasions when you need to temporarily interrupt the execution of a macro, enter a few commands
from the terminal, and then continue executing the macro. This can be done in SAC using the pause and resume
feature. When SAC sees a $TERMINAL in a macro it temporarily stops reading commands from the macro,
changes its prompt to include the name of the macro, and starts prompting for commands from the terminal.
Then when SAC sees a $RESUME entered from the terminal it stops reading commands from the terminal and
begins reading from the macro starting at the next line (the one after the $TERMINAL.) If you don’t want to
continue executing the commands in the macro you can type a $KILL from the terminal. SAC will then close
the macro file and return to the previous level of execution, normally interactive input from the terminal. You
can have more than one $TERMINAL in a macro.
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If Tests

This feature lets you alter the order of commands being executed from a macro file. The syntax is similar but not
identical to the if-then-else clause in F77:

IF expr
commands

ELSEIF expr
commands

ELSE
commands

ENDIF

In the above clause expr is a logical expression of the form:

token op token

where token is a constant, macro argument, blackboard variable, or a header variable and op is one of the following
logical operators:

GT | GE | LE | LT | EQ | NE

The tokens are converted to floating point numbers before the logical expression is evaluated. The maximum
number of nested if clauses is currently set at 10. The ELSEIF and ELSE elements are optional. There is no
limit of the number of ELSEIF elements in an if clause. Note that there are no parentheses around a logical
expression and no THEN keyword ending the IF and ELSEIF elements as in F77. (If a THEN is included, it is
ignored.) Unlike Fortran, an ENDIF is always required -- even if there is only a single option. An example is given
below:

READ $1
MARKPTP
IF &1,USER0 GE 2.45

FFT
PLOTSP AM

ELSE
MESSAGE "Peak to peak for \$1 below threshold."

ENDIF

In this example a file is read into memory and the maximum peak to peak amplitude is measured.

(MARKPTP stores this amplitude into the header variable USER0.) If this amplitude is above a certain value, a
Fourier transform is calculated and the amplitude response is plotted. If not a message is sent to the terminal.

Do Loops

These features let you easily repeat a set of commands. You can execute a set of commands a fixed number of
times, for each element in a list, or until a condition has been met. You can also break out (prematurely terminate
the execution) of a do loop. The syntax for this group is summarized below:
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DO variable = start, stop, {,increment}
commands

ENDDO

DO variable FROM start TO stop { BY increment}
commands

ENDDO

DO variable} LIST} entrylist}
commands

ENDDO

DO variable WILD {DIR name} entrylist
commands

ENDDO

WHILE expr
commands

ENDDO
BREAK

Where:

∙ variable is the name of the do loop variable. Its current value while the do loop is executing is
stored as a macro argument and may be used in the body of the do loop (i.e., the commands)
by preceding its name with a dollar sign.

∙ start is the starting value for the do loop variable. It must be an integer.

∙ stop is the stopping value for the do loop variable and must also be an integer.

∙ increment is the optional increment in the do loop variable. If omitted, the default value is set
to 1.

∙ entrylist is a space delimited list of values that the do loop variable is to have.

These may be integers, floating point numbers, or character strings. In the DO WILD case, the entrylist consists
of character strings containing both regular and wildcard characters. This entrylist is expanded into a list of files
that match the character strings before the do loop is executed.

expr is a logical expression as described in the section on if tests.

The maximum number of nested do loops is currently set at 10. Examples of each of these do loops are given
below.

Do Loop Examples

The first macro gets values from the sac header for each file individually using either the LISTHDR command or
accessing the header values directly. This can be handled with a do loop:

DO J = 1, %SACNFILES
lh fileS $J NPTS DELTA COLUMNS 2

ENDDO

DO J = 1, %SACNFILES
message "$J &$J$,NPTS &$J$,DELTA &$J$,FILENAME "

ENDDO
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In the second example, particle motion plots are produced for five different two second time windows on the same
data file:

READ ABC
SETBB TIME1 0
DO TIME2 FROM 2 TO 10 BY 2

XLIM %TIME1 $TIME2
TITLE ’Particle Motion from %TIME1 to $TIME2$’
PLOTPM
SETBB TIME1 $TIME2

ENDDO

The last (somewhat artificial) example has three arguments. The first is the name of a data file, the second a
multiplicative constant, and the third a threshold value. The macro reads the data file into memory, and multiplies
each data point by the constant until the maximum value is below the threshold:

READ $1
WHILE &1,DEPMAX GT $3

MUL $2
ENDDO

Another version of this macro illustrates the BREAK statement:

READ $1
WHILE 1 GT 0

DIV $2
IF &1,DEPMAX GT $3

BREAK
ENDIF

ENDDO

This WHILE loop in this macro is an example of a infinite loop which can only be terminated by a BREAK
statement. (This version of the macro has a flaw. What happens if the maximum value is already below the
threshold?) The BREAK statement terminates the execution of the do loop where the statement appears.

Executing Other Programs From SAC Macros

You can execute other programs from inside a SAC macro. You can pass an optional execution line message to
the program. If the program is interactive, you can also send input lines to it. The syntax for this feature is given
below:

$RUN program message
inputlines
$ENDRUN

Macro arguments, blackboard variables, header variables, and inline functions may be used in the above lines.
They are all evaluated before the program is executed. When the program completes the SAC macro resumes at
the line following the ENDRUN line.

If there are no inputlines, one can use command SC (SYSTEMCOMMAND):

SC program message
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Macro Search Path

When you request a macro, SAC searches for it as follows:

- in the current directory.
- in the directories specified in the SETMACRO_ command.
- in the global macro directory that is maintained by SAC.

The global macro directory contains macros meant to be used by everyone on your system. Use the INSTALL-
MACRO command to install a macro in this directory. You may also specify the absolute or relative pathname of
a macro that is not in this search path.

Execution Line Macro

SAC treats command-line arguments as a sequence of macros to run before reading your typed-in commands
from the SAC> command line. These are processed, in sequence, by SAC and may be used to customize the
run-time environment to your preference. For example, you might open a graphical device window and place it in
a preferred place on your screen, set up a path to search for SAC macro commands, or change plot colors or line
widths.

The Escape Character

There may be times when you need to use a dollar sign or a percent sign in a command and not have SAC interpret
it as a macro argument or blackboard variable entry. To do this you precede the special character with another
special character, called the escape character. The escape character is an "at" sign, @. The special characters
that must be treated in this way are:

$ The macro argument expansion character.
% The blackboard variable expansion character.
& The header variable expansion character.
@ The escape character itself.
( The inline function starting character.
) The inline function terminating character.

More about the inline function delimiters in SAC Inline Functions.

Acknowledgements

The concept of blackboard variables are due to Dave Harris. The "if test" and "do loop" features were developed
by Mandy Goldner.

34



Data Access

OVERVIEW

Starting in version 102.0, SAC is capable of viewing and downloading event, station, and response metadata and
downloading waveforms from online Web services. These abilities include

∙ event searches ( EVENT )
∙ station searches ( STATION )
∙ data: searches and downloading ( DATA )
∙ applying station and/or event meta-data to data ( METADATA )
∙ reading miniseed directly into SAC ( READ )
∙ download instrument responses ( RESPONSE )
∙ traveltime data using the the IRIS Traveltime Web Service ( TRAVELTIME )

Definitions

Currently (2020), as described on the IRIS DMC Web Service Web page <https://service.iris.
edu>:

∙ miniSEED is the subset of the SEED standard that is used for time series data.
Very limited metadata for the time series is included in miniSEED beyond time series
identification and simple state-of-health flags. In particular, geographic coordinates,
response/scaling information and other information needed to interpret the data
values are not included.

∙ FDSN StationXML is the XML-based standard for seismological metadata. These
metadata contain the most important and commonly used structures of SEED 2.4
metadata with many enhancements.

∙ PH5 is the name of the repository at the IRIS DMC commonly used for active-
source, controlled-source and mixed-source data sets and is an alternative to the
DMC’s SEED repository. In DATA, METADATA, and STATION ph5 is an option
that when invoked will search this alternate repository.

Web requests are made to the colletion of Web Services at http://service.iris.edu along with event searches
through the USGS and ISC.

An EventID is defined by source:uniqueid. See EVENT for more details.

Event search results, EVENT, can be used as input for timing and location in DATA and STATION searches using
assocaited EventID. Examples are given below.

The format for latitudes and longitudes is degrees.decimal-degrees. Longitudes run from -180.00 degrees to 180.00
degrees. The formats used for time are given at the end of this file.

For repeated calls to most SAC command in a single session, the program "remembers" previous values for options
if not reset explicitly. That is not true for these commands; For any option not explicitly stated in each call, the
default is assumed. If there is no default value for an option, it must be explicitly given.

The SAC convention for units differs from others such as EVALRESP and SEED that use SI units (meters,
meters/sec, meters/sec/sec). SAC uses nm for displacement. As discussed in TRANSFER, unit conversions may
be needed to convert output files from instrument-corrections to get consistency between the data and the SAC
header parameter IDEP.

SACLST & SACSET: These two stand-alone programs allow one to parse (saclst) or modify the header or of
one or more SAC files. They are analogous to the internal SAC commands LISTHDR and READHDR respectively.
One can display the results on the screen, print them, or (for saclst) redirect the output into an application. See
${SACHOME}/utils/README_utils for more details. Examples are given below showing how saclst output can
be redirected to applications.
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TIME FORMATS

Times are of the form h:m:s or h:m:s.ms where h is the hour, m the minute, s the seconds, and ms the
millisecodnds. If the time is left out, the beginning of the day is used, i.e. 00:00:00.000.

Dates are in the form Y-M-D or Y-O where Y is the year, M the month, D the day of the month, and O the day
of the year (or ordinal day). Separators for the date components include /, ,, and -. Separators between the date
and time is either a T or the date separator.

Date Only Date and Time Date and Time
Y/O Y/OTh:m:s Y/O/h:m:s Y/OTh:m:s.ms

Y/O/h:m:s.ms
Y-O Y-OTh:m:s Y-O-h:m:s Y-OTh:m:s.ms Y-O-

h:m:s.ms
Y,O Y,OTh:m:s Y,O,h:m:s Y,OTh:m:s.ms

Y,O,h:m:s.ms
Y/M/D Y/M/DTh:m:s

Y/M/D/h:m:s
Y/M/DTh:m:s.ms
Y/M/D/h:m:s.ms

Y-M-D Y-M-DTh:m:s Y-M-D-
h:m:s

Y-M-DTh:m:s.ms Y-M-
D-h:m:s.ms

Y,M,D Y,M,DTh:m:s
Y,M,D,h:m:s

Y,M,DTh:m:s.ms
Y,M,D,h:m:s.ms

Durations are of the form [+-]###unit where + is time forward and - is a time backwards from the reference
time, unit are given below, and the ### is an integer value.

Duration Abbreviations
Seconds s sec secs seconds
Minutes m min mins minutes
Hours h hrs hours
Days d days
Weeks w wk wks weeks
Months mon months
Years y yr yrs years
Decades dec decades
Centuries cent centuries

EVENT SEARCH

Broad search

Let’s find all M ≥ 9 earthquakes within the past century (100 years), assuming the date today is Oct-31-2019.
This will search the USGS Earthquake catalog by default:

SAC> event time 2019-10-31 -100years mag 9
Origin Lat. Lon. Depth Mag. Agency EventID
2011-03-11T05:46:24 38.30 142.37 29.00 9.10 mww US/official -
usgs:official20110311054624120_30
2004-12-26T00:58:53 3.29 95.98 30.00 9.10 mw US/official -
usgs:official20041226005853450_30
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1964-03-28T03:36:16 60.91 -147.34 25.00 9.20 mw iscgem/official -
usgs:official19640328033616_30
1960-05-22T19:11:20 -38.14 -73.41 25.00 9.50 mw iscgem/official -
usgs:official19600522191120_30
1952-11-04T16:58:30 52.62 159.78 21.60 9.00 mw iscgem/official -
usgs:official19521104165830_30

Using the NOW keyword

Using the NOW keyword in place of the first date is useful in scripts so one does not have to explicitly enter
today’s date. Let’s use NOW and also change the catalog to Global CMT:

SAC> event time now -100years mag 9 gcmt
Origin Lat. Lon. Depth Mag. Agency EventID
2011-03-11T05:47:32 37.52 143.05 20.00 9.10 MW GCMT/- GCMT gcmt:3279407
2004-12-26T01:01:09 3.09 94.26 28.60 9.00 MW GCMT/- GCMT gcmt:1916079

Note that the results from Global CMT, compared to the USGS, do not have the older events and the prefix for
the event id is also different.

Narrow search

If we are interested in a particular event, an event time window, or depth range, that can be specified directly:

SAC> event time 1994/1 1994/365 mag 8 depth 600 1000 usgs
Origin Lat. Lon. Depth Mag. Agency EventID
1994-06-09T00:33:16 -13.84 -67.55 631.30 8.20 mw US/HRV - usgs:usp0006dzc

STATION SEARCH

Rectangular Search in a Network

Looking for available stations is straightforward by using a region, network name, station name and channels.
Here we only use a small region and the network IU:

SAC> station region -130 -110 45 48 net IU
Warning: Multiple instances of net.sta, likely mutiple epochs
Net Sta Lat. Lon. Elev. SiteName
IU RAIO 46.0403 -122.8851 1.00 Rainier, Oregon, USA

Radial Search with a time window in a Network

If a particular time range or distance range is of interest, that may be specified as well:

SAC> station network IU channel ?HZ time 2011-03-11 1day radial 30 35
origin 143.05 37.53
Net Sta Lat. Lon. Elev. SiteName
IU ADK 51.8823 -176.6842 130.00 Adak, Aleutian Islands, Alaska
IU BILL 68.0653 166.4531 320.00 Bilibino, Russia
IU DAV 7.0697 125.5791 150.00 Davao, Philippines
IU MIDW 28.2156 -177.3698 20.00 Midway Island, USA
IU TIXI 71.6341 128.8667 40.00 Tiksi, Russia
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Using an EventID

The previous search was for stations operating during the 2011 Tohoku event with an epicentral distance 30 and
35 degrees. This search can be simplified by using and event id:

SAC> event mag 9 time 2011/1 +1y gcmt
Origin Lat. Lon. Depth Mag. Agency EventID
2011-03-11T05:47:32 37.52 143.05 20.00 9.10 MW GCMT/- GCMT gcmt:3279407

SAC> station net IU cha ?HZ gcmt:3279407 radial 30 35
Net Sta Lat. Lon. Elev. SiteName
IU ADK 51.8823 -176.6842 130.00 Adak, Aleutian Islands, Alaska
IU BILL 68.0653 166.4531 320.00 Bilibino, Russia
IU DAV 7.0697 125.5791 150.00 Davao, Philippines
IU MIDW 28.2156 -177.3698 20.00 Midway Island, USA
IU TIXI 71.6341 128.8667 40.00 Tiksi, Russia

DATA SEARCH

Data for 1 hour after event origin

Once the event or time range and stations are identified, downloading data is straight forward. First, the event
is determined; here we use the 1994 deep Bolivian event and a station named DOOR. Data requests need to
specific where the data should be placed; this includes miniSEED for directly saving the miniSEED files, SAC for
converting the miniSEED files into SAC binary format, and READ for placing the data directly into memory. Any
combination of these options can be used. We also specify the duration of the data be downloaded using the
DURATION option:

SAC> event time 1994/160 1d mag 8 gcmt
Origin Lat. Lon. Depth Mag. Agency EventID
1994-06-09T00:33:45 -13.82 -67.25 647.10 8.20 MW GCMT/- GCMT gcmt:369471

SAC> data sta DOOR cha BHZ gcmt:369471 duration +1h
## REQUEST 1/ 1
DATACENTER=IRISDMC,http://ds.iris.edu
XE DOOR -- BHZ 1994-06-09T00:33:45 1994-06-09T01:33:45

No Data Downloaded, use miniseed, sac, or read to download data

SAC> data sta DOOR cha BHZ gcmt:369471 dur +1h read
Data Center: IRISDMC,http://ds.iris.edu

SourceID Start sample End sample Gap
XFDSN:XE_DOOR__B_H_Z 1994-06-09T00:33:45.012000
1994-06-09T01:33:44.912000 ==
Working on file: XE.DOOR..BHZ.M.1994.160.003345.sac [ OK ]

Data download using a station file

If a stations file exists, data for these can be directly downloaded. Let’s create the stations file, then download
the data. We also save the data request using the OUT parameter in DATA, then immediately use that request
file

Create a station file call net_BK.txt:
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SAC> station net BK region -125 -110 30 40 sta B*,C* out net_BK.txt
Warning: Multiple instances of net.sta, likely mutiple epochs
Net Sta Lat. Lon. Elev. SiteName
BK BABI 36.5158 -120.8530 571.20 Babies Gulch, near Pinnacles National
Park, USA
...
BK CVS 38.3453 -122.4584 295.10 Carmenet Vineyards, Sonoma, CA, USA

Create a request file from the station file:

SAC> data time 2010,235T00:00:00 1hr in net_BK.txt cha BHZ out
net_BK_request.txt
Reading station file: net_BK.txt
## REQUEST 1/ 1
DATACENTER=NCEDC,http://www.ncedc.org
BK BDM -- BHZ 2010-08-23T00:00:00 2010-08-23T01:00:00
...
BK CVS 00 BHZ 2010-08-23T00:00:00 2010-08-23T01:00:00

No Data Downloaded, use miniseed, sac, or read to download data

Use the request file to download data, this will automatically download to miniSSED:

SAC> data request net_BK_request.txt
Data Center: NCEDC,http://www.ncedc.org

Writing data to fdsnws.2019.10.25.18.01.01.NCEDC.mseed [956.00 KiB]

Magic incantations to get the most recent miniSEED file and read it. These can be avoided by using there READ
option in DATA:

SAC> sc to FILE ls -rt *.mseed | tail -1
SAC> getbb FILE
FILE = ’fdsnws.2019.10.25.18.01.01.NCEDC.mseed’
SAC> read %FILE

SourceID Start sample End sample Gap
XFDSN:BK_BDM__B_H_Z 2010-08-23T00:00:00.010466
2010-08-23T00:59:59.985466 ==
XFDSN:BK_BKS__B_H_Z 2010-08-23T00:00:00.023145
2010-08-23T00:59:59.998145 ==
XFDSN:BK_BRIB_00_B_H_Z 2010-08-23T00:00:00.019538
2010-08-23T00:59:59.994538 ==
XFDSN:BK_BRK_00_B_H_Z 2010-08-23T00:00:00.019538
2010-08-23T00:59:59.994538 ==
XFDSN:BK_CMB__B_H_Z 2010-08-23T00:00:00.023616
2010-08-23T00:59:59.998696 ==
XFDSN:BK_CVS_00_B_H_Z 2010-08-23T00:00:00.019536
2010-08-23T00:59:59.994539 ==
SAC>

Applying metadata automatically

If data is downloaded and converted to sac binary or read into memory, SAC will try to insert metadata for the
resulting data files.
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SAC> data sta DOOR cha BHZ gcmt:369471 dur +1h read
Data Center: IRISDMC,http://ds.iris.edu

SourceID Start sample End sample Gap
XFDSN:XE_DOOR__B_H_Z 1994-06-09T00:33:45.012000
1994-06-09T01:33:44.912000 ==
Working on file: XE.DOOR..BHZ.M.1994.160.003345.sac [ OK ]

SAC> lh kevnm stlo stla evlo evla evdp

FILE: XE.DOOR..BHZ.M.1994.160.003345.sac - 1
----------------------------------------

kevnm = gcmt:369471
stlo = -6.722330e+01
stla = -1.935380e+01
evlo = -6.725000e+01
evla = -1.382000e+01
evdp = 6.471000e+02

Applying metadata manually

If data is downloaded without metadata, it is simple to insert that metadata using the METADATA command:

SAC> data sta DOOR cha BHZ time 1994-06-09T00:33:45 1h read
Data Center: IRISDMC,http://ds.iris.edu

SourceID Start sample End sample Gap
XFDSN:XE_DOOR__B_H_Z 1994-06-09T00:33:45.012000
1994-06-09T01:33:44.912000 ==
Working on file: XE.DOOR..BHZ.M.1994.160.003345.sac [ OK ]

SAC> lh kevnm stlo stla evlo evla evdp

FILE: XE.DOOR..BHZ.M.1994.160.003345.sac - 1
----------------------------------------

stlo = -6.722330e+01
stla = -1.935380e+01

SAC> metadata gcmt:369471
Working on file: XE.DOOR..BHZ.M.1994.160.003345.sac [ OK ]

SAC> lh kevnm stlo stla evlo evla evdp

FILE: XE.DOOR..BHZ.M.1994.160.003345.sac - 1
----------------------------------------

kevnm = gcmt:369471
stlo = -6.722330e+01
stla = -1.935380e+01
evlo = -6.725000e+01
evla = -1.382000e+01
evdp = 6.471000e+02
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INSTRUMENT RESPONSES

Responses for specific files is also simple with files read into memory. Responses can be obtained in sacpz or
evalresp format.:

SAC> read XE.DOOR..BHZ.M.1994.160.003345.sac

SAC> response sacpz
Writing data to SAC_PZs_XE_DOOR__BHZ_1994-06-09T00:33:45_1994-06-09T01:33:44 [ 1.02 KiB]

SAC> response evalresp
Writing data to RESP.XE.DOOR..BHZ [ 49.80 KiB]

COMPUTING TRAVELTIMES

Traveltimes can also be retrieved and set using the traveltime Web Service at IRIS. Just specific the ONLINE
keyword to the TRAVELTIME command:

SAC> data sta CMB net BK cha BHZ gcmt:369471 duration 1h read
Data Center: NCEDC,http://www.ncedc.org

SourceID Start sample End sample Gap
XFDSN:BK_CMB__B_H_Z 1994-06-09T00:33:45.004000
1994-06-09T01:33:44.953000 ==
Working on file: BK.CMB..BHZ.D.1994.160.003345.sac [ OK ]

SAC> traveltime online picks 0 phase ttall
traveltime: depth: 647.100 km
traveltime: setting phase P at 618.4500 s [ t = 618.4500 s ] t0
traveltime: setting phase PKIKKIKP at 1782.5400 s [ t = 1782.5400 s ] t1
traveltime: setting phase PKIKPPKIKP at 2280.2400 s [ t = 2280.2400 s ] t2
traveltime: phase PKIKPPKIKP truncated in kt2
traveltime: setting phase PKPPKP at 2277.7900 s [ t = 2277.7900 s ] t3
traveltime: setting phase PKiKP at 974.6000 s [ t = 974.6000 s ] t4
traveltime: setting phase PP at 789.5900 s [ t = 789.5900 s ] t5
traveltime: setting phase PcP at 632.6300 s [ t = 632.6300 s ] t6
traveltime: setting phase S at 1128.5800 s [ t = 1128.5800 s ] t7
traveltime: setting phase SKIKKIKP at 1935.6899 s [ t = 1935.6899 s ] t8
traveltime: setting phase SKS at 1160.1700 s [ t = 1160.1700 s ] t9

SAC> lh picks

FILE: BK.CMB..BHZ.D.1994.160.003345.sac - 1
---------------------------------------

NPTS = 72000
B = -3.960000e-01
E = 3.599554e+03

OMARKER = -2.1458e-09
T0MARKER = 618.45 (P)
T1MARKER = 1782.5 (PKIKKIKP)
T2MARKER = 1997.2 (PKIKKIKS)
T3MARKER = 2280.2 (PKIKPPKI)
T4MARKER = 2277.8 (PKPPKP)
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T5MARKER = 974.6 (PKiKP)
T6MARKER = 789.59 (PP)
T7MARKER = 632.63 (PcP)
T8MARKER = 1128.6 (S)
T9MARKER = 1935.7 (SKIKKIKP)

KZDATE = JUN 09 (160), 1994
KZTIME = 00:33:45.400

Teleseismic Traveltime Example

Given a region of interest to conduct a teleseismic traveltime experiment, first find the events 30 to 90 degrees
from the region of interest, Hawaii (Lon: 158W, Lat: 20N). Here we only look for events within the last year and
magnitude > 7 to limit the results, typically we use more expansive search parameters. As this uses a do loop,
the commands need to be contained within a macro

% cat data.sm
event mag 7 radial -158 21 30 90 usgs time now -1years to events
outfile events_usgs_m7.xml

do ev list %events
message "Event $ev"
mkdir $ev
cd $ev
station $ev cha BHZ outfile stations.txt region -161 -152 18 22
data $ev cha BHZ in stations.txt out request.txt duration 90m
miniseed
cd ..

enddo

% sac
SAC> macro data.sm

This should result in a set of directories named with eventids containing a station file, the data request, and
miniseed files to be unpacked. Miniseed files can be unpacked, metadata applied, and traveltime data set using:

SAC> sc to PWD "basename @$(pwd)"
SAC> getbb PWD
SAC> read *.mseed
SAC> metadata %PWD
SAC> traveltime online picks 0
SAC> write over

REDIRECTING SACLST IUTPUT

Let’s say you have a list of sac files and you would like to generate a station list:

saclst knetwk kstnm stlo stlo stel f *.SAC | \
awk ’{print $2,$3,$4,$5}’ | \

sort | \
uniq > station_lists.txt

To make sure all event locations are consistent for a list of files:
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saclst evlo evla evdp f *.SAC | awk ’{print $2,$3,$4}’ | sort | uniq

Find file that are too short in duration with the longest first:

saclst b e f *SAC | \
awk ’{print $1,$2,$3,$3-$2}’ | \
sort -nr -k +4

Or removing files that are too short in duration:

mkdir too_short
for z in $( saclst b e f *SAC | awk ’{if($3-$2<30.0){print $1}}’ ) ; do

mv $z too_short
done

Or using xargs:

saclst b e f *SAC | awk ’{if($3-$2<30.0){print $1}} | \
args -I args mv args too_short

RDSEED - End of Life

Before 2010, the majority of data analysis was done on data sets commonly exchanged as SEED
volumes, which could be downloaded from the IRIS Data Management Center over the Internet. For
the SEED manual, go to <http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf>.

Program RDSEED is a legacy utility for reading SEED volumes. This utility allows the user to read
the contents of the SEED file and convert it to many different output formats (including SAC),
extracting the data, station information, or instrument responses from the file. Although SEED
volumes remains the FDSN-approved file format for representing and distributing digital seismic data,
RDSEED is End of Life and no longer supported at IRIS. It has now been made an open-source
project on GitHub <https://github.com/iris-edu-legacy/rdseed>. For further details on RDSEED,
go to <http://ds.iris.edu/ds/nodes/dmc/software/downloads/rdseed/5-3-1-eol/>.
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SAC Inline Functions

Overview

An inline function is one that is enclosed in parenthesis and placed within a regular SAC command. The inline
function is evaluated and its resulting value replaces the function in the SAC command before the command is
executed.

There are three general classes of inline functions:

∙ embedded arithmetic functions that begin with a number and have the name of the function
embedded in the argument list.

∙ regular arithmetic functions that begin with the function name and are followed by zero or more
arguments.

∙ character string manipulation functions that begin with the function name and are followed by
zero or more arguments.

Inline functions can be placed inside other inline functions. This is refered to as nesting. Beginning with v 101.6,
there is no nesting limits of inline functions. Macro arguments, blackboard variables and header variables can be
used as arguments to inline functions. They are inserted in inline functions using the same syntax as in regular
SAC commands.

Embedded Arithmetic Functions

An embedded arithmetic function is a simple math operation similar to those in any programming language, e.g.
FORTRAN, C, etc, and is of the general form:

( number operator number ... )

where number is a numeric value and operator is one of the following arithmetic operators:

+ - * / **

All numbers are treated as real, and all arithmetic is done in double-precision floating point.

In the examples below, echo on is used and redundant output lines are left out.

Here is a simple example:

SAC> SETBB A (4 + 7 / 3)
===> SETBB A 6.33333

Prior to version 101.6, the answer would have been 3.666667 because operations were executed from left to right.
Beginning with version 101.6, the FORTRAN heirarchy is used: ** then / then * then + and -. As in FORTRAN,
the heirarchy can be changed by using parentheses:

SAC> SETBB A ((4 + 7) / 3)
==> SETBB A 3.66667

Because there are many scripts and macros written before v101.6, expressions with inline functions like the above
will give the incorrect answer if there are no specific parentheses. If the new (with v101.6) function MATHOP is
called with the option old before lines with inline functions, the precedence rules that held prior to v101.6 will be
followed:

SAC> MATHOP OLD
SAC> SETBB A (4 + 7 / 3)
===> SETBB A 3.66667
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Arithmetic Functions

There are 22 arithmetic functions available. They correspond to the arithmetic functions found in the EVALUATE
command. Each of these functions is described in the following table. Examples are then given.

Command Syntax Purpose
SINE ( SINE v) Take the sine of a number.
ARCSINE ( ARCSINE v) Take the arcsine of a number.
COSINE ( COSINE v) Take the cosine of a number.
ARCCOSINE ( ARCCOSINE v) Take the arccosine of a number.
TANGENT ( TANGENT v) Take the tangent of a number.
ARCTANGENT ( ARCTANGENT v) Take the arctangent of a number.
ADD ( ADD v1 v2 ... vn ) v1 + v2 + ... + vn.
SUBTRACT ( SUBTRACT v1 v2 ... vn) v1 - v2 - ... - vn.
MULTIPLY ( MULTIPLY v1 v2 ... vn) v1 * v2 * ... * vn.
DIVIDE ( DIVIDE v1 v2 ... vn) v1 / v2 / ... / vn.
SQRT ( SQRT v) Take the square root of v (for v > 0).
EXP ( EXP v) Exponentiate a number.
POWER ( POWER v) 10 ** v.
ALOG ( ALOG v) Take the natural logarithm of a number.
ALOG10 ( ALOG10 v) Take the log to base 10 of a number.
INTEGER ( INTEGER v) Convert a number to an integer.
PI ( PI ) Return the value of pi. e.g., 2 * PI
MAXIMUM ( MAXIMUM v1 v2 ... vn) Maximum value of a set of numbers.
MINIMUM ( MINIMUM v1 v2 ... vn) Minimum value of a set of numbers.
ABSOLUTE ( ABSOLUTE v) Take the absolute value of a number.
GETVAL (1) ( GETVAL t) Get value at time t for all files in memory
GETVAL (3) ( GETVAL File N t) Get value for the Nth file at time t
GETTIME ( GETTIME MAX|MIN [Val]) See discussion in Example 4 below

Example 1: Normalize Data Normalize a set of data files so that the absolute value of the extremum offset
in the data set is 1.0:

SAC> fg seismo
SAC> write one.sac
SAC> mul 2.0
SAC> write two.sac
SAC> mul 4.0
SAC> write four.sac
SAC> read one.sac two.sac four.sac
SAC> rtr
SAC> lh depmax depmin
FILE: one.sac - 1

depmax = 1.619626e+00 depmin = -1.470322e+00
FILE: two.sac - 2

depmax = 3.239252e+00 depmin = -2.940643e+00
FILE: four.sac - 3

depmax = 1.295701e+01 depmin = -1.176257e+01
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SAC> setbb a (max &1,depmax &2,depmax &3,depmax)
==> setbb a 12.957
SAC> setbb b (min &1,depmin &2,depmin &3,depmin)
==> setbb b -11.7626
SAC> div (max %a (abs %b))
==> div 12.957
SAC> lh depmax depmin
FILE: one.sac - 1

depmax = 1.250000e-01 depmin = -1.134769e-01
ILE: two.sac - 2

depmax = 2.500000e-01 depmin = -2.269538e-01
FILE: four.sac - 3

depmax = 1.000000e+00 depmin = -9.078154e-01

Example 2: Use of GETVAL

SAC> message (getval 10.0)
==> message -0.00011933 -0.000238659 -0.000954636
-0.00011933
-0.000238659
-0.000954636
SAC> message (getval file 1 10.0)
==> message -0.00011933
-0.00011933
SAC> message (getval file 3 10.0)
==> message -0.000954636
-0.000954636
SAC> setbb ab (getval file 2 10.0)
==> setbb ab -0.000238659
SAC> getbb ab
ab = -0.000238659
SAC>

Example 3: Simple Calculations

SAC> setbb angle (45)
==> setbb angle 45
SAC> SETBB VALUE (TAN (PI * %ANGLE / 180. ))
==> SETBB VALUE 1

Prior to v101.6, one needed %ANGLE%. With the new parsing system, the trailing % is no longer needed.

Example 4: Use of GETTIME GETTIME returns the time offset (in seconds) relative to the time reference
(O or B) for the first data point meeting the selection criteria.:

( GETTIME MAX|MIN [value] )

If no value is specified, GETTIME MAX returns the time of the file’s first data-point having a value equal to
DEPMAX and GETTIME MIN returns the time of the file’s first data-point having the value equal to DEPMIN.
Specifying a value controlls the value of the sought-for data-point.

For example, to set the time in seconds to a blackboard variable of the first data-point equal to the maximum
amplitude for the file FILE1:
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SAC> READ FILE1
SAC> SETBB MAXTIME ( GETTIME MAX )
==> SETBB MAXTIME 41.87

The file’s maximum amplitude is located at time 41.87 seconds.

To return the time of the first data-point less than or equal to the value 123.45:

SAC> SETBB VALUETIME ( GETTIME MIN 123.45 )
==> SETBB VALUETIME 37.9

The first data-point in the file having a value less than or equal to 123.45 occurs at 37.9 seconds.

Character strings

Prior to v101.6, Blackboard number variables were stored as strings, now they are stored as double-precision
variables. In earlier versions, if a (..) appeared in a quoted string, escape character @ was needed to keep the
inline parser from treating the expression as a math expression. Although that coding continues to work in 101.6,
adding the escape characters is no longer necessary:

SAC> fg seismo
SAC> xlabel "Time @(sec@)"
==> xlabel "Time (sec)"
SAC> xlabel "Time (sec)"
xlabel "Time (sec)"
SAC>

String Functions

There are currently seven string manipulation functions. Each of these functions is described below. Some
examples are given at the end of this subsection.

Command Syntax Purpose
CHANGE ({CHA}NGE} s1 s2 s3) Change one text string (s1) to another ( s2) in a

third text string ( s3).
SUBSTRING ({SUBS}TRING n1 n2 s) Return substring with characters n1 through n2

of text string (s).
DELETE ({DEL}ETE s1 s2) Delete a text string (s1) within another text string

(s2).
CONCATENATE ({CONC}ATENATE s1 s2 ... sn) Place end to end text strings. with v101.6, not

needed and may not give desired result.
BEFORE ({BEF}ORE s1 s2) Return the portion of a text string (s2) that occurs

before another text string (s1).
REPLY ({REP}LY s1) Send a message to the terminal and get a reply.
AFTER ({AFT}ER s1 s2) Return the portion of a text string (s2) that occurs

after another text string (s1).

Because of the changes in handling strings in v101.6, code that previously worked will no longr work. For example,
to use CONCATENATE to set the station and event names in the title of a plot prior ot v101.6, the following was
used:
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SAC> FUNCGEN SEISMOGRAM
SAC> ECNO ON
SAC> TITLE ’(CONCATENATE ’Seismogram of ’ &1,KEVNM ’ ’ &1,KSTNM )’
old output ==> TITLE ’Seismogram of K8108838 CDV’
v101.6 output ==> TITLE "(CONCATENATE " Seismogram of " K8108838 " " CDV )"

The best way to do that in v101.6 is much simpler:

SAC> title "Seismogram of &1,KEVNM &1,KSTNM"
title "Seismogram of &1,KEVNM &1,KSTNM"
==> title "Seismogram of K8108838 CDV"

CONCATENATE can still be used, but there is usually a better way.:

SAC> setbb a (CONCATENATE Seismogram of &1,KEVNM &1,KSTNM )
==> setbb a SeismogramofK8108838CDV
SAC> setbb a (CONCATENATE Seismogram’ ’ of’ ’’ ’ &1,KEVNM &1,KSTNM )
==> setbb a Seismogram of K8108838CDV
SAC> > setbb a ’Seismogram of &1,KEVNM &1,KSTNM’
==> setbb a "Seismogram of K8108838 CDV"

The next examples uses the SUBSTRING function.:

SAC> fg seismo
SAC> SETBB MONTH (SUBSTRING 1 3 &1,KZDATE)
==> SETBB MONTH MAR
SAC> message (substring 1 5 &1,kevnm)
==> message K8108
setbb VAL "1234567890"
SAC> message (substring 1 5 %VAL)
message (substring 1 5 %VAL)
==> message 12345

The next example uses the REPLY function to control interactively the processing of a set of data files:

DO FILE LIST ABC DEF XYZ
READ $FILE
DO J FROM 1 TO 10

MACRO PROCESSFILE
PLOT
SETBB RESPONSE (REPLY "Enter -1 to stop, 0 for next file, 1 for same file: ")
IF %RESPONSE LE 0

BREAK
ENDIF

ENDDO
IF %RESPONSE LT 0

BREAK
ENDIF

ENDDO

The outer do loop reads in one file at a time from a list. The inner loop calls a macro to process this file. The
inner loop executes up to 10 times. After each execution of the processing macro, the file is plotted, a message is
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sent to the terminal, and the reply is saved in a blackboard variable. The first IF tests this variable to see if the
inner processing loop should be terminated (by executing the BREAK statement) or continued. The second IF
tests this same variable to see if the loop on each data file should be terminated or continued. If only one IF test
were needed, the REPLY function could be substituted directly into the IF test and a blackboard variable would
not be needed.

The next example shows REPLY with a default value:

SAC> SETBB BBDAY (REPLY "Enter the day of the week: [Monday]")

When this function is executed, the quoted string will appear on the screen, prompting the user for input. If the
user types a string, SAC will put the string that the user entered into the blackboard variable BBDAY. If the user
simply hits return, SAC will put the default value (in this case, the string "Monday") into BBDAY.

If one copies a set of SAC commands back into SAC, the copied commands will start with SAC>, which is not a
part of the command. The parser will remove a doubled SAC> SAC>, so lines like SAC> SAC> read a.sac will
be translated into SAC> read a.sac
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SAC Reading and Writing Routines

Overview

Using the SAC I/O library, ${SACHOME}/lib/libsacio.a, one can write stand-alone codes in C or FORTRAN to
read and write SAC formatted data files. The SAC_I/O library is included in the sub-directory ${SACHOME}/lib.
The complete listing of sample programs in both C and Fortran for reading and writing SAC data files and for
getting and setting SAC header values, are give in the online version and at $SACAUX/doc/examples

Two distinct interfaces for reading and writing sac type files exist:

∙ Fortran-77 style SAC I/O interface (RSAC1, WSAC2, GETFHV, ...)

∙ C style SAC I/O interface (see end of this file)

For both styles, SAC uses C programming internally. Reading and writing files with the Fortran-77 stye interface
is consistent with previous versions of the libsacio library. The C style interface is documented at the end of this
file.

When compiling/linking your code, it is necessary to include ${SACHOME}/lib/libsacio.a in order to access
the routines discussed below. To ease the requirements for compilation and linking, a helper script is provided,
${SACHOME}/bin/sac-config, which should output the necessary flags and libraries. Try the following:

gcc -o program source.c ‘sac-config --cflags --libs sacio‘

f77 -o program source.f ‘sac-config --cflags --libs sacio‘

There are two routines in the SAC_I/O library that can be used to read SAC data files into a C or FORTRAN
program:

∙ RSAC1 reads evenly spaced files

∙ RSAC2 reads unevenly spaced or spectral files.

There is a set of routines that let one get the values of header variables after a file has been read:

∙ GETFHV gets Float (REAL*4) header variables

∙ GETDHV gets Double (REAL*8) NVHDR=7 (v7) footer variables (new in SACv102.0)

∙ GETIHV gets character strings enumerated as int or INTEGER header variables

∙ GETKHV gets character string header variables

∙ GETLHV gets LOGICAL header variables (declared as long in C)

∙ GETNHV gets int (INTEGER) header variables.

For definitions of the SAC header variables, see SAC data file format.

There is a like set of routines that let one set the values of header variables currently in memory:

∙ SETFHV sets REAL*4 header variables

∙ SETDHV sets REAL*8 v7 footer variables

∙ SETIHV sets character strings enumerated as int or INTEGER header variables

∙ SETKHV sets character string header variables

∙ SETLHV sets LOGICAL header variables (declared as long in C)
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∙ SETNHV sets int or INTEGER header variables.

There are three routines used to write SAC data files to disk:

∙ WSAC1 writes evenly spaced files (v6 only)

∙ WSAC2 writes unevenly spaced and spectral files (v6 only)

∙ WSAC0 writes either format but has more comprehensive header files than the other two -
including the ability to write a v7 file.

WSAC1 and WSAC2 write SAC files with a minimum header contains only those variables needed to be able to
read the file: B, E, DELTA, LEVEN, and NPTS. For calls to WSAC0, if it is a new file, the call must be preceded
by a call to subroutine NEWHDR supplemented by additional header variables to be set using the SETXXX
routines (see examples below). If it is writing to a file that is based on one that had been read in previously in
the program, one should not call NEWHDR. As shown in the examples below, the type of SAC data file that gets
written depends on header variables that must be set: IFTYPE and LEVEN. IFTYPE has the following values:

∙ ITIME {Time series file}

∙ IRLIM {Spectral file---real and imaginary}

∙ IAMPH {Spectral file---amplitude and phase}

∙ IXY {General x versus y data}

∙ IXYZ {General XYZ (3-D) file}

LEVEN should be set to TRUE unless the IFTYPE is IXY.

NVHDR=6 is the default for WSAC0.

If one is reading this file from within SAC, the code for the programs is not visible, just the link to the file in
${SACHOME}/doc/examples/. The SAC manual, in either HTML or PDF, includes the code. If you do not have
the manual on your computer, you can get the more complete version by going to URL <http://ds.iris.edu/files/
sac-manual/manual/input_output.html>.

Reading a Evenly-Sampled SAC File

This routine will be used 95% of the time as most SAC files are of the evenly-time-sampled variety. Using rsac1(),
the time sampling, beginning time, and amplitude data are returned and the remainder of the header values are
held in memory for later access or until the next call to rsac1().

Fortran Example

program rsac
implicit none

! Define the Maximum size of the data Array
integer MAX
parameter (MAX=1000)

! Define the Data Array of size MAX
real yarray
dimension yarray(MAX)

! Declare Variables used in the rsac1() subroutine
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real beg, del
integer nlen
character*10 KNAME
integer nerr

! Define the file to be read g
kname = ’FILE1’

! Call rsac1 to read filename kname
! - Data is loaded into yarray
! - Length of data is stored in nlen
! - Begining time and time sampling are in beg and del
! - MAX is the maximum number of points to be read in
! - nerr is the Error return flag

call rsac1(kname, yarray, nlen, beg, del, MAX, nerr)

! Check the error status, nerr
! - 0 on Success
! - Non-Zero on Failure

if(nerr .NE. 0) then
write(*,*)’Error reading in file: ’,kname
call exit(-1)

endif

! Do some processing ....

call exit(0)
end

Be sure to check the error value after the return from rsac1(). This will help solve a number of unforeseen
problems in the future.

Reading a Evenly-Sampled SAC File: C Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <sacio.h>

/* Define the maximum length of the data array */
#define MAX 1000

int
main(int argc, char **argv)
{

/* Define variables to be used in the call to rsac1() */
float yarray[MAX], beg, del;
int nlen, nerr, max = MAX;
char kname[ 11 ] ;

/* Copy the name of the file to be read into kname */
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strcpy( kname , "FILE1" ) ;

/* Call rsac1 to read filename kname
- Data is loaded into yarray
- Length of data is stored in nlen
- Begining time and time sampling are in beg and del
- max is the maximum number of points to be read in
- nerr is the error return flag
- strlen( kname ) is the length of character array kname
All variables are passed as references either

arrays like kname and yarray or
using &varible to pass reference to variable

*/
rsac1( kname, yarray, &nlen, &beg, &del, &max, &nerr, strlen( kname ) ) ;

/* Check the error status, nerr
- 0 on Success
- Non-Zero on Failure

*/
if ( nerr != 0 ) {

fprintf(stderr, "Error reading in SAC file: %s\n", kname);
exit ( nerr ) ;

}

/* Do some processing ... */

exit(0);
}

Note that in the call to rsac1() in C there is an extra parameter after nerr. This is the string length specifier
which specifies the length of the string kname. The length of the string does not include a null terminator. Note
also that all of the parameters are passed by reference except the string length specifier.

NVHDR=7: Use of rsac1() to read v7 files works, but values of calling arguments b and delta are the REAL*4
header variables. To obtain the full 64 bit v7 footer values, follow the rsac1() call with:

call getdhv("begin", begin, nerr)
call getdhv("delta", delta, nerr)

If there are other REAL*8 variables of interest in the v7 footer such as t0, one can get them by commands such
as call getdhv("t0",t0,nerr), where t0 has been declared to be REAL*8.

Reading an Unevenly-Sampled or Spectral SAC File

In routine rsac2() is for reading in either:

∙ a spectral file, (Real + Imaginary or Amplitude + Phase)

∙ an unevely spaced time series file (Amplitude + Time)

To determine the type of file, you must check the IFTYPE and LEVEN header variables:
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∙ Evenly spaced file: IFTYPE = ITIME (1) and LEVEN = True

∙ Unevenly spaced file: IFTPYE = ITIME (1) and LEVEN = False

∙ Spectral file: (Real + Imaginary) IFTYPE = IRLIM (2)

∙ Spectrla file: (Amplitude + Phase) IFTYPE = IAMPH (3)

Both components are returned on the call to rsac2(). For an unevenly-sampled file, the first array is the independent
variable and the second one the dependent variable. Unlike rsac1(), the beginning time and time sampling are
not returned as they can be determined from the returned time data.

Fortran Example

program rsac_2
implicit none

! Define the Maximum size of the data Array
integer MAX
parameter (MAX=3000)

! Define the Time and Amplitude arrays of zize MAX
real xarray, yarray
dimension xarray(MAX), yarray(MAX)

! Declare Variables used in the rsac2() subroutine
character*10 kname
integer nlen
integer nerr

! Define the file to be read
kname=’file2’

! Call rsac2 to read filename kname
! - Amplitude Data is loaded into yarray
! - Length of data is stored in nlen
! - Time Data is loaded into xarray
! - MAX is the maximum number of points to be read in
! - nerr is the Error return flag

call rsac2(kname,yarray,nlen,xarray,MAX,nerr)

! Check the error status, nerr
! - 0 on Success
! - Non-Zero on Failure

if(nerr .ne. 0) then
write(*,*)’error reading in sac file: ’,kname
call exit(-1)

endif

! Do some processing ....

call exit(0)
end
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Reading a Spectral SAC File: C Example

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <sacio.h>

/* Define the maximum length of the data and time array */
#define MAX 3000

int
main(int argc, char *argv[])
{

/* Define variables to be used in the call to rsac2() */
float xarray[MAX], yarray[MAX];
int nlen, nerr, max;
char kname[ 11 ] ;

max = MAX;

/* Copy the name of the file to be read into kname */
strcpy(kname, "FILE2") ;

/* Call rsac1 to read filename kname
- Amplitude Data is loaded into yarray
- Length of data is stored in nlen
- Time Data is loaded into xarray
- max is the maximum number of points to be read in
- nerr is the error return flag
- strlen( kname ) is the length of character array kname
All variables are passed as references either

arrays like kname and yarray or
using &varible to pass reference to variable

*/
rsac2(kname, yarray, &nlen, xarray, &max, &nerr, strlen( kname )) ;

/* Check the error status, nerr
- 0 on Success
- Non-Zero on Failure

*/
if ( nerr > 0 ) {

fprintf(stderr, "Error reading in SAC file: %s %d\n", kname, nerr);
exit(nerr) ;

}

/* Do some processing ... */

exit(0);
}

NVHDR=7: If one uses rsac2() to read a v7 file, timing values stored in xarray are still REAL*4.
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Accessing Header Variables

Accessing the header variables following either rsac1() or rsac2() is straight forward. Depending on the type of
variable requested, the routine called will be different.

Fortran Example

program rsac
implicit none

! Define the Maximum size of the data Array
integer max
parameter (MAX=1000)

! Define the Data Array of size MAX
real yarray
dimension yarray(MAX)

! Declare Variables used in the rsac1() and getfhv() subroutines
character*10 kname
character*9 name
integer nlen
real beg, del
integer nerr
integer n1, n2
real delta, b, t1, t2

! Define the file to be read
kname=’file1’

! Read in the SAC File
call rsac1(kname,yarray,nlen,beg,del,MAX,nerr)

! Check the Error status
if(nerr .ne. 0) then

write(*,*)’Error reading SAC file: ’,kname
call exit(-1)

endif

! Get floating point header value: Delta
! ’delta’ - name of the header variable requested
! delta - value of the header variable delta, returned
! nerr - Error return flag

call getfhv(’delta’,delta,nerr)
if(nerr .ne. 0) then

write(*,*)’Error reading variable: delta’
call exit(-1)

endif

! Get floating point header value: B
call getfhv(’b’,b,nerr)
if(nerr .ne. 0) then

write(*,*)’Error reading variable: b’
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call exit(-1)
endif

! Get floating point header value: t1
call getfhv(’t1’,t1,nerr)
if(nerr .ne. 0) then

write(*,*)’Error reading variable: t1’
call exit(-1)

endif

! Get floating point header value: t2
call getfhv(’t2’,t2,nerr)
if(nerr .ne. 0) then

write(*,*)’Error reading variable: t2’
call exit(-1)

endif

! Compute the time sample at which t1 and t2 occur
n1 = int((t1 - b) / delta)
n2 = int((t2 - b) / delta)

! ......
name = ’ ’
call getkhv(’kstnm’, name, nerr);
if(nerr .ne. 0) then

write(*,*)’Error reading variable: kstnm’
call exit(-1)

endif

call exit(0)
end

Accessing Header Variables: C Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <sacio.h>

/* Define the maximum length of the data array */
#define MAX 1000

int
main(int argc, char *argv[])
{

/* Define variables to be used in the call to rsac1() and getfhv() */
int max = MAX, nlen, nerr, n1, n2;
float yarray[ MAX ] , beg , del , delta , B , T1 , T2 ;
char kname[ 11 ] ;

/* Copy the name of the file to be read into kname */
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strcpy ( kname , "FILE1" ) ;

/* Read in the SAC File */
rsac1( kname, yarray, & nlen, & beg, & del, & max, & nerr, strlen( kname ) ) ;

/* Check the Error status */
if ( nerr != 0 ) {

fprintf(stderr, "Error reading SAC file: %s\n", kname);
exit(-1);

}

/* Get floating point header value: Delta
"DELTA" - name of the header variable requested
delta - value of the header variable delta, returned
nerr - Error return flag
strlen("DELTA") - Length of the character array "DELTA"

*/
getfhv ( "DELTA" , & delta , & nerr , strlen("DELTA") ) ;
/* Check the Return Value */
if ( nerr != 0 ) {

fprintf(stderr, "Error getting header variable: delta\n");
exit(-1);

}

/* Get floating point header value: B */
getfhv ( "B" , &B , & nerr , strlen("B") ) ;
if ( nerr != 0 ) {

fprintf(stderr, "Error getting header variable: b\n");
exit(-1);

}

/* Get floating point header value: T1 */
getfhv ( "T1" , & T1 , & nerr , strlen("T1") ) ;
if ( nerr != 0 ) {

fprintf(stderr, "Error getting header variable: t1\n");
exit(-1);

}

/* Get floating point header value: T2 */
getfhv ( "T2" , & T2 , & nerr , strlen("T2") ) ;
if ( nerr != 0 ) {

fprintf(stderr, "Error getting header variable: t2\n");
exit(-1);

}

/* Compute the time sample at which t1 and t2 occur */
n1 = (int) ( ( ( T1 - B ) / delta ) + 0.5 ) ;
n2 = (int) ( ( ( T2 - B ) / delta ) + 0.5 ) ;

/* ... */

exit(0);

}
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NVHDR=7: If one wants the 64-bit version of one of the 22 floating-point header variables that are in the v7
footer, one should use GETDHV. If NVHDR=6, GETDHV will return 32-bit values promoted to 64 bit but does
not increase their precision.

Writing an Evenly-Spaced SAC File

Fortran Example

program wsac
implicit none

! Define the Maximum size of data array
integer MAX
parameter (MAX=200)

! Define the data array
real yfunc
dimension yfunc(MAX)

! Define variables to be passed to wsac1()
character*10 kname
integer j
integer nerr
real beg
real del
real x

! Define the file to be written, the beginning time
! time sampling, and the initial value

kname = ’expdata’
beg = 0.00
del = 0.02
x = beg

! Create the Amplitude data, an Exponential
do j=1,MAX

yfunc(j)=exp(-x)
x=x+del

enddo

! Write the SAC file kname
! - kname holds the name of the file to be written
! - yfunc Input Amplitude data
! - MAX number of points to be written
! - beg Beginning Time of the data
! - del Time Sampling of the series
! - nerr Error return Flag

call newhdr()
call wsac1(kname,yfunc,MAX,beg,del,nerr)

! Check the Error status
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! - 0 on Success
! - Non-Zero on Error

if(nerr .NE. 0) then
write(*,*)’Error writing SAC File: ’, kname, nerr
call exit(-1)

endif

call exit(0)
end

Writing an Evenly-Spaced SAC File: C Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <sacio.h>

/* Define the Maximum size of data array */
#define MAX 200

int
main(int argc, char *argv[])
{

/* Define variables to be passed to wsac1() */
int max, j, nerr;
float yfunc[ MAX ], x, beg, del;
char kname[ 10 ];

max = MAX;

/* Define the file to be written, the beginning time
time sampling, and the initial value

*/
strcpy ( kname , "expdata" ) ;
beg = 0.00;
del = 0.02;
x = beg;

/* Create the Amplitude data, an Exponential */
for ( j = 0; j < MAX ; j++ ) {

yfunc[ j ] = exp ( -x ) ;
x = x + del;

}

/* Write the SAC file kname
- kname holds the name of the file to be written
- yfunc Input Amplitude data
- max number of points to be writtne
- beg Beginning Time of the data
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- del Time Sampling of the series
- nerr Error return Flag
- strlen(kname) Length of the character array kname

*/
newhdr();
wsac1 (kname, yfunc, &max, &beg, &del, &nerr, strlen( kname )) ;

/* Check the Error status
- 0 on Success
- Non-Zero on Error

*/
if(nerr != 0) {

fprintf(stderr, "Error writing SAC File: %s %d\n", kname, nerr);
exit(-1);

}

exit(0);
}

NVHDR=7 - Writing a Version 7 file is only currently possible using WSAC0. Use of WSAC1 or WSAC2 create
a v6 header with NEWHDR and are unable to write a v7-type file.

If you are writing a v7 file then, you will need to do either:

! To Generate a new file
integer :: nerr
real*8 :: t0
real*4 :: y(101), x(1)

y(:) = 0.0
y(50) = 1.0

call newhdr()
call setnhv("nvhdr", 7, nerr)
call setnhv("npts", 101, nerr)

t0 = 10.12
call setdhv("t0", t0, nerr)

call wsac0("filename.sac", x, y, nerr)
if(nerr .ne. 0) then

write(*,*)’Error writing sac file’,nerr
endif

or to read, update, and write the file over:

! Read, update and write a file
integer :: nerr, max, nlen
real*4 :: b, dt
real*8 :: t0
real*4 :: y(1000), x(1)
max = 1000
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call rsac1("filename.sac", y, nlen, b, dt, max, nerr)

! Convert v6 to v7 if necessary
call setnhv("nvhdr", 7, nerr)

t0 = 15.12
call setdhv("t0", t0, nerr )

call wsac0("filename.sac", x, y, nerr)
if(nerr .ne. 0) then

write(*,*)’Error writing sac file’,nerr
endif

Writing an Unevenly-Spaced or Spectral SAC File

Fortran Example

program wsac2f
implicit none

! Define the Maximum size of the data arrays p
integer MAX
parameter (MAX=300)

! Define both data arrays, time and amplitude
real xdata, ydata
dimension xdata(MAX), ydata(MAX)

! Define the varaibles used in the call to wsac2()
character*11 kname
integer j
integer nerr

! Set the name the file to be written and initial x value
kname=’expdata ’
xdata(1) = 0.1

! Create the Amplitude and Time, an Exponential
! Best viewed with axis as loglin

ydata(1) = exp(-xdata(1))
do j=2,MAX

xdata(j) = xdata(j-1) + xdata(j-1) * 1.0/(4.0 * 3.1415);
ydata(j) = exp(-xdata(j))

enddo

! Write the SAC file kname
! - kname holds the name of the file to be written
! - yfunc Input Amplitude Data
! - MAX number of points to be written
! - xdata Input Time Data
! - nerr Error return Flag

call newhdr()
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call wsac2(kname,ydata,MAX,xdata,nerr)

! Check the Error status
! - 0 on Success
! - Non-Zero on Error

if(nerr .NE. 0) then
write(*,*)’Error writing SAC File: ’, kname,nerr
call exit(-1)

endif

call exit(0)

end

Writing an Unevenly-Spaced or Spectral SAC File: C Example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <sacio.h>

/* Define the Maximum size of the data arrays */
#define MAX 300

int
main(int argc, char *argv[])
{

/* Define the varaibles used in the call to wsac2() */
float xdata[MAX], ydata[MAX] ;
int max, nerr;
char kname[ 11 ];
int j;

max = MAX;

/* Set the name the file to be written and initial x value */
strcpy ( kname , "expdata" ) ;
xdata[0] = 0.1;

/* Create the Amplitude and Time, an Exponential

* Best viewed with axis as loglin

*/
ydata[0] = exp(-xdata[0]);
for(j = 1; j < max; j++) {

xdata[j] = xdata[j-1] + xdata[j-1] * 1/(4 * M_PI);
ydata[j] = exp(-xdata[j]);

}

/* Write the SAC file kname
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- kname holds the name of the file to be written
- yfunc Input Amplitude Data
- max number of points to be written
- xdata Input Time Data
- nerr Error return Flag
- strlen(kname) Length of character string kname

*/
newhdr();
wsac2(kname, ydata, &max, xdata, &nerr, strlen( kname )) ;

/* Check the Error status
- 0 on Success
- Non-Zero on Error

*/
if(nerr != 0) {

fprintf(stderr, "Error writing SAC File: %s\n", kname);
exit(-1);

}

exit(0);

}

Writing a File with a Comprehensive Header

To create a SAC data file with more information in the header than WSAC1 and WSAC2 allow, you need to use a
set of subroutines that store header variables and then use WSAC0. Below are three examples, the first is similar
to the example for WSAC2.

Writing Unevenly-Spaced Data: Fortran

program wsac3f
implicit none

! Define the Maximum size of the data arrays p
integer MAX
parameter (MAX=300)

! Define both data arrays, time and amplitude
real xdata, ydata
dimension xdata(MAX), ydata(MAX)

! Define the varaibles used in the call to wsac2()
character*11 kname
integer j
integer nerr
real cona, conb

! Set the name the file to be written and initial x value
kname=’expdata ’
xdata(1) = 0.1
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cona = 12.3
conb = -45.6

! Create the Amplitude and Time, an Exponential
! Best viewed with axis as loglin

ydata(1) = exp(-xdata(1))
do j=2,MAX

xdata(j) = xdata(j-1) + xdata(j-1) * 1.0/(4.0 * 3.1415);
ydata(j) = exp(-xdata(j))

enddo

! Create a New Header to store more information
! Newly created header value are set to a default state

call newhdr()

! Store values in the newly created header
! You must define the following header variables
! - delta Time Sampling
! Only if the file is evenly spaced
! - b Beginning Time
! - e Ending Time
! - npts Number of Points in the File
! - iftype File Type
! - itime Time Series File
! - irlim Spectral File Real/Imaginary
! - iamph Spectral File Amplitue/Phase
! - ixy X-Y File
! - iunkn Unknown
!
! All other variables are up to the user

call setnhv(’npts’, max, nerr)
call setlhv(’leven’, .false., nerr)
call setfhv(’b’, xdata(1), nerr)
call setfhv(’e’, xdata(max), nerr)
call setihv(’iftype’, ’ixy’, nerr)
call setfhv(’user0’, cona, nerr)
call setfhv(’user1’, conb, nerr)
call setkhv(’kuser0’, ’gendat’, nerr)

! Write the SAC file kname
! - kname holds the name of the file to be written
! - xdata Input Time Data
! - yfunc Input Amplitude Data
! - nerr Error return Flag

call wsac0(kname,xdata,ydata,nerr)

! Check the Error status
! - 0 on Success
! - Non-Zero on Error

if(nerr .NE. 0) then
write(*,*)’Error writing SAC File: ’, kname,nerr
call exit(-1)

endif

65



call exit(0)

end

Writing Unevenly-Spaced Data: C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <sacio.h>

/* Define the Maximum size of the data arrays */
#define MAX 300

int
main(int argc, char *argv[])
{

/* Define the varaibles used in the call to wsac2() */
float xdata[MAX], ydata[MAX] ;
int max, nerr;
char kname[ 11 ];
int j;
int leven;
float cona, conb;

max = MAX;

/* Set the name the file to be written and initial x value */
strcpy ( kname , "expdata" ) ;
xdata[0] = 0.1;
leven = 0;
cona = 12.3;
conb = -45.6;

/* Create the Amplitude and Time, an Exponential

* Best viewed with axis as loglin

*/
ydata[0] = exp(-xdata[0]);
for(j = 1; j < max; j++) {

xdata[j] = xdata[j-1] + xdata[j-1] * 1/(4 * M_PI);
ydata[j] = exp(-xdata[j]);

}

/* Create a New Header to store more information
Newly created header value are set to a default state

*/
newhdr();

/* Store values in the newly created header
You must define the following header variables
- delta Time Sampling
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Only if the file is evenly spaced
- b Beginning Time
- e Ending Time
- npts Number of Points in the File
- iftype File Type

- itime Time Series File
- irlim Spectral File Real/Imaginary
- iamph Spectral File Amplitue/Phase
- ixy X-Y File
- iunkn Unknown

All other variables are up to the user

*/
setnhv ( "npts", &max, &nerr, strlen("npts"));
setlhv ( "leven", &leven, &nerr, strlen("leven"));
setfhv ( "b", &(xdata[0]), &nerr, strlen("b"));
setfhv ( "e", &(xdata[max-1]), &nerr, strlen("e"));
setihv ( "iftype", "ixy", &nerr, strlen("iftype"), strlen("ixy"));
setfhv ( "user0", &cona, &nerr, strlen("user0"));
setfhv ( "user1", &conb, &nerr, strlen("user1"));
setkhv ( "kuser0", "gendat", &nerr, strlen("kuser0"), strlen("gendat"));

/* Write the SAC file kname
- kname holds the name of the file to be written
- xdata Input Time Data
- yfunc Input Amplitude Data
- nerr Error return Flag
- strlen(kname) Length of character string kname

*/
wsac0(kname, xdata, ydata, &nerr, strlen( kname )) ;

/* Check the Error status
- 0 on Success
- Non-Zero on Error

*/
if(nerr != 0) {

fprintf(stderr, "Error writing SAC File: %s\n", kname);
exit(-1);

}

exit(0);

}

XYZ (3-D) Files: Fortran

program wsac
implicit none

! Maximum Size of Array, in 2-D
integer MAX
parameter (MAX=36)
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! Size of arrays to store the data
real dummy, zdata
dimension dummy(MAX), zdata(MAX)

! Define variables to be passed into wsac0()
character*10 kname
integer i, j, k
integer nerr
integer nx, ny
real minimum, maximum

! Define the file to be written and the min and max of the 2-D Array
kname = ’xyzdata’
minimum = 1.0
maximum = 6.0
nx = 6
ny = 6

! Create the 2D Data
k = 1
do i = 1,nx

do j = 1,ny
zdata(k) = sqrt(j * 1.0 * j + i * 1.0 * i)
k = k + 1

enddo
enddo

! Create a new Header and fill it
! We are defining the data type, iftype to be ’ixyz’, a 2-D Array
call newhdr
call setnhv(’npts’, MAX, nerr)
call setlhv(’leven’, .true., nerr)
call setihv(’iftype’, ’ixyz’, nerr)
call setnhv(’nxsize’, nx, nerr)
call setnhv(’nysize’, ny, nerr)
call setfhv(’xminimum’, minimum, nerr)
call setfhv(’xmaximum’, maximum, nerr)
call setfhv(’yminimum’, minimum, nerr)
call setfhv(’ymaximum’, maximum, nerr)

! Write the SAC file kname
! - kname holds the name of the file to be written
! - dummy Input Amplitude Data
! - zdata Input Time Data
! - nerr Error return Flag

call wsac0(kname,dummy,zdata,nerr)

! Check the Error status
! - 0 on Success
! - Non-Zero on Error

if(nerr .NE. 0) then
write(*,*)’Error writing SAC File: ’, kname,nerr
call exit(-1)

endif
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call exit(0)

end

Although data in SAC memory are stored in a linear 1-D array, one should think of the Z data as being placed in
a 2-D grid, in the order left-to-right, bottom-to-top. See the CONTOUR command for additional information.

XYZ (3-D) Files: C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <sacio.h>

#define MAX 36

int
main(int argc, char *argv[]) {

/* Maximum Size of Array, in 2-D */
int max;

/* Size of arrays to store the data */
float dummy[MAX], zdata[MAX];

/* Define variables to be passed into wsac0 */
char kname[10];
int i, j, k;
int nerr;
int nx, ny;
int leven;
float minimum, maximum;

/* Define the file to be written and the min and max of the 2-D Array */
strcpy(kname, "xyzdata");
max = MAX;
minimum = 1.0;
maximum = 6.0;
nx = 6;
ny = 6;
leven = 1;

/* Create the 2D Data */
k = 0;
for(i = minimum-1; i < maximum; i++) {

for(j = minimum-1; j < maximum; j++) {
zdata[k] = sqrt(i * i + j * j);
k = k + 1;

}
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}

/* Create a new Header and fill it
We are defining the data type, iftype to be ’ixyz’, a 2-D Array

*/
newhdr();
setnhv("npts", &max, &nerr, strlen("npts"));
setlhv("leven", &leven, &nerr, strlen("leven"));
setihv("iftype", "ixyz", &nerr, strlen("iftype"), strlen("ixyz"));
setnhv("nxsize", &nx, &nerr, strlen("nxsize"));
setnhv("nysize", &ny, &nerr, strlen("nysize"));
setfhv("xminimum", &minimum, &nerr, strlen("xminimum"));
setfhv("xmaximum", &maximum, &nerr, strlen("xmaximum"));
setfhv("yminimum", &minimum, &nerr, strlen("yminimum"));
setfhv("ymaximum", &maximum, &nerr, strlen("ymaximum"));
/* Write the SAC file kname

- kname holds the name of the file to be written
- dummy Input Amplitude Data
- zdata Input Time Data
- nerr Error return Flag

*/

wsac0(kname, dummy, zdata, &nerr,strlen(kname));

/* Check the Error status
- 0 on Success
- Non-Zero on Error

*/
if(nerr != 0) {

fprintf(stderr, "Error writing SAC File: %s %d\n", kname,nerr);
exit(-1);

}

exit(0);

}

Evenly-Spaced Data: Fortran

program wsac5f
implicit none

integer NCOMP
parameter(NCOMP=11)

integer NDATA
parameter(NDATA=4000)

real sdata(NDATA,NCOMP+1), xdummy(NDATA)
CHARACTER KNAME(NCOMP+1)*10
real evla, evlo, stla, stlo
character*11 kevnm, kstnm
real b, delta
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real cmpaz, cmpinc
integer npts
integer nerr, j, i

DATA KNAME/’STAZ’,’STBZ’,’STCZ’,’STDZ’,’STEZ’,
1 ’STFZ’,’STGZ’,’STHZ’,’STHN’,’STHE’,’STHN’,’STNQ’ /

b = 0.0
delta = 0.25
cmpaz = 0.0
cmpinc = 0.0
npts = NDATA
evla = -23.56
evlo = 123.56

call newhdr () ;
call setihv("IFTYPE", "ITIME", nerr)
call setihv("IZTYPE", "IB", nerr)
call setfhv("B", b, nerr)
call setlhv("LEVEN", .TRUE., nerr)
call setfhv("DELTA", delta, nerr)

kevnm = "Event Name"

call setnhv("NPTS", npts, nerr)
call setfhv("EVLA", evla, nerr)
call setfhv("EVLO", evlo, nerr)
call setkhv("KEVNM", kevnm, nerr)
call setfhv("CMPAZ", cmpaz, nerr)
call setfhv("CMPINC", cmpinc, nerr)

do j = 1,NCOMP-2
kstnm = kname(j)
call setkhv ( "KSTNM", kstnm, nerr)
stla = j * 10
stlo = j * 20
do i = 1,NDATA

sdata(i,j) = 1.0 * rand()
enddo
call setfhv ( "STLA" , stla , nerr )
call setfhv ( "STLO" , stlo , nerr )
call wsac0 ( kstnm, xdummy, sdata(1,j), nerr)

enddo

cmpinc = 90.0
call setfhv("CMPINC", cmpinc, nerr)
j = 9
do i = 1,NDATA

sdata(i,j) = 1.0 * rand()
enddo
call wsac0(kname(9), xdummy, sdata(1,9), nerr)

cmpaz = 90.0
call setfhv("CMPAZ", cmpaz, nerr)
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j = 10
do i = 1,NDATA

sdata(i,j) = 1.0 * rand()
enddo
call wsac0(kname(10), xdummy, sdata(1,10), nerr)

end

Evenly-Spaced Data: C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

#include <sacio.h>

#define NCOMP 11
#define NDATA 4000
#define NSTA 11
#define FALSE 0
#define TRUE 1

int
main(int argc, char *argv[])
{

float sdata[NCOMP][NDATA], xdummy[NDATA];
float evla, evlo, stla, stlo;
char kevnm[NSTA] , *kstnm ;
int nerr, ndata, j, i;
float b, delta;
float cmpaz, cmpinc;

char kname[NCOMP][NSTA] = { "STAZ" , "STBZ" , "STCZ" , "STDZ" , "STEZ" ,
"STFZ" , "STGZ" , "STHZ" , "STHN" , "STHE", "STHN" } ;

int true = TRUE;

b = 0.0;
delta = 0.25;
cmpaz = 0.0;
cmpinc = 0.0;
ndata = NDATA;
evla = -23.56;
evlo = 123.56;

newhdr () ;
setihv("IFTYPE", "ITIME", &nerr , strlen("IFTYPE"), strlen("ITIME"));
setihv("IZTYPE", "IB", &nerr , strlen("IZTYPE"), strlen("IB"));
setfhv("B", &b, &nerr , strlen("B"));
setlhv("LEVEN", &true, &nerr , strlen("LEVEN"));
setfhv("DELTA", &delta, &nerr , strlen("DELTA")) ;

72



strcpy(kevnm, "Event Name");

setnhv("NPTS", &ndata, &nerr, strlen("NPTS"));
setfhv("EVLA", &evla, &nerr, strlen("EVLA"));
setfhv("EVLO", &evlo, &nerr, strlen("EVLO"));
setkhv("KEVNM", &kevnm[0], &nerr, strlen("KEVNM"), SAC_STRING_LENGTH);
setfhv("CMPAZ", &cmpaz, &nerr, strlen("CMPAZ"));
setfhv("CMPINC", &cmpinc, &nerr, strlen("CMPINC"));

for ( j = 0 ; j < NCOMP - 2 ; j++ ) {
kstnm = kname[j] ;
setkhv ( "KSTNM", kstnm, &nerr, strlen("KSTNM"), strlen(kstnm));
stla = j * 10;
stlo = j * 20;
for(i = 0; i < NDATA; i++) {

sdata[j][i] = 1.0 * rand()/INT32_MAX;
}
setfhv ( "STLA" , &stla , &nerr , strlen("STLA"));
setfhv ( "STLO" , &stlo , &nerr , strlen("STLO"));
wsac0 ( kstnm, xdummy, sdata[j], &nerr, strlen(kstnm));

}

cmpinc = 90.0;
setfhv("CMPINC", &cmpinc, &nerr, strlen("CMPINC")) ;
j = 9;
for(i = 0; i < NDATA; i++) {

sdata[j][i] = 1.0 * rand()/INT32_MAX;
}
wsac0(kname[9], xdummy, sdata[9], &nerr, strlen(kname[9]));

cmpaz = 90.0;
setfhv("CMPAZ", &cmpaz, &nerr, strlen("CMPAZ")) ;
j = 10;
for(i = 0; i < NDATA; i++) {

sdata[j][i] = 1.0 * rand()/INT32_MAX;
}
wsac0(kname[10], xdummy, sdata[10], &nerr, strlen(kname[10]));

return 0;
}

C-Style Interface

The C-style version of the library is fully documented at: https://savage13.github.io/sacio/html/index.html. More
functions than shown below are available. A simple example is provided here for reference:

#include <stdio.h>
#include <sacio.h>

int nerr = 0;
int ival = 0;
double dt = 0.0;
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char sta[18] = {0};

// Read a file named "file.sac"
sac *s = sac_read("filename.sac", &nerr);

// Set and get the delta
sac_set_float(s, SAC_DELTA, 0.25);
sac_get_float(s, SAC_DELTA, &dt);
printf("delta: %f\n", dt);

// Set the file type to: evenly spaced, time series
sac_set_int(s, SAC_EVEN, 1);
sac_set_int(s, SAC_FILE_TYPE, ITIME);
sac_get_int(s, SAC_EVEN, &ival);
printf("leven: %d\n", ival);
sac_get_int(s, SAC_FILE_TYPE, &ival);
printf("iftype: %d\n", ival);

// Set a string, SAC_KSTNM and SAC_STA are the same
sac_set_string(s, SAC_KSTNM, "PAS");
sac_get_string(s, SAC_STA, sta, sizeof sta);
printf("sta: ’%s’\n", sta);

// Most input strings are truncated at 8 characters
// SAC_KNETWK and SAC_NET are the same
sac_set_string(s, SAC_KNETWK, "12345678");
sac_get_string(s, SAC_NET, sta, sizeof sta);
printf("net: ’%s’\n", sta);

// ... except for the Event name, it gets 16 characters
// SAC_KEVNM and SAC_EVENT are the same
sac_set_string(s, SAC_EVENT, "1234567890123456");
sac_get_string(s, SAC_KEVNM, sta, sizeof sta);
printf("event: ’%s’\n", sta);

// Set the file version to either v6 or v7
sac_set_v6(s);
sac_set_v7(s);
sac_get_int(s, SAC_HDR, &ival);
printf("hdr: %d\n", ival);

// Amplitude (and time data) are accessed through
// s->y and s->x
// Set the first five values
for(int i = 0; i < 5; i++) {

s->y[i] = (float) i;
}
// Print out the first five data points
for(int i = 0; i < 5; i++) {

printf("y[%d]: %e\n", i, s->y[i]);
}

// Write a sac file
sac_write(s, "filename.sac", &nerr);
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if(nerr != 0) {
printf("Error writing sac file: %d\n", nerr);

}

// Free the sac file
sac_free(s);
s = NULL;
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Using the SAC Libraries

Overview

In addition to being able to read and write SAC data files in one’s own C or FORTRAN programs (see
SAC Reading and Writing Routines ), one can use many of SAC’s data-processing routines in stand-
alone codes. The internal routines here are wrapped in an interface that should be more streamlined
to use than previous versions to v102.0. The libraries libsac.a and libsacio.a are in ${SACHOME}/lib.

For more detailed examples, see ${SACHOME}/doc/examples contained in the SAC distribution.

Callable in C and Fortran

All of these available functions are simplified wrappers around internally used functions within SAC
with obscure, shortened and forgotten names and extra, usually unneeded, or confusing parameters.
Each function documented below should be callable directly from C and Fortran. The Fortran wrappers
should work simply for Fortan compilers that append underscores to function names internally within
the program.

A difference between the C and Fortran versions is the calling convention of pass-by-value (default in
C) and pass-by-reference (Fortran).

Compiling

To ease the requirements for compilation and linking, a helper script is provided, ${SACHOME}/bin/sac-config,
which should output the necessary flags and libraries for SAC. If you have the a C compiler or a Fortran compilers,
try:

cc -o program main.c subs.c ‘sac-config --cflags --libs libsac libsacio‘

gfortran -o program main.f ‘sac-config --cflags --libs libsac libsacio‘

Fourier Transform (FFT)

Given below are both single- and double-precision routines for doing forward and inverse Fourier transforms. All
transforms are performed in double precision, as all subroutine calls within SAC use the same internal code path.
Single-precision versions internally convert/copy the input arrays to double recision as a prelude to perfomring
the transform, and the results are then converted back to single precision on return. The internal calculations are
done using a power-of-2 number of points. For a forward transform, n need not be a power of 2, but the output
nf must be the next power of 2 greater than or equal to n. Parameter nf must be defined prior to calling any of
these routines.

// Forward Transform - Single Precision
void fft (float data, int n, float *re, float *im, int nf)
void fftz(float data, int n, float complex *z, int nf)

// Forward Transform - Double Precision
void dfft (double data, int n, double *re, double *im, int nf)
void dfftz(double data, int n, double complex *z, int nf)

// Inverse Transform - Single Precision
void ifft(float data, int n, float *re, float *im, int nf)
void ifftz(float data, int n, float complex *z, int nf)

// Inverse Transform - Double Precision
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void idfft(double data, int n, double *re, double *im, int nf)
void idfftz(double data, int n, double complex *z, int nf)

Compute the Fourier Transform (or inverse transform) of a data series.

Arguments

∙ data - Input time series for forward transform; output time series for inverse

∙ n - Length of time series on input for forward transform; number of points desired from the inverse transform

∙ z - Complex FFT Spectrum

∙ re - Real Component of the Fourier spectrum; calculated in forward transform, input for inverse transform.

∙ im - Imaginary Component of the Fourier spectrum.

∙ nf - Input length of re, im, and z for inverse transform; calculated in forward transform.

Normalization

Normalization of the transform by the length, nf, is done on the inverse transforms

Time Scaling

Time scaling is not performed within these functions, but can be accomplished by multiplying the Fourier spectrum
by the sampling rate, dt. If the scaling is applied to the spectrum, make sure to remove the time shift to get
back to the original time series.

Frequency Ordering

Amplitudes are ordered frequency starting with the zero frequency, through positive frequencys to the Nyquist
df*(nf/2), then backwards through the negative frequencies

0, df, ... , df*(nf/2-1), df*(nf/2), -df*(nf/2-1), ... , -df

Examples

integer n, nf
real*8 :: data(16), data2(16)
real*8 :: re(64), im(64)
complex*16 :: z(16)

n = 10

! Find next power of 2
nf = 4
do while (nf < n)

nf = nf * 2
enddo

! FFT with real/imaginary
call dfft(data, n, re, im, nf)
call idfft(data2, n, re, im, nf)

! FFT with complex number
call dfftz(data, n, z, nf)
call idfftz(data2, n, z, nf)
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Remove Mean

void remove_mean (float *data, int n)

Remove the mean of a data series. The mean of the data series is automatically calculated and removed from
the data series.

Arguments

∙ data - Input data series

∙ n - length of data

Note: Data is modified in place.

Examples

implicit none

integer,parameter :: nmax = 1776
integer :: npts, nerr
real*4 :: data(nmax), beg, dt

! Read in the data file
call rsac1(’raw.sac’, data, npts, beg, dt, nmax, nerr)

! Remove the mean of the data in place
call remove_mean(data, npts)

Effective SAC Commands

SAC> read raw.sac
SAC> rmean

Remove Trend

void remove_trend(float *data, int n, float delta, float b)

Removse the trend (along with the mean) of a data series in memory

Arguments

∙ data - Input data series, overwritten on output

∙ n - length of data

∙ delta - Time sampling of the data

∙ b - Initial time value of the data series

Note: Data is modified in place.

This calls internal rountines lifite() and rtrend().

Trend is removed as
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y[i] = y[i] - yint - slope * (b + delta * i)

where y is the data

Examples

#define NMAX 1969

float y[NMAX], b, dt;
int nmax = NMAX;
int n, nerr;

// Read in the data file
rsac1("raw.sac", y, &n, &b, &dt, &nmax, &nerr, -1);

// Remove the trend of the data in place
remove_trend(y, n, dt, b);

Effective SAC Commands

SAC> read raw.sac
SAC> rtrend verbose

Filtering

Data is filtered using an Infinite Impulse Repsonse Filter. See the BANDPASS command for definitions
of the filter parameters and descriptions on how to use them.

void bandpass(float *data, int n, float dt, float low, float high)
void lowpass(float *data, int n, float dt, float corner)
void highpass(float *data, int n, float dt, float corner)

void filter(int prototype,
int type,
float *data, int n, float dt,
float low, float high, int passes, int order,
float transition,
float attenuation)

Arguments

∙ data - Input and output data

∙ n - Length of data

∙ dt - Time sampling of the data (seconds)

∙ low - low frequency corner

∙ high - high frequency corner

∙ corner - corner of the filter for lowpass or highpass

∙ passes - Number of passes
– 1 - forward pass only (causal)
– 2 - forward and backward pass (zero-phase)
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∙ order - Filter Order, not to exceed 10, 4-5 should be sufficient

∙ transition - Transition Bandwidth, only used in Chebyshev Type I and II Filters

∙ attenuation - Attenuation factor, amplitude reached at stopband edge, only used in Chebyshev
Type I and II Filters

∙ prototype - Filter Prototype
– 0 - Butterworth filter
– 1 - Bessel filter
– 2 - Chebyshev Type I filter
– 3 - Chebyshev Type II filter

∙ type - Filter Type
– 0 - Bandpass
– 1 - Highpass
– 2 - Lowpass
– 3 - Bandreject

Examples
Bandpass filter in C

#define NMAX 2015
float y[NMAX], b, dt;
int n, nerr, nmax = NMAX;

// Read in the data file
rsac1("raw.sac", y, &n, &b, &dt, &nmax, &nerr, -1);

// bandpass filter from 0.10 Hz to 1.00 Hz
bandpass(y, n, dt, 0.10, 1.00);

Highpass filter in Fortran

implicit none
integer nmax, n, nerr, sac_compare
real*4 :: y(2012), b, dt
nmax = 2012

! Read in the data file
call rsac1("raw.sac", y, n, b, dt, nmax, nerr)

! highpass filter at 10.0 Hz
call highpass(y, n, dt, 10.0)

**Effective SAC Commands**

SAC> read raw.sac
SAC> bp co 0.10 1.0 p 2 n 4

SAC> read raw.sac
SAC> hp co 10.0 p 2 n 4

Further examples are given in ${SACHOME}/doc/examples/filter/ . Because one uses FFT that pads with zeros,
it is often prudent to precede the filter with rtrend ; taper.
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Cross Correlation

void correlate(float *f, int nf, float *g, int ng, float *c, int nc)

Compute the cross-correlation of two signals

Arguments

∙ f - First time series

∙ nf - Length of first time series

∙ g - Second time series

∙ ng - Length of second time series

∙ c - Cross correlation time series

∙ nc - Size of c, must be at least (nf + ng - 1)

Return: Cross correlation function, length: nf + ng - 1

If the signals are not the same length, then find the longest signal, make both signals that length by filling the
remainder with zeros (pad at the end) and then run them through crscor

Examples

Effective SAC Commands

SAC> read file1.sac file2.sac
SAC> correlate

Cross Correlation Extras

int correlate_max(float *c, int nc)

Find the maximum of a correlation

Arguments

∙ c - float array (returned from correlate function)

∙ nc - length of c

Return: Index of maximum value in array

float correlate_time(float dt, float b, int i)

Compute the time of a data point given dt and begin time

Arguments

∙ dt - Time sampling

∙ b - Begin time
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∙ i - data sample

Return: time value (b + i * dt)

float * correlate_time_array(float dt, float b, int n)

Compute a time array given dt and begin time

Arguments

∙ dt - Time sampling

∙ b - Begin time

∙ n - Length of data array

Return: time array

float correlate_time_begin(float dt, float n1, float _n2, float b1, float b2)

Compute begin time from a corealtion of two time series

Arguments

∙ dt - Time sampling

∙ n1 - Length of first time series

∙ n2 - Length of second time series (unused)

∙ b1 - Begin time of first time series

∙ b2 - Begin time of second time series

Return: -dt * (n1 - 1) + (b2 - b1)

This accounts for the possible differences in begin times of two time series

Envelope Calculation

void envelope(int n, float *in, float *out)

Compute the envelope of a time series using the Hilbert transform

Arguments

∙ n - Length of input and output time series

∙ in - Input time series

∙ out - Output time series with envelope applied
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The envelope is applied as such where the H(x) is the Hilbert transform:

out = sqrt( H( in(t) )^2 + in(t)^2 )

Examples

#define NMAX 1929
int nlen, nerr, nmax;
float yarray[NMAX], yenv[NMAX];
float beg, delta;

nmax = NMAX;

// Read in data file
rsac1("raw.sac", yarray, &nlen, &beg, &delta, &nmax, &nerr, SAC_STRING_LENGTH);

// Calculate Envelope of data
envelope(nlen, yarray, yenv);

Effective SAC Commands

SAC> read raw.sac
SAC> envelope

Because one uses FFT that pads with zeros, it is often prudent to precede the filter with rtrend ; taper.

Differentiate

void dif2(float *array, int n, double delta, float *output)

Differentiate a data set using a two point differentiation

Arguments

∙ array - Input data to differentiate

∙ n - length of ararry

∙ delta - Time sampling of input data

∙ output - Output differentiated data, length n-1

This is the default scheme in the SAC program.

The output array will be 1 data point less than the input array.

Since this is not a centered differeniation, there is an implied shift in the independent variable by half the delta:

b_new = b_old + 0.5 * delta

Differntiation is performed as:

out[i] = (1/delta) * (in[i+1] - in[i])
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Examples

integer,parameter :: nmax = 1000000
integer :: npts, nerr
real*4 :: data(nmax), out(nmax)
real*4 :: beg, dt

! Read in the data file
call rsac1("raw.sac", data, npts, beg, dt, nmax, nerr)

! Differentiate the data
call dif2(data, npts, dble(dt), out)

bnew = beg + 0.5 * delta
npts_new = npts - 1

Effective SAC Commands

SAC> read raw.sac
SAC> dif

Integerate

void int_trap(float *y, int n, double delta)

Integrate a data series using the trapezodial method

Arguments

∙ y - Input data series, overwritten on output

∙ n - length of y

∙ delta - time sampling of the data series

Integration is performed as:

out[i] = out[i-1] + (delta/2) * (in[i] + in[i+1])

where the initial out value is 0.0.

The number of points on output should be reduced by 1

len(out) = len(in) - 1

and the beging value is shifted by 0.5 delta:

b_out = b_in + 0.5 * delta

Examples
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#define NMAX 2012
float y[NMAX], b, dt;
int n, nerr, nmax = NMAX;

rsac1("raw.sac", y, &n, &b, &dt, &nmax, &nerr, -1);

int_trap(y, n, (double)dt);

Effective SAC Commands

SAC> read raw.sac
SAC> int

Taper Data

// Taper using points
void taper_points(float *data, int n, int taper_type, int ipts)
void taper(float *data, int n, int taper_type, int ipts)

// Taper using a duration in seconds
void taper_seconds(float *data, int n, int taper_type, float sec, float
delta)

// Taper using a percent of the data
void taper_width(float *data, int n, int taper_type, float width)

Arguments

∙ data - Input data series, overwritten on output

∙ n - Length of data

∙ taper_type - Type of Taper

– 1 - Cosine - SAC_TAPER_COSINE
– 2 - Hanning - SAC_TAPER_HANNING [Default in SAC]
– 3 - Hamming - SAC_TAPER_HAMMING

∙ ipts - Points to use in the taper

∙ sec - Duration of the taper in seconds

∙ delta - Delta of the data

∙ width - Percent of the data to taper [SAC default is 5%]

Examples

#define MAX 1984
float data[MAX];
int nmax, npts, nerr, taper_type;
float beg, dt, width;

nmax = MAX;
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// Read in the data file
rsac1("raw.sac", data, &npts, &beg, &dt, &nmax, &nerr, -1);

// Set up taper parameters
width = 0.05; // Width to taper original data
taper_type = 2; // HANNING taper

taper_width(data, npts, taper_type, width);

Effective SAC Commands

SAC> read raw.sac
SAC> taper TYPE HANNING WIDTH 0.05
(these are the defaults for taper in SAC)

Cut Data

void cut(float *y, int npts, float b, float dt,
float begin_cut, float end_cut, int cuterr,
float *out, int *nout)

Cut a time series at specified begin and end times

Arguments

∙ y - Input data to be cut

∙ npts - Length of y

∙ b - Begin time of data

∙ dt - time sampling (seconds)

∙ begin_cut - Start time of cut

∙ end_cut - End time of cut

∙ cuterr -

– 1 - Fatal - SAC_CUT_FATAL
– 2 - Use B and E Values - SAC_CUT_USEBE
– 3 - Fill with Zeros - SAC_CUT_FILLZ

∙ out - Cut data on output

∙ nout - Length of out

Examples

integer,parameter :: nmax = 1776
real*4 :: y(nmax), out(nmax), b, dt, cutb, cute
integer :: nerr, n, nout

max = nmax
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! Read in data
call rsac1("raw.sac", y, n, b, dt, max, nerr)

nout = max
cutb = 10.0
cute = 15.0
! Cut data from 10 to 15 or from B to E if window is too big
call cut(y, n, b, dt, cutb, cute, CUT_USEBE, out, nout)

Effective SAC Commands

SAC> read raw.sac
SAC> cut 10 15
SAC> read raw.sac

See ${SACHOME}/doc/examples/create_compare/ for an example.

Interpolation using cubic splines

In the pre-digital-data era, data extremes were relatively easy to see because the pen or light-beam velocity went
to zero at them. The interpolation scheme used by the SAC interpolate routine uses a method popularized by
Wiggins that took advantage of that feature so that cycle extrema could be at digitized points.

With digital data, the extrema may not be at digitized points, and for some studies it is desirable to get a
better estimate of the maxima and minima (for example, estimating magnitudes based on amplitudes or when
using amplitude ratios in focal-mechanism determinations. The routine below uses a pure cubic-spline interpolation
published by Forsythe, et al., that can give significantly different results from a Wiggins interpolation. The program
is in in ${SACHOME}/doc/examples/interpolate. The script run_interpolate.sh shows how the interpolation
program is built and run, along with how interpolation would be accomplished in SAC.

The plot below shows the initial waveform, the result using Forsythe interpolation, and the result using SAC/Wiggins
interpolation. (File ${SACHOME}/doc/examples/interpolate/interpolate.m includes SAC calls to create the
plot.)
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Time-Shift

There is no function in SAC that time-shifts a waveform, but as mentioned in the help file lowpass for the low-pass
filter command, such filters time-shift the data, and one may want to correct for that time shift. One can use
SAC to time-shift a waveform by changing the "b" header value for the SAC file. A (new as of v102.0) macro:
${SACHOME}/macros/sac-ts.m is an example of how to do this.

A Fortran program named time_shift.f in ${SACHOME}/doc/examples/time_shift does a time shift by taking
the Fourier transform of the input time series then and doing the time shift in the frequency domain. Before
taking the Fourier transform the waveform is prepared by taking out the mean/trend and then tapered to stabilize
the Fourier transform. It is padded with zeros to minimize wrap-around.

All steps for an example are included in which a waveform is first low-pass filtered, which results in a time shift,
and that time shift is taken out by the two methods: a call to the SAC macro and a run of program time_shift.
The plot below shows the original plus the two methods for time-shifting the waveform for thus case.

88



Convolution

Prior to SAC v102.0, the SAC CONVOLVE command was effectively the same as the SAC CORRELATE_command
except for a sign change. For both the CORRELATE command and the previous version of CONVOLVE, the
calculation is done in the frequency domain. The explicit method used for doing the convolution is called a
"discrete" convolution. For many application that method is appropriate, but a discrete convolution has two
features that potentially are undesirable when applied to time series:

∙ no scaling of the output by the digitizing interval, and

∙ no check on the start time for the pulse.

The more serious problem is the second one: If the "pulse" is centered at time zero, the old SAC CONVOLVE
gave an incorrect waveform.

The directory ${SACHOME}/doc/examples/convolve has both FORTRAN and C programs with options for both
discrete convolution and "time-series* convolution, which treats convolution for a time series "correctly".

Sample Runs

Input for the convolution can be generated as:
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SAC> fg triangle npts 8 delta 0.02 begin -0.08
SAC> write triangle_n8_d0.02.sac
SAC> fg impulse npts 12 delta 0.02 begin 0
SAC> write impulse_n12_d0.02.sac

Then run the convolvef program:

% ./convolvef
Usage: convolvef p_name wf_name c_name disc_conv

where the first three arguments are filenames
for pulse, waveform, and convolution output.

If disc_conv is y, it uses a discrete convolution
and the pulse begin time is set to zero.

If disc_conv is n, pulse begin time is unchanged
and the output is multiolied by delta, which is
what one has in a time-series covolution.

% ./convolvef triangle_n8_d0.02.sac impulse_n12_d0.02.sac conv_y.sac y
% ./convolvef triangle_n8_d0.02.sac impulse_n12_d0.02.sac conv_n.sac n

The pulse file triangle_n8_d0.02.sac is symmetric around zero time, so comparing the last argument "y" and
"n" for disc_conv demonstrates an important difference between discrete and time-series convolutions.

Convolution Primer

In these application, f, is a waveform time series that is convolved with a pulse g. The equation for their convolution
is

y(t) = f (t)?g(t) =
∫

∞

−∞

dt ′ f (t ′)g(t − t ′)

Both f and g are functions of time, and their zero times are coupled through the term g(t-t’). From the above
equation, it is easy to show that one can choose the time zero for y and f to be the same. In the applications
discussed below, the zero time for g(t) can be the same as or less than the zero time for f (t).

To calculate the convolution, one discretizes both f and g and replaces the integral with a sum. In this discussion
δ t = 0.02s is the digitizing interval for y, f, and g. One multiplies the sum by δ t, which is not what is done in a
discrete convolution, which also does not take into account any difference in zero time between f (t) and g(t).

Here, two applications of convolution are discussed. Both have the same f (t) but different g(t).

f (t) is a synthetic waveform (produced using Haskell matrices or WKBJ) where vertical lines of calculated polarities
and amplitudes are drawn at phase-arrival times. For these examples, the synthetic waveform is a vertical-
component time series for an incident P-wave at an angle of 20∘ with the vertical through a 2-layer crust. There
are nw = 2048 points in the discretized f. (The large number is chosen to minimize wraparound.) The duration
is tw = δ t[nw −1]. The first point in f is chosen to be at t = 0, so f (t) = f (t)H(t)H(tw − t),where

H(t) =

1 if t ≥ 0

0 if t < 0

g(t) is a pulse waveform with a far smaller duration than f (t). Here, the pulse is either (1) an approximation of a
P arrival so that the output of the convolution potentially models the data, or (2) a time-symmetric shape with
a maximum at t = 0 to smooth out the Gibbs phenomenon that often accompanies arrivals in synthetics. Option
(2) is often used for synthetics for receiver functions.

A “Brune” pulse for (1): g(t) =U0H(t)te−t/κ H(tp − t), where κ = 0.1s, tp = 1.26s, and U0 is a constant that only
affects the amplitude, so is of no interest here.

For (2), the source pulse is a triangle function produced by fg in SAC:
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fg triangle npts 8 delta 0.02 begin -0.08.

Note that the Brune pulse starts at the same time as f, while the triangle pulse starts at a negative time with
a maximum at the start time for f. If the total time for the pulse is tp , the general form for the pulse is
g(t) = g(t)H(t − t1)H(t2 − t), where for the Brune pulse t1 = 0, t2 = tp and for the triangle pulse t1 = −0.08s,
t2 = 0.06s = tp − t1. For either pulse, tp = δ t[np −1].

Given the above forms for f and g , the original convolution equation can be written

y(t) =
∫ tw

0
dt ′ f (t ′)g(t − t ′)H(t − t ′− t1)H(t2 − t + t ′)

For the Brune pulse, t1 = 0, so t cannot be negative, but for the triangle pulse the lower bound for t is -0.06
s. In Fortran, arrays are stored in the computer using positive integers, so to simplify the bookkeeping it is best
to avoid negative times when we discretize the above equation. One can avoid negative times if one chooses
y(τ) = y(t − t1). With this choice the modified equation then reads

y(τ) = y(t − t1) =
∫ tw

0
dt ′ f (t ′)g(τ + t1 − t ′)H(τ − t ′)H(t2 − τ + t1 + t ′)

The discretized equation for the above is then

yi = δ t
nw

∑
j=1

f jgi− j− j1

where j1 =−(t1/δ t)+1 and i runs from 1 to nw +np −1

The following Fortran code produces the correct result for the convolution for either pulse

j_1 = -nint(b_p/delta)+1
do i=1,n_w+n_p-1

temp = 0.0
do j=1,n_w

if (i.ge.(j-j_1) .and. n_p.ge.(i-j+j_1)) then
temp = temp + waveform(j)*pulse(i-j+j_1)

endif
end do
conv(i) = delta*temp

end do

where bp = t1, delta = δ t, and conv(i) = yi.

Plots for the two pulse waveforms are shown in Figure 1, and the results of the convolution near the first synthetic
arrival are shown in Figure 2 both for the Brune pulse and for the triangle pulse. The Gibbs phenomenon is quite
pronounced at the arrival in the raw synthetic. Note that the peaks for the arrival in Figure 2 are at the same
time for the triangle-pulse convolution and the synthetic, and the Brune-pulse convolution starts at the peak of
the raw-synthetic arrival time. For display purposes, the waveforms are time-shifted so that the first arrival are
at five seconds into the record. Hence the zero time for the display and the convolution calculation are not the
same.

If one uses the SAC convolution for the two runs, one gets the "correct" result for the Brune pulse but a time
shift of 0.08 seconds for the triangle pulse (which starts at -0.08 s). The convolution of the triangle pulse with
itself is also time-shifted 0.08 s. If one uses the SAC CONVOLVE option "amplitude on" in program convolvef
or convovlec, one gets the same amplitudes and times as for the discrete convolution output.

91



Figure 1. The two source pulses used for these convolution applications.

Figure 2: From top to bottom: unfiltered synthetic, time-series convolution with triangle pulse, discrete convolu-
tion with triangle pulse, time-series convolution with Brune pulse
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Blackboard Variables in SAC

The blackboard is a feature that can be used to temporarily store and retrieve information while inside SAC.
Blackboard variables can also be saved in a disk file using the WRITEBBF command and later restored into
SAC using the READBBF command. There are four functions in the sacio library which allow the user to read
and write blackboard variables in home grown software. This library is available in the lib directory of the SAC
distribution for all platforms.

A blackboard entry consists of a name and a value. Blackboard entries are created using the SETBB and
EVALUATE commands. The value of a blackboard variable can be obtained using the GETBB command. You
can also substitute the value of a blackboard variable directly in other commands by preceeding its name with a
percent sign, %, as shown below:

SAC> SETBB C1 2.45
SAC> SETBB C2 4.94
SAC> BANDPASS CORNERS %C1 %C2

Prior to v101.6, Blackboard number variables were stored as strings, now they are stored as double-precision
variables.

Now lets see how blackboard variables can be used in macros. In the following example, the first value is a
variable, and the other values are calculated from the first:

$KEYS FILES VALUE1
$DEFAULT VALUE1 4
READ $FILES
EVALUATE TO VALUE2 $VALUE1 * 2
EVALUATE TO VALUE3 %VALUE2 + 1
MUL $VALUE1 %VALUE2 %VALUE3
FFT
BG SGF
PSP AM

You can append or prepend any text string to a blackboard variable. To prepend simply concatenate the text
string with the variable. To append you must repeat the delimiter % after the variable and before the text string.

Examples

Assume that the blackboard variable TEMP has the value ABC. Then value of XYZ%TEMP would be XYZABC
and the value of %TEMP%XYZ would be ABCXYZ:

SAC> fg
SAC> echo on
SAC> setbb TEMP "ABC"
setbb TEMP "ABC"
SAC> ch kname ABC%TEMP
ch kname XYZ%TEMP
==> ch kname XYZABC
SAC> ch kevnm %TEMP%XYZ
ch kevnm %TEMP%XYZ
==> ch kevnm ABCXYZ

More information on the use of blackboard variables in SAC macros is given in the section on SAC macros.

93



Blackboard I/O in SAC

There are four SAC commands which are used to read and write blackboard variables and to set and get blackboard
variable values. These are READBBF, WRITEBBF, GETBB, and SETBB. These are SAC commands which can
be called at the SAC prompt or within a SAC macro.

Blackboard I/O in Your Own C or FORTRAN Programs

The sacio library , which is included in the SAC distribution, contains four blackboard I/O routines which you
can call from C or FORTRAN programs. These routines: read the blackboard variable files READBBF, write
blackboard variable files WRITEBBF, get the current values of blackboard variables GETBBV, and set new values
of blackboard variables SETBBV.

readbbf -- Read a Blackboard File

void readbbf(char *kname, int *nerr, int kname_s)

Arguments
kname: File to be read
nerr: Error return Flag,

∙ 0 on Success
∙ Non-Zero on Error

kname_s: Length of character array p name

writebbf Write a Blackboard File:

void writebbf(char *kname, int *nerr, int kname_s)

Arguments
kname: File to be written
nerr: Error return Flag

∙ 0 on Success
∙ Non-Zero on Error

kname_s: Length of character array p name

getbbv Get a Variable:

void getbbv(char *kname, char *kvalue, int *nerr,
int kname_s, int kvalue_s)

Arguments:
kname: Input Variable Name
kvalue: Output Variable Value
nerr: Error return Flag,

∙ 0 on Success
∙ Non-Zero on Error

kname_s: Length of character array p name
kvalue_s: Length of character array p value

setbbf Set a Variable:

void setbbv(char *kname, char *kvalue, int *nerr,
int kname_s, int kvalue_s)

Arguments:
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kname: Input Variable Name
kvalue: Input Variable Value
nerr: Error return Flag,

∙ 0 on Success
∙ Non-Zero on Error

kname_s: Length of character array p name
kvalue_s: Length of character array p value

Fortran Example

The following is a short FORTRAN program that reads in a blackboard variable file gets the values of a few
variables, sets the value of a new one, and then writes the file back to disk

program bbv
implicit none
character(len=10) kname, kvalue
integer nerr

! Read in the Blackboard Variable File
kname = ’bbf ’
call readbbf(kname, nerr)
if(nerr .NE. 0) then

write(*,*)’Error reading blackboard variable file’
call exit(-1);

endif
call test("error reading blackboard file: bbf", (nerr .eq. 0))

! Set a New Variable on the Blackboard
kname = ’newvar ’
kvalue = ’1 ’
call setbbv(kname, kvalue, nerr)
if(nerr .NE. 0) then

write(*,*)’Error setting blackboard variable’
call exit(-1);

endif

! Get a Variable already on the Blackboard
kname = ’newvar ’
call getbbv(kname, kvalue, nerr)
if(nerr .NE. 0) then

write(*,*)’Error getting blackboard variable’
call exit(-1);

endif

! Get a Variable already on the Blackboard
kname = ’somevar ’
call getbbv(kname, kvalue, nerr)
if(nerr .NE. 0) then

write(*,*)’Error getting blackboard variable’
call exit(-1);

endif

95



! Write out the new set of Blackboard Variables
kname = ’bbfout ’
call writebbf(kname, nerr)
if(nerr .NE. 0) then

write(*,*)’Error writing blackboard variable file’
call exit(-1);

endif

return
end

Case Insensitive Variable Names

The names of blackboard variables are converted to uppercase before being stored or retrieved. This means that
you can use either uppercase or lowercase in your program. However, the name of the blackboard variable file
must be given exactly as it appears on disk. No case conversion is done on file names.

To compile your code with the above blackboard variable routine the sacio library must be linked in at compile
time. This can be accomplished with a command similar to the one below. This exact command will depend on
your Fortran compilier, here we are using f77 and assuming SAC is installed in the default location of /usr/local/sac
and the sacio.a library is at /usr/local/sac/lib/sacio.a

f77 -o my_blackboard_program my_blackboard_program.f /usr/local/sac/lib/sacio.a

C Example

Below is a C program which performs the same functions as the FORTRAN program above. It can be compiled
in a similar manner as the Fortran examples

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char* argv[]) {

int kname_s, kvalue_s, nerr;
char *kname, *kvalue;

char kvalue2[128];

readbbf("bbf", &nerr, -1);
if(nerr != 0) {

fprintf(stderr, "Error reading in blackboard variable file\n");
exit(-1);

}

kname = strdup("newvar");
kname_s = strlen(kname);

kvalue = strdup("1 ");
kvalue_s = strlen(kvalue);

sprintf(kvalue2, "%s", "1");
setbbv(kname, kvalue2, &nerr, -1, -1);
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if(nerr != 0) {
fprintf(stderr, "Error setting blackboard variable\n");
exit(-1);

}

kvalue = (char *) malloc(sizeof(char) * 128);
memset(kvalue, 0, 128);

kname = strdup("newvar");
kname_s = strlen(kname);

getbbv(kname, kvalue2, &nerr, -1, 128);
if(nerr != 0) {

fprintf(stderr, "Error getting blackboard variable\n");
exit(-1);

}

kvalue = (char *) malloc(sizeof(char) * 128);
memset(kvalue, 0, 128);

kname = strdup("somevar");
kname_s = strlen(kname);

getbbv(kname, kvalue2, &nerr, -1, sizeof(kvalue2));
if(nerr != 0) {

fprintf(stderr, "Error getting blackboard variable\n");
exit(-1);

}

kname = strdup("bbfout");
kname_s = strlen(kname);

writebbf(kname, &nerr, kname_s);
if(nerr != 0) {

fprintf(stderr, "Error writing blackboard variable file\n");
exit(-1);

}

return 0;
}

Notice that in C, more parameters are required in the function calls than in FORTRAN. This is because unlike C,
FORTRAN implicitly passes string length specifiers for each string in the parameter list. These specifiers are at
the end of the parameter list, and are declared as INTEGER*4 or long int. Notice also that the values passed as
string length specifiers do not include the null termintor ’0’.:

gcc -o my_blackboard_program my_blackboard_program.c /usr/local/sac/lib/sacio.a
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Graphics in SAC

Overview

This section describes the graphics devices that are currently supported and then briefly describes the commands
in each of the graphics functional modules.

Graphics Devices

There are two graphics "devices" currently supported.

∙ XWINDOWS is a general windowing system running on most high-resolution, bit-mapped
graphics workstations.

∙ SGF is a general purpose device driver representing a large class of actual physical devices.

Each device is described in more detail below.

XWINDOWS (or X for short) is a windowing scheme developed under the industry-financed Athena project at
MIT. X employs what is called a network model, where a single process or server controls the screen display.
Other programs send requests to this server when they want to modify part of the screen. X is widely used on the
graphics workstation and offers one of the best frameworks for developing portable window-based applications.
(A problem with backward compatibility on many platforms is that the location of the X11 libraries may change.)

Beginning with v101.5, after an image has been displayed on the terminal using X11, command SAVEIMG can
be used to create a high-definition Postscript or PDF file of the displayed image. See SAVEIMG for details.

SGF stands for SAC Graphics File. A SAC Graphics File contains all the information needed to generate a single
plot on any graphics device. (Using the current computer jargon, these are called graphics "metafiles.") Each
plot is stored in a separate file. The file names are of the form "Fnnn.SGF" where "nnn" is the plot number,
beginning with "001". You can control some features of this file name using the SGF command. The program
SGFTOPS can convert a SGF file to postscript, and scrpts are provided to print the files and/or convert them to
PDF format. See sac/utils/README_utils for details.

Graphics Control Module

These commands control device selection and certain aspects of the display.

BEGINDEVICES: selects one or more graphics devices for plotting and

ENDDEVICES: deselects plotting to those devices.

ERASE: erases the graphics display area,

VSPACE: controls the maximum size and shape of plots, and

SGF: controls certain options for the SAC Graphics File device.

Graphics Action Module

The commands in this module are mostly action-producing ones that create plots in various formats.

PLOT: plots each signal in memory on a separate plot.

PLOT1: plots a set of signals on a single plot with a common x axis and separate y axes.

PLOT2: plots a set of signals on a single plot with common x and y axes (i.e. an overlay plot).
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PLOTPK: produces a plot for the picking of arrival times, seismic phases, coda, etc. The format is
similiar to that of PLOT1. A cursor is used to do the picking. The picks go into the header and
can also be written into a HYPO pick file (OHPF) or an alphanumeric pick file (OAPF).

PLOTPM: generates a "particle-motion" plot on pairs of signals.

FILEID: controls the display of a file identification and

FILENUMBER: controls the display of file numbers on the sides of plots.

PICKS: controls the display of time picks on these plots.

SETDEVICE: lets you select a default graphics device to be used when plotting.

PLOTC: notates SAC plots and creates figures using cursor.

PLOTALPHA: reads alphanumeric data files on disk into memory and plots the data to the current
output device.

PLOTDY: creates a plot with error bars.

PLOTXY: plots one or more data files versus another data file.

PRINT: prints most recent .sgf file in memory.

SAVEIMG: saves displlayed image in one of several formats.

Graphics Environment Module

The commands in this module are mostly parameter-setting ones that control various parts of the plots produced
by the Graphics Action Module.

XLIM: control the plot limits for the y axes.

YLIM: control the plot limits for the x axes

XVPORT: control the location of the plot within the plotting area

YVPORT: control the location of the plot within the plotting area

TITLE: specify a title (TITLE)

XLABEL: x axes labels

YLABEL: y axes labels

PLABEL: set of general plot labels

There are several commands that control the displaying of the data itself:

LINE: controls linestyle selection and fill options

SYMBOL: controls symbol plotting, and

COLOR: controls color selection.

GTEXT: controls the quality and font of text used in plots and

TSIZE: controls the text size attributes. If you are using a multi-windowing workstation, you can
use the WINDOW command to set the location and shape of the graphics windows and the

BEGINWINDOW: command to select a specific graphics window for plotting.

BEGINFRAME: turns off automatic new frame actions between plots and

ENDFRAME: resumes automatic new frame actions. Combined with other graphics commands (es-
pecially XVPORT and YVPORT), these two commands can be used to create fairly complicated
plots.

XLIN: set the x axis to linear scaling

XLOG: set the x axis to logarithmic scaling
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YLIN: set the y axis to linear scaling

YLOG: set the y axis to logarithmic scaling

LINLIN: to set the scaling for both axes, x-linear, y-linear

LINLOG: to set the scaling for both axes, x-linear, y-log

LOGLIN: to set the scaling for both axes, x-log, y-linear

LOGLOG: to set the scaling for both axes, x-log, y-log

XDIV: control the spacing between labeled divisions

YDIV: control the spacing between labeled divisions

XFUDGE: change the "fudge factors" on the x axis

YFUDGE: change the "fudge factors" on the y axis

AXES: control the location of labeled axes

TICKS: control the location of tick marks.

GRID: control the plotting of grid lines

BORDER: control the plotting of a surrounding border.

XGRID: that let you independently control gridding on the x axis

YGRID: that let you independently control gridding on the y axis

QDP: allows one to speed up plotting by NOT plotting each data point.

There are several commands which control the display of logarithmic axes:

XFULL: control the plotting of full logarithmic decades,

YFULL: control the plotting of full logarithmic decades,

LOGLAB: controls the plotting of secondary labels, and

FLOOR: puts a minimum value on logarthimically scaled data.

LOADCTABLE: allows the user to select a new color table for use in image plots.

WAIT: tells SAC whether or not to pause between plots.

WIDTH: controls line-width selection for graphics devices.

NULL: controls the plotting of null values.
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SAC Graphics File

Overview

Each SAC Graphics File (SGF) contains all the information needed to describe a single picture, called a frame.
Prior to the mid90s when the C-based SAC2000 replaced the Fortran-based SAC, several utilities programs,
external to SAC, were written to perform various function on an SGF file: a program to merge up to several SGF
files, a program that directly displayed the SGF plots on the console, a program that listed the commands encoded
in an SGF file, ond sgftops, which converted an SGF file to a postscript file. Most of these programs were never
converted to C, and currently, sgftops is the only program that is maintained. A description of program sgftops
is given at the end of this section.

SGF Format

Overview

Each SGF contains all the information needed to describe a single picture (called a frame.) The filenames are
normally of the form "f nnn.sgf" where nnn is the three digit frame number. A translation program must be
written to convert these files to the format needed for any specific graphics device.

Physical Format

A SGF contains variable length records with a maximum record size of 2500 32-bit words. The first 32-bit word
of each record contains the length of that record, including this word count. They are written in binary format
for faster i/o. To keep them small and portable between different computer systems, all commands and data are
stored in 16-bit integer format, 2 bytes.

Command

The draw command (draw a line from the previous location to the new location) is the most common command.
This command is simply a pair of integers giving the new x and y locations. These integers are in the range 0 to
32000 in the x direction and 0 to 24000 in the y direction. (This produces an aspect ratio of 3:4 which maps well
to most output devices.)

Other Commands

The rest of the commands (with one exception) consist of a command identification number, a data count, and
zero or more data words. The identification number is a negative integer and tells the translation program what
operation is to be performed. The use of negative integers makes it easy to distinguish these commands from the
draw commands. The data count is the number of 16-bit data words, 2 bytes, contained in this command. This
format allows for the future addition of new commands. Also it allows each translation program to quickly skip
over commands that it cannot process. The one exception to this format is the null or no-op command. This has
an identification number of -1 and contains no data count and no data words. It is used to fill out a record to an
even number of 32-bit words. The table on the next page summarizes the current commands. A plot produced
from a simple SGF is also included, along with a table describing the contents of that simple SGF.

SGF Commands Table
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ID Count Command Description
-1 0 No-op No Operation
-2 0 End End of picture.
-3 2 Move Move to the location contained in the two (x,y) data words.
-4 1 Color Change color to value contained in data word.
-5

∙

Text Write hardware text at current location. Data count contains
number of 16-bit words of text plus one. First data word is the
number of characters in the text. Rest of data words contain
the text, two characters per word. Last byte of last word is not
significant if character count is odd.

-6 2 Text Size Change hardware text size. Data words contain the text width
and height as integer fractions of the maximum coordinate sys-
tem size (32000). For example a value of 320 would set text size
to 0.01 or one percent of the full plot size.

-7 1 Line Style Change linestyle to value contained in data word.
-8 1 Plot Size Change the physical size of the plot. Data word is the desired

length in the x direction in 0.001 inch increments. Default value
is 10000 which is equivalent to 10.0 inches. None of the SGF
conversion programs currently make use of this option.

-9 1 Line Width Change the linewidth to value contained in data word.
-10 3 Polygon Fill Fill a polygon with a gray value in the first data word by moving

to data words 2 and 3.
-11 5 Plot Filled Rectangle Fill a rectangle defined at data word 1 and 2 (x, y) with a width

and height data words 3 and 4 and a color at data word 5.
-12 1 Text Angle Set the Angle of the Text
-13 4 Color Image Plot a color image of width data word 1 and height data word 2

at data word 3 and 4 (x, y).
-14 1 color Fill flag Fill polygon with current color. Can be used to fill positive and

negative parts of waveform with different colors

PROGRAM SGFTOPS

Plots from SAC can be saved to a file as a Sac Graphics Format (SGF) file. Program sgfops converts a binary
.sgf file to a postscript file. As of version 101.4, sgftops can handle .sgf files with eithr endian.

The source code can be found in sac/utils/sgftops.c, and it is built and put in sac/bin at the time SAC is built
and installed.

Entering sgftops with no arguments produces:

Usage: sgftops sgf_file ps_file [line_width scale_id]

where:

line_width = 1, 1.5, 2, 3, etc.

scale_id = i (landscape mode plus id);
scale_id = s (shift,rotate & scale);
scale_id = si (s plus id).

time/date in id is file creation date for the .sgf file. Example
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sgftops foo.sgf foo.ps 2 si

Produces a plot with line thick=2 and ID at the bottom. Prompts further for translation, rotation and scale.

The origin of plot is lower left corner of portrait mode and angle is Counter Clockwise (CCW)

The reason that sgftops default is landscape is that when it was first written (20+ years ago), the major use of a
postscript file was to be ported to a postscript printr.

PLOT-CONVERSION SCRIPTS

There are two scripts in sac/bin that call sgftops and produce a screen display (sgftox.csh) or an EPS file,
sgftoeps.csh. Enter the script names with no arguments to get further information. Both, as written, require
that the program gs is in your path. Script sgftox.csh uses gs to display the image on the screen, but it is
easily modified to use other available postscript file viewers, such as gv, ggv, or evince. Script sgftoeps.csh can
be modified to produce a PDF file if script epstopdf is on the system and in the path. Note that the output file
for both sgftoeps.csh and sgftox.csh is in portrait format.
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Calling SAC from Scripts

Overview

The SAC program can be run from a variety of scripting languages and shells. Provided below are a few examples
of using SAC within the bounds of either a shell or high-level scripting language. Included are examples for sh,
csh, perl and python. Other languages very likely have a similar format. Terminator string EOF is required to
start at the first character of a line or the scripts will not work.

Setting the environment variable SAC_DISPLAY_COPYRIGHT to 0 will force SAC not to display the copyright
header information. In the sh shell the option is

export SAC_DISPLAY_COPYRIGHT=0

and in csh the syntax is

setenv SAC_DISPLAY_COPYRIGHT 0

Simple Examples

sh

#!/bin/sh

sac <<EOF
fg seismo
lh columns 2
quit
EOF

csh

#!/bin/csh

sac <<EOF
fg seismo
lh columns 2
quit
EOF

perl

#!/usr/bin/env perl

open(SAC, "| sac ") or die "Error opening sac";
print SAC "fg seismo\n";
print SAC "lh columns 2\n";
print SAC "quit\n";
close(SAC);

python
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#!/usr/bin/env python

import subprocess

p = subprocess.Popen([’sac’],
stdout = subprocess.PIPE,
stdin = subprocess.PIPE,
stderr = subprocess.STDOUT )

out = p.communicate(’’’
fg seismo
lh columns 2
quit
’’’)

print out[0]

Extended Examples

The following examples take a set of SAC files in the current directory and low pass filter then at 1.0 Hz with a 2
pass, 4th order filter. The shell examples, sh and csh, require an invocation of sac for each file, but the scripting
languages, perl and python, do not. The python and perl scripts use more complex and more powerful string
handling than do the shell scripts.

sh

#!/bin/sh

for file in *.SAC; do
sac <<EOF
echo on
read $file
rmean
rtrend
lp co 0.1 p 2 n 4
write ${file}.filtered
quit

EOF
done

csh

#!/bin/csh

foreach file ( *SAC )
sac <<EOF
echo on
read $file
rmean
rtrend
lp co 0.1 p 2 n 4
write ${file}.filtered
quit
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EOF
end

perl

#!/usr/bin/env perl

open(SAC, "| sac ") or die "Error opening sac";
foreach $file ( glob("*.SAC") ) {

print SAC qq[
read $file
rmean
rtrend\
lp co 0.1 p 2 n 4
write ${file}.filtered

];
}
print SAC "quit\n";
close(SAC);

python

#!/usr/bin/env python

import subprocess
import glob

p = subprocess.Popen([’sac’],
stdout = subprocess.PIPE,
stdin = subprocess.PIPE,
stderr = subprocess.STDOUT )

s = "echo on\n"
for filename in glob.glob("*.SAC"):

s += ’’’
read %(file)s
rmean
rtrend
lp co 0.1 p 2 n 4
write %(file)s.filtered

’’’ % ( {’file’: filename } )
s += "quit\n"
out = p.communicate( s )
print out[0]
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SAC Output Messages

Number Translation
0002 Converting ascii to float - possible bad format.
0000 FILE I/O SERVICE LEVEL
0100 Operating system error
0101 opening file
0102 creating file
0103 for new file
0104 closing file
0105 destroying file
0106 Formatting error encountered while reading file
0107 File unit is in use:
0108 File does not exist:
0109 File already exists:
0110 Illegal file unit number:
0111 File unit is not in use:
0112 truncating file
0113 Illegal file type for file
0114 reading file
0115 writing file
0116 No available file units.
0117 Illegal hardcopy device:
0118 Can’t send to
0119 checking existence of file
0120 No wfdisc file specified
0121 Error encoding XDR output file
0122 Partial updates not allowed for XDR file.
0123 Error decoding XDR input file
0124 Can’t change to that directory. Check your permissions.
0125 csspickprefs not formatted properly.
0126 .wfdisc filenames require an explicit ’.’ on the command line:
0127 No data file specified.
0128 CSS file not version 3.0:
0129 Cannot form a path to that file
0130 XDR and ALPHA options are incompatible
0131 sac/datagen data directory not found.
0200 GRAPHICS SERVICE LEVEL
0201 Illegal graphics device
0202 Current graphics device does not have cursor capability.
0203 Can’t create X window. Check DISPLAY environmental.
0300 ARRAY MANAGER FUNCTION
0301 Out of memory.
0302 Memory manager links clobbered for block starting at:

... continued on next page
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Number Translation
0400 ENLARGE DECOMPRESSION
0401 Enlarge: input record too small
0402 Enlarge: input record too large
0403 Enlarge: record has too many samples
0404 Enlarge: nmap
0405 Enlarge: ndiffs
0406 Enlarge: unexpected end-of-file
0407 Enlarge: nx, nrecl disagree
0408 Enlarge: too few samples found
0409 Enlarge: Number given in record header:
0410 Enlarge: Number of samples decompressed:
0411 Enlarge: inconsistent last values
0412 Enlarge: Last value of original data:
0413 Enlarge: Last value from decompression:
0800 USER SERVICE LEVEL
0801 File is not evenly spaced:
0802 File is not unevenly spaced:
0803 Data truncated to fit in user space for file
0000 GENERAL SERVICE LEVEL
0901 SAC programming logic error
0902 Can’t take logarithm of a non-positive number.
0903 Please answer with a YES or NO.
0904 DISTAZ calcuation failed internal check for entry
0905 Time field must be at least 12 characters long.
0906 Date field must be at least 18 characters long.
0907 Bad time field entry detected:
0908 Bad date field entry detected:
0909 Bad julian date field entry detected:
0910 Maximum array that can be sorted is
0912 (A,I6,I4,I3,I3,I3,I4)
0913 Interrupt received.
0914 Illegal base name:
0915 Illegal base numbers:
0916 File name too long:
0917 Size of passed array(s) too small.
0918 Can’t read or write into the global variable file.
0919 SAC data array is too small to execute this command.
0920 Character list delimiter found in character entry:
0921 Not enough room in character list for character entry:
0922 Text would exceed the maximum available space:
0923 Expected to find option in range t0 - t9; none found.
1000 COMMAND MODULE
1001 Bad command syntax at symbol

... continued on next page

108



Number Translation
1002 Bad value for
1003 Value out of allowed range at symbol
1004 Illegal command.
1005 Illegal subprocess command.
1006 Length of string variable exceeded at symbol
1007 Not enough room for command file
1008 No command file name given.
1009 Too many command file arguments at
1010 Wrong number of command file arguments
1011 Bad command file syntax.
1012 Following option is not currently available:
1013 Obsolete command. Please use
1014 Undefined variable in command:
1015 Too many levels of nesting to execute macro
1016 Terminating execution of macro
1017 Illegal macro command:
1018 Exceeded maximum number of nested inline functions:
1019 Incorrect nesting of inline functions:
1020 Invalid inline function name:
1021 Correct number of arguments for this inline function call is
1022 Illegal arithmetic operation in inline function:
1023 All arguments to this inline function must be numeric.
1024 This argument in inline function should be an operator:
1025 This argument in inline function should be numeric:
1026 Maximum number of arguments for this inline function call is
1027 Exceed maximum number of external commands =
1028 External command does not exist:
1029 Command line too long.
1030 There is no year 0,
1100 EXECUTIVE MODULE
1101 Will terminate production run.
1102 Remainder of command file not executed.
1103 No help package is available.
1104 No help information is available for
1105 Error reading help information for
1106 Not a valid SAC command.
1107 Invalid entry in sitechan file
1108 PLOTTING FUNCTION
1109 UNUSED
1110 No news is good news.
1111 Error executing system command, insufficient memory.
1112 Error finding program
1113 Error starting program

... continued on next page
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Number Translation
1114 Error ending program
1115 This option is not currently implemented:
1116 This function is not available on the
1117 Can’t evaluate expression because of bad operand value:
1118 Maximum number of open transcript files is
1119 Maximum number of active traceable variables is
1200 VARS FUNCTION
1201 Could not find VARS variable
1202 Maximum number of vars sections exceeded:
1203 Could not find VARS section
1204 Incorrect data type for VARS variable
1205 Could not delete VARS variable
1206 VARS option not currently implemented:
1207 Bad data block flag for VARS variable
1208 Disk file is not in VARS format:
1209 No current vars section has been defined.
1210 Bad input to subroutine
1211 VARS list already exists:
1234 RMS Noise greater than RMS Signal, setting to 0.0
1300 DATA FILE MODULE
1301 No data files read in.
1302 Maximum memory size exceeded.
1303 Overwrite flag is not on for file
1304 Illegal operation on data file
1305 Illegal operation on time series file
1306 Illegal operation on unevenly spaced file
1307 Illegal operation on spectral file
1308 Maximum smoothing half width is
1309 Maximum special header list length is
1310 Illegal data file list number
1311 No list of filenames to write.
1312 Bad number of files in write file list:
1313 Illegal relative time pick
1314 Data file list can’t begin with a number.
1315 Maximum number of files in data file list is
1316 Can’t smooth an unevenly spaced data file.
1317 The following file is not a SAC data file:
1318 Header in disk file is out of date:
1319 Bad data found in card image data file header.
1320 Available memory too small to read file
1321 Can’t cut spectral file
1322 Undefined starting cut for file
1323 Undefined stop cut for file

... continued on next page
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Number Translation
1324 Start cut less than file begin for file
1325 Stop cut greater than file end for file
1326 Start cut greater than file end for file
1327 Stop cut less than file begin for file
1328 Start cut greater than stop cut for file
1329 Corrected by filling with zeros.
1330 Corrected by using file begin.
1331 Corrected by using file end.
1332 Fatal error condition.
1333 Unable to read some files
1334 Can’t read or write DS2 formatted data files
1335 Illegal operation---only data file headers in memory.
1336 Undefined header field value.
1337 Illegal header field name.
1338 Too many data points to perform operation for file
1339 Too few data points to perform operation for file
1340 data points outside allowed range contained in file
1341 Can’t write headers because CUT is ON.
1342 Illegal number of files in data file list:
1343 Formatting error while reading file
1344 Problem writing GSE file
1350 Could not find requested header entry
1351 Not enough room in header for new header entry
1352 Can not delete header entry
1353 Output variable too short for header entry
1354 No end-of-header found.
1355 Incorrect data type for header entry
1356 Can’t cut unevenly spaced data file
1357 Decoding formatted alphanumeric data card.
1358 Maximum number of free format entries exceeded:
1359 Maximum number of alphanumeric data channels exceeded:
1360 Illegal character in alphanumeric content descriptor:
1361 Can only have one X channel per file.
1362 Must have at least one Y channel per file.
1363 Illegal data file list name:
1364 No data file list specifier (name or number) given.
1365 Illegal enumerated header field value:
1366 This command requires that data in memory be of type XYZ:
1377 Unable to adjust the time in the SDD header
1378 Illegal operation on XYZ data
1379 No SORT parameters given
1380 Too many SORT parameters:
1381 Not a valid SORT parameter:

... continued on next page
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Number Translation
1382 ALL and COMMIT options both set, ignoring COMMIT option.
1383 SORT failed
1384 ASCEND and DESCEND options go after the related header in command line
1385 No worksets in memory.
1386 Could not get Workset name.
1387 No file name specified.
1388 Reference time not equal to zero: Reference time is
1389 NVHDR, NPTS, NWFID, NORID, and NEVID cannot be changed with CHNHDR
1390 KSTNM and KCMPNM cannot be undefined
1393 Cannot Write Table of file:
1394 Unexpected option on PICKPREFS; expecting ON, OFF, or blank.
1400 SEISMGR SAC INTERFACE
1401 Data may be corrupt. Proceed with caution.
1402 Data may have been removed. Proceed with caution.
1403 Cannot CUTIM: would result in too many files in memory.
1404 Cannot CUTIM: would exceed length of filename list (use shorter filenames)
1405 Cannot CUTIM: illegal cut point information
1406 Data has been corrupted, re-read or regenerate new data.
1500 GRAPHICS ACTION MODULE
1501 Floor used
1502 Bad cursor position. Please retry.
1503 Invalid character. Please retry.
1504 Probable discrepancy in reference date fields in headers.
1505 Must specify at least two data file list names or numbers.
1600 SPECTRAL ANALYSIS MODULE
1601 File and filter sampling intervals not equal for
1602 Inadequate memory to perform FIR filter using DFT.
1603 Inadequate memory to perform FIR filter.
1604 Following file now in amplitude-phase format:
1605 Following file now in real-imaginary format:
1606 Maximum allowable DFT is
1607 DC level after DFT is
1608 Bad Wiener filter noise window for file
1609 Numerical instability in Wiener filter for file
1610 Unwrap failed at data point for file
1611 Corner frequency greater than Nyquist for file
1612 Window length exceeds maximum:
1613 Minimum size of data file for Hilbert transform is
1614 Numerical instability in Wiener; will retry with epsilon =
1615 Noise window outside of data window
1616 Noise window larger than data window
1617 Noise window partially outside of data window
1618 Order = 0 in HQR

... continued on next page
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Number Translation
1619 HQR failed, too many iterations
1620 Gain out of range, Filterdesign failed for Whitening coefficients for file:
1700 UNARY OPERATIONS MODUDE
1701 Can’t divide by zero.
1702 Non-positive values found in file
1800 BINARY OPERATIONS MODULE
1801 Header field mismatch:
1802 Time overlap:
1803 No binary data files read in.
1804 Illegal binary data file list number:
1805 Time gap (zeros added):
1900 EVENT ANALYSIS MODULE
1901 Can’t open HYPO pick file
1902 Can’t open card image pick file
1903 Can’t close previous card image pick file.
1904 All global card image pick files are in use.
1905 Need an integer. Retry.
1906 Need an integer in the range 0 to 4. Retry.
1907 HYPO line already written.
1908 HYPO pick file not open.
1909 Can’t compute waveform.
1910 No valid pick found for the following file(s):
1911 Can’t estimate back azimuth because of
2000 SIGNAL CORRECTION MODULE
2001 Command requires an even number of data files.
2002 Following files are not an orthogonal pair:
2003 Following files are not both horizontals:
2004 Insufficient header information for rotation:
2005 Points outside file’s time window set to zero =
2006 Gains must be monotonically decreasing.
2007 Data clipped for file
2008 Requested begin time is less than files begin time. Output truncated.
2009 Requested end time is greater than files end time. Output truncated.
2010 Number of points in pair of files are not equal:
2011 Cannot read filter coefficient file:
2012 Interpolate data dx not positive:
2100 INSTRUMENT CORRECTION MODULE
2101 Need free period and magnification for ELMAG.
2102 Need number of zeros for EYEOMG.
2103 Need number of zeros, free period, scale and damping factors for GENL.
2104 Need an instrument sub-type for
2105 Unknown instrument sub-type for
2106 Need free period and damping factor for LLL sub-type BB.

... continued on next page
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Number Translation
2107 Need free period, damping factor, and corner frequency for PORT.
2108 Maximum number of poles exceeded in POLEZERO file:
2109 Maximum number of zeros exceeded in POLEZERO file:
2110 Illegal option in POLEZERO file:
2111 Taper frequency limits are invalid. No taper applied.
2112 Incorrect value for free period or magnification for ELMAG.
2113 Need free period, damping, corner, gain, and highpass for REFTEK.
2114 No response information for this channel in response file.
2115 No response file found in database
2116 Not a recognized response file type.
2117 SUBTYPE and FNAME options not compatible with DBASE, filenames ignored.
2118 No transfer function applied.
2120 Interpolation Failed: adjacent frequencies indistinguishable. Freq:
2121 NDC transfer had an OS error.
2122 NDC transfer had an application error.
2123 NDC transfer had a SQL error.
2124 NDC transfer had an unknown error.
2125 Interpolate begin value too large:
2126 Bad pole value in file
2127 Bad zero value in file
2200 GRAPHICS DEVICE MODULE
2201 First three elements in color table entry must be numeric:
2202 Size of passed color table arrays are too large.
2203 Bad values in color table arrays found and corrected:
2204 opening font file:
2205 reading font file:
2300 GRAPHICS DEVICE 1
2301 No TERM environmental variable set.
2400 GRAPHICS DEVICE 2
2401 Can’t find an unused SAC Graphics File.
2402 Can’t PRINT on ENDFRAME if SGF device is not on.
2403 Ignoring PRINT option in the middle of a frame.
2404 SPECTROGRAM, SONOGRAM, and IMAGE only PRINT if SGF is the only graphics device

running
2405 Cannot PRINT: no SGF files produced.
2500 GRAPHICS DEVICE 3
2600 GRAPHICS DEVICE 4
2700 CONDITIONAL EXECUTION MODULE
2701 Syntax error in DO statement
2702 Do loop list exceeds maximum number of characters =
2703 Can’t evaluate logical expression:
2704 Reading macro file
2705 Searching macro file for

... continued on next page
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Number Translation
2800 NEURAL NETWORK MODULE
2801 All data files must have the same number of data points.
2900 XYZ (3-D) DATA PROCESSING MODULE
2901 No xyz data in memory.
2902 Zoomed input too large to display. Maximum dimension is
3000 CONTOURING MODULE
3001 Exceeded maximum number of contouring levels:
3501 Plot Label number exceeds total number of current labels:
4000 NUMBER CONVERSION MODULE
4002 Number out of range
4003 Number too small, near -inf
4004 Number too large, near inf
4005 Number string contains non-numeric characters
4006 Number string contains extra non-numeric characters
4007 Number string not converted
4008 Number below resolution, number too small, near 0.0
5000 SPECTRAL ESTIMATION SUBPROCESS.
5001 Spectral Estimation Subprocess.
5002 Only one file can be processed by SPE at a time.
5003 No correlation function calculated.
5004 No spectral estimate calculated.
5005 Error within Dave Harris’s subroutine package.
5006 A single evenly spaced data file is not in memory.
5007 Confidence limits option not currently implemented.
5000 SIGNAL STACKING SUBPROCESS.
5101 Signal Stacking Subprocess.
5102 No files in stack file list.
5103 No time window defined.
5104 No distance defined for file(s)
5105 Time window mismatch:
5106 File name not in file list:
5107 File number not in file list:
5108 Maximum length of stack file list exceeded:
5109 Sampling intervals are not equal.
5110 Illegal velocity model number:
5111 Error in calculating velocity model values.
5112 Insufficient input for velocity model calculation.
5113 No valid stack sum exists.
5120 Cannot use both model and file. Continuing with model.
5121 Data file expected, none found.
5122 Distance out of range of data; blackboard variable not set:
5123 No blackboard variable name given, no variable set.

... continued on next page
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Number Translation
5124 TAUP and MODEL options are incompatable in TRAVELTIME. Input file required (no longer

relevant)
5125 No phases found
5200 FIR FILTER DESIGN SUBPROCESS
5300 FK module
5301 Station and event latitudes and longitudes must be set for this command.
5302 Unable to determine offsets, type HELP BEAM
5303 OFFSET set to REF, but no reference data, use REFERENCE option
5304 OFFSET set to USER, but some files missing USER7 or USER8
5305 OFFSET set to STATION, but some files missing STLA or STLO
5306 OFFSET set to EVENT, but some files missing EVLA or EVLO
5307 Illeagle setting for OFFSET option
5308 Number of files must be between 3 and MXLENS
6000 DATA SET MODULE
6001 Can’t find file in data-set file index.
6002 No more data-sets available.
6003 Max number of files in data-set memory. No more room.
6004 Invalid data set name. Must be a character string.
6005 Another data-set already exists by this name
6006 Maximum allowed number of current data-set exceeded.
6008 Bad syntax in command.
7006 Illegal window size
7007 Location could not be transformed
7008 Exceeded maximum size of a data array:
7009 Illegal option found on card:
7010 Unable to open ZONESDATA file.
7011 Unable to open gctp messages file tmp.????.
8001 SETMAT takes only one parameter.
8002 Cannot link to MATLAB shared object:
8003 Cannot link to a MATLAB function:
8004 Cannot start MATLAB
8100 ORACLE DATABASE CONNECTION Oracle no longer supported
8101 command or option not operational; requires Oracle version
8201 No data points found for gettime
9000 MERGE
9005 Amplitude mismatch

LATEST REVISION

July 2011 (Version 101.5)
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2 SAC Commands

Functional Command Listing

Executive Function: Information and Control

abbrev: Abbrevations for SAC Commands

about: Displays version and copyright information

intro: Provides a brief introduction to SAC

help: Prints information about SAC commands and features.

printhelp: Command for printing help pages from within SAC

comcor: Controls SAC’s command correction option.

inicm: Reinitializes all of SAC’s common blocks.

production: Controls the production mode option.

report: Informs the user about the current state of SAC.

trace: Controls the tracing of blackboard and header variables.

echo: Controls echoing of commands to the terminal.

history: Provides easy access to previous commands (like unix history)

message: Sends a message to the user’s terminal.

quit: Terminates SAC.

quitsub: Terminates the currently active subprocess.

pause: Sends a message to the terminal and pauses.

transcript: Controls output to the transcript file.

Executive Function: Processing and Macros

evaluate: Evaluates simple arithmetic expressions.

mathop: Select the sequencing order for inline functions

getbb: Gets (prints) values of blackboard variables.

setbb: Sets (defines) values of blackboard variables.

unsetbb: Unsets (deletes) blackboard variables.

installmacro: Installs macro files in the global SAC macro directory.

macro: Executes a SAC macro file.

setmacro: Defines directories to search when executing a SAC macro file.

systemcommand: Executes system commands from SAC.

Data File Module

data: Search for, build requests, and download data

event: Search for events by region, magnitude, and date

metadata: Search for events by region, magnitude, and date

response: Download responses in sac-polezero or evalresp format

station: Search for station by region, identifier, channel, and date
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read: Reads data from SAC data files on disk into memory.

write: Writes data in memory to disk.

readdb: Reads data from an Oracle database NO LONGER FUNCTIONAL

readcss: Reads CSS format data files into SAC.

writecss: Writes CSS format data files from SAC.

readgse: Reads GSE2.0 format data

writegse: Writes GSE2.0 format data

readsuds: Reads PC Suds data

readtable: Reads alphanumeric data files on disk into memory.

datagen: Generates sample data files and stores them in memory.

funcgen: Generates a function and stores it in memory.

convert: Converts data files from one format to another.

commit: Commits (copies) SAC’s data to the I/O buffers

rollback: Replaces active data with data last committed to the I/O buffers

recalltrace: Rolls back waveforms and selected headers from I/O buffers and commits the rest of the
headers.

readhdr: Reads headers from SAC data files into memory.

writehdr: Overwrites the headers on disk with those in memory.

listhdr: Lists the values of selected header fields.

chnhdr: Changes the values of selected header fields.

copyhdr: Copies header variables from one file in memory to all others.

readbbf: Reads a blackboard variable file into memory.

writebbf: Writes a blackboard variable file to disk.

cd: Change the working directory within SAC

cut: Defines how much of a data file is to be read.

cuterr: Controls errors due to bad cut parameters.

cutim: Cuts data after its already been read into memory

deletechannel: Deletes selected channels from memory

pickauthor: Controls author name when reading picks.

pickphase: Controls phase names to load into the SAC headers.

readerr: Controls errors that occur during the read command.

synchronize: Synchronizes the reference times of all files in memory.

sort: Sorts waveforms based on selected header variables

wild: Sets wildcard characters used in read commands to expand

Graphics Environment Module

saveimg: Saves displayed graphics windows in a variety of formats.

xlim: Determines the plot limits for the x axis.

ylim: Determines the plot limits for the y axis.

linlin: Turns on linear scaling for the x and y axes.

linlog: Turns on linear scaling for x axis and logarithmic for y axis.
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loglin: Turns on logarithmic scaling for x axis and linear for y axis.

loglog: Turns on logarithmic scaling for the x and y axes.

xlin: Turns on linear scaling for the x axis.

xlog: Turns on logarithimic scaling for the x axis.

ylin: Turns on linear scaling for the y axis.

ylog: Turns on logarithimic scaling for the y axis.

xdiv: Controls the x axis division spacing.

ydiv: Controls the y axis division spacing.

xfull: Controls plotting of x axis full logarithmic decades.

yfull: Controls plotting of y axis full logarithmic decades.

xfudge: Changes the x axis "fudge factor."

yfudge: Changes the y axis "fudge factor."

axes: Controls the location of annotated axes.

border: Controls the plotting of a border around plots.

grid: Controls the plotting of grid lines in plots.

xgrid: Controls plotting of grid lines in the x direction.

ygrid: Controls plotting of grid lines in the y direction.

ticks: Controls the location of tick marks on plots.

title: Defines the plot title and attributes.

xlabel: Defines the x axis label and attributes.

ylabel: Defines the y axis label and attributes.

plabel: Defines general plot labels and their attributes.

filenumber: Controls plotting of filenumbers next to each file.

fileid: Controls the file id display found on most SAC plots.

picks: Controls the display of time picks on most SAC plots.

gtext: Controls the quality and font of text used in plots.

tsize: Controls the text size attributes.

loglab: Controls labels on logarithmically scaled axes.

color: Controls color selection for color graphics devices.

line: Controls the linestyle selection in plots.

symbol: Controls the symbol plotting attributes.

qdp: Controls the "quick and dirty plot" option

width: Controls the width of data lines

beginframe: Turns off automatic new frame actions between plots.

endframe: Resumes automatic new frame actions between plots.

beginwindow: Begins plotting to a new graphics window.

window: Sets the location and shape of graphics windows.

xvport: Defines the viewport for the x axis.

yvport: Defines the viewport for the y axis.

floor: Puts a minimum value on logarithmically interpolated data.

null: Controls plotting of predefined null data values.
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Graphics Control Module

setdevice: Defines a default graphics device to use in subsequent plots.

begindevices: Begins plotting to one or more graphics devices.

enddevices: Terminates one or more graphics devices.

vspace: Changes the maximum size and shape of plots.

sgf: Controls the SAC Graphics File device options.

pause: Tells SAC to pause for specified length of time.

wait: Tells SAC whether or not to pause between plots.

print: Print the most recent SGF file. Many plot commands also have a print option.

Graphics Action Module

plot: Generates a single-trace single-window plot.

PLOT1: Generates a multi-trace multi-window plot.

PLOT2: Generates a multi-trace single-window (overlay) plot.

plotpk: Produces a plot for the picking of arrival times.

plotpktable: Table describing PLOTPK options.

plotdy: Plots data with error bars

plotxy: Plots one or more data files versus another data file.

plotalpha: Reads data from Tables and plots with labels

plotc: Annotates SAC plots and creates figures using cursor.

plotctable: Table describing PLOTC options.

plotsp: Plots spectral data in several different formats.

plotpm: Generates a "particle-motion" plot of pairs of data files.

erase: Erases the graphics display area.

Spectral Analysis Module

fft: Performs a discrete Fourier transform.

keepam: Keep only the amplitude component of the spectral file.

ifft: Performs an inverse discrete Fourier transform.

plotsp: Plots spectral data in several different formats.

writesp: Writes spectral files to disk as "normal" data files.

readsp: Reads spectral files written by @writesp@.

lowpass: Applies an IIR lowpass filter.

highpass: Applies an IIR highpass filter.

bandpass: Applies an IIR bandpass filter.

bandrej: Applies an IIR bandreject filter.

wiener: Applies an adaptive Wiener filter.

fir: Applies a finite-impulse-response filter.

hanning: Applies a "hanning" window to each data file.

unwrap: Computes amplitude and unwrapped phase.
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khronhite: Applies a Khronhite filter to the data.

benioff: Applies a Benioff filter to the data.

divomega: Performs integration in the frequency domain.

mulomega: Performs differentiation in the frequency domain.

hilbert: Applies a Hilbert transform.

convolve: Computes the convolution of waveforms.

correlate: Computes the auto- and cross- correlation functions.

envelope: Computes the envelope function using a Hilbert transform.

Unary Operations Module

add: Adds a constant to each data point.

sub: Subtracts a constant from each data point.

mul: Multiplies each data point by a constant.

div: Divides each data point by a constant.

sqr: Squares each data point.

sqrt: Takes the square root of each data point. Error if any are negative

int: Performs integration using the trapezoidal rule.

abs: Takes the absolute value of each data point.

log: Takes the natural logarithm of each data point.

LOG10: Takes the base 10 logarithm of each data point.

exp: Computes the exponential of each data point.

EXP10: Computes the base 10 exponential (10.**y) of each data point.

dif: Differentiates data in memory.

Note: ADD, SUBTRACT, MULTIPLY, DIVIDE, SQRT, ABSolute, and EPS are also INLINE functions.

Binary Operations Module

merge: Merges (concantenates) a set of files to data in memory.

addf: Adds a set of data files to data in memory.

subf: Subtracts a set of data files from data in memory.

mulf: Multiplies a set of files by the data in memory.

divf: Divides data in memory by a set of data files.

binoperr: Controls errors that can occur during binary file operations.

Signal Correction Module

rq: Removes the seismic Q factor from spectral data.

rglitches: Removes glitches and timing marks.

rtrend: Removes the linear trend.

rmean: Removes the mean.

taper: Applies a symmetric taper to each end of data.

rotate: Rotates a pair of data components through an angle.
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rotinc: Rotate a set of 3 perpendicular components.

interpolate: Interpolates evenly or unevenly spaced data to a new sampling rate.

quantize: Converts continuous data into its quantized equivalent.

stretch: Stretches (upsamples) data, including an optional interpolating FIR filter.

reverse: Reverse the order of data points.

smooth: Applies an arithmetic smoothing algorithm to the data.

decimate: Decimates (downsamples) data, including an optional anti-aliasing FIR filter.

Event Analysis Module

ohpf: Opens a HYPO formatted pick file.

chpf: Closes the currently open HYPO pick file.

whpf: Writes auxiliary cards into the @hypo@ pick file.

oapf: Opens a alphanumeric pick file.

capf: Closes the currently open alphanumeric pick file.

apk: Applies an automatic event picking algorithm.

plotpk: Produces a plot for the picking of arrival times.

plotpktable: Table describing PLOTPK options.

pickauthor: Controls author name when reading picks.

pickphase: Controls phase names to load into the SAC headers.

Signal Measurement Module

mtw: Determines the measurement time window for use in subsequent measurement commands.

markvalue: Searches for and marks values in a data file.

marktimes: Marks files with travel times from a velocity set.

markptp: Measures and marks the maximum peak to peak amplitude of each signal within the
measurement time window.

rms: Computes the root mean square of the data within the measurement time window.

XYZ (3-D) Data Module

spectrogram: Calculates a spectrogram using all of the data in memory.

sonogram: Calculates a sonogram using all of the data in memory.

image: Plots 3D data files as color images

loadctable: Loads specified color table into memory

grayscale: Produces grayscale images of data in memory.

contour: Produces contour plots of data in memory.

zlevels: Controls the contour line spacing in subsequent contour plots.

zlines: Controls the contour linestyles in subsequent contour plots.

zticks: Controls the labeling of contour lines with directional tick marks.

zlabels: Controls the labeling of contour lines with alphanumeric labels.

zcolors: Controls the color display of contour lines.

122



Instrument Correction Module

transfer: Performs deconvolution to remove an instrument response and convolution to apply another
instrument response.

transfertable: Details for instrument types in transfer

Subprocess Invoking Module

spe: Initializes the Spectral Estimation Subprocess. SPE Commands

sss: Initializes the Signal Stacking Subprocess. SSS Commands

Analysis Tools

3C: GUI based three component processing tool

convolve: Computes the convolution of waveforms.

correlate: Computes the auto- and cross- correlation functions.

envelope: Computes the envelope function using a Hilbert transform.

filterdesign: Graphicly display the filter’s digital vs. analog characteristics.

linefit: Fits a line to data in memory and write results to blackboard

mat: Runs a MATLAB interactively or as a script on data in SAC

map: Uses GMT to create a MAP based on data in SAC

whiten: Whitens the data in memory

FK Spectrum

bbfk: Computes broadband frequency-wavenumber (FK) spectral estimate.

beam: Computes the beam.

Alphabetical Comamnd Listing

3c: Launch a Matlab GUI for manipulating 3-component data.

abbrev: Abbrevations for SAC Commands

about: Displays version and copywrite information.

absolutevalue: Takes the absolute value of each data point.

add: Adds a constant to each data point.

addf: Adds a set of data files to data in memory.

apk: Applies an automatic event picking algorithm.

arraymap: Produces a map of the array or "coarray" using all files in SAC memory.

axes: Controls the location of annotated axes.

bandpass: Applies an IIR bandpass filter.

bandrej: Applies an IIR bandreject filter.

bbfk: Computes the broadband frequency-wavenumber (FK) spectral estimate, using allfiles in SAC
memory.

beam: Computes the beam using all data files in SAC memory.
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begindevices: Begins plotting to one or two of the two possible graphics devices.

beginframe: Turns off automatic new frame actions between plots.

beginwindow: Begins plotting to a new graphics window.

benioff: Applies a Benioff filter to the data.

binoperr: Controls errors that can occur during binary file operations.

border: Controls the plotting of a border around plots.

capf: Closes the currently open alphanumeric pick file.

cd: Change the working directory within SAC.

chnhdr: Changes the values of selected header fields.

chpf: Closes the currently open HYPO pick file.

color: Controls color selection for color graphics devices.

comcor: Controls SAC’s command correction option.

commit: Commits (dopies) SAC data to the I/O buffers

contour: Produces contour plots of data in memory.

convert: Converts data files from one format to another.

convolve: Compute the convolution of a master signal with itself and one or more other signals.

copyhdr: Copies header variables from one file in memory to all others.

correlate: Computes the auto- and cross- correlation functions.

crr: Commit, Rollback, Recalltrace

cut: Defines how much of a data file is to be read.

cuterr: Controls errors due to bad cut parameters.

cutim: Cuts files in memory. Can cut multiple segments from each file.

data: Search for, build requests, and download data

datagen: Generates sample data files and stores them in memory.

decimate: Decimates (downsamples) data, including an optional anti-aliasing FIR filter.

deletechannel: Deletes one or more files from the file list.

dif: Differentiates data in memory.

div: Divides each data point by a constant.

divf: Divides data in memory by a set of data files.

divomega: Performs integration in the frequency domain.

echo: Controls echoing of input and output to the terminal.

enddevices: Terminates one or more graphics devices.

endframe: Resumes automatic new frame actions between plots.

envelope: Computes the envelope function using a Hilbert transform.

erase: Erases the graphics display area.

evaluate: Evaluates simple arithmetic expressions.

event: Search for events by region, magnitude, and date

exp: Computes the exponential of each data point.

exp10: Computes the base 10 exponential (10.**y) of each data point.

fft: Performs a discrete Fourier transform.

fileid: Controls the file id display found on most SAC plots.
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filenumber: Controls the file number display found on most SAC plots.

filterdesign: Produces a graphic display of a filter’s digital vs. analog characteristics

fir: Applies a finite-impulse-response filter.

floor: Puts a minimum value on logarithmically scaled data.

funcgen: Generates a function and stores it in memory.

getbb: Gets (prints) values of blackboard variables.

grayscale: Produces grayscale images of data in memory.

grid: Controls the plotting of grid lines in plots.

gtext: Controls the quality and font of text used in plots.

hanning: Applies a "hanning" window to each data file.

help: Displays information about SAC commands and features on the screen.

highpass: Applies an IIR highpass filter.

hilbert: Applies a Hilbert transform.

history: prints a list of the recently issued SAC commands

ifft: Performs an inverse discrete Fourier transform.

image: Produces color sampled image plots of data in memory.

inicm: Reinitializes all of SAC’s common blocks.

installmacro: Installs macro files in the global SAC macro directory.

int: Performs integration using the trapezoidal or rectangular rule.

interpolate: Interpolates evenly or unevenly spaced data to a new sampling rate.

keepam: Keep amplitude component of spectral files (of either the AMPH or RLIMformat) in SAC
memory.

khronhite: Applies a Khronhite filter to the data.

line: Controls the linestyle selection in plots.

linefit: Computes the best straight line fit to the data in memory and writesthe results to header
blackboard variables.

linlin: Turns on linear scaling for the x and y axes.

linlog: Turns on linear scaling for x axis and logarithmic for y axis.

listhdr: Lists the values of selected header fields.

load: Load an external command.

loadctable: Allows the user to select a new color table for use in image plots.

log: Takes the natural logarithm of each data point.

log10: Takes the base 10 logarithm of each data point.

loglab: Controls labels on logarithmically scaled axes.

loglin: Turns on logarithmic scaling for x axis and linear for y axis.

loglog: Turns on logarithmic scaling for the x and y axes.

lowpass: Applies an IIR lowpass filter.

macro: Executes a SAC macro file.

map: Generate a GMT (Generic Mapping Tools) map which can include station/eventsymbols to-
pography and station names using all the files in SAC memory

markptp: Measures and marks the maximum peak to peak amplitude of each signal withinthe mea-
surement time window.
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marktimes: Marks files with travel times from a velocity set.

markvalue: Searches for and marks values in a data file.

mat: Copy SAC workspace into Matlab and either execute a user-specifiedm-file or else get a Matlab
prompt for interactive manipulation.

mathop: provides options for sequncing in inline expressions

merge: Merges (concantenates) a set of files to data in memory.

message: Sends a message to the user’s terminal.

metadata: Insert station and event metadata

mtw: Determines the measurement time window for use in subsequent measurementcommands.

mul: Multiplies each data point by a constant.

mulf: Multiplies a set of files by the data in memory.

mulomega: Performs differentiation in the frequency domain.

nplotc: Annotates SAC plots and creates figures using cursor.

null: Controls the plotting of null values.

oapf: Opens a alphanumeric pick file.

ohpf: Opens a HYPO formatted pick file.

pause: Sends a message to the terminal and pauses.

pickauthor: Tell sac to read author list (and possibly phase pick information) froma user-defined
preferences file, or interactively enter author list on

pickphase: Tell sac to read phase pick information (and possibly the author list) froma user-defined
preferences file, or interactively enter phase pick information

pickprefs: Control the way that SAC manages and or loadspicks from a variety of input data formats
(e.g., CSS, GSE, SUDS etc...)

picks: Controls the display of time picks on most SAC plots.

plabel: Defines general plot labels and their attributes.

plot: Generates a single-trace single-window plot.

plot1: Generates a multi-trace multi-window plot.

plot2: Generates a multi-trace single-window (overlay) plot.

plotalpha: Reads alphanumeric data files on disk into memory and plots the data to thecurrent output
device.

plotc: Annotates SAC plots and creates figures using cursor.

plotctable:
plotdy: Creates a plot with error bars.

plotpk: Produces a plot for the picking of arrival times.

plotpktable:
plotpm: Generates a "particle-motion" plot of pairs of data files.

plotsp: Plots spectral data in several different formats.

plotxy: Plots one or more data files versus another data file.

print: Prints the most recent SGF file.

printhelp: Prints hardcopies of information about SAC commands and features.

production: Controls the production mode option.

qdp: Controls the "quick and dirty plot" option.

quantize: Converts continuous data into its quantized equivalent.

126



quit: Terminates SAC.

quitsub: Terminates the currently active subprocess.

read: Reads data from SAC data files on disk into memory.

readbbf: Reads a blackboard variable file into memory.

readcss: Read data files in CSS external format from disk into memory.

readdb: Reads data from Oracle database into memory. NOT SUPPORTED

readerr: Controls errors that occur during the READ command.

readgse: Read data files in GSE 2.0 format from disk into memory.

readhdr: Reads headers from SAC data files into memory.

readsdd: Reads data from SDD data files on disk into memory.

readsp: Reads spectral files written by WRITESP and WRITESPE.

readsuds: Read data files in PC-SUDS format from disk into memory.

readtable: Reads alphanumeric data files in collumn format on disk into memory.

recalltrace: rolls back the laste committed waveform and most header fields

report: Informs the user about the current state of SAC.

response: Download responses in sac-polezero or evalresp format

reverse: Reverse the order of data points.

rglitches: Removes glitches and timing marks.

rmean: Removes the mean.

rms: Computes the root mean square of the data within the measurement time window.

rollback: reverts SAC to last committed version in I/O buffers

rotate: Rotates a pair of data components through an angle.

rotinc: Rotate a set of 3 perpendicular components.

rq: Removes the seismic Q factor from spectral data.

rtrend: Removes the linear trend.

saveimg: Sves displayed graphics windows in several formats

scallop: Calculate a spectrogram equal to the difference between two smoothed versionsof the same
spectrogram.

setbb: Sets (defines) values of blackboard variables.

setdevice: Defines a default graphics device to use in subsequent plots.

setmacro: Defines a set of directories to search when executing a SAC macro file.

sgf: Controls the SAC Graphics File (SGF) device options.

smooth: Applies an arithmetic smoothing algorithm to the data.

sonogram: Calculate a spectrogram equal to the difference between two smoothed versionsof the
same spectrogram.

sort: Sorts files in memory by header fields.

spectrogram: Calculate a spectrogram using all of the data in memory.

sqr: Squares each data point.

sqrt: Takes the square root of each data point.

station: Search for station by region, identifier, channel, and date

stretch: Stretches (upsamples) data, including an optional interpolating FIR filter.

sub: Subtracts a constant from each data point.
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subf: Subtracts a set of data files from data in memory.

symbol: Controls the symbol plotting attributes.

synchronize: Synchronizes the reference times of all files in memory.

systemcommand: Executes system commands from SAC.

taper: Applies a symmetric taper to each end of data.

ticks: Controls the location of tick marks on plots.

title: Defines the plot title and attributes.

trace: Controls the tracing of blackboard and header variables.

transcript: Controls output to the transcript files.

transfer: Performs deconvolution to remove an instrument response and convolution to apply another
instrument response.

transfertable: Details on older instrument tpes called in transfer

traveltime: Computes traveltime curves for pre-defined models

tsize: Controls the text size attributes.

unsetbb: Unsets (deletes) blackboard variables.

unwrap: Computes amplitude and unwrapped phase.

vspace: Changes the maximum size and shape of plots.

wait: Tells SAC whether or not to pause between plots.

whiten: Flattens the spectrum of the input time series.

whpf: Writes auxiliary cards into the HYPO pick file.

width: Controls line-width selection for graphics devices.

wiener: Designs and applies an adaptive Wiener filter.

wild: Sets wildcard characters used in read commands to expand filelists.

window: Sets the location and shape of graphics windows.

write: Writes data in memory to disk.

writebbf: Writes a blackboard variable file to disk.

writecss: Writes data in memory to disk in CSS 3.0 format.

writegse: Write data files in GSE 2.0 format from memory to disk.

writehdr: Overwrites the headers on disk with those in memory.

writesdd: Writes data in memory to disk in SDD format.

writesp: Writes spectral files to disk as "normal" data files.

xdiv: Controls the x axis division spacing.

xfudge: Changes the x axis "fudge factor."

xfull: Controls plotting of x axis full logarithmic decades.

xgrid: Controls plotting of grid lines in the x direction.

xlabel: Defines the x axis label and attributes.

xlim: Determines the plot limits for the x axis.

xlin: Turns on linear scaling for the x axis.

xlog: Turns on logarithimic scaling for the x axis.

xvport: Defines the viewport for the x axis.

ydiv: Controls the y axis division spacing.

yfudge: Changes the y axis "fudge factor."
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yfull: Controls plotting of y axis full logarithmic decades.

ygrid: Controls plotting of grid lines in the y direction.

ylabel: Defines the y axis label and attributes.

ylim: Determines the plot limits for the y axis.

ylin: Turns on linear scaling for the y axis.

ylog: Turns on logarithimic scaling for the y axis.

yvport: Defines the viewport for the y axis.

zcolors: Controls the color display of contour lines.

zlabels: Controls the labeling of contour lines with contour level values.

zlevels: Controls the contour line spacing in subsequent contour plots.

zlines: Controls the contour linestyles in subsequent contour plots.

zticks: Controls the labeling of contour lines with directional tick marks.
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3C

SUMMARY

Launch a Matlab GUI for manipulating 3-component data.

SYNTAX

3C options

where options are one or more of:

{AUTO}
{A,T0,T1,T2,T3,T4,T5,T6,T7,T8,T9}
{WINLEN value}

DESCRIPTION

3c identifies all 3-component channel sets in the files currently in memory. These channel sets
are copied into a Matlab workspace and a GUI is launched. Within this GUI the user may obtain
estimates of back azimuth, incidence angle, and polarization, rotate traces, make 3-D particle motion
plots, pick phase arrivals, and do polarization analysis using maximum likelihood estimators. Back
azimuth, incidence angle, and polarization estimates are returned in the SAC header variables USER0
(KUSER0), USER1 (KUSER1), and USER2 (KUSER2). Picks are returned in T0 - T9 (KT0 - KT9).
Instructions for using the GUI are available through a built-in help system in the GUI.

When the AUTO option is specified, 3c does the polarization analysis without intervention using a
window starting at the specified time marker {A,T0,T1,T2,T3,T4,T5,T6,T7,T8,T9}, and a window
length of WINLEN.

HEADER CHANGES

USER0, KUSER0, USER1, KUSER1, USER2, KUSER2, T0 - T9, KT0 - KT9

ERROR MESSAGES

No 3-component sets found.

LATEST REVISION

June 5, 1997 (Version 00.53a)
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ABBREV

SYNTAX

ABBREV

SAC Abbreviations

Abbreviation Alternative Alternative Alternative Alternative
AM KEEPAM
ARRAY ARRAYMAP
AS ADDSTACK
AXES AXIS
BD BG BEGG BEGINDEVICES
BEAM BEAMFORM
BF BEGFR BEGINFRAME
BOEC BINOPERR
BP BANDPASS
BR BANDREJ
BW BEGINWINDOW
CAPF CCIPF
CH CHNHDR
COL COLOR
CONT CONTOUR
CONV CONVERT
CONVO CONVOLVE
COR CORRELATE
CS CHANGESTACK
DA DISTANCEAXIS
DC DELETECHANNEL
DEC DECIMATE
DFT FFT
DG DATAGEN
DS DELETESTACK
DW DISTANCEWINDOW
ED EG ENDG ENDDEVICES
EF ENDFR ENDFRAME
ERA ERASE
EVAL EVALUATE
FD FILTERDESIGN
FG FUNCGEN
FN FILENUMBER
GS GRAYSCALE
GS GLOBALSTACK
GT GTEXT

... continued on next page
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Abbreviation Alternative Alternative Alternative Alternative
H HELP
HAN HANNING
HCD SGF
HP HIGHPASS
IDFT IFFT
INICM CLEARMEMORY
INTERP INTERPOLATE
IS INCREMENTSTACK
LCT CTABLE COLORTABLE LOADCTABLE
LH LISTHDR
LP LOWPASS
LS LISTSTACK
M MACRO
MAP GMAP GMTMAP
MARKP MARKPTP
MARKT MARKTIMES
MARKV MARKVALUE
MES MESSAGE
OAPF OCIPF
P PLOT
P1 PLOT1
P2 PLOT2
PA PLOTALPHA
PC PLOTC
PCOR PLOTCOR
PH PRINTHELP
PICKA PICKAUTHOR
PICKPH PICKPHASE
PICKPR PICKPREFS
PPE PLOTPE
PPK PLOTPK
PPM PLOTPM
PROD PRODUCTION
PRS PLOTRECORDSECTION
PS PLOTSTACK
PSP PLOTSP
PSPE PLOTSPE
PXY PLOTXY
Q END DONE EXIT QUIT
QS QUITSUB
QS QUITSUB
R READ
R READ

... continued on next page
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Abbreviation Alternative Alternative Alternative Alternative
RA READALPHA
RBBF READBBF
RCOR READCOR
RCSS READCSS
REP REPORT
RERR READERR
RGL RGLITCHES
RGSE READGSE
RH READHDR
ROT ROTATE
RS MATPRS RECORDSECTION
RSDD READSDD
RSP READSP
RSUDS READSUDS
RTAB READTABLE
RTR RTREND
SAVE SAVEIMG
SC SYSTEMCOMMAND
SCP SONO SCALLOP SONOGRAM
SPG SPECTROGRAM
SS SUMSTACK
SYM SYMBOL
SYNC SYNCH SYNCHRONIZE
TA TIMEAXIS
TRANS TRANSFER
TW TIMEWINDOW
VM VELOCITYMODEL
VR VELOCITYROSETTE
VSP VSPACE
W WRITE
WBBF WRITEBBF
WCOR WRITECOR
WCSS WRITECSS
WGSE WRITEGSE
WH WRITEHDR
WIN WINDOW
WNN WRITENN
WNR WIENER
WS WRITESTACK
WSDD WRITESDD
WSP WRITESP
WSPE WRITESPE
WT WRITETABLE

... continued on next page
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Abbreviation Alternative Alternative Alternative Alternative
XLABL XLABEL
XVP XWIND XVPORT
YLABL YLABEL
YVP YWIND YVPORT
ZS ZEROSTACK
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ABOUT

SUMMARY

Displays version and copywrite information.

SYNTAX

ABOUT

LATEST REVISION

January 20, 1999 (Version 0.58)
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ABS

SUMMARY

Takes the absolute value of each data point.

SYNTAX

ABS

Note: ABS is also an INLINE function.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 8, 1983 (Version 8.0)
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ADD

SUMMARY

Adds a constant to each data point.

SYNTAX

ADD {v1 {v2 ... vn} }

INPUT

v1: Constant to add to first file.
v2: Constant to add to second file.
vn: Constant to add to nth file.

DEFAULT VALUES

ADD 0.0

DESCRIPTION

This command will add a constant to each element of each data file in memory. The constant may
be the same or different for each data file. If there are more data files in memory than constants,
then the last constant entered is used for the remainder of the data files.

EXAMPLES

To add 5.1 to each element of F1 and 6.2 to each element of F2 and F3:

SAC> READ F1 F2 F3
SAC> ADD 5.1 6.2

Note: ADD is also an INLINE function.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 8, 1983 (Version 8.0)
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ADDF

SUMMARY

Adds a set of data files to data in memory.

SYNTAX

ADDF {NEWHDR ON|OFF} filelist

INPUT

NEWHDR ON|OFF: By default, the resultant file will take its header field from the
original file in memory. Turning NEWHDR ON, causes the header fields to be taken
from the new file in the filelist.

filelist: A list of SAC binary data files. This list may contain simple filenames, full or
relative pathnames, and wildcard characters. See the READ command for a complete
description.

DESCRIPTION

This command can be used to add a single file to a set of files or to add one set of files to another
set. An example of each case is presented below. The files must be evenly spaced and should have
the same sampling interval and number of data points. These last two restrictions can be eliminated
using the BINOPERR command. If there are more data files in memory than in the filelist, then the
last file in the filelist is used for the remainder of the data files in memory.

EXAMPLES

To add one file to three other files:

SAC> READ FILE1 FILE2 FILE3
SAC> ADDF FILE4

To add two files to two other files:

SAC> READ FILE1 FILE2
SAC> ADDF FILE3 FILE4

HEADER CHANGES

If NEWHDR is OFF (the default) the headers in memory are unchanged).

If NEWHDR is ON, the headers are replaced with the headers from the files in the filelist.

DEPMIN, DEPMAX, DEPMEN
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ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1803: No binary data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1306: Illegal operation on unevenly spaced file

∙ 1801: Header field mismatch:

– sampling interval or number of points are not equal.

– can be controlled using the BINOPERR command.

WARNING MESSAGES

∙ 1802: Time overlap: - the file addition is still performed.

SEE COMMANDS

READ, BINOPERR

LATEST REVISION

May 26, 1999 (Version 0.58)
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APK

SUMMARY

Applies an automatic event picking algorithm.

SYNTAX

APK {param v {param v} ... },{VALIDATION ON|OFF}

INPUT

param v: Define a new value for one of the pick parameters.
param: C1|C2|C3|C4|C5|C6|C7|C8|D5|D8|D9|I3|I4|I6. These parameters are defined be-

low.
VALIDATION ON: Turn validation phase on.
VALIDATION OFF: Turn validation phase off.

DEFAULT VALUES

APK C1 0.985 C2 3.0 C3 0.6 C4 0.03 C5 5.0 C6 0.0039 C7 100. C8 -0.1
D5 2. D8 3. D9 1. I3 3 I4 40 I6 3 VALIDATION ON

DESCRIPTION

The algorithm used in this automatic picker was originally obtained from the USGS in Menlo Park and
is based upon work by Rex Allen (see reference below.) The detection of a pick is based upon abrupt
changes in the ratio of a short term and long term running average of the signal. Once detected,
the pick is subjected to an optional validation phase which attempts to distinguish a true event from
cultural noise. Once validated, the pick is further evaluated to determine other characteristics of the
event. Currently this is limited to its duration. Other features such as maximum amplitude, period,
and decay rate may be added as required. Most of the parameters in this command need never be
changed. They are available if the user wishes to fine tune the algorithm. Most of these parameters
have the same meaning here as they do in the referenced article.

1. C1 is the constant used in the recursive high pass filter that is applied to remove any D.C. bias.

2. C2 is the constant used to vary the weight assigned to the amplitude and first difference in the
characteristic function.

3. C3 is the timing constant, used to compute the short term average of the characteristic function.

4. C4 is the timing costant used to compute the long term average of the characteristic function.

5. C5 is the constant used to compute the threshold reference level. A potential event is declared
when the short term average becomes larger than C5 times the long term average.

6. C6 is the timing constant used to compute the running mean absolute value of the filtered data.

7. A station is assumed to be dead when the absolute value of the characteristic function is greater
than C7.

8. C8 is used to determine the signal termination level. The signal is terminated when its absolute
value falls below this level for D8 seconds. There are currently two different algorithms in use so C8
has two different interpretations. If C8 is positive, then the termination level is C8 times the running
mean absolute value of the signal just before the event was declared. This method is useful if the
background level at a station is large. If C8 is negative, then the termination level is the absolute
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value of C8. This will give more consistent terminations from station to station if the noise level is
well below this termination level.

9. D5 is the minimum duration in seconds for an event to be declared valid.

10. D9 is the duration in seconds used to initialize the long term average of the characteristic function.

11. I3, I4, and I6 are integer constants used during the validation phase and should not be changed.

HEADER CHANGES

The time of the pick is stored into A; the quality and sense of motion is stored into KA; the end of
the event is stored into F.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

WARNING MESSAGES

∙ 1910: No valid pick found for the following file(s):

SEE COMMANDS

OHPF, OAPF

Rex V. Allen, Automatic Earthquake Recognition and Timing from Single Traces, BSSA, Vol. 68,
No. 5, Oct. 1978.

LATEST REVISION

May 15, 1987 (Version 10.2)
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ARRAYMAP

SUMMARY

Produces a map of the array or "coarray" using all files in SAC memory.

SYNTAX

ARRAYMAP ARRAY | COARRAY

INPUT

ARRAY: This option maps the offsets X and Y, assumed to have been set up in the SAC
header (see the HEADER DATA section below).

COARRAY: This option plots delta X and delta Y for all pairs of stations.

DEFAULT VALUES

ARRAYMAP ARRAY

INPUT

HEADER DATA: The following header variables must be set up in advance, using the
SAC macro WRXYZ, or its functional equivalent. All offsets are measured in kilometers
from a reference location.

USER7: Contains easterly offset (x).
USER8: Contains northerly offset (y). The upward offset (z) is not used by this command.

LIMITATIONS

Maximum number of stations allowed in BBFK command.

SEE COMMANDS

WRXYZ. This is a SAC macro; It can be found in the global SAC macro directory, SACAUX/macros
. Documentation provided in the macro.

BBFK

July 22, 1991 (Version 10.5c)
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AXES

SUMMARY

Controls the location of annotated axes.

SYNTAX

AXES ON|OFF|ONLY sides

where sides is the keyword:

ALL

or one or more of the following:

TOP,BOTTOM,RIGHT,LEFT

ALTERNATE FORMS

AXIS may be used for AXES. (Useful for grammarians only.)

INPUT

ON: Turn axes on for listed sides; others unchanged.
OFF: Turn axes off for listed sides; others unchanged.
ONLY: Turn axes on only for listed sides; others off.
ALL: All four axes.
TOP: X axis above plot.
BOTTOM: X axis below plot.
RIGHT: Y axis to right of plot.
LEFT: Y axis to left of plot.

DEFAULT VALUES

AXES ONLY BOTTOM LEFT

DESCRIPTION

Axes can be drawn on one or more of the four sides of a plot. Axes annotation is drawn using the
division spacing set by the XDIV command. Tick mark labeling is controlled independently using the
TICKS command.

143



EXAMPLES

To turn on the top axes and leave the others unchanged:

SAC> AXES ON TOP

To turn off all axes annotation:

SAC> AXES OFF ALL

To turn axes annoation on for the bottom side and off for the rest:

SAC> AXES ONLY BOTTOM

SEE COMMANDS

XDIV, TICKS

LATEST REVISION

January 8, 1983 (Version 8.0)

144



BANDPASS

SUMMARY

Applies an IIR bandpass filter.

SYNTAX

[B]AND[P]ASS {[BU]TTER|[BE]SSEL|C1|C2}
{[C]ORNERS v1 v2}
{[N]POLES n}
{[P]ASSES n}
{[T]RANBW v} {[A]TTEN v}

INPUT

BUTTER: Apply a Butterworth filter.
BESSEL: Apply a Bessel filter.
C1: Apply a Chebyshev Type I filter.
C2: Apply a Chebyshev Type II filter.
CORNERS v1 v2: Set corner frequencies to V1 and V2.
NPOLES n: Set number of poles {range: 1-10}.
PASSES n: Set number of passes {n=1: causal, n=2: zero-phase}.
TRANBW v: Set the Chebyshev transition bandwidth to v.
ATTEN v: Set the Chebyshev attenuation factor to v.

DEFAULT VALUES

BANDPASS BUTTER CORNER 0.1 0.4 NPOLES 2 PASSES 1 TRANBW 0.3 ATTEN 30.

DESCRIPTION

A set of Infinite Impulse Response (IIR) filters is available in SAC. These recursive digital filters
are all based upon classical analog designs: Butterworth, Bessel, Chebyshev type I, and Chebyshev
type II. These analog prototype filters are mapped to digital filters via the bilinear transformation, a
transformation which preserves the stability of the analog prototypes. A complete description of this
method of design can be found in the reference given below. However, it is not necessary to read that
description, unless you want complete control over the more complicated Chebyshev filters.

Generally speaking, the Butterworth filter is a good choice for most applications, since it has a
fairly sharp transition from pass band to stop band, and its group delay response is moderate. The
Butterworth filter is the default filter type. It’s 3 db point is at the designated cutoff frequency. The
Bessel filter is best for those applications which require linear phase without twopass filtering. It’s
amplitude response is not very good. The SAC Bessel filters have been normalized so that their 3 db
points are also at the designated cutoff freqency. The two Chebyshev filters are included for situations
which require very rapid transitions from pass band to stop band. Although they have good magnitude
discrimination, their group delay responses are the worst among the filters contained in SAC.

Some caution must be exercised in applying these filters. First, all recursive filters have non-linear
phase, which can result in some dispersion of filtered waveforms. For applications where the phase
of the resulting filtered waveform is important, a zero-phase implementation of the recursive filters is
provided. Zero-phase filtering is possible by running the filter forward and backward over the data,
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instead of just forward over the data. This two-pass operation results in a effective filter magnitude
response which is the square of the original magnitude response. It also results in a non-causal filter
impulse response, which can leave a signal containing a sharp time onset with a ringing precursor. For
this reason, you should not measure arrival times of data that has been filtered using this two-pass
option. For cases where signal precursors cannot be tolerated, such as onset picking operations, it
may not be a good idea to do two-pass filtering. Second, the filters can become numerically unstable
if the width of the filter pass band is very small compared to the folding frequency of the data. The
problem is only aggravated by increasing the number of poles in the filter. Situations that seem to
require an exceptionally narrow band filter can be handled more reliably by decimation, filtering with
a filter of more moderate band width, and interpolation to the original sampling rate. Recourse to
this resampling strategy should be made when the filter band width drops below a few percent of the
folding frequency.

Generally, the filter will have a sharper transition from pass band to stop band as the number of poles
is increased. However, there are penalties for using a large numbers of poles. Filter group delays
generally get wider as the number of poles increases, resulting in worse dispersion of the filtered
waveform. Applications that appear to require more than three or four poles should probably be
reconsidered.

The design of Butterworth and Bessel filters is particularly simple. You simply specify the cutoffs of
the filter and the number of poles. Chebyshev filters are more complicated to design. In addition to
cutoffs and number of poles, you must supply a transition band width, and a stop band attenuation
factor for the analog prototype filter. The transition band width is the width of the region between
the filter pass band and stop band. It is specified as a fraction of the analog prototype pass band
width.

Due to the non-linear warping of the frequency axis of the bilinear transformation, the transition band
width of the recursive digital filter may be smaller than that specified in the design. In SAC, the
analog prototype filter cutoffs are compensated to ensure that they map to the requested cutoffs after
the bilinear transformation is performed. The same is not true of the stop band edges. Consequently,
if precisely located stop band edges are necessary, you must compensate for this shrinkage when
choosing your cutoffs.

The stop band attenuation is specified as the ratio of the pass band gain to the stop band gain.

EXAMPLES

To apply a four-pole Butterworth with corners at 2 and 5 Hz.:

SAC> BANDPASS NPOLES 4 CORNER 2 5

To later apply a two-pole two-pass Bessel with the same corners.:

SAC> BP N 2 BE P 2

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

∙ 1002: Bad value for

– corner frequency larger than Nyquist frequency.
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HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 8, 1983 (Version 8.0) Magnitude Frequency Response of Chebyshev Type II Filter
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BANDREJ

SUMMARY

Applies an IIR bandreject filter.

SYNTAX

BANDREJ {BUTTER|BESSEL|C1|C2}
{CORNERS v1 v2},
{NPOLES n}
{PASSES n}
{TRANBW v},{ATTEN v}

INPUT

BUTTER: Apply a Butterworth filter.
BESSEL: Apply a Bessel Filter.
C1: Apply a Chebyshev Type I filter.
C2: Apply a Chebyshev Type II filter.
CORNERS v1 v2: Set corner frequencies to v1 and v2.
NPOLES n: Set number of poles {range: 1-10}.
PASSES n: Set number of passes {n=1: causal, n=2: zero-phase}.
TRANBW v: Set the Chebyshev transition bandwidth to V.
ATTEN v: Set the Chebyshev attenuation factor to V.

DEFAULT VALUES

BANDREJ BUTTER CORNER 0.1 0.4 NPOLES 2 PASSES 1 TRANBW 0.3 ATTEN 30.

DESCRIPTION

See the BANDPASS command for definitions of the filter parameters and descriptions on how to use
them.

EXAMPLES

To apply a four-pole Butterworth with corners at 2 and 5 Hz.:

SAC> BANDREJ NPOLES 4 CORNER 2 5

To apply a two-pole two-pass Bessel with the same corners.:

SAC> BR N 2 BE P 2
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ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

∙ 1002: Bad value for

– corner frequency larger than Nyquist frequency.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

SEE COMMANDS

BANDPASS

LATEST REVISION

January 8, 1983 (Version 8.0)
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BBFK

SUMMARY

Computes the broadband frequency-wavenumber (FK) spectral estimate, using all files in SAC memory.

SYNTAX

BBFK {FILTER} {NORMALIZE} {EPS v} {MLM | PDS}
{EXP n} {WAVENUMBER v} {SIZE m n} {LEVELS n}
{DB} {TITLE text} {WRITE {ON | OFF} fname} {SSQ n}
{PRINT {pname} }

INPUT

FILTER: Apply the bandpass filter designed in the most recent FILTERDESIGN command.
NORMALIZE: Normalizes the covariance matrix with the Capo method. A good idea if

the signals vary much in amplitude among channels.
EPS v: Regularization quantity for covariance matrix. Diagonal matrix entries are multi-

plied by (1.0 + EPS).
MLM: Use maximum likelihood method for high-resolution estimate.
PDS: Take power density spectra without maximum likelihood method.
EXP n: Power to which the wavenumber spectrum will be raised.
WAVENUMBER v: Number of waves from which to sample spectral estimates.
SIZE m n: Size of contour plot in polar mode: m is an even num of plot samples in the

azimuth direction; n is an even num of plot samples in the wavenumber direction (m*n
is limited to 40,000).

LEVELS n: Number of contour intervals.
DB: Log scaling of plot in decibels.
TITLE text: Title used in plot.
WRITE {ON | OFF} fname: Whether to compute & write contour data in square mode

to disk (as a type xyz SAC file). fname is file or path name (may be an absolute or
relative). If no filename has been specified, the default is "BBFK". ON will reactivate
fname most recently used. OFF turns writing off.

SSQ n: Size of the square (number of samples taken along each margin of the square).
Maximum allowed is 200.

PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the
default printer if pname is not used. (This makes use of the SGF capability.)

DEFAULT VALUES

BBFK EPS .01 PDS EXP 1 WVENUMBER 1.0 SIZE 90 32 LEVELS 11 WRITE OFF SSQ 100
(SSQ matters only if WRITE has been positively specified).

DESCRIPTION

The BBFK command allows the user to compute broadband frequency wavenumber spectra. It is
based on the work of NAWAB et al., 1985 and many other references in the seismic and engineering
literature.

150



HEADER DATA

The following logic is used to determine how to choose or calculate station/event offsets:

∙ Case 1: If a reference station is set in KUSER1 and is the same for all files, and USER7
and USER8 are set for all files, USER7 and USER8 are used as offsets.

∙ Case 2: If station latitude (STLA) and station longitude (STLO) are set for all files,
offsets are calculated using these, using the first file as the reference station.

∙ Case 3: If USER7 and USER8 are set for all files, they are used as offsets.
∙ Case 4: If event latitude (EVLA) and event longitude (EVLO) are set for all files

then these are used to calculate offsets, using the first station as the reference sta-
tion.

OUTPUT

The polar output is plotted immediately (not retained), the square output if requested is written out to
disk. The FK peak, back azimuth and wavenumber are written to blackboard variables BBFK_AMP,
BBFK_BAZIM and BBFK_WVNBR respectively.

ERROR MESSAGES

Size m or n not an even number. Offsets X,Y,Z not set in USER7,8,9 of headers. Coefficients
produced by FILTERDESIGN not found, or filter type used was not "BP".

LIMITATIONS

The maximum number of stations allowed is 100. The maximum size of polar contour plot is m x n
= 40,000. The maximum size of square contour output is i = 200.

SEE COMMANDS

MAP: for plotting stations in an array, according to X,Y offsets stored in SAC header variables USER7
& USER8.

REFERENCES

Nawab, SH, FU Dowla, and RT Lacoss, Direction determination of wideband signals, IEEE Trans.
Acous. Speech Sig. Proc., 33: (5), 1114-1122, 1985

LATEST REVISION

July 22, 1991 (Version 10.6c)
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BEAM

SUMMARY

Computes the beam using all data files in SAC memory.

SYNTAX

BEAM {BEARING v} {VELOCITY v} {REFERENCE ON|OFF| lat lon {el} }
{OFFSET REF|USER|STATION|EVENT|CASCADE}
{EC anginc survel} {CENTER x y z} {WRITE fname}

INPUT

BEARING v: Bearing, in degrees from the north.
VELOCITY v: Velocity, in kilometers per second.
[REF]ERENCE lat lon {el}: Reference point. Turns REFERENCE option on and defines

a reference point relative to which the offsets can be determined. (See OFFSET REF
below)

lat: latitude.
lon: longitude.
el: elevation (positive is down).
[REF]ERENCE ON|OFF: Turns REFERENCE option on or off. (See OFFSET REF be-

low) Be careful not to use REFERENCE ON the first time this option is used with
BEAM unless you really want the point where the prime maridian meets the equator.

OFFSET REF: Offsets are determined relative to the reference point entered with the
REFERENCE option. This requires the REFERENCE option to be on.

OFFSET USER: Offsets are taken directly from USER7, USER8, and USER9, (in the
directions of latitude, longitude, and elevation, respectively). This requires all the files
to have defined values of USER7 and USER8. If the EC option is set, then OFFSET
USER also requires that USER9 be set.

OFFSET STATION: Offsets are determined relative to the location of the first station.
This requires all the files to have defined values of STLA and STLO.

OFFSET EVENT: Offsets are determined relative to the location of the first event. This
requires all the files to have defined values of EVLA and EVLO.

OFFSET CASCADE: SAC will consider each of the previous methods of determining the
offsets in the order listed above, and look to see if the necessary data is present; it will
use the first method for which the requesite information is available.

EC: Elevation correction:
anginc: Angle of incidence in degrees from the z axis (the more distant the signal source,

the smaller anginc).
survel: Surface medium velocity in kilometers per second.
CENTER: Center station for which the beam is to be computed:
x: Easterly offset from the reference station, in meters.
y: Northerly offset from the reference station, in meters.
z: Upward offset from the reference station, in meters.
Note: CENTER positions the beam with respect to the offsets already determined accord-

ing to the OFFSET option. CENTER is not intended to offset a beam great distances;
it is offered as a way to offset a beam to the center of an emplacement.

WRITE: Write beam to disk.
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fname: File or path name. May be an absolute or relative pathname, or simple name of a
file to appear in the dir in which SAC was started.

DEFAULT VALUES

BEAM B 90 V 9.0 EC 33 6.0 C 0. 0. 0. W beam

DESCRIPTION

BEAM does not overwrite existing input data in SAC memory, so it can be repeatedly issued while
varying bearing and velocity. The beam result is written to disk and may be targetted to a different file
each time. These design features anticipates users’ need to compare multiple runs of this command
to find the bearing and velocity that produced the maximal beam.

HEADER DATA

See HEADER DATA section of BBFK command.

ERROR MESSAGES

CENTER parameter missing offset z, when the presence of the EC parameter requires it.

LIMITATIONS

The maximum number of stations allowed (see BBFK).

SEE COMMANDS

MAP: for plotting stations in an array, according to x and y offsets stored in SAC header variables
USER7 & USER8.

LATEST REVISION

July 22, 1991 (Version 10.5c)
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BEGINDEVICES

SUMMARY

Begins plotting to one or two of the two possible graphics devices.

SYNTAX

BEGINDEVICES devices

where devices is one or more of the following:

SGF, XWINDOWS

ALTERNATE FORMS

BEGG and BG are obsolete but acceptable names for this command.

INPUT

SGF: The SAC Graphics File device driver.
XWINDOWS: The X-windows window display system.

DESCRIPTION

The arguments to this command consists of the list of one or two graphics devices. Subsequent plots
are sent to open devices. This remains in effect until the next execution of a BEGINDEVICES or
ENDDEVICES command or until SAC is terminated. Details about each graphics device are given
below. There are two graphics "devices" currently being supported. The first one, SAC Graphics File
(SGF), opens and sends plot commands to a binary file. The second, XWINDOWS, displays plots
on an X-windows-capable sreen. workstations. SGF and XWINDOWS are described in detail in the
graphics help command.

SEE COMMANDS

ENDDEVICES, SGF

LATEST REVISION

Mar. 24, 2009 (Version 101.3)
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BEGINFRAME

SUMMARY

Turns off automatic new frame actions between plots.

SYNTAX

BEGINFRAME {PRINT {pname} }

INPUT

PRINT {pname}: When PRINT is used with BEGINFRAME, it signals the assocated call
to ENDFRAME to print the resulting plot to the printer named in pname, or to the
default printer if pname is not used. (This makes use of the SGF capability.)

ALTERNATE FORMS

BEGFR is an obsolete but allowable form of this command.

DESCRIPTION

A "new frame action" is defined as the clearing of the current graphics display surface. Specifically it
is:

∙ the erasing of the screen for a graphics terminal.

∙ the closing of the current file for the SGF device driver.

∙ the erasing of the current graphics window on a multi-window workstation.

∙ the advancing of the film one frame for a film device.

∙ the movement of the paper to a new area on a pen plotter.

Normally SAC does a new frame action before each new plot (PLOT, PLOT1, etc.) SAC stops doing
this new frame action when the BEGINFRAME command is executed. It resumes automatic framing
when the ENDFRAME command is executed. Therefore, all plot commands executed between these
two commands will have their output placed on the same frame. By changing the viewport (XVPORT,
YVPORT) between plot commands, by changing some of the various plot options, and by reading in
different sets of data files, fairly complicated plots with multiple images can be easily generated. See
the example and figure below. You MUST execute the ENDFRAME command to discontinue this
mode and to resume automatic framing between plots.

EXAMPLES

The plot that follows was generated using the set of commands shown below. Comments about the
process are given in parenthesis:

SAC> CUT A -0.2 N 512 (set up cut and read file)
SAC> READ FILE1
SAC> BEGINFRAME (turn off automatic framing)
SAC> XVPORT .1 .9 (define viewport and options)
SAC> YVPORT .7 .9
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SAC> TITLE ’SEISMIC TRACE’
SAC> FILEID OFF (turn off fileid and qdp option)
SAC> QDP OFF
SAC> PLOT (plot the trace)
SAC> FFT WMEAN (take transform of data)
SAC> XVPORT .1 .45 (second viewport and options)
SAC> YVPORT .15 .55
SAC> TITLE ’Amplitude Response (linlog)’
SAC> YLIM 1E-5 1
SAC> PLOTSP AM LINLOG (plot the amplitude)
SAC> XVPORT .55 .9 (third viewport and options)
SAC> TITLE ’Amplitude Response (loglog)’
SAC> XLIM 1 60
SAC> PLOTSP AM LOGLOG (plot amplitude again)
SAC> ENDFRAME (resume automatic framing)
SAC> CUT OFF (reset parameters used to default values)
SAC> FILEID ON
SAC> XLIM OFF
SAC> YLIM OFF

The last four commands reset some of the parameters used in this operation to their default values.
This is a good habit to get into, especially when writing macros, as a way of avoiding the problem of
one macro effecting the operation of others that follow.

SEE COMMANDS

ENDFRAME, XVPORT, YVPORT

LATEST REVISION

May 15, 1987 (Version 10.2)

Use of BEGINFRAME and ENDFRAME to Create a Special Plot
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BEGINWINDOW

SUMMARY

Begins plotting to a new graphics window.

SYNTAX

BEGINWINDOW n

INPUT

n: The graphics window number to begin plotting in. There are a total of five graphics
windows.

DEFAULT VALUES

BEGINWINDOW 1

DESCRIPTION

Many of the newer graphics terminals and workstations support the concept of multiple "windows".
Different jobs or activities can run in each window and display their results on the screen at the same
time. "X-windows" and "Sun windows" are two of the more popular systems currently available.
If you are using a device that supports one of these systems, then you can use multiple graphics
windows in SAC to display your results. If you are not using such a device, SAC will accept but ignore
all commands that refer to multiple graphics windows.

There are two commands that control the use of this multi-windowing option. The WINDOW com-
mand lets you control the location and shape of the graphics windows. The BEGINWINDOW com-
mand lets you select the window in which to display subsequent plots. BEGINWINDOW will create
the requested window if it does not currently exist on your display. The WINDOW command only
works before the window is created. On most systems you can also move and resize these windows
dynamically using the mouse and pop-up menus. Generally but not always (you should check for
yourself), the moving of a window will result in the current plot being automatically redrawn whereas
the resizing of a window results in the current plot being redrawn but not rescaled. The next plot in
a resized window will be scaled correctly. All text (the commands you type and SAC’s responses) are
displayed in the window in which you started SAC.

SEE COMMANDS

WINDOW

LATEST REVISION

May 15, 1987 (Version 10.2)
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BENIOFF

SUMMARY

Applies a Benioff filter to the data.

SYNTAX

BENIOFF

DESCRIPTION

This command is a digital approximation used to emulate the response of a short-period seismograph
which was used by a VELA Program started by the U. S. Air Force about 1960. This Long Range
Seismic Measurements (LRSM) program used truck vans and trailers to deploy moveable seismic
systems, principally in North America, to record controlled source seismic experiments. Most of
the seismic profiles were radial lines or circular arcs about the Nevada Test Site (NTS). Two semi-
permanent sites or installations were Kanab, UT, and Mina, NV.

LLNL continued operation of KN-UT and MI-NV after the LRSM program. These two stations
used a variable-reluctance short-period seismometer (with a natural frequency of 1 Hz, critically
damped) which was designed and named after Professor Hugo Benioff of Cal Tech. This short-period
seismometer was coupled to a galvanometer (with a natural frequency of 5 Hz and damped to 0.9
critical). The coupling factor was nominally defined at 0.01 (or loosely coupled at low magnification
settings which were used for recording the larger explosions) and the response was nearly flat-to-
velocity between 1 and 5 Hz. When LLNL converted this system to a broadband, flat-to-velocity
telemetered system, an analog filter was designed to shape a passband into the LRSM short-period
passband. This command executes a digital equivalent of that analog shaping filter which produces
an output (measured in nanometers) analogous to the LRSM short-period system.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

May 15, 1987 (Version 10.2)
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BINOPERR

SUMMARY

Controls errors that can occur during binary file operations.

SYNTAX

BINOPERR {NPTS FATAL|WARNING|IGNORE},
{DELTA FATAL|WARNING|IGNORE}

INPUT

NPTS: Change error condition for unequal number of data points.
DELTA: Change error condition for unequal sampling intervals.
FATAL: Make error condition fatal. Control is immediately returned to the user’s terminal.

Additional commands typed on the same line or in the same command file are ignored.
WARNING: Send a warning message to the user. Correct the error condition and continue.
IGNORE: Correct the error condition and continue.

DEFAULT VALUES

BINOPERR NPTS FATAL DELTA FATAL

DESCRIPTION

SAC checks for certain common errors whenever you execute a binary operations module command
(ADDF, DIVF, etc.) Using this command, you can control what SAC does when it finds one of these
errors.

If you make an error condition fatal, then SAC will stop executing the current command, will ignore
all commands in its queue, will print an error message to the terminal, and will return control to you.
If you make an error condition a warning, then SAC will send you a warning message, correct the
condition as best it can, and continue. If you tell SAC to ignore a condition, then SAC will correct
the condition and continue without telling you the condition even occurred.

One of these error conditions occurs when the number of data points in the two files to be operated
on are not equal. Corrective action in this case is to perform the operation using the number of data
points in the smaller file.

Another error condition occurs when the sampling intervals of the two files are not the same. The
corrective action in this case is to use the sampling interval of the first data file.

EXAMPLES

Assume that FILE1 has 1000 data points and FILE2 has 950 data points.:

SAC> BINOPERR NPTS FATAL
SAC> READ FILE1
SAC> ADDF FILE2
SAC> ERROR: Header field mismatch: NPTS FILE1 FILE2

The file addition was not performed. Assume you now type:
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SAC> BINOPERR NPTS WARNING
SAC> ADDF FILE2
SAC> WARNING: Header field mismatch: NPTS FILE1 FILE2

The file addition was performed on the first 950 data points of each file.

SEE COMMANDS

ADDF, SUBF, MULF, DIVF

LATEST REVISION

January 8, 1983 (Version 8.0)
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BORDER

SUMMARY

Controls the plotting of a border around plots.

SYNTAX

BORDER {ON|OFF}

INPUT

{ON}: Turn border plotting on.
OFF: Turn border plotting off.

DEFAULT VALUES

BORDER OFF

DESCRIPTION

When this option is on, a solid border is drawn around the sides of the plot at the edge of the
viewport (see XVPORT) Note that an axis line is always drawn on each side of the plot that contains
an annotated axis (see AXES) or a set of tick marks (see TICKS). Thus the border option only applies
to those sides without axes or tick marks.

SEE COMMANDS

XVPORT, YVPORT, AXES, TICKS

LATEST REVISION

January 8, 1983 (Version 8.0)
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CAPF

SUMMARY

Closes the currently open alphanumeric pick file.

SYNTAX

CAPF

SEE COMMANDS

OAPF

LATEST REVISION

January 8, 1983 (Version 8.0)
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CHNHDR

SUMMARY

Changes the values of selected header fields.

SYNTAX

CHNHDR { file n1 n2 ... } field v {field v ... }

INPUT

file: This is an optional keyword that can be followed by a list of numbers indicating which
file headers are to be changed.

n1 n2 ...: Integers indicating the file headers to be changed.
field: The name of a SAC header variable. These variables are listed in SAC Data File

Format. Also, field may be the keyword ALLT as discussed below. Note, in order to
maintain internal consistency, the following header variables cannot be changed with
CHNHDR: NVHDR, NPTS, NWFID, NORID, and NEVID.

v: Set the value of that field to v. The type of the field and its new value must match.
Use single quotes for alphanumeric fields with embedded blanks. Use TRUE or FALSE
for logical fields. YES or NO are also acceptable for logical fields. Use variable names
(see SAC Data File Format) for value fields. For offset time fields (B, E, O, A, F, and
Tn), v may also be of the form -- GMT v1 v2 v3 v4 v5 v6 where v1, v2, v3, v4, v5, and
v6 are the GMT year, day-of-year, hour, minute, second, and millisecond of the time.
If v1 is a two-digit number, SAC will assume it is in the current century, unless that
would mean that the year is in the future, in which case, SAC assumes the previous
century. To be certain you get what you want, use four digits.

UNDEF: Use this keyword instead of v to "undefine" a header field.
ALLT v: Add v seconds to all defined header times. Subtract v seconds from the reference

time.

DESCRIPTION

This command lets you change any of SAC’s header fields. A specific file or list of files can be
changed by specifying the integer value(s) corresponding to the order in which the file(s) were read in.
If no integer filelist is specified, all files in memory will have their header fields changed. To change
the headers of the files on disk, follow this command with the WRITE or WRITEHDR command.
SAC does some validity checking on the new values but you may want to verify the results using the
LISTHDR command.

There are dight enumerated (I type) variaables, such as IZTYPE, IDEP, and IZTYPE. These are
explained and options listed in SAC Data File Format.

There is a set of six variables in the header (NZYEAR, NZJDAY, NZHOUR, NZMIN, NZSEC, and
NZMSEC) that contain the reference or "zero" time of the file. This is the only GMT in the SAC
header. All other times in the header (B, E, O, A, F, and Tn) are offsets in seconds relative to this
reference time. You may change the reference time and all of the defined offset times by using the
"ALLT v" option. That number of seconds are added to each defined offset time. That same number
of seconds is also subtracted from the reference time. This preserves the actual GMT time of the
data. As a convenience, you may enter a GMT time instead of a relative time when changing the
offset times. When the GMT time is entered it is converted to a relative time before storing it in the
offset time field.
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EXAMPLES

To define the event latitude, longitude and name in all the files in memory:

SAC> CHNHDR EVLA 34.3 EVLO -118.5
SAC> CHNHDR KEVNM ’LA goes under’

To define the event latitude, longitude and name in files 2 and 4:

SAC> CHNHDR file 2 4 EVLA 34.3 EVLO -118.5
SAC> CHNHDR file 2 4 KEVNM ’LA goes under’

To change the event type to earthquake:

SAC> CHNHDR IEVTYP IQUAKE

To set the first arrival time to its undefined state:

SAC> CHNHDR A UNDEF

Assume you know the GMT origin time of an event and that you want to quickly change all the times
in the header so that this origin time is the zero or reference time and all other offset times are correct
relative to this time. First set the origin time using the GMT option:

SAC> CHNHDR O GMT 1982 123 13 37 10 103

Now use the [L]IST[H]DR command to find out what O is relative to the current reference time:

SAC> LISTHDR O
O 123.103

Now use the ALLT option to subtract this value from all of the offset times and add it to the reference
time. You also want to change the field that describes the type of reference time stored in these files:

SAC> CHNHDR ALLT -123.103 IZTYPE IO

Notice the minus sign because you are subtracting this value from the offset times.

Alternatively, if you have several waveforms in memory for the same event bur with different reference
times, after setting O as above, the following command will subtract off the origin time from all
defined times for all files and change the reference time to origin time:

SAC> chnhdr allt (0 - &1,o&) IZTYPE IO

HEADER CHANGES

Potentially almost all header fields (exceptions given above).

ERROR MESSAGES

∙ 1006: Length of string variable exceeded at symbol

– Alphanumeric header field too long.

∙ 1301: No data files read in.
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SEE COMMANDS

LISTHDR, WRITE, WRITEHDR, SAC Data File Format

LATEST REVISION

January 8, 1983 (Version 8.0)

Wording updated in Ocober 2011
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CHPF

SUMMARY

Closes the currently open HYPO pick file.

SYNTAX

CHPF

DESCRIPTION

Automatically appends the instruction card "10" to the end of the file being closed.

SEE COMMANDS

OHPF, WHPF

LATEST REVISION

March 20, 1992 (Version 10.6e)
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COLOR

SUMMARY

Controls color selection for color graphics devices.

SYNTAX

COLOR {ON|OFF|color} options

where options are one or more of the following:

{INCREMENT {ON|OFF}}
{SKELETON color}
{BACKGROUND color}
{LIST STANDARD|colorlist}

and where color is one of the following:

WHITE|RED|GREEN|YELLOW|
BLUE|MAGENTA|CYAN|BLACK

SPECIAL NOTE The LIST option must appear last in this command.

INPUT

color: The name of a standard color or the number of a color from the color table.
COLOR ON: Turn color option on but don’t change data color.
COLOR OFF: Turn color option off.
COLOR color: Change data color and turn color option on.
INCREMENT {ON}: Increment data color from color list after each data file is plotted.
INCREMENT OFF: Do not increment data color.
SKELETON color: Change color of skeleton to standard color name or color table number.
BACKGROUND color: Change background color to standard color name or color table

number.
LIST colorlist: Change the content of the color list. Enter list of standard color names or

color table numbers. Sets data color to first color in list and turns color option on.
LIST STANDARD: Change to the standard color list. Sets data color to first color in list

and turns color option on.

DEFAULT VALUES

COLOR BLACK INCREMENT OFF SKELETON BLACK BACKGROUND WHITE LIST STANDARD
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DESCRIPTION

This command controls color attributes for those devices which can display a large number of colors.
The data color is the color that is used when plotting the data files. The data color may be automat-
ically incremented from a color list after each data file is plotted. The skeleton color is the color used
to plot and label the axes, titles, grids, and frame ids. The backgound color is the color of an empty
frame, before any lines or text are plotted.

Most of the time you will select the name of a standard color, such as red or blue. This will be the
color, independent of the selected graphics device. At times, however, you may want to choose a non-
standard color, such as aquamarine. This can be done by "downloading" a color table to the graphics
device. This color table associates a specific hue, saturation, and lightness with a specific integer
number. You can then select aquamarine for a particular part of the plot by setting that attribute to
the correct number from the color table. This may sound like a lot of work, but if aquamarine is your
favorite color, it may be worth it.

If you are plotting several data files on the same plot, you may want each to be in a different color.
This is done using the INCREMENT option. When this option is on, the data color is incremented
from a list of colors each time a data file is plotted. The order of colors in the standard or default
color list is given below:

RED, GREEN, BLUE, YELLOW, CYAN, MAGENTA, BLACK

You may change the order or content of this color list using the LIST option. This is useful if you are
doing a series of overlay plots (see PLOT2) and want the same colors used in the same order on each
plot.

EXAMPLES

To select an incrementing data color starting with red:

SAC> COLOR RED INCREMENT

To select red data colors on a white backgound with a blue skeleton:

SAC> COLOR RED BACKGROUND WHITE SKELETON BLUE

To set up an incrementing data color list of red, white, and blue with an aquamarine (!!!) background:

SAC> COLOR RED INCREMENT BACKGROUND 47 LIST RED WHITE BLUE

The above example assumes that aquamarine is color 47 in the color table for the selected graphics
device. Background color is currently being ignored.

LATEST REVISION

April 13, 1987 (Version 10.1)
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COMCOR

SUMMARY

Controls SAC’s command correction option.

SYNTAX

COMCOR {ON|OFF}

INPUT

ON: Turn command correction option on.
OFF: Turn command correction option off.

DEFAULT VALUES

COMCOR OFF

DESCRIPTION

SAC checks the form and content of each command you type. When it detects an error, it sends an
error message to you, telling you what the error was and where it occurred. If the command correction
option is on, SAC then lets you correct the command and have SAC automatically reexecute it. If
this option is off, SAC merely prints the error message and returns control to you.

More details and several examples are given in the User’s Guide. "Command Correction Capability"
in the SAC Users Manual.

LATEST REVISION

October 11, 1984 (Version 9.1)
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CONTOUR

SUMMARY

Produces contour plots of data in memory.

SYNTAX

CONTOUR {ASPECT ON|OFF}

INPUT

ASPECT {ON}: Turn aspect ratio option on. When this option is on, the viewport of
the contour plot will be adjusted to maintain the y to x aspect ratio of the data.

ASPECT OFF: Turn aspect ratio option off. When off, the full viewport is used.

DEFAULT VALUES

CONTOUR ASPECT OFF

DESCRIPTION

This command can be used to produce a contour plot of the of any other two-dimensional array data,
including the output of the SPECTROGRAM command. The SAC data plotted by this command
must of of file type XYZ (SAC header variable IFTYPE set to IXYZ). Several commands control how
the data is displayed: ZLEVELS for the spacing and number of contour levels, ZLINES for linestyles,
ZLABELS for contour labeling, ZTICKS for directional tick marks, and ZCOLORS for line colors.
Depending upon the contouring options selected, two different contouring algorithms are used. A fast
scan method is used if no only solid linestyles are selected and no tick marks or labels are requested.
Otherwise, a slower method, where entire line segments are first assembled before they are drawn, is
used. You may want to use the fast scan method for a quick look at your data and then select other
options for a final version.

EXAMPLES

In the first example (shown below) a file is read and contoured using default values.

In this example, the same file is read and the header is listed to determine the range of the z data
(DEPMIN and DEPMAX.) Only selected portions of the output from LISTHDR are shown. A range
of contour levels between 700 km and 1150 km and an increment of 25 km is selected. A list of four
linestyles is selected, starting with a solid line. The list will be repeated for every four contour levels.
A title is defined and the contour plot was generated:

SAC> READ MYDATA
SAC> LISTHDR

FILE: MYDATA
NPTS = 10000

IFTYPE = GENERAL XYZ (3-D) FILE
DEPMIN = 697.71
DEPMAX = 1154.4
NXSIZE = 100

XMINIMUM = 82574.
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XMAXIMUM = 86992.
NYSIZE = 100

YMINIMUM = 0.47439E+06
YMAXIMUM = 0.47720E+06

SAC> ZLEVELS RANGE 700 1150 INCREMENT 25
SAC> ZLINES LIST 1 2 3 4
SAC> TITLE ’Katmai topography from survey data [inc = 25 km]’
SAC> CONTOUR

The result of this example is shown in the figure below.

In the final example, the same data is used but different display options are selected. Integer labels
are selected for every fourth contour level and "down" tick marks are selected for the contour levels
in between. Solid linestyles are used for all contour levels:

SAC> READ MYDATA
SAC> ZLEVELS RANGE 700 1150 INCREMENT 25
SAC> ZLABELS ON LIST INT OFF OFF OFF
SAC> ZTICKS ON LIST 0 -1 -1 -1
SAC> ZLINES LIST 1
SAC> TITLE ’Katmai topography from survey data [labels and ticks]’
SAC> CONTOUR

The result of this example is shown in the figure below.

HEADER VARIABLES

REQUIRED: IFTYPE (set to "IXYZ"), NXSIZE, NYSIZE
USED: XMINIMUM, XMAXIMUM, YMINIMUM, YMAXIMUM

SEE COMMANDS

ZCOLORS, ZLABELS, ZLEVELS, ZLINES, ZTICKS, SPECTROGRAM and the SAC Data File For-
mat.

ACKNOWLEDGEMENTS

The fast scan contouring subroutine was developed by Dave Harris (DBH).

LATEST REVISION

JULY 22, 1991 (Version 10.6d)

171



CONVERT

SUMMARY

Converts data files from one format to another.

SYNTAX

CONVERT {FROM} {format} infile
{TO {format} outfile}|{OVER {format}}

where format is one of the following:

SAC|ALPHA

INPUT

infile: The name of the input data file.
outfile: The name of the output data file.
OVER: Overwrite the input data file.
SAC: SAC formatted binary data file.
ALPHA: Alphanumeric equivalent of SAC binary data file.

DEFAULT VALUES

CONVERT FROM SAC infile OVER SAC

DESCRIPTION

This command converts a single data file from one format to another. In the previous version of
this help file written in 1983, it was stated that convert would be replaced in the future by improved
capability in READ and WRITE. In 2011, CONVERT is no longer needed, but for back-compatibility
it is being kept.

LATEST REVISION

August 2011
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CONVOLVE

SUMMARY

Compute the convolution of a pulse shape with all other time series in memory.

SYNTAX

CONVOLVE {file} {PULSE n} {TRI v} {GAUSS v}

INPUT

PULSE n: The PULSE in filenumber n in memory (defaults to n=1)
file: Convolve with data in file (not in memory)
TRI v: Convolve with a triangle of half width v seconds
GAUSS v: Convolve with a Gaussian with standard deviation v seconds
CENTERED ON|OFF: Place zero time on center [ON] or beginning [OFF] of the pulse

DEFAULT VALUES

CONVOLVE PULSE 1 CENTERED OFF

DESCRIPTION

In seismology, convolution is used in two ways:

1) convolving a pulse shape with a time-series, and
2) convolving a response with a time series (or, more typically, deconvolving a

response from a time series)
The equation for convolution takes a simple form in both the time and frequency domains;
(1) is more easily described in the time domain, while (2) in the frequency domain. The
CONVOLVE function here is oriented towards (1). Function TRANSFER is more appropri-
ate for (2).
There are three ways to run CONVOLVE: (1) PULSE: read in N files and convolve one
of them with all the others; (2) file: read in N files and convolve all of them with a file
not among them: (3) Using a PREDEFINED FUNCTION (see below). Previous to SAC
v102.0, the PULSE method was the only option, so we start there.
The pulse file is convolved with all other time-series files in memory using the discretized
version of the following equation:

conv(tau) = INT ( f(t) g(tau - t) ) dt,

where f is the pulse file, g any from among the other signals in memory, and INT means
integration (summation) over all times t. All signals in memory must have the same DELTA.
The number of points in f, the pulse shape, cannot be greater than the number of points in
any other file in memory. If NPTS(g) is the number of points in g and NPTS(f) the number
in f, the number in conv is NPTS(g)+NPTS(f)-1. The start time for each output conv will
be the same as B(g). Centering on the pulse shapes eliminates time shifts introduced by
convolution. If CENTERED is OFF, B(f) = 0.0. CENTERED ON should only be used for
time-symmetric pulses. As an example, let synthetic.sac be a synthetic time series created
by a progra such as WKBJ, consisting of spikes with time offsets, amplitudes, and polarities
representing phase arrivals. Let that file be called synthetic.sac. One wants to compare
that synthetic with an observed sesimogram, and one creates a pulse file p_arrival.sac:
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SAC> r p_arrival.sac synthetic.sac
SAC> PULSE 1 convolve CENTERED OFF

FILE OPTION

Given the same two files:

SAC> r synthetic.sac
SAC> convolve p_arrival.sac CENTER OFF

PREDEFINED FUNCTIONS

The option to convolve with TRI and GAUSS automatically computes these function with the correct
time samplings. For GAUSS or TRI, there is no pulse-shape file read in; the predefined function takes
the place of f(t) in the above equation. Both functions are normalized such that they integrate to
1.0 and should not add amplitude (or "moment" in the language of sources). Both functions are
time-symmetric. If the exponent in GAUSS(t) is -0.5(t/v)^2, v is the standard deviation.

Say one wants to look at file synthetic.sac simply as a spike series (no source pulse). The file may have
Gibbs phenomena accompanying each arrival. Convolving synthetic.sac with a predefined function will
result in a cleaner looking seismogram:

SAC> r synthetic.sac
SAC> convolve GAUSS 0.04 CENTERED ON
or
SAC> r synthetic.sac
SAC> convolve TRI 0.04 CENTERED ON

All three cases (source, gauss, tri) are shown in the figure below. A Brune pulse is used as the
p_arrival pulse. No relative scaling has been done except for the source pulse.

RELATION TO CORRELATE

Note the similarity in the convolve equation and the one in CORRELATE. Many convolve routines,
including the original one in SAC, mistakenly use this similarity in deriving the procedure for convo-
lution by simply perturbing the procedure used in CORRELATE. The time series from a convolution
(conv in the equation above) is typically a replacement time series for the time series g; for example,
adding a pulse shapee to a synthetic seismogram. The relative times for f and g are not used in
CORRELATE, but in convolution they may play a role.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN, NPTS

LATEST REVISION

2019 (Version 102.0)
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COPYHDR

SUMMARY

Copies header variables from one file in memory to all others.

SYNTAX

COPYHDR {FROM name|n} hdrlist

INPUT

FROM name: Copy header list from named file in memory.
FROM n: Copy header list from numbered file in memory.
hdrlist: Space delimited list of header variables to copy.

DEFAULT VALUES

COPYHDR FROM 1

DESCRIPTION

This command lets you copy the values of any SAC header variable from one file in memory to all of
the remaining files in memory. You can select which file you want to copy from.

EXAMPLES

Assume you are using PPK to mark several times in the header of a file called FILE1. You are using
the header variables T3 and T4. To copy those same markers into files FILE2 and FILE3:

SAC> READ FILE1
SAC> PPK
SAC> ... use cursor to mark times T3 and T4.
SAC> READ MORE FILE2 FILE3
SAC> COPYHDR FROM 1 T3 T4

In this next example, assume you have read in a large number of files and you want to copy the event
location, EVLA and EVLO, from the file called ABC into all of the other headers. This can be easily
done by referencing the file by name not number:

SAC> COPYHDR FROM ABC STLA STLO

HEADER CHANGES

Potentially all.

LATEST REVISION

May 15, 1987 (Version 10.2)
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CORRELATE

SUMMARY

Computes the auto- and cross- correlation functions.

SYNTAX

CORRELATE {MASTER name|n},
{NUMBER n},{LENGTH ON|OFF|v},
{TYPE RECTANGLE|HAMMING|HANNING|COSINE|TRIANGLE}

INPUT

MASTER name|n: Select master file in data file list by name or number. All files will be
correlated against this one.

NUMBER n: Set number of correlation windows to be used.
NORMALIZED OFF: No normalization
NORMALIZED ON: Results are normalized between -1.0 and 1.0
LENGTH {ON}: Turn fixed window length option on.
LENGTH OFF: Turn fixed window length option off.
LENGTH v: Turn fixed window length option on and change window length in seconds

to v.
TYPE RECTANGLE: Apply a rectangle function to each window. This is equivalent to

applying no function to each window.
TYPE HAMMING: Apply a hamming function to each window.
TYPE HANNING: Apply a hanning function to each window.
TYPE COSINE: Apply a cosine function to each window.
TYPE TRIANGLE: Apply a triangle function to each window.

DEFAULT VALUES

CORRELATE MASTER 1 NORMALIZED OFF NUMBER 1 LENGTH OFF TYPE RECTANGLE

DESCRIPTION

An auto-correlation is computed on the signal declared to be the master file, and a cross-correlation is
calculated between the master file and each of the other signals in memory. This command computes
correlations as defined by:

corr(tau) = int ( f(t) g(tau + t) ) dt,

where f is the master file, g is any from among the signals in memory, and int means summation over
all times t. The number of points in the master file cannot be greater than the number of points in
any other file in memory.

The input for SAC CORRELATE is files f and g. The output is the auto-correlation for f and the
cross-correlation of f with g. The relative times for the two output files is most easily understood by
examining the figure below. in this case, f is an isosceles triangle of duration 0.08 s starting at t = 0,
which is produced by the commands:
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SAC> fg triangle npts 9 begin -0.08 delta 0.02
SAC> cutim -0.04 0.04; ch b 0.0; write triangle.sac

In this example, g is a synthetic waveform with spikes at phase arrival times with amplitudes and
polarity appropriate for that phase. The P arrival is at t = 0. The maximum amplitude for the
auto-correlation always at output time tau = 0. The P arrival spike has a high correlation with the
triangle pulse. Note that the maximum for the output cross-correlation is at around -0.04 s, the onset
time for the triangle auto-correlation. The commands for CORRELATE for f with g in this case are
as follows:

SAC> r triangle.sac synthetic.sac
SAC> correlate normalized
SAC> write sac-autoc_triangle.sac sac-cc_triangle-synth.sac
SAC> r sac-autoc_triangle.sac
SAC> ch kevnm "sac-autoc_triangle"
SAC> write over
SAC> r sac-cc_triangle-synth.sac
SAC> ch kevnm "sac-cc_tri-synth"
SAC> write over

After correlate normalized, the filenames and KEVNM remain as they were before. Shown here is an
example as to to label the output files.

If N is the number of points in g and M the number of points in f, the total number of points in
corr is N+M-1. SAC does the calculation in the frequency domain so if N is not a power of 2, it is
increased to N2, the next power of 2. Both f and g are padded with zeroes to N2 points before the
forward transforms. (It is wise to prepare all input files to minimize end effects.)

The windowing features of this command allow one to compute an average correlation function over
a set of data windows. The number of windows is selectable and there are five standard windowing
functions to choose from. When this windowing feature is on, a cross-correlation function is computed
for each window. This collection of cross-correlation functions is then averaged, cut to the same length
as the original data file, and replaces the data file in memory. You may also select the length of each
window.

Window overlap is automatically calculated and used whenever the product of the requested window
length (LENGTH option) and the number of windows (NUMBER option) exceeds the number of
points in the data file (NPTS). By default, this windowing feature is off.

ADDITIONAL EXAMPLES

To calculate the correlation functions using the third file in memory as the master file:

SAC> CORRELATE MASTER 3

You could also specify the master file by name if this is easier. Assume you have two data files that
each contain 1000 points of noise. To compute the average correlation functions using 10 windows
of 100 points each (i.e. no overlap) with a hanning function applied to each window:

SAC> CORRELATE TYPE HANNING NUMBER 10

To achieve a twenty percent overlap of each window, set the window length to the equivalent of 120
data points. Assuming a sampling interval of 0.025 (40 samples per second) this would be three
seconds as shown below:

SAC> CORRELATE TYPE HANNING NUMBER 10 LENGTH 3.0
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HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN, NPTS, B

ACKNOWLEDGEMENTS

This command is based on an algorithm developed by Dave Harris (DBH)

LATEST REVISION

SAC v102.0 (added normalization)
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COMMIT , RECALLTRACE , ROLLBACK

SUMMARY

ROLLBACK: reverts SAC data to last committed version in I/O buffers.

COMMIT: commits (copies) SAC data to the I/O buffers.

RECALLTRACE: rolls back the last committed waveform and a few header fields, commits most of
the header fields.

SYNTAX

ROLLBACK
COMMIT
RECALLTRACE (or simply RECALL)

DESCRIPTION

Context: In order to support multiple data formats with as little information loss as possible, SAC’s
internal data storage has been augmented with I/O buffers based on the CSS 3.0 schema. Compu-
tations continue to be performed on the data stored in the original SAC-format headers, but most
I/O takes place using the data stored in the I/O buffers. Because there are two copies of the data in
memory, and because most SAC commands do not affect the copy stored in the I/O buffers, SAC can
revert to the copy in the I/O buffer to effectively erase unwanted changes without having to re-read
the data.

ROLLBACK

After a series of operations on the data you can issue the ROLLBACK command, and the operations
will be undone; the datafiles in SAC’s internal data storage are replaced with the corresponding files
in the I/O buffer, which represent the last committed version of the data files.

COMMIT

After a series of operations on the data you can issue the COMMIT command, any changes to the
header values and the waveforms will be copied from the SAC headers to the I/O buffers. Future
ROLLBACK commands will revert to this committed data.

RECALLTRACE

The RECALLTRACE command:

∙ rolls back the waveforms
∙ rolls back those header variables which are tightly linked to the waveforms
∙ commits those variables which are loosely linked to the waveforms.

This allows the user the flexibility to read a file, filter it, process it, and change some of the header
variables not tightly linked to the waveform (make picks, establish new event location, etc.) and
then recall the original waveform while saving the new header values. The user need not worry about
ending up with header variables which are inconsistent with the waveform, because RECALLTRACE
will roll those variables back with the waveform.

The following header variables are considered tightly linked to the waveform:
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DELTA ODELTA DEPMIN DEPMAX DEPMEN STLA STLO STEL STDP
CMPAZ CMPINC XMINIMUM XMAXIMUM YMINIMUM YMAXIMUM
NPTS NXSIZE NYSIZE NVHDR NORID NEVID NWFID
IFTYPE IDEP IINST ISTREG IZTYPE ISYNTH LEVEN LPSPOL
KSTNM KINST KCMPNM KHOLE KNETWK

The following header variables are considered loosely linked to the waveform:: B E O A T0
T1 T2 T3 T4 T5 T6 T7 T8 T9 F EVLA EVLO EVEL EVDP MAG USER0 USER1 USER2
USER3 USER4 USER5 USER6 USER7 USER8 USER9 DIST AZ BAZ GCARC RESP0 RESP1
RESP2 RESP3 RESP4 RESP5 RESP6 RESP7 RESP8 RESP9 NZYEAR NZJDAY NZHOUR
NZMIN NZSEC NZMSEC IEVTYP IMAGTYP IMAGSRC IEVREG IQUAL LOVROK LCALDA
KDATRD KEVNM KO KA KT0 KT1 KT2 KT3 KT4 KT5 KT6 KT7 KT8 KT9 KF KUSER0
KUSER1 KUSER2

EXAMPLES

The COMMIT command is used on the 14th line of the following example. Run the example three
times: the second time use ROLLBACK in place of COMMIT. The third time, use RECALLTRACE:

SAC> FG SEIS
SAC> RTR
SAC> P1
SAC> LH KSTNM KEVNM
SAC> CH KSTNM KAH KEVNM SOMEEVENT
SAC> ENVELOPE
SAC> PPK
SAC> user picks T1 at the change in frequency content
SAC> P1
SAC> LH KSTNM KEVNM
SAC> COMMIT # replace with ROLLBACK or RECALLTRACE as appropriate
SAC> P1
SAC> LH KSTNM KEVNM

RESULTS

When running this example with the COMMIT command, the final P1 will display the enveloped data
and the T1 pick; the LH will display the new values for KSTNM and KEVNM which were set with
the CH command.

When running this example with the ROLLBACK command, the final P1 will display the unprocessed
file produced by the FG command and the T1 pick will be lost; the LH will display the original values
of KSTNM and KEVNM.

When running this example with the RECALLTRACE command, the final P1 will display the unpro-
cessed file produced by the FG command but the T1 pick will be preserved; the LH will display the
original value of KSTNM and the new value of KEVNM.

SEE COMMANDS

DATAGEN, DELETECHANNEL, DELETESTACK, MERGE, READ, READALPHA, READCSS, READ-
GSE, READHDR, READSDD, READSUDS, SORT, WRITE, WRITECSS, WRITEHDR, WRITESP,
WRITESTACK
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WARNING

Certain SAC commands will automatically commit your data for you. Because there are now two data
storage locations, certain SAC commands will require that the two sets of files be made consitent
with each other prior to executing the command. The following commands require consistency every
time they are called:

MERGE SORT WRITE WRITECSS WRITEHDR WRITESP WRITESTACK

The following commands require consistency when the MORE option is specified:

DATAGEN READ READTABLE READCSS READGSE READHDR READSDD READSUDS

These commands will by default commit the data before executing. Each of these commands takes
options to allow it to rollback or recall the data prior to execution. The options are COMMIT,
ROLLBACK, and RECALLTRACE. COMMIT is the default.

Changing the option in any one of these commands changes it in all of them for future calls.

Note: Because there are now two data storage locations, we optimized flexibility of the DELETECHAN-
NEL and DELETESTACK commands by allowing the COMMIT option to control whether the datafiles
are deleted from the I/O buffers. When either of these delete commands are used with COMMIT
ON, the specified data files are deleted from the I/O buffers as well as the SAC internal data storage;
subsequent ROLLBACK commands will find no trace of the deleted files. When one of these delete
commands is issued with COMMIT OFF, the specified datafiles are deleted from the SAC internal
data storage, but not from the I/O buffers; subsequent calls to ROLLBACK will return these files to
the SAC internal data storage. There is an exception: when DELETECHANNEL is called with the
ALL option, all datafiles will be deleted from SAC internal storage and the I/O buffers regardless of
the COMMIT option. The default is COMMIT OFF. See DELETECHANNEL and DELETESTACK
for details.

Changing the COMMIT option in one delete command changes it in both for future calls. The
COMMIT option for DELETECHANNEL and DELETESTACK is unrelated to the COMMIT option
in other commands listed in the Warning above.

LATEST REVISION

October 29, 1998 (Version 00.58beta)
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CUT

SUMMARY

Defines the amount of a data file to be read. CUT does not act on data currently in memory: a call to CUT
must be followed by a READ or FUNCGEN to take effect.

As discussed below, CUT can be preceded by CUTERR, which controls errors if the chosen amount includes times
outside B to E. The syntax will then be CUTERR {CUTERR option} ; CUT {CUT options}.

SYNTAX

CUT {ON|OFF|pdw|SIGNAL}

INPUT

ON: Turn cut option on but don’t change pdw (see below).
OFF: Turn cut option off.
pdw: Turn cut option on and enter/change pdw. A pdw is a partial data window. It

consists of a starting and a stopping value of the independent variable, usually time,
which defines the segment of a file one wishes to read. The most general form of a
pdw is ref offset ref offset, where ref is a number or a reference value that is one
of the following: B|E|O|A|F|Tn, where n=0,1...9, and N, the number of points. The
reference values are defined in SAC data file format and reviewed below.

offset: A positive or negative number that is added to the reference value.
SIGNAL: Equivalent to typing: A -1 F +1.

DEFAULT VALUES

CUT OFF (equivalent to CUT b e)

CUTERR FILLZ for signal stacking subprocess, USEBE for others

DESCRIPTION

The CUT command simply sets cut points and does not change the file in memory. For the command
to take effect, CUT must be followed by a READ. This is in contrast with command CUTIM, which
carries out cut (or cuts) on the data currently in memory.

If the start or stop offset is omitted it is assumed to be zero. If the start reference value is omitted
it is assumed to be zero. If the stop reference value is omitted it is assumed to be the same as the
start reference value.

With CUT off, the entire file is read. With CUT on, only that portion of the file between the starting
and stopping cut values is read. These are values in terms of the independent variable in the data file,
normally time. (See SAC data file format for a discussion of dependent and independent variables.)
The following header variables are used to represent certain values of the independent variable:

B: Disk file beginning value;
E: Disk file ending value;
O: Event origin time;
A: First arrival time;
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F: Signal end time;
Tn: User defined time picks (n = 0,1...9)

B and E are required for each data file in memory. O, A, F, and Tn can be defined for a data file in
memory using the CHNHDR command. If one want to select the same time window from a group
of data files that have different reference times, one must use the SYNCHRONIZE command before
executing the CUT command. SYNCHRONIZE modifies the headers so that each file has the same
reference time. It also adjusts all of the relative times, including B and E. Then when the files are cut,
they will have the same time reference values. Since CUT is applied to the headers on disk, you must
use the WRITEHDR command after the SYNCHRONIZE command and before the READ command
to get the correct set of files before applying CUT.

CUTERR is entered only if one wants to do something other than the default for an error.

For CUT (but not for CUTIM) an option for the stop value is to enter N, which is the offset in the
number of points from the start reverence value.

EXAMPLES

The macro below demonstrates several possible uses of CUT. The macro cut_runs.m, is in the
SAC macros directory: ${SACHOME}/macros/. It, along with the results from entering m ${SA-
CHOME}/macros/cut_runs.m after starting SAC. It is suggested that one runs this macro and com-
pares the results with those from the macro in the help filefor CUTIM:

fg seismo
write seismo.sac
echo on

* no cutting
lh b e a kztime

* begin to end---same as not cutting.
cut B E
read seismo.sac
lh b e a kztime

* First 3 secs of the file
cut B 0 3
read seismo.sac
lh b e a kztime

* From 0.5 secs before to 3 secs after first arrival
cut A -0.5 3
read seismo.sac
lh b e a kztime

* From 10 to 15 secs relative to zero
cut 10 15
read seismo.sac
lh b e a kztime

* From 0.5 to 5 secs relative to disk file start.
cut B 0.5 5
read seismo.sac
lh b e a kztime
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* First 3 secs of the file and next 3 sec
cut b 0 3
read seismo.sac
write tmp.1

cut b 3 6
read seismo.sac
write tmp.2

cut off
read tmp.?
lh b e a kztime
title "top: cut b 0 3; bottom: cut b 3 6"
p1
save cut-test.pdf
\rm tmp.*

* Examples using CUTERR_

cut off
read seismo.sac
lh b e a npts kztime
cut a -0.5 15
read seismo.sac
lh b e a npts kztime
cuterr usebe ; cut a -0.5 15
read seismo.sac
lh b e a npts kztime
cuterr fillz ; cut a -0.5 15
read seismo.sac
lh b e a npts kztime

Note that one can a pad the beginning or end of a file with zeros by turning on the FILLZ option in
the CUTERR command, defining a cut that extends beyond the current limits of the file, and then
reading the file into memory using the READ command.

ERROR MESSAGES

∙ 1322: Undefined starting cut for file

– undefined reference value in the header record.

– this error can be controlled by use of CUTERR command.

– when this error is off, the disk begin value is used.

∙ 1323: Undefined stop cut for file

– undefined reference value in the header record.

– this error can be controlled by use of CUTERR command.

– when this error is off, the disk end value is used.

∙ 1324: Start cut less than file begin for file

– bad CUT parameters.
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– this error can be controlled by use of CUTERR command.

– when this error is off, the disk begin value is used or zeros are insertedat the beginning of the data.

∙ 1325: Stop cut greater than file end for file

– bad CUT parameters.

– this error can be controlled by use of CUTERR command.

– when this error is off, the disk end value is used or zeros are inserted at the end of the data.

∙ 1326: Start cut greater than file end for file

– bad CUT parameters.

– this error cannot be turned off.

SPECIAL NOTE Since this is a parameter-setting command, the above errors will not appear until the READ
command is executed. Also, some of the above errors can be converted to warnings by the use of the
CUTERR command.

LIMITATIONS

There is currently no provision for cutting unevenly-spaced files or spectral files.

SEE COMMANDS

READ, APK, PLOTPK, SYNCHRONIZE, CUTERR, CUTIM

LATEST REVISION

April 21, 2010 (Version 101.4)
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CUTERR

SUMMARY

Controls errors due to bad cut parameters.

SYNTAX

CUTERR FATAL|USEBE|FILLZ

INPUT

FATAL: Treat cut errors as fatal.
USEBE: Replace bad start cut with file begin and bad stop cut with file end.
FILLZ: Fill with zeros before file begin or after file end to account for difference between

bad cut and file begin and end.

DEFAULT VALUES

FILLZ for signal stacking subprocess, USEBE for others.

DESCRIPTION

CUTERR controls error conditions arising from bad CUT parameters. It is effectively an option of
CUT, but is used with the following syntax: CUTERR {cuterr option} ; CUT {CUT options}. No
action is taken until a subsequent READ or FUNCGEN. If the CUTERR option is FATAL, no data will
be entered into memory. Data will be enered into memory for options USEBE or FILLZ with results
as described above. The options are not case sensitive.

EXAMPLES

Command fg seismo reads into memory a seismogram:

SAC> CUT OFF
SAC> fg seismo
SAC> lh b, a, e, npts, kztime
b = 9.459999e+00 a = 1.046400e+01
e = 1.945000e+01 npts = 1000
kztime = 10:38:14.000

One gets the same result for lh if one precedes the fg seismo command with either CUT A -5 E or
CUTERR USEBE ; CUT A -5 E because USSEBE is the default for CUTERR. One gets a different
result for the option FILLZ:

SAC> CUTEERR FILLZ ; CUT A -5 E
SAC> fg seismo
SAC> lh b, a, e, npts, kztime
b = 5.459999e+00 a = 1.046400e+01
e = 1.945000e+01 npts = 1400
kztime = 10:38:14.000

If on followed the CUTERR FILLZ example with P1, one would see an abrupt transition at time B
because seismo has a nonzero offset at B. The following set of commands would produce a display
with no offset: fg seismo ; rtr ; taper ; write test.sac ; CUTEERR FILLZ ; CUT A -5 E ; read test.sac.
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SEE COMMANDS

CUT, READ

LATEST REVISION

January 8, 1983 (Version 8.0)
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CUTIM

SUMMARY

Cuts files in memory. Can cut multiple segments from each file currently in memory

SYNTAX

CUTIM pdw [pwd ... ]

INPUT

pdw: Partial Data Window. It consists of a starting and a stopping value of the independent
variable (usually time), which defines which segment of a file (or files) one wishes to
read. The most general form of a pde is :ref offset ref offset:, where

ref: A reference value that is one of the following: B|E|O|A|F|Tn, where n=0,1...9. These
reference values are defined in SAC data file format and reviewed below.

offset: A positive or negative number which is added to the reference value (optional).

DEFAULT VALUES

Start and stop reference values are required. See examples below for an exception. If the start or stop
offset is omitted, it is assumed to be zero.

DESCRIPTION

While the CUT command simply sets cut points and does not change the file in memory, CUTIM
carries out the cut(s) when the command is given. The user can READ a file aand type CUTIM with
the desired cutpoints, and SAC will cut the file to those specified cutpoints. CUTIM allows multiple
pairs of cutpoints, with an output file for each pair. If there are more than one file in memory, CUTIM
produces the cuts on all the files For example, the user can READ three files into SAC, and use
CUTIM with four sets of cutpoints; the result will be 12 files in memory.

The start and stop values are given in terms of the independent variable in the data file, normally
time. (See the SAC data file format for a discussion of dependent and independent variables.) Unlike
CUT, the N option (point number in file) is not available for CUTIM. The following header variables
are used to represent certain values of the independent variable:

B: Disk file beginning value;
E: Disk file ending value;
O: Event origin time;
A: First arrival time;
F: Signal end time;
Tn: User defined time picks, n = 0,1...9

B and E are required for each data file in memory. O, A, F, and Tn can be defined for a data file in
memory using the CHNHDR command. If one want to select the same time window from a group
of data files that have different reference times, one must use the SYNCHRONIZE command before
executing the CUTIM command. SYNCHRONIZE modifies the headers so that each file has the same
reference time. It also adjusts all of the relative times, including B and E. Then when the files are
cut, they will have the same time reference values.
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EXAMPLES

The macro below demonstrates several possible uses of CUT. The macro cutim_runs.m, is in the
SAC macros directory: ${SACHOME}/macros/. It, along with the results from entering m ${SA-
CHOME}/macros/cutim_runs.m after starting SAC. It is suggested that one runs this macro and
compares the results with those from the macro in the help file for CUT:

echo on
fg seismo

* no cutting
lh b e a kztime

fg seismo

* begin to end---same as not cutting.
cutim B E
lh b e a kztime

fg seismo

* First 3 secs of the file.
cutim B 0 3
lh b e a kztime

fg seismo

* From 0.5 secs before to 3 secs after first arrival
cutim A -0.5 3
lh b e a kztime

fg seismo

* From 10 to 15 secs relative to zero
cutim 10 15
lh b e a kztime

fg seismo

* From 0.5 to 5 secs relative to disk file start.
cutim B 0.5 5
lh b e a kztime

fg seismo

* First 3 secs of the file and next 3 sec
cutim b 0 3 b 3 6
lh b e a kztime

title "cutim b 0 3 b 3 6"
p1
save cutim_run.pdf
write *

Because CUTIM changes the file(s) in memory, the fg seismo is rquired betweem cals to CUTIM. The
lh (LISTHDR) command for seismo with no calls to CUTIM is:

b = 9.459999e+00 e = 1.945000e+01
a = 1.046400e+01 kztime = 10:38:14.000

Note that B is nonzero. The numbers are relative to B on input, but relative to zero on output. (If
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there is no stop reference value, it is assumed to be the same as the start reverence value, in this case
B.)

ERROR MESSAGES

∙ 1322: Undefined starting cut for file

– undefined reference value in the header record.

– this error can be controlled by use of CUTERR command.

– when this error is off, the disk begin value is used.

∙ 1323: Undefined stop cut for file

– undefined reference value in the header record.

– this error can be controlled by use of CUTERR command.

– when this error is off, the disk end value is used.

∙ 1324: Start cut less than file begin for file

– bad CUT parameters.

– this error can be controlled by use of CUTERR command.

– when this error is off, the disk begin value is used or zeros are inserted at the beginning of the data.

∙ 1325: Stop cut greater than file end for file

– bad CUT parameters.

– this error can be controlled by use of CUTERR command.

– when this error is off, the disk end value is used or zeros are inserted at the end of the data.

∙ 1326: Start cut greater than file end for file

– bad CUT parameters.

– this error cannot be turned off.

SPECIAL NOTE Also, some of the above errors can be converted to warnings by the use of the CUTERR
command.

LIMITATIONS

There is currently no provision for cutting unevenly-spaced files or spectral files.

SEE COMMANDS

CUT, READ, APK, PLOTPK, SYNCHRONIZE, CUTERR

LATEST REVISION

Version 102.0 Fixes behavior of CUTIM so it matches CUT
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DATA

SUMMARY

Search for, build requests and download data

SYNTAX

DATA
{ catalog:event_id }
{ duration }
{ region w e s n }
{ origin lon lat }
{ radial min_radius max_radius }
{ time start end }
{ network net,to,use } { station sta,tions,to,get }
{ location 00,10,-- } { channel hhz,bh? }
{ in station_file }
{ out request_file }
{ max size_in_MB }
{ request request_file }
{ d | raw | quality | modified | best | merged | qc | unknown }
{ verbose }
{ ph5 }
{ sac }
{ read }
{ mseed | miniSEED }
{ more }

INPUT

avail | download: Display the Availability or Download data
catalog:event_id: Use an eventid to set the origin and start time. Catalogs may be usgs,

isc, or gcmt. Use the EVENT command to get eventids
duration: Set the end time using a duration
region: Set the region to request stations within: west east south north
origin: Set the origin location: lon lat
radial: Set the radius limits in degrees: min_radius max_radius
time: Set the start and end times. End times can be set relatively
network: Set a collection of networks. Accepts lists and wildcards.
station: Set a collection of stations. Accepts lists and wildcards.
location: Set a collection of locations. Accepts lists and wildcards.
channel: Set a collection of channels. Accepts lists and wildcards.
in: Input station file for building the data request File format is space delimited with

Network and Station in the 1st and 2nd columns. This file can be obtained from
STATION.

out: Output request file for saving the data request to run later
prefix: Prefix for miniSEED data files
ph5: Get additional data from the IRIS PH5 Web service. This option provides access

to active-source data sets and their associated stations with high sample rates and
time-limited deployments.
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sac: Convert the miniSEED data into sac files and save. Station meta data is obtained for
the stations. If an event is specified, event meta data is also used

mseed: (or miniSEED) Save the miniSEED files
read: Read the data following conversion from miniSEED to sac
more: Append to data existing data files in memory
max: Set the data download size for request: size_in_MB
verbose: Watch the details of the data search / download process

DEFAULT VALUES

DATA avail mseed max 200 loc * quality best

DESCRIPTION

Search for available data and possibly download the data. Data will be downloaded from multiple data
repositories based on where the data is held. Requests are also limited in size, see max size_in_MB,
to allow downloading data in reasonable sizes.

Time ranges can be set using a variety of formats, see examples below. End times can be set using a
relative value with units. See Data Access for time formats.

EventID from EVENT can be used to identify origin times and locations. They will also be used to
set sac file meta data for an event.

MiniSEED filenames will be defined when the request was made and the data center to which the
request was made. Use prefix to set the starting portion of miniSEED files.

EXAMPLES

Let’s get some data from station HELL, channels BHZ, from 2013/05/21 for a single hour:

SAC> data sta HELL cha BHZ net * loc * time 2013/05/21 +1h

## REQUEST 1/ 1
DATACENTER=NCEDC,http://www.ncedc.org
BK HELL 00 BHZ 2013-05-21T00:00:00 2013-05-21T01:00:00

No Data Downloaded, use miniSEED, sac, or read to download data

Note that the request is displayed to the screen but the data was not download. If you desire a saved, fuller
version of the request, use the out option to save the request. If you want the data, run the same command
again with

∙ miniSEED option to download miniSEED data

∙ sac option to get sac data

∙ read to place the data into memory

These options can be used individually or together. You can download data into SAC files and place those files
into memory using the sac and read options together. For now, let’s just get miniSEED data by appending the
the miniSEED option:
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SAC> data sta HELL cha BHZ net * loc * time 2013/05/21 +1h miniSEED
Data Center: NCEDC,http://www.ncedc.org

Writing data to fdsnws.2019.07.12.10.38.15.NCEDC.mseed [276.00 KiB]

The data is written to a file with the prefix fdsn, the time of the request, the data center which provided the data,
and a mseed extension. Note, the time in the file name has no relation to the data within the file.

Alternatively, if the request was saved to a file called request.txt the data can be obtained using:

SAC> data request request.txt
Data Center: NCEDC,http://www.ncedc.org

Writing data to fdsnws.2019.07.12.10.40.22.NCEDC.mseed [276.00 KiB]

Another option is to obtain data for a specific event using the duration and channel options. First we need an
event:

SAC> event time 2019-05-14 +1d mag 7 cmt
Origin Lat. Lon. Depth Mag. Agency EventID
2019-05-14T12:58:41 -3.96 152.53 18.80 7.60 MW GCMT/- GCMT gcmt:11037207

We can then use the eventid at the end of the line to request data:

SAC> data gcmt:11037207 dur +10m net IU sta * cha BHZ rad 35 45 miniSEED
Data Center: IRISDMC,http://ds.iris.edu
Writing data to fdsnws.2019.07.12.10.53.30.IRISDMC.mseed [584.00 KiB]

An input station file using the IN keyword can also be used to request data:

SAC> station net YE sta SPOLE cha BHZ level station out southpole.txt
Net Sta Lat. Lon. Elev. SiteName
YE SPOLE -89.9300 144.4400 2850.00 South Pole, Antarctica

SAC> data time 2014/03/01 +10m cha BHZ in southpole.txt miniSEED
Reading station file: southpole.txt
Data Center: IRISDMC,http://ds.iris.edu

Writing data to fdsnws.2019.10.30.19.31.34.IRISDMC.mseed [ 22.00 KiB]

It can be useful to see what may be download first; particularly if you forget to specify your desired channels and
mistakenly download 10s of channels you are not interested in.

Large downloads will be divided into smaller chunks. The resulting miniSEED files will be merged back together
during reading, provided gaps do not exist:

SAC> data net II sta BORG loc 00 cha BHZ time 2015/03/15 +1mo max 200

## REQUEST 1/ 3
DATACENTER=IRISDMC,http://ds.iris.edu
II BORG 00 BHZ 2015-03-15T00:00:00.000 2015-03-25T08:00:00.000

## REQUEST 2/ 3
DATACENTER=IRISDMC,http://ds.iris.edu
II BORG 00 BHZ 2015-03-25T08:00:00.000 2015-04-04T16:00:00.000
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## REQUEST 3/ 3
DATACENTER=IRISDMC,http://ds.iris.edu
II BORG 00 BHZ 2015-04-04T16:00:00.000 2015-04-15T00:00:00.000

No Data Downloaded, use miniSEED, sac, or read to download data

Request files are written when requested using the out option or when data is requested/downloaded. The format
of the request file starts with the request parameters followed by the individual data center requests. Lines starting
with # are comments.

The request file is rewritten as indivdual requests are made allowing for larger requests to be stopped and restarted.

PH5 Example: If data originates from the PH5 Web service and metadata is desired in a resulting sac file, the
PH5 option must be provided to tell sac to also search this repository for station metadata. The first example is
able to download data, but results in an error when getting data. Adding the PH5 option in the second example
below, allows the metadata to be obtained and added to the data:

SAC> data net 9A station 22770 time 2012-08-14 +10sec sac
Data Center: IRISPH5,http://ds.iris.edu

SourceID Start sample End sample Gap
XFDSN:9A_22770__D_P_Z 2012-08-14T00:00:00.000000 2012-08-14T00:00:09.996000 ==
Error 204 (HTTP):

Writing data to 9A.22770..DPZ.D.2012.227.000000.sac [ 10.38 KiB]

SAC> data net 9A station 22770 time 2012-08-14 +10sec sac PH5
Data Center: IRISPH5,http://ds.iris.edu

SourceID Start sample End sample Gap
XFDSN:9A_22770__D_P_Z 2012-08-14T00:00:00.000000 2012-08-14T00:00:09.996000 ==
Working on file: 9A.22770..DPZ.D.2012.227.000000.sac [ OK ]

Writing data to 9A.22770..DPZ.D.2012.227.000000.sac [ 10.38 KiB5

ERROR MESSAGES

SEE COMMANDS

STATION, EVENT, RESPONSE, METADATA, DATA ACCESS

LATEST REVISION

Version 102.0
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DATAGEN

SUMMARY

Generates sample data files and stores them in memory.

SYNTAX

DATAGEN {MORE} {COMMIT|ROLLBACK|RECALLTRACE} {SUB name} {filelist}

where SUB is a datagen subdirectory and * name" is one of the following:

LOCAL
REGIONAL
TELESEISEM
DEEP

INPUT

MORE: Place the new sample data files in memory AFTER the old data. If this option is
omitted, the new sample data files REPLACE the old ones.

Note: if the MORE option is not specified, the COMMIT, ROLLBACK, and RECALL-
TRACE options have no effect.

COMMIT: If the MORE option is specified, the COMMIT option commits headers and
waveforms in SAC memory -- removing any previous versions of headers or waveforms
from RAM -- prior to generating more files. COMMIT is the default.

ROLLBACK: If the MORE option is specified, the ROLLBACK option reverts to the last
committed version of the header and waveform before generating more files.

RECALLTRACE: If the MORE option is specified, the RECALLTRACE option:
∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

HELP RECALLTRACE for a list of which header variables are committed, and
which are rolled back.)

SUB name: Select the sub-directory name from which to read the data. Where the sub-
directory name is local, regional, or teleseismic.
A filelist is required. Possible filenames are listed below.

name: LOCAL|REGIONAL|TELESEIS | DEEP ,BREAK Specifics about the contents of
these sub-directories is given below.

filelist: Each SUBdirectory has SAC files from a single event. A filelist is one or more SAC
files in SUB.

DEFAULT VALUES

DATAGEN COMMIT SUB LOCAL cdv.z

DESCRIPTION

The DATAGUEN command operates much like the READ command except that for DATAGEN, any
SAC file read into memory is from a subdirectory of ${SACHOME}/aux/datagen/SUB/. Help file
TRAVELTIME includes runs that use DATAGEN.
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LOCAL EVENT

The local event occurred in the Livermore Valley of California. It was a small unfelt event (ML
1.6). It was recorded by the Livermore Local Seismic Network (LLSN). LLSN is a set of vertical and
three-component stations operated by LLNL and the USGS. Data from nine three-component stations
are included in this set. There is 40 seconds of data sampled at 100 samples per second. Station
information, event information, p-wave time picks, and coda picks are included in the headers. The
filenames are:

cal.z, cal.n, cal.e
cao.z, cao.n, cao.e
cda.z, cda.n, cda.e
cdv.z, cdv.n, cdv.e
cmn.z, cmn.n, cmn.e
cps.z, cps.n, cps.e
cva.z, cva.n, cva.e
cvl.z, cvl.n, cvl.e
cvy.z, cvy.n, cvy.e

REGIONAL EVENT

The regional event occurred in Nevada and was recorded by the Digital Seismic Network (DSS). DSS
is a set of four broadband three-component stations in the Western U.S. The stations are:

elk: Elko, NV
lac: Landers, CA
knb: Kanab, UT
mnv: Mina, NV

The sampling rate is 40 samples per second. The files contain 300 seconds of data, starting 5 seconds
before the origin time of the event. The filenames are:

elk.z, elk.n, elk.e
lac.z, lac.n, lac.e
knb.z, knb.n, knb.e
mnv.z, mnv.n, mnv.e

TELESEISMIC EVENT

The teleseismic event occurred off the coast of Northern California near Eureka on September 10,
1984. It was a moderate to large event (ML 6.6, MB 6.1, MS 6.7) and was felt from the San Francisco
Bay area to Roseburg, Oregon. It was recorded at the Regional Seismic Test Network (RSTN), a set
of five stations in the U.S. and Canada. The stations are:

cpk: Tennessee
ntk: Northwest Territories, Canada
nyk: New York
onk: Ontario, Canada
sdk: South Dakota

Both mid-period and long period data is included. Data from cpk was not available and the long-
period data from sdk is clipped. There is 1600 seconds of data in this set. The long-period data was
recorded at 1 sample per second and the mid-period data at 4 samples per second:
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ntkl.z, ntkl.n, ntkl.e, ntkm.z, ntkm.n, ntkm.e
nykl.z, nykl.n, nykl.e, nykm.z, nykm.n, nykm.e
onkl.z, onkl.n, onkl.e, onkm.z, onkm.n, onkm.e
sdkl.z, sdkl.n, sdkl.e, sdkm.z, sdkm.n, sdkm.e

DEEP EVENT

(new in SAC v102.0) The seismograms in DEEP are from the Sakhalin Island Event (May 12, 1990;
M=6.5; Depth=611 km). The phases are very impulsive, and one can see many converted phases.
There are vertical-, radial-, and transverse-component waveforms from eight broadband stations. The
filenames are:

bla.r bla.t bla.z
ccm.r ccm.t ccm.z
cor.r cor.t cor.z
hrv.r hrv.t hrv.z
kev.r kev.t kev.z
kip.r kip.t kip.z
pas.r pas.t pas.z
tol.r tol.t tol.z

This data set was created as part of a focal-mechanism study, which used the polarity and amplitudes
of the SV and SH phases. Horizontal components for a three-component seismograph must be rotated
from North-South and East-West into Radial and Transverse to separate SV from SH. Positive Radial
is forward and positive Transverse is to the right with respect to an observer facing the station on the
epicenter-station line. To verify this:

SAC> datagen sub deep kev.*
/usr/local/sac/aux/datagen/deep/kev.r ...kev.t ...kev.z

SAC> lh baz cmpaz
FILE: /usr/local/sac/aux/datagen/deep/kev.r - 1
baz = 4.882252e+01 cmpaz = 2.288225e+02
FILE: /usr/local/sac/aux/datagen/deep/kev.t - 2
baz = 4.882252e+01 cmpaz = 3.188225e+02
FILE: /usr/local/sac/aux/datagen/deep/kev.z - 3
baz = 4.882252e+01 cmpaz = 0.000000e+00

SAC>

For the Radial direction, the cmpaz is in the opposition direction of the back azimuth, and, as
discussed in ROTATE, the Transverse is 90 degrees more than the Radial.

ERROR MESSAGES

∙ 1301: No data files read in.

– haven’t given a list of files to read.

– none of the files in the list could be read.

∙ 1314: Data file list can’t begin with a number.

∙ 1315: Maximum number of files in data file list is
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WARNING MESSAGES

∙ 0101: opening file

∙ 0108: File does not exist:

∙ 0114: reading file

– Normally when SAC encounters one of these errors it skips that file and reads the remainder. These
errors can be made to be fatal using the READERR command.

LATEST REVISION

Version 102.0 (2020)
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DECIMATE

SUMMARY

Decimates (downsamples) data, including an optional anti-aliasing FIR filter.

SYNTAX

DECIMATE {n},{FILTER {ON|OFF}}

INPUT

n: Set decimation factor to n. Range is 2 to 7. This command may be applied several
times if a larger decimation factor is required.

FILTER {ON}: Turn anti-aliasing FIR filter on.
FILTER OFF: Turn anti-aliasing FIR filter off.

DEFAULT VALUES

DECIMATE 2 filter on

DESCRIPTION

This command is used to downsample data after it has been read into memory. An optional finite
impulse response (FIR) filter is applied to the data as it is being decimated to prevent aliasing effects
normally associated with downsampling digitized analog signals. These filters also preserve the phase
information. The application of these FIR filters often produces undesirable transients at each end
of the data so the results should be checked graphically. Turning the anti-aliasing filter option off
should only be done when the accuracy of the high frequency response is unimportant, such as when
plotting.

EXAMPLES

To reduce the sampling rate by a factor of 42:

SAC> READ FILE1
SAC> DECIMATE 7
SAC> DECIMATE 6

HEADER CHANGES

NPTS, DELTA, E, DEPMIN, DEPMAX, DEPMEN

ERROR MESSAGES

∙ 1003: Value out of allowed range at symbol

– Range on decimation factor is 2 to 7.

∙ 1301: No data files read in.
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∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

Note The decimation by 7 filter has occasionally been unstable.

LATEST REVISION

May 15, 1987 (Version 10.2)
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DELETECHANNEL

SUMMARY

Deletes one or more files from the file list.

SYNTAX

[D]ELETE[C]HANNEL ALL

or:

[D]ELETE[C]HANNEL filename|filenumber|range {filename|filenumber|range ... }

INPUT

ALL: Deletes all files from memory. The user need not specify filenames or filenumbers
filename: Name of a file in the file list.
filenumber: Number of a specific file in the file list. The first file in the list is 1, the second

is 2, etc. (The command FILENUMBER ON tells SAC to display the file numbers in
most of the plots.)

range: Two file numbers separated by a dash: eg. 11-20.
TYPE: Action-taking

EXAMPLES

SAC> dc 3 5 * deletes 3rd and 5th file.
SAC> dc SO01.sz SO02.sz * deletes named files.
SAC> dc 11-20 * deletes all the files from

* the 11th through the 20th,

* inclusive.
SAC> dc 3 5 11-20 SO01.sz SO02.sz * deletes all of the above.

ERROR MESSAGES

∙ 5106: File name not in file list

∙ 5107: File number not in file list

SEE COMMANDS

DELETESTACK, FILENUMBER
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DIF

SUMMARY

Differentiates data in memory.

SYNTAX

DIF {TWO|THREE|FIVE}

INPUT

TWO: Apply a two point difference operator.
THREE: Apply a three point difference operator.
FIVE: Apply a five point difference operator.

DEFAULT VALUES

DIF TWO

DESCRIPTION

The two-point algorithm is:

OUT(J)= (DATA(J+1) - DATA(J)) / DELTA

The last output point is not defined by this algorithm. It is also not a centered algorithm. SAC takes
care of these problems by decreasing the number of points in the file (NPTS) by one and by increasing
the begin time (B) by half the sampling interval (DELTA).

The three-point (centered two-point) algorithm is:

OUT(J)= 1/2 * (DATA(J+1) - DATA(J-1)) / DELTA

The first and last output point is not defined by this algorithm. SAC decreases NPTS by 2 and
increases B by DELTA.

The five-point (centered four-point) algorithm is:

OUT(J)=2/3 (DATA(J+1) - DATA(J-1)) / DELTA -
1/12 * (DATA(J+2) - DATA(J-2)) / DELTA

The first two and last two output points are not defined by this algorithm. SAC applies the three-point
operator to the second points from each end, decreases NPTS by 2, and increases B by DELTA.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

HEADER CHANGES

NPTS, B, E, DEPMIN, DEPMAX, DEPMEN
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LATEST REVISION

January 15, 1985 (Version 9.10)
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DIV

SUMMARY

Divides each data point by a constant.

SYNTAX

DIV {v1 {v2 ... vn} }

INPUT

v1: Constant to divide first file by.
v2: Constant to divide second file by.
vn: Constant to devide nth file by.

DEFAULT VALUES

DIV 1.

DESCRIPTION

This command will divide each element of each data file in memory by a constant. The constant may
be the same or different for each data file. If there are more data files in memory than constants,
then the last constant entered is used for the remainder of the data files in memory.

EXAMPLES

To divide each element of F1 by 5.1 and each element of F2 and F3 by 6.2:

SAC> READ F1 F2 F3
SAC> DIV 5.1 6.2

Note: DIVIDE is also an INLINE function.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1701: Can’t divide by zero.

LATEST REVISION

January 8, 1983 (Version 8.0)
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DIVF

SUMMARY

Divides data in memory by a set of data files.

SYNTAX

DIVF {NEWHDR ON|OFF} filelist

INPUT

NEWHDR ON|OFF: By default, the resultant file will take its header field from the
original file in memory. Turning NEWHDR ON, causes the header fields to be taken
from the new file in the filelist.

filelist: A list of SAC binary data files. This list may contain simple filenames, full or
relative pathnames, and wildcard characters. See the READ command for a complete
description.

DESCRIPTION

This command can be used to divide a set of files by a single file or by another set of files. An example
of each case is presented below. The files must be evenly spaced and should have the same sampling
interval and number of points. This last two restrictions can be eliminated using the BINOPERR
command. If there are more data files in memory than in the filelist, then the last file in the filelist is
used for the remainder of the data files in memory.

EXAMPLES

To divide three files by a single file:

SAC> READ FILE1 FILE2 FILE3
SAC> DIVF FILE4

To divide two files by two other files:

SAC> READ FILE1 FILE2
SAC> DIVF FILE3 FILE4

HEADER CHANGES

If NEWHDR is OFF (the default) the headers in memory are unchanged). If NEWHDR is ON, the
headers are replaced with the headers from the files in the filelist.

DEPMIN, DEPMAX, DEPMEN

206



ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1803: No binary data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1306: Illegal operation on unevenly spaced file

∙ 1801: Header field mismatch:

– either the sampling interval or the number of points are not equal.

– can be controlled using the BINOPERR command.

WARNING MESSAGES

∙ 1802: Time overlap:

– the file division is still performed.

SEE COMMANDS

READ, BINOPERR

LATEST REVISION

May 26, 1999 (Version 0.58)
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DIVOMEGA

SUMMARY

Performs integration in the frequency domain.

SYNTAX

DIVOMEGA value

DESCRIPTION

This command divides each point of a spectral file by its frequency given by:

OMEGA = 2.0 * PI * FREQ

This is analogous to integrating the equivalent time series file. The spectral file can in either amplitude-
phase or real-imaginary format.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

May 15, 1987 (Version 10.2)
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ECHO

SUMMARY

Controls echoing of input and output to the terminal.

SYNTAX

ECHO ON|OFF list

where list is one or more of the following:

ERRORS
WARNINGS
OUTPUT
COMMANDS
MACROS
PROCESSED

INPUT

ON: Turn on echoing of the items in the list that follows.
OFF: Turn off echoing of the items in the list that follows.
ERRORS: Error messages generated during the execution of a command.
WARNINGS: Warning messages generated during the execution of a command.
OUTPUT: Output messages generated during the execution of a command.
COMMANDS: Raw commands as they were typed at the terminal.
MACROS: Raw commands as they appears in a macro file.
PROCESSED: Processed commands originating from the terminal or a macro file. A

processed command is one where all macro arguments, blackboard variables, header
variables, and inline functions have been processed (evaluated) and substituted into
the raw command.

DEFAULT VALUES

ECHO ON ERRORS WARNINGS OUTPUT OFF COMMANDS MACROS PROCESSED

DESCRIPTION

This commands lets you control which categories of the SAC input and output stream is to be echoed
to the terminal or screen. There are three categories of output: error messages, warning messages, and
output messages. There are three categories of input: commands typed at the terminal, commands
executed from a macro, and "processed" commands. A processed command is one in which all macro
arguments, blackboard variables, header variables, and inline functions have been evaluated. You can
control the echoing of these categories individually. When you type a command at your terminal, the
operating system normally echos each character. Thus the commands echoing option is of limited use
for interactive sessions. The macro and processed options are useful when debugging a macro.

LATEST REVISION

April 21, 1989 (Version 10.4c)
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ENDDEVICES

SUMMARY

Terminates one or more graphics devices.

SYNTAX

ENDDEVICES devices

where devices is one or more of the following:

SGF, XWINDOWS

ALTERNATE FORMS

ENDG or EG are obsolete but acceptable names for this command.

INPUT

SGF: The SAC Graphics File device driver.
XWINDOWS: The X-windows window display system.

DESCRIPTION

This command terminates one or more graphics devices. Devices are activated using the BEGINDE-
VICES command. The command help graphics has a description of each of these graphics devices.

SEE COMMANDS

BEGINDEVICES

LATEST REVISION

March 24, 2009 (101.3)
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ENDFRAME

SUMMARY

Resumes automatic new frame actions between plots.

SYNTAX

ENDFRAME

ALTERNATE FORMS

ENDFR is an obsolete but allowable form of this command.

DESCRIPTION

See the BEGINFRAME documentation.

SEE COMMANDS

BEGINFRAME

LATEST REVISION

May 15, 1987 (Version 10.2)
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ENVELOPE

SUMMARY

Computes the envelope function using a Hilbert transform.

SYNTAX

ENVELOPE

DESCRIPTION

This command computes the envelope function of the data in memory. The envelope is defined by
the square root of x(n)^2 + y(n)^2, where x(n) is the original signal and y(n) its Hilbert transform
(see HILBERT). As with HILBERT, very long period datashould be decimated (see DECIMATE) prior
to processing.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

SEE COMMANDS

HILBERT, DECIMATE

ACKNOWLEDGEMENT

The subroutines used to perform the Hilbert transform were designed and developed by Dave Harris
(DBH).

LATEST REVISION

April 21, 1989 (Version 10.4c)
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ERASE

SUMMARY

Erases the graphics display area.

SYNTAX

ERASE

DESCRIPTION

This command works only if SAC knows what graphics device you are using. This is true only if you
have already done some plotting. This command is necessary for the ADM terminal which does not
have an erase screen key and is useful in command files when you want the screen erased prior to
sending out a large amount of text.

LATEST REVISION

October 11, 1984 (Version 9.1)
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EVALUATE

SUMMARY

Evaluates simple arithmetic expressions.

SYNTAX

EVALUATE {TO TERM|name} {v} op v {op v ...}

where op is one of the following:

+ - * / **
SQRT EXP ALOG ALOG10
SIN COS TAN
ASIN ACOS ATAN
EQ NE LE GE LT GT
ADD SUBTRACT MULTIPLY DIVIDE

INPUT

TO TERM: Result is written to the user’s terminal.
TO name: Result is written to the blackboard variable name.
v: An floating point or integer number. (Since all arithmetic is done in floating point,

integers are converted to floating point numbers.)
op: One of the arithmetic or logical operators listed above.

EMBEDDED ARITHMETIC FUNCTIONS

An embedded arithmetic function is a simple math operation similar to those in any programming language, e.g.
FORTRAN, C, etc, and is of the general form:

( number operator number ... )

where number is a numeric value and operator is one of the following arithmetic operators:

+ - * / **

All numbers are treated as real, and all arithmetic is done in double-precision floating point.

DEFAULT VALUES

EVALUATE TO TERM 1. * 1.
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DESCRIPTION

This command lets you evaluate arithmetic and logical expressions. The arithmetic expression can
be a compound containing more than one operator. In this case the expression is evaluated left to
right. There is no nesting capability. A logical expression can contain only one operand. The result of
evaluating this expression can be written to the user’s terminal or to a specified blackboard variable.
This blackboard variable can later be used directly in other commands. This is especially useful when
writing macros. You can also get the value of a blackboard variable using the GETBB command.
Previously, there was a maximum number of operators (10) in a single command. As of v101.6, there
is no maximum number.

EXAMPLES

Two simple examples:

SAC> EVALUATE 2 * 3
==> 6
SAC> evaluate tan 45
==> 1.61978

Here is a sightly more complicated example:

SAC> EVALUATE 4 * atan 1 / PI
==> 1

Finally let’s repeat the previous example but this time use a blackboard variable:

SAC> evaluate to temp1 4 * atan 1
SAC> evaluate %temp1 / PI
==> 1
SAC>

SEE COMMANDS

GETBB SAC_MACROS

LATEST REVISION

2013 (v101.6a)
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EVENT

SUMMARY

Search for events by region, magnitude and date

SYNTAX

EVENT {MAG min [max]}
{TIME start end}
{REGION w e s n}
{RADIAL lon lat min_radius max_radius}
{DEPTH min max}
{OUTFILE filename}
{TO blackboard-variable}
{GCMT|ISC|NEIC|CMT|USGS|PDE}
{VERBOSE}

INPUT

TIME: Set the start and end times. End times can be set relatively.
REGION west east south north: Set the geographic bounds of the search region
RADIAL min max: Set the center and radius limits of the search region in degrees
DEPTH min max: Set the minumum and maximum depth values in km.
MAG min [max]: Set the minimum and maximum magnitude values. A single value can

be used to set a minimum magnitude and the maximim magnitude is set to 10.0.
GCMT: Search the Global Centroid Moment Tensor Catalog, CMT is an alias
ISC: Search the ISC Catalog
USGS: [Default] Search the USGS Catalog, PDE and NEIC are aliases
TO blackboard-variable: Save all event identifiers to a space separated list with a specific

name
OUTFILE: Save the event search into a file. Files ending in .xml are saved as QuakeXML

documents; those ending in .txt and others are saved as "csv" text
VERBOSE: [Not default] Watch the details of the event search process

DEFAULT VALUES

EVENT USGS

DESCRIPTION

Search an catalog for events. Results are returned to the screen or to a file if desired with the
OUTPUT filename option.

Time ranges can be set using a variety of formats, see examples below. End times can be set using a
relative value with units. See DATA ACCESS for time formats.

Event IDs are saved and can be used to identify origin times and locations in similar searching
commands. They can also be used to set SAC file METADATA for an event.
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EXAMPLES

To search for all events with Magnitudes ≥ 9.0:

SAC> event mag 9
Origin Lat. Lon. Depth Mag. Agency EventID
2011-03-11T05:46:24 38.30 142.37 29.00 9.10 mww US/official
usgs:official20110311054624120_30
2004-12-26T00:58:53 3.29 95.98 30.00 9.10 mw US/official
usgs:official20041226005853450_30
1964-03-28T03:36:16 60.91 -147.34 25.00 9.20 mw iscgem/official
usgs:official19640328033616_30
1960-05-22T19:11:20 -38.14 -73.41 25.00 9.50 mw iscgem/official
usgs:official19600522191120_30
1952-11-04T16:58:30 52.62 159.78 21.60 9.00 mw iscgem/official
usgs:official19521104165830_30

If you were expecting to find a specific event, it can be useful to search different catalogs. Let’s use the UGSS /
NEIC Catalog:

SAC> event mag 9 cmt
Origin Lat. Lon. Depth Mag. Agency EventID
2011-03-11T05:47:32 37.52 143.05 20.00 9.10 MW GCMT/- gcmt:3279407
2004-12-26T01:01:09 3.09 94.26 28.60 9.00 MW GCMT/- gcmt:1916079

Let’s try to focus into 1960 Chile by searching the southern hemisphere. Note, longitudes should be between -180
and 180:

SAC> event mag 9 usgs region -180 180 -90 0
Origin Lat. Lon. Depth Mag. Agency EventID
1960-05-22T19:11:20 -38.14 -73.41 25.00 9.50 mw iscgem/official
usgs:official19600522191120_30

Consider the deep 1994 Bolivian earthquake. Let’s limit the depth and restrict the time range:

SAC> event time 1994-1 +1yr mag 8 usgs depth 610 1000
Origin Lat. Lon. Depth Mag. Agency EventID
1994-06-09T00:33:16 -13.84 -67.55 631.30 8.20 mw US/HRV usgs:usp0006dzc

Consider the 1989 Loma Prieta Earthquake in Northern California. This time we use a radial search between 0
and 5 degrees around 120 W, 38 N:

SAC> event time 1989-1 +1yr mag 6 radial -120 38 0 5
Origin Lat. Lon. Depth Mag. Agency EventID
1989-10-18T00:04:15 37.04 -121.88 17.21 6.90 mh NC/NC usgs:nc216859

Event Identifiers (eventid)

Events can be referenced in other commands using a unique identifier. The identifier is defined by source:uniqueid.
Where the source is defined below and the unique identifer is the reference id provided by the agency. Most
identifiers are less than 16 characters and will fit into the KEVNM header variable; the official catalog of significant
earthqukes is a notable execption.
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Source Catalog
isc International Seismological Centre http://www.isc.ac.uk/
usgs United States Geological Survey https://earthquake.usgs.gov/
gcmt Global Centroid Moment Tensor https://www.globalcmt.org/

ERROR MESSAGES

SEE COMMANDS

STATION, DATA, RESPONSE, METADATA, DATA ACCESS

LATEST REVISION

Version 102.0
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EXP

SUMMARY

Computes the exponential of each data point.

SYNTAX

EXP

Note: EXP is also an INLINE function.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 15, 1985 (Version 9.10)
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EXP10

SUMMARY

Computes the base 10 exponential (10.**y) of each data point.

SYNTAX

EXP10

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 15, 1985 (Version 9.10)
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EXTERNAL COMMAND INTERFACE

SUMMARY

Description of interface for external commands callable by SAC.

DESCRIPTION

C language interface

The following definitions and structures will be used to pass data into and out of external functions specified by
the user. These external commands will be loaded by SAC at run time by executing the LOAD command (See
LOAD help page for further details).

The application programming interface for external functions (commands) is:

long ext_func(argc, argv, call_data, update)
int argc;
char **argv;
sac_files *call_data;
long *update;

This function should return a long to be used as an error status flag. By convention, if this function returns a
non-zero value, SAC will indicate that an error occurred within this function. By default, SAC will print out the
error number returned. If the user wants to add a customized error message, this can be done by editing the
messages file in the SAC aux directory. Care must be taken not to use an error number that has already been
used in another context.

Where argc and argv contain the command line arguments, defined the same as the command line arguments for
a C program. argc is set to the number of arguments, and argv contains the tokenized command line. argc is
always greater than or equal to one, since argv[0] contains the command name.

sac_files is a pointer to a call_data struct which is used to package the sac headers and data for efficient
communication with the external function. This data structure is defined in the file extfunc.h, which must be
included in the external function.

update is a flag which tells SAC how to handle the data returned from the external function. It should be set to
one of the enumerated values, APPEND, REPLACE, or IGNORE. If this flag is set to APPEND, the data returned
from the external function will be appended to the existing data file list (files in memory). If set to REPLACE,
the returned data will replace the data in memory (which is the way that most SAC commands work). If set to
IGNORE, it will be disregarded.

Several support routines are provided to facilitate header access. They include:

sac_header *makehdr( sac_header *header_in )

Allocate a new header struct. If header_in is not NULL, copy its values. If header_in is NULL, initialize the new
header to default values:

long getehdr(sac_header *header, char *fieldname, long *error)

Return the value of the enumerated header field pointed to by fieldname from the header struct pointed to by
header:

void setehdr(sac_header *header, char *fieldname, long value, long *error)
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Set the enumerated field specified in fieldname to value in the header specified in header:

float getfhdr(sac_header *header, char *fieldname, long *error)

Return the value of the floating point header field fieldname from the header specified in header:

void setfhdr(sac_header *header, char *fieldname, float value, long *error)

Set the floating point field fieldname to value in header pointed to by header:

long getnhdr(sac_header *header, char *fieldname, long *error)

Return the value of the long field specified in fieldname from the header specified by header:

void setnhdr(sac_header *header, char *fieldname, long value, long *error)

Set the long header field fieldname to value in the header specified by header:

long getlhdr(sac_header *header, char *fieldname, long *error)

Return the value of the logical header field fieldname from the header specified by header:

void setlhdr(sac_header *header, char *fieldname, long value, long *error)

Set the logical header field fieldname to value in the header header:

char *getahdr(sac_header *header, char *fieldname, long *error)

Return a pointer to the value of the character header field fieldname from the header specified by header. This
function returns a pointer to the actual header field. You should not modify this and also should not free this
returned address:

void setahdr(sac_header *header, char *fieldname, char *value, long *error)

Set the character header field fieldname to the value pointed to by value in the header specified by header.

All header access routines return zero in the error variable if no error occurred, otherwise they return non-zero.

The file extfunc.h contains tables of the names of the various header fields which can be returned or set by the
above functions. It also contains definitions of all the enumerated values known to SAC.

FORTRAN Language Interface

The FORTRAN language interface to external commands consists of a C language function which maps data into
and out of a FORTRAN routine having the following interface:
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subroutine fmycommand(fargs, fyinput, fxinput, numfiles, nptsmax, ferror)

include ’fext_params’

character*(*) fargs
real*4 fyinput(nptsmax,numfiles)
real*4 fxinput(nptsmax,numfiles)
integer*4 numfiles, nptsmax, ferror

Where fargs is the command line, blank delimited. fyinput contains the input y data. fyinput is zero filled for
data consisting of less than nptsmax points. fxinput contains the x data for unevenly spaced files. In the case of
evenly spaced data, fxinput is all zeroes. numfiles is the number of input files, nptsmax is the maximum number
of points of all the input files and ferror is an error return flag.

The include file "fext_params" contains parameters defining the valid enumerated header values.

The C language function referred to above is fextern.c.template.

Several support routines are provided to facilitate header access. They include:

fgetahdr(integer*4 hdr_index, character fieldname, character value, integer*4 error)

Returns value of character header field fieldname in value. Value returned is from header(hdr_index), where
hdr_index ranges from 1 to numfiles:

fsetahdr(integer*4 hdr_index, character fieldname, character value, integer*4 error)

Set the value of character header field fieldname to value:

fgetehdr(integer*4 hdr_index, character fieldname, integer*4 value, integer*4 error)

Returns the value of enumerated header field fieldname in value:

fsetehdr(integer*4 hdr_index, character fieldname, integer*4 value, integer*4 error)

Set the value of enumerated header field fieldname to value:

fgetfhdr(integer*4 hdr_index, character fieldname, real*4 value, integer*4 error)

Returns the value of real header field fieldname in value:

fsetfhdr(integer*4 hdr_index, character fieldname, real*4 value, integer*4 error)

Set the value of real header field fieldname to value:

fgetlhdr(integer*4 hdr_index, character fieldname, integer*4 value, integer*4 error)

Returns the value of logical header field fieldname in value:

fsetlhdr(integer*4 hdr_index, character fieldname, integer*4 value, integer*4 error)
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Set the value of logical header field fieldname to value:

fgetnhdr(integer*4 hdr_index, character fieldname, integer*4 value, integer*4 error)

Returns the value of integer header field fieldname in value:

fsetnhdr(integer*4 hdr_index, character fieldname, integer*4 value, integer*4 error)

Set the value of integer header field fieldname to value.
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FFT

SUMMARY

Performs a discrete Fourier transform.

SYNTAX

FFT {WOMEAN|WMEAN},{RLIM|AMPH}

INPUT

WOMEAN: Remove mean before transform.
WMEAN: Leave mean in transform.
RLIM: Output should be in real-imaginary format.
AMPH: Output should be in amplitude-phase format.

ALTERNATE FORMS

Purists may use DFT in place of FFT.

DEFAULT VALUES

FFT WMEAN AMPH

DESCRIPTION

Before the transform is performed, each data file is padded with zeros to the next power of two.
SAC data files, on disk and in memory, can contain either time-series data or spectral data. The
spectral data may be in either amplitude-phase format or real-imaginary format. The IFTYPE field
in the header tells you which kind of data is stored in a particular file and what its format is. Most
commands work on only one type, either time-series or spectal. Certain commands such as FFT,
IFFT, UNWRAP, etc. change data in memory from one data type or format to another. The spectral
files that result from this command can be plotted using the PLOTSP command or saved on disk with
the WRITE or WRITESP command. If one has more than one data file in memory, PLOT2 can be
used to plot the amplitudes or real part. The SAC sign convention is such that the phase for a causal
function decreases with increasing frequency. This is the same convention as in program EVALRESP
and RDSEED.

HEADER CHANGES

B, E, and DELTA are changed to the beginning, ending and sampling frequencies of the transform
respectively. The original values of B, E, NPTS and DELTA are saved as SB, SE, NSNPTS and
SDELTA and are restored if an inverse transform is done.
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ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

∙ 1606: Maximum allowable DFT is

SEE COMMANDS

PLOTSP, IFFT, WRITESP

LATEST REVISION

May 6, 2010 (Version 101.4)

227



FILEID

SUMMARY

Controls the file id display found on most SAC plots.

SYNTAX

FILEID {ON|OFF} {TYPE DEFAULT|NAME|LIST hdrlist},
LOCATION UR|UL|LR|LL},
{FORMAT EQUALS|COLONS|NONAMES}

INPUT

FILEID {ON}: Turn on file id option. Does not change file id type or location.
FILEID OFF: Turn off file id option.
TYPE DEFAULT: Change to the default file id.
TYPE NAME: Use the name of the file as the file id.
TYPE LIST hdrlist: Define a list of header fields to display in the fileid.
LOCATION UR: Place file id in upper right hand corner.
LOCATION UL: Place file id in upper left hand corner.
LOCATION LR: Place file id in lower right hand corner.
LOCATION LL: Place file id in lower left hand corner.
FORMAT EQUALS: Format consists of header field name, an equals sign, and the header

field value.
FORMAT COLON: Format consists of header field name, a colon, and the value.
FORMAT NONAMES: Format consists of header field value only.

DEFAULT VALUES

FILEID ON TYPE DEFAULT LOCATION UR FORMAT NONAMES

DESCRIPTION

This command controls the file id that is displayed on most SAC plot formats. The file id identifies the
content of the plot. The default file id consists of the event name, the station name and component,
and the zero date and time. The name of the file can be substituted for the default id if desired. A
special file id can be defined and displayed. This special file id can consist of up to 10 SAC header
fields. The location and format of the fileid can also be changed.

EXAMPLES

To put the filename in the upper left corner:

SAC> FILEID LOCATION UL TYPE NAME

To define a special file id consisting of the station component, latitude, and longitude:

SAC> FILEID TYPE LIST KSTCMP STLA STLO

To include the name of the header field followed by a colon:

SAC> FILEID FORMAT COLON
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LATEST REVISION

October 11, 1984 (Version 9.1)
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FILENUMBER

SUMMARY

Controls the file number display found on most SAC plots.

SYNTAX

FILENUMBER {ON|OFF}

INPUT

FILENUMBER ON: Turn on file number option.
FILENUMBER {OFF}: Turn off file number option.

DEFAULT VALUES

FILENUMBER OFF

DESCRIPTION

This command controls the file number that is displayed on most SAC plots. When filenumber is on,
the file number appears on the plot. This can be used to identify a specific waveform by number
when a command requires the information.

LATEST REVISION

February 5, 1997 (Version 53)

230



FILTERDESIGN

SUMMARY

Produces a graphic display of a filter’s digital vs. analog characteristics for: amplitude, phase, and impulse
response curves, and the group delay.

SYNTAX

FILTERDESIGN [PRINT [pname] ] [FILE [prefix] ][filteroptions] [delta]

where filteroptions are the same as those used in the various filter commands in SAC, including the filter type.
delta is the sampling interval of the data

Note Order of options is important. If the PRINT option is used, it must be the first option. If the FILE option
is used, it must precede the filter options.

INPUT

PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the
default printer if pname is not used.
Note this must be the first option given on the command line. (This makes use of the
SGF capability.)

FILE {prefix}: Writes three SAC files to disk. Theses files contain the digital responses
determined in the FILTERDESIGN:

[prefix].spec: is of type IAMPH, and contains both the amplitude and phase information
from the FILTERDESIGN.

[prefix].gd: is of type ITIME, and contains the group delay information from the FILTER-
DESIGN.
Note that in spite of the fact that the file is of type ITIME, group delay is a function
of frequency. It is incumbent upon the user to remember that even though the plots
will have seconds for units, the actual units are hertz.

[prefix].imp: is of type ITIME, and contains the impulse response.

In each of these SAC files, the user header fields are set as follows:

user0: pass code
1: low pass
2: high pass
3: band pass
4: band reject

user1: type code
1: Butterworth
2: Bessel
3: C1
4: C2

user2: number of poles
user3: number of passes
user4: tranbw
user5: attenuation
user6: delta
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user7: first corner
user8: second corner if present, or -12345 if not
kuser0: pass (lowpass, highpass, bandpass, or bandrej)
kuser1: type (Butter, Bessel, C1, or C2 )

DEFAULT VALUES

Only the delta parameter has a default (0.025 seconds). Options for filter type and related parameters
must be supplied.

DESCRIPTION

The FILTERDESIGN command is implemented through XAPiir, a basic recursive digital filtering
package (see REFERENCES). XAPiir implements the standard recursive digital filter design through
bilinear transformation of prototype analog filters. These prototype filters, specified in terms of poles
and zeros, are then transformed to highpass, bandpass and band reject filters using analog spectral
transformations. FILTERDESIGN displays digital filter responses as solid lines and analog responses
as dashed lines. On color monitors, digital curves are blue while analog curves are amber.

EXAMPLES

The following example shows how the FILTERDESIGN command is used to produce the digital and
analog response curves for a highpass, 2 Hz., six pole, two pass filter on data with a sampling rate of
.025 seconds.:

SAC> fd hp c 2 n 6 p 2 delta .025

SEE COMMANDS

HIGHPASS, LOWPASS, BANDPASS, BANDREJECT UCRL-ID-106005. XAPiir: A Recursive Digital
Filtering Package. David Harris. September 21, 1990 In Xwindows, a linestyle problem may cause
both analog and digital traces to plot as solid lines.

LATEST REVISION

July 22, 1991 (Version 0.58)
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FIR

SUMMARY

Applies a finite-impulse-response filter.

SYNTAX

FIR {REC|FFT},file

INPUT

FFT: Apply the FIR filter using the transform method.
REC: Apply the FIR filter recursively.
file: The name of the file containing the FIR filter.

ALTERNATE FORMS

DFT may be used in place of FFT.

DEFAULT VALUES

FIR FFT FIR

DESCRIPTION

The filter applied by this command must have been designed by using the DFIR interactive filter design
program (see BUGS below). The filter is applied using the transform method unless you request the
recursive method or the number of data points is too large for the transform method. These filters
all have zero phase distortion but can produce precursors with impulsive signals.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

∙ 1601: File and filter sampling intervals not equal for

– The filter must be designed using the same sampling rate as the data to be filtered.

∙ 1603: Inadequate memory to perform FIR filter.
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WARNING MESSAGES

∙ 1602: Inadequate memory to perform FIR filter using DFT.

– the recursive method will be used automatically.

REFERENCES

See Chapter 3 of Rabiner and Gold, Theory and Application of Digital Signal Processing, Prentice-Hall,
1975 for a discussion of FIR filters.

LATEST REVISION

July 22, 1991 (Version 8.0)
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FLOOR

SUMMARY

Puts a minimum value on logarithmically scaled data.

SYNTAX

FLOOR {ON|OFF|v}

INPUT

{ON}: Turn floor option on but don’t change value of floor.
OFF: Turn floor option off.
v: Turn floor option on and change value of floor.

DEFAULT VALUES

FLOOR 1.0E-10

DESCRIPTION

The floor option applies only when logarithmic scaling is being used. It applies to both the x and y
axes. When this option is on, any data values less than the floor are set to the floor before plotting.
By using a small positive value for the floor, errors in taking logarithms of non-positive numbers are
avoided.

LATEST REVISION

January 8, 1983 (Version 8.0)
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FUNCGEN

SUMMARY

Generates a function and stores it in memory.

SYNTAX

FUNCGEN {type},{DELTA v},{NPTS n},{BEGIN v}

where type is one of the following:

IMPULSE
STEP
BOXCAR
TRIANGLE
SINE {frequency phase}
LINE {slope intercept}
QUADRATIC {a b c}
CUBIC {a b c d}
SEISMOGRAM
RANDOM {nfiles seed}
IMPSTRIN {n1 n2 ... nN}

INPUT

IMPULSE: Impulse at central data point.
IMPSTRIN: A series of impulses at the specified sample points.
STEP: Step function. Zero in first half. One in second half.
BOXCAR: Boxcar function. Zero in first and last thirds. One in middle third.
TRIANGLE: Triangle function. Zero in first and last quarters. Linearly increasing from

zero to one in second quarter and decreasing from one to zero in third quarter.
SINE {frequency phase}: Sine wave with frequency in Hz and phase angle in degrees.

Amplitude is one.
Note There is a factor of 2*pi in the phase argument:

function = 1.0 * sin (2 * Pi * f * t)

LINE {slope intercept}: Linear function with slope given and intercept
QUADRATIC {a b c}: Quadratic function of the form:

a*t^{2} + b*t + c

CUBIC {a b c d}: Cubic function of the form:
a*t^{3} + b*t^{2} + c*t + d

SEISMOGRAM: Sample seismogram. This differs from other function options for fg in
that there are no further options. Specifically, DELTA, NPTS, and BEGIN options are
ignored for seismogram (abbreviated seis).

RANDOM {nfiles seed}: Random sequence (Gausian white noise) generator. Number
of random sequence files to generate is first and the "seed" used to generate the
first random number is second. This seed value is stored in USER0 so that you can
regenerate the same random sequence at a later time if desired.
Note This is not really random, not even psuedo-random.

DELTA v: Set increment between samples to v. Stored in header as DELTA.
NPTS n: Set number of data points in function to n. Stored in header as NPTS.
BEGIN v: Set begin time to v. Stored in header as BEGIN.
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DEFAULT VALUES

FUNCGEN IMPULSE NPTS 100 DELTA 1.0 BEGIN 0.
FUNCGEN SINE 0.05 0.0
FUNCGEN LINE 1 1
FUNCGEN QUADRATIC 1 1 1
FUNCGEN CUBIC 1 1 1
FUNCGEN RANDOM 1 12357
FUNCGEN SEISMO [there are no further options]

DESCRIPTION

Executing this command is equivalent to reading a single file (except for the RANDOM option in
which more than one file can be generated) into memory whose name is the name of the function
generated. Any data previously in memory is destroyed. Other functions will be added as needed.

Any command which loads data into memory is monitored to maintain a level of confidence in the
event infomation when transfered from the SAC data buffer to the CSS data buffer. When FUNCGEN
is used, the confidence is set to LOW, indicating that SAC should consider any matching event IDs
as artifacts and reassign the event ID of the incoming file. For more details, use HELP READ.

HEADER CHANGES

A header is set up in memory which accurately describes the function generated.

SEE COMMANDS

DATAGEN

LATEST REVISION

October 11, 1984 (Version 9.1)

237



GETBB

SUMMARY

Gets (prints) values of blackboard variables.

SYNTAX

GETBB {options} ALL|variable {variable ...}

where options is one or more of the following:

TO TERMINAL|filename
NAMES ON|OFF
NEWLINE ON|OFF

INPUT

TO TERMINAL: Print the values to the terminal.
TO filename: Append the values to a file called filename.
NAMES [ON]: Include the name of the blackboard variable followed by an equals sign

and then its value.
NAMES OFF: Only print the value of the blackboard variable.
NEWLINE [ON]: Put a newline (carriage-return) after each blackboard value printed.
NEWLINE OFF: Do not a newline after each value.
ALL: Print the values of all currently defined blackboard variables.
variable: Print the values of the specific blackboard variables listed.

DEFAULT VALUES

GETBB TO TERMINAL NAMES ON NEWLINE ON ALL

DESCRIPTION

The blackboard is a place to temporarily store information. This command lets you print the values
of selected blackboard variables. Variables can be defined using the SETBB command. You can also
use the EVALUATE command to perform basic arithmetic operations on blackboard variables and
store the results in new blackboard variables. Blackboard variables can also be substituted directly
into SAC commands. See SAC_MACROS for details.

The options to this command let you control where the values are printed. One can print them to the
terminal or append them to the end of a text file. One can include the variable name and an equals
sign before the value or one can just have the value printed. One can have a newline placed after
each value printed in a list or one can have them placed on a single line. One can use these options
to make measurements on a set of data files, extract these measurements into a text file, and then
read this file back into SAC using the READ command with the ALPHA option to plot the results or
to perform more analysis. This is illustrated in the examples section.
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EXAMPLES

Assume you have already set several blackboard variables:

SAC> SETBB C1 2.45 C2 4.94

To later print their values you would use this command:

SAC> GETBB C1 C2
C1 = 2.45
C2 = 4.94

To print just their values on a single line:

SAC> GETBB NAMES OFF NEWLINE OFF C1 C2
2.45 4.94

Assume you have a macro called GETXY that performs some type of analysis on a single data file
and stores the results into two blackboard variables called X and Y. You want to perform this analysis
on all of the vertical components in the current directory, save each set of X and Y values, and plot
them. In the following macro the first (and only) argument is the name of the text file to be used to
store the results:

DO FILE WILD *Z
READ FILE
MACRO GETXY
GETBB TO 1 NAMES OFF NEWLINE OFF X Y

ENDDO

GETBB_ TO TERMINAL
READALPHA CONTENT P 1
PLOT

The text file would contain pairs of x-y data points, one per line, for each of the vertical data files.
The final GETBB command redirecting the output back to the terminal is needed in order to close
the text file and dump the buffer.

SEE COMMANDS

SETBB

LATEST REVISION

Sept. 1, 1988 (Version 10.3E)
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GRAYSCALE

SUMMARY

Produces grayscale images of data in memory.

Deprecation Warning

This command is deprecated as it relies on external software.

SYNTAX

GRAYSCALE {options}

where options are one or more of the following:

VIDEOTYPE NORMAL|REVERSED
SCALE v
ZOOM n
XCROP n1 n2|ON|OFF
YCROP n1 n2|ON|OFF

SPECIAL NOTE This command uses executables that are not distributed with SAC. To use this command you
must first install the Utah Raster Toolkit. The Utah Raster Toolkit can be obtained via anonymous FTP
as follows:

ftp cs.utah.edu
cd pub
get urt-3.0.tar.Z

If ARPAnet is not available, or if you have questions about the Utah Raster Toolkit, send mail to: toolkit-
requestCS.UTAH.EDU (ARPA), OR {ihnp4,decvax}!utah-cs!toolkit-request (UUCP).

INPUT

VIDEO NORMAL: Set video type to normal. In normal mode, data with near minimum
values are black and data near maximum are white.

VIDEO REVERSED: Set video type to reversed. In reversed mode, data with near min-
imum values are white and data near maximum are black.

SCALE v: Change data scaling factor to v. The data is scaled by raising it to the vth
power. Values less than one will smooth the image, reducing peaks and valleys. Values
greater than one will spread the data.

ZOOM n: Image is increased to n times its normal size by pixel replication.
XCROP n1 n2: Turn x cropping option on and change cropping limits to n1 and n2. The

limits are in terms of the image size.
XCROP {ON}: Turn x cropping option on and use previously specified cropping limits.
XCROP OFF: Turn x cropping option off. All of the data in the x direction is displayed.
YCROP n1 n2: Turn y cropping option on and change cropping limits to n1 and n2. The

limits are in terms of the image size.
YCROP {ON}: Turn y cropping option on and use previous specified cropping limits.
YCROP OFF: Turn y cropping option off. All of the data in the y direction is displayed.
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DEFAULT VALUES

GRAYSCALE VIDEOTYPE NORMAL SCALE 1.0 ZOOM 1 XCROP OFF YCROP OFF

DESCRIPTION

This command can be used to produce a grayscale image of the output of the SPECTROGRAM
command or of any other two-dimensional array data. The SAC data displayed by this command
must of of file type "xyz".

ANOTHER SPECIAL NOTE: SAC starts a shell script which runs the image manipulation and display
programs and then displays the SAC prompt again. There is a delay, significant for large images
and/or slower machines, before the image is actually displayed.

LIMITATIONS

Images of 512 by 1000 are the maximum displayed.

ACKNOWLEDGEMENTS

This command was developed by Terri Quinn. The grayscale images are maninpulated and display
using the University of Utah’s Raster Toolkit. The Utah Raster Toolkit and accompanying documen-
tation; John W. Peterson, Rod G. Bogart, and Spencer W. Thomas.

HEADER VARIABLES

REQUIRED: : IFTYPE, NXSIZE, NYSIZE

ERROR MESSAGES

∙ SAC> getsun: Command not found.

– Several utility programs distributed with the Utah Raster Toolkit are required.

SEE COMMANDS

SPECTROGRAM

LATEST REVISION

March 22, 1990 (Version 10.5a)
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GRID

SUMMARY

Controls the plotting of grid lines in plots.

SYNTAX

GRID {ON|OFF|SOLID|DOTTED}

INPUT

ON: Turn grid plotting on but don’t change grid type.
OFF: Turn grid plotting off.
SOLID: Turn grid plotting on using solid grid lines.
DOTTED: Turn grid plotting on using dotted grid lines.

DEFAULT VALUES

GRID OFF

DESCRIPTION

This command controls grid lines in both directions. The XGRID and YGRID commands can be used
to generate grid lines in only one direction.

SEE COMMANDS

XGRID, YGRID

LATEST REVISION

January 8, 1983 (Version 8.0)
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GTEXT

SUMMARY

Controls the quality and font of text used in plots.

SYNTAX

GTEXT {SOFTWARE|HARDWARE},{FONT n},{SIZE size} {SYSTEM system} {NAME name}

INPUT

SOFTWARE: Use software text in plots.
HARDWARE: Use hardware text in plots.
FONT n: Set software text font to n. The range for n is currently 1 to 8.
FORCE n: Use harware text in all cases for plots. Overrides HARDWARE option. HARD-

WARE still uses software for rotated fonts.
SIZE size: Change default text size. See TSIZE command for definitions of text sizes.

Option size is one fo the following:
TINY|SMALL|MEDIUM|LARGE

SYSTEM system: Change the Font subsystem, current values are
SOFTWARE: Traditional SAC Font system
CORE: X11 Core Fonts, this creates a real font
XFT: X Freetype library, this creates a real font

NAME name: Change the default font used in the CORE or XFT subsystem Available
fonts are: Helvetica, Times-Roman, Courier, ZapfDingbats

DEFAULT VALUES

GTEXT SOFTWARE FONT 1 SIZE SMALL

DESCRIPTION

Software text uses the text display capabilities of the graphics library. Characters are stored as small
line segments and thus can be scaled to any desired size and can be rotated to any desired angle.
Use of software text will produce the same result on different graphics devices. Use of software text is
slower than hardware text, especially to the terminal. There are currently 8 software fonts available:
simplex block (font 1), simplex italics (2), duplex block (3), duplex italics (4), complex block (5),
complex italics (6), triplex block (7), and triplex italics (8). Examples of each font and each default
text size is shown in the figure on the next page. Hardware text uses the text display capabilities
of the graphics device itself. Hardware text sizes vary considerably between devices, so its use can
produce different looking plots on different devices. If a device has more than one hardware text size,
the one closest to the desired size is used. Its primary asset is that it is much faster than software
text and should therefore be used only when speed is more important than quality.

EXAMPLES

To select the triplex software font:

SAC> GTEXT SOFTWARE FONT 6
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SEE COMMANDS

TSIZE

LATEST REVISION

July 22, 1991 (Version 9.1) Text Fonts and Default Text Sizes
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HANNING

SUMMARY

Applies a "hanning" window to each data file.

SYNTAX

HANNING

DESCRIPTION

The "hanning" window is a recursive smoothing algorithm defined at each interior data point, j, as:

Y(j) = 0.25*Y(j-1) + 0.50*Y(j) + 0.25*Y(j+1)

Each end point is set equal to its closest interior point.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

REFERENCES

Blackman and Tukey, "The Measurement of Power Spectra", Dover Publications, New York, 1958.

LATEST REVISION

January 8, 1983 (Version 8.0)
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HELP

SUMMARY

Displays information about SAC commands and features on the screen.

SYNTAX

HELP {item ...}

INPUT

item: The (full or abbreviated) name of a command, module, subprocess, feature, etc.

DEFAULT VALUES

If no item is requested, an introductory help package is displayed.

DESCRIPTION

Each requested item in the help package is displayed in the order they are requested. A short message
is displayed if no information is available for an item. After a full page of output, the user is prompted
to see if he or she wishes to see more information on that item. A response of "NO" or "N" will
terminate the display of that item and will begin the display of the next item if any. A response of
"QUIT" or "Q" will terminate the display of all items. The help package for each command consists
of the entry in the SAC Command Reference Manual. The help package for non-commands may be
paragraphs from the SAC Users Manual or other information.

EXAMPLES

To get the introductory help package type:

SAC> HELP

Now lets say you want information on several commands:

SAC> HELP READ CUT BEGINDEVICE PLOT

SAC begins displaying the READ help package. After a full page, it asks if you’ve seen enough:

MORE?
SAC> YES

SAC displays the rest of the help package on READ, and then begins displaying the help package on
the CUT command:

MORE?
SAC> NO

SAC stops displaying the CUT help package and begins displaying the BEGINDEVICE help package:

MORE?
SAC> QUIT

You’re getting impatient so you type QUIT. SAC terminates the HELP command so you can try some
of the features discussed.

246



ERROR MESSAGES

∙ 1103: No help package is available.

– SAC can’t find the help package. Check your SACAUX environment.

SEE COMMANDS

PRINTHELP

LATEST REVISION

November 13, 1998 (Version 0.58)
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HIGHPASS

SUMMARY

Applies an IIR highpass filter.

SYNTAX

HIGHPASS {BUTTER|BESSEL|C1|C2},{CORNERS v1 v2},
{NPOLES n},{PASSES n},{TRANBW v},{ATTEN v}

INPUT

BUTTER: Apply a Butterworth filter.
BESSEL: Apply a Bessel filter.
C1: Apply a Chebyshev Type I filter.
C2: Apply a Chebyshev Type II filter.
CORNER v: Set corner frequency to v.
NPOLES n: Set number of poles {range: 1-10}.
PASSES n: Set number of passes {n=1: causal, n=2: zero-phase}.
TRANBW v: Set the Chebyshev attenuation factor to v.
ATTEN v: Set the Chebyshev attenuation factor to v.

DEFAULT VALUES

HIGHPASS BUTTER CORNER 0.2 NPOLES 2 PASSES 1 TRANBW 0.3 ATTEN 30.

DESCRIPTION

See the BANDPASS command for definitions of the filter parameters and descriptions on how to use
them.

EXAMPLES

To apply a four-pole Butterworth with a corner at 2 Hz.:

SAC> HIGHPASS NPOLES 4 CORNER 2

To apply a two-pole two-pass Bessel with the same corner.:

SAC> HP N 2 BE P 2

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

∙ 1002: Bad value for

– corner frequency larger than Nyquist frequency.
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HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

SEE COMMANDS

BANDPASS

LATEST REVISION

January 8, 1983 (Version 8.0)
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HILBERT

SUMMARY

Applies a Hilbert transform.

SYNTAX

HILBERT

DESCRIPTION

Each data file, y(n), in the data file list is replaced by its Hilbert transform, x(n). The transform is
found by convolving y(n) (in the time domain) with a 201 point FIR filter: The filter impulse response
is obtained by windowing an ideal Hilbert transformer impulse response with a Hamming window:
In the frequency domain, this filter approximates the transfer function: The phase criterion is met
exactly (90 degree phase shift at each frequency), and the magnitude response is (ideally) unity.

Note that the operation is inexact in small regions about DC and the folding frequency. If transforms
are to be taken of very low frequency data, such as long period surface waves, the signals should
first be decimated. Since the transformation is performed in the time domain, computations are done
in-place using the overlap-save algorithm. There are no restrictions on the length of data file.

Added in 2013 Hilbert transforms can be used to calculate the minimum-delay phase from (the log
of) the spectral amplitude. Such amplitudes are effectively low-pass filters, which are not band-limited,
and the procedure used here does not work very well for such functions.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

ACKNOWLEDGEMENT

The subroutines used to perform the Hilbert transform were designed and developed by Dave Harris.

LATEST REVISION

April 21, 1989 (Version 10.4c)

Amplitude Response of Hilbert Transform.
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HISTORY

SUMMARY

prints a list of the recently issued SAC commands

SYNTAX

HISTORY

INPUT

none

DEFAULT VALUES

none

DESCRIPTION

The history module provides a subset of the history capabilities available in the unix C-shell. Issuing
the comand "history" will print a numbered list of the most recent commands (up to 100). Several
of the event designators from the C-shell are also available. These are references to command lines
in the history list. Available designators are:

! Start a history substitution, except when followed by a space character, tab, newline, = or (.

!! Repeat the previous command. !n Repeat command line n. !-n Repeat current command line
minus n. !str Repeat the most recent command starting with str

EXAMPLES

To print the history list:

SAC> history

To repeat command 1:

SAC> !1

To repeat the last command:

SAC> !!

To repeat the 2nd-to-last command:

SAC> !-2

To repeat the command starting with ps:

SAC> !ps

ERROR MESSAGES

none
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LATEST REVISION

March 03, 1997
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Help Introduction

Documentation for SAC includes

A user manual w/tutorial, and command descriptions including commands in the spe and sss subprocesses. The
general syntax for using SAC’s integrated help package is: help "help-file", Where "help-file" is one of the files
listed below.

Reference Manuals:

intro tutorial analysis graphics sac_macros
inline blackboard input_output file_format SAC_Library
SGF_format Scripts Error_messages
data_access

The user manual comes in 13 parts. The first part, intro, gives background information about SAC and includes
a table of contents which briefly describes the other parts.

Alphabetical and functional listings

alphalist funclist

Main SAC commands (ns means not supported)

3c

about abs absolutevalue add addf
apk arraymap axes

bandpass bandrej bbfk beam begindevices
beginframe beginwindow benioff binoperr
border

capf chnhdr chpf color
comcor commit contour convert convolve
copyhdr correlate cut cuterr cutim

datagen decimate deletechannel deltacheck
dif div divf divomega

echo enddevices endframe envelope erase
evaluate exp exp10 external
external_interface external_howto

fft fileid filenumber filterdesign
fir floor funcgen

getbb gmap gmtmap grayscale grid
gtext

hanning help help_intro highpass hilbert
history howto_external
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ifft image inicm installmacro int
interpolate

keepam khronhite

line linefit linlin linlog
listhdr load loadctable log log10
loglab loglin loglog lowpass

macro map mat markptp marktimes
markvalue merge message mtw mul
mulf mulomega

news nplotc null

oapf ohpf

pause pickauthor pickphase picks plabel
plot plot1 plot2 plotalpha plotc
plotctable plotdy plotpk plotpktable plotpm
plotsp plotxy print printhelp production

qdp quantize quit quitsub

read readbbf readcss readdb (ns) readerr
readgse readhdr readsdd readsp readsuds
readtable recalltrace report reverse rglitches
rmean rms rollback rotate rq
rtrend

scallop setbb setdevice setmacro sgf
smooth sonogram sort spectrogram
sqr sqrt stretch sub
subf symbol synchronize systemcommand

taper ticks title trace transcript
transfer transfertable tsize tutorial

unsetbb unwrap

vspace

wait whpf width wiener wild
window write writebbf writecss writegse
writehdr writesdd writesp

xdiv xfudge xfull xgrid xlabel
xlim xlin xlog xvport

ydiv yfudge yfull ygrid ylabel
ylim ylin ylog yvport

zcolors zlabels zlevels zlines zticks
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Signal Stacking Subprocess Commands

addstack changestack deletestack deltacheck distanceaxis
distancewindow globalstack incrementstack liststack plotrecordsection
plotstack sumstack timeaxis timewindow traveltime
velocitymodel velocityroset writestack zerostack

Spectral Estimation Subprocess Commands

spe_cor mem mlm pds plotcor
plotspe quitsub read writecore writespe
spe

Misc Notes

From within SAC, you can print any help file using the command printhelp:

SAC> printhelp ylin

would print the help file ylin.

You can also inspect the ascii documentation files under the help subdirectory of the $SACAUX directory. The
contents of this file are in $SACAUX/help/hlpintro.

Please report any problems to sac-help@iris.washington.edu.
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IFFT

SUMMARY

Performs an inverse discrete Fourier transform.

SYNTAX

IFFT

ALTERNATE FORMS

Purists may use IDFT instead of IFFT.

DESCRIPTION

Data files must have been previously transformed using the FFT command. They may be in either
real-imaginary or amplitude-phase format.

HEADER CHANGES

B, DELTA, and NPTS are changed to the beginning frequency, sampling frequency, and number of
data points in the transform. The original values of B, DELTA, and NPTS are saved in the header as
SB, SDELTA, and NSNPTS and are restored when this command performed.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1305: Illegal operation on time series file

∙ 1606: Maximum allowable DFT is

LIMITATIONS

The maximum inverse transform that can currently be performed is 65536 points.

SEE COMMANDS

FFT

LATEST REVISION

October 11, 1984 (Version 9.1)
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IMAGE

SUMMARY

Produces color sampled image plots of data in memory.

SYNTAX

IMAGE {COLOR|GREY} {BINARY|FULL} {PRINT {pname} }

INPUT

COLOR|GREY: Produce a color or greyscale image.
BINARY|FULL: Produce an image where all positive values plot in one color and all

negative values plot in a second color, or plot the full range of the data.
PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the

default printer if pname is not used. (This makes use of the SGF capability.)

DEFAULT VALUES

IMAGE COLOR FULL

DESCRIPTION

The image command allows the user to make color or grayscale images from a SAC 3-D data file
such as those generated by the spectrogram, scallop, or bbfk commands. It can also be used to plot
imported data provided they are in the SAC 3-D data format. Different sections of the image can
be viewed using the xlim and ylim commands and amplitudes can be scaled using the usual unary
operations provided in SAC.

HEADER VARIABLES

REQUIRED: IFTYPE (set to "IXYZ"), NXSIZE, NYSIZE
USED: XMINIMUM, XMAXIMUM, YMINIMUM, YMAXIMUM

LATEST REVISION

May 26, 1995 (Version 00.31)
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INICM

SUMMARY

Reinitializes all of SAC’s common blocks.

SYNTAX

INICM

DESCRIPTION

This command can be used at any time to put SAC back into its initial state. SAC-related envi-
ronmental variables are honored, but an initializing macro is not. All active graphics devices are
terminated and the graphics library ended. All common blocks are reinitialized to their original values.
All data in memory is lost.

LATEST REVISION

January 8, 1983 (Version 8.0)

258



INSTALLMACRO

SUMMARY

Installs macro files in the global SAC macro directory.

SYNTAX

INSTALLMACRO name {name ...}

INPUT

name: The name of a SAC macro file.

DESCRIPTION

This command lets you install your macro files into the global SAC macro directory so they can be used
by anyone on your system. The location of this directory is defined by the SACAUX environmental
variable, as SACAUX/macros. See the section on Macros in the SAC Users Manual.

SEE COMMANDS

MACRO

LATEST REVISION

March 20, 1992, (version 10.6e)
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INT

SUMMARY

Performs integration using the trapezoidal or rectangular rule.

SYNTAX

INT TRAPEZOIDAL | RECTANGULAR

DEFAULT VALUES

INT TRAPEZOIDAL

DESCRIPTION

This command uses the trapezoidal or rectangular integration method. The first output data point is
set to zero. If the trapezoidal option is used, the number of points is reduced by one. The data does
not have to be evenly spaced. To minimize end-effects, it is suggested one precede a call to INT with
RMEAN; TAPER.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMIN

LATEST REVISION

March 20, 1992 (Version 10.6e)
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INTERPOLATE

SUMMARY

Interpolates evenly-spaced data to a new sampling rate. Interpolate can also be used with unevenly-spaced data.

SYNTAX

INTERPOLATE {DELTA v} {NPTS n} {BEGIN v}

INPUT

DELTA v: Set new sampling rate to v. The time range (E-B) is not changed, so NPTS is
changed. However, E will be changed so that it is a multiple of DELTA from b. Both
DELTA and NPTS cannot be used in the same call.

NPTS n: Force the number of points in interpolated file to be n. The time range (E-B)
is not changed, so DELTA is changed. Both DELTA and NPTS cannot be used in the
same call.

BEGIN v: Start interpolation at v. This value becomes the begin time of the interpolated
file. BEGIN can be used with either DELTA or NPTS.

DEFAULT VALUES

The time series is unchanged.

DESCRIPTION

This command uses the Wiggins’ weighted average-slopes interpolation method (1976, BSSA, 66,
p. 2077) to convert unevenly-spaced data to evenly-spaced data but which works quite well at
resampling evenly-spaced data to a different sampling rate. Unlike cubic-spline interpolation, there
is no extrema between input sample points. If the sample rate is decreased, there is no antialiasing,
so for downsampling, DECIMATE may be a better option. An alternative to using BEGIN is to CUT
the time series to the desired B and E before calling INTERPOLATE. If DELTA and NPTS are in the
same call to INTERPOLATE, the last one in the command sequence will be used.

Wiggins’ subroutine included EPSILON, which gives a lower limit for local slopes. In earlier versions of
INTERPOLATE, one could modify EPSILON. As of the version accompanying SAC v101.5, the code
has been rewritten so that there is no reason to consider modifying EPSILON. Hence, that option has
been removed.

EXAMPLES

Assume that FILEA is an evenly-spaced data file with a sampling interval of 0.025. To convert it to
a sampling rate of 0.02 seconds:

SAC> READ FILEA
SAC> INTERPOLATE DELTA 0.02

Because the new delta is less than the data delta, a warning message will be printed because of the
potential for aliasing.

Assume that FILEB has NPTS=3101 and one wants to have it sample the same time range but with
NPS=4096 points (a power of 2):
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SAC> READ FILEB
SAC> INTERPOLATE NPTS 4096

If one tries to change DELTA and NPTS in the same call, only the second call will be used. Hence if
the previous call were replaced by:

SAC> READ FILEB
SAC> INTERPOLATE NPTS 4096 DELTA 0.02

DELTA would be changed to 0.02 and NPTS would be calculated from the new DELTA and the input
B and E. If the order were reversed:

SAC> READ FILEB
SAC> INTERPOLATE DELTA 0.02 NPTS 4096

the output file would have NPTS=4096 and DELTA would be calculated.

Assume that FILEC is an unevenly spaced data file. To convert it to an evenly spaced file with a
sampling interval of 0.01 seconds:

SAC> READ FILEC
SAC> INTERPOLATE DELTA 0.01

WARNING MESSAGES

∙ 2008: Requested begin time is less than data begin time. Output truncated.

∙ 2125: Requested begin time is greater than data end time. No action taken.

HEADER CHANGES

DELTA, NPTS, E, B (if FIRST invoked), LEVEN (if initially unevenly spaced.)

LATEST REVISION

August 2011 (Version 101.5)
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KEEPAM

SUMMARY

Keep amplitude component of spectral files (of either the AMPH or RLIM format) in SAC memory.

SYNTAX

KEEPAM

DESCRIPTION

This command is an easy way for users to drop the phase component, so that the amplitude data
may be subjected to algebraic operations which require single-dimensional data. If the files exist in
the RLIM format, the data is first converted to the AMPH format, before phase is dropped. The
resulting data files containing the amplitude component will exist as as generic xy files, so that they
can be distinguished for time-domain files. May 28, 1991 (Version 10.5c)
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KHRONHITE

SUMMARY

Applies a Khronhite filter to the data.

SYNTAX

KHRONHITE {v}

INPUT

v: Cutoff frequency in hertz.

DEFAULT VALUES

KHRONHITE 2.0

DESCRIPTION

This lowpass filter is a digital approximation of an analog filter which was a cascade of two fourth-
order Butterworth lowpass filters. This lowpass filter has been used with a corner frequency of 0.1 Hz
to enhance measurements of the amplitudes of the fundamental mode Rayleigh wave (Rg) at regional
distances.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

February 15, 1987
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LINE

SUMMARY

Controls the linestyle selection in plots.

SYNTAX

LINE {ON|OFF|SOLID|DOTTED|n} {FILL ON|OFF|{POS_COLOR|NEG_COLOR}}
{INCREMENT {ON|OFF}}, {LIST STANDARD|nlist}

INPUT

{ON}: Turn line-drawing on. Don’t change linestyle.
OFF: Turn line-drawing off.
SOLID: Change to solid linestyle and turn line-drawing on.
DOTTED: Change to dotted linestyle and turn line-drawing on.
n: Change to linestyle n and turn line-drawing on. A linestyle of 0 is the same as turning

turning line-drawing off. Figure below shows linestyles for n = 1 through 10. SOLID
is n = 1, DOTTED is n = 8.

INCREMENT {ON}: For multiple data files in a plot, increment linestyle from linestyle
list for each data file in the plot.

INCREMENT OFF: Do not increment linestyle for multiple data files.
LIST STANDARD: Change to the standard linestyle list (1 2 3 ..).
LIST nlist: Change the content of the linestyle list. Enter list of linestyle numbers (e.g.,

3 1 2 ..).
FILL ON/OFF: Turn filling on/off.
FILL POS_COLOR/NEG_COLOR: Fill color for positive/negative section of the seis-

mogram trace. Turns FILL on. See COLOR for color options.
FILL LIST STANDARD: Use Standard color list for Color Filling.
FILL LIST POS_COLOR/NEG_COLOR: Turn on color filling incrementing multiple

colors in a list are available to set colors. Colors are specified in either Color Name or
Number

DEFAULT VALUES

LINE SOLID INCREMENT OFF LIST STANDARD FILL OFF

DESCRIPTION

This command controls the linestyle used when plotting data. The skeleton (axes, titles, etc.) are
always plotted using solid lines. Grid linestyle is controlled by the GRID command.

There are other commands that control other aspects of the data display. The SYMBOL command
can be used to display a set of scalable, centered symbols at each data point. The COLOR command
controls color selection, and the WIDTH command controls the line-width. All of these attributes are
independent of each other. You may select a blue dotted line with a symbol at each data point if you
desire. A linestyle of 0 is the same as turning line drawing off. This is useful in the LIST option and
the SYMBOL command to display some data with lines and some with symbols on the same plot.
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EXAMPLES

To select an incrementing linestyle using the STANDARD list - starting with linestyle 1:

SAC> LINE 1 INCREMENT

To change the linestyle list to contain linestyles 3, 5, and 1:

SAC> LINE LIST 3 5 1

To plot three files on the same plot using PLOT2 with the first file plotted using a solid line and no
symbol, the second with no line and a triangle symbol, and the third with no line and a cross symbol:

SAC> READ FILE1 FILE2 FILE3
SAC> LINE LIST 1 0 0 INCREMENT
SAC> SYMBOL LIST 0 3 7 INCREMENT
SAC> PLOT2

To fill in the positive ecursions on a seismogram with red and the negtive excursions with blue. If one
leaves out the 0, the colored regions would be outlined with a black line:

SAC> fg seismo
SAC> line 0 fill red/blue
SAC> p1

SEE COMMANDS

SYMBOL, COLOR, WIDTH

LATEST REVISION

Version 102.0
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LINEFIT

SUMMARY

Computes the best straight line fit to the data in memory and writes the results to header blackboard variables.

SYNTAX

LINEFIT

DESCRIPTION

A least squares curve fit to a straight line is calculated. The slope, y intercept, standard deviation
of the slope, standard deviation of the y intercept, standard deviation of the data and correlation
coefficient between the data and the linear fit are written to blackboard variables SLOPE, YINT,
SDSLOPE, SDYINT, SDDATA and CORRCOEF respectively. The data does not have to be evenly
spaced.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

none

LATEST REVISION

September 12, 1995 (Version 00.38)
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LINLIN

SUMMARY

Turns on linear scaling for the x and y axes.

SYNTAX

LINLIN

DEFAULT VALUES

Linear scaling for both axes.

SEE COMMANDS

LINLOG, LOGLOG, LOGLIN

LATEST REVISION

January 8, 1983 (Version 8.0)
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LINLOG

SUMMARY

Turns on linear scaling for x axis and logarithmic for y axis.

SYNTAX

LINLOG

DEFAULT VALUES

Linear scaling for both axes.

SEE COMMANDS

LINLIN, LOGLOG, LOGLIN

LATEST REVISION

January 8, 1983 (Version 8.0)
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LISTHDR

SUMMARY

Lists the values of selected header fields.

SYNTAX

LISTHDR {listops} {hdrlist}

where listops are one or more of the following:

DEFAULT|PICKS|SPECIAL
FILES ALL|NONE|list
COLUMNS 1|2
INCLUSIVE ON|OFF

INPUT

DEFAULT: Use the default list, which includes all defined header fields.
PICKS: Use the picks list, which includes those header fields used to define time picks.
SPECIAL: Use the special user defined list.
FILES ALL: List headers from all files in data file list.
FILES NONE: Don’t list headers, set defaults for future commands.
FILES list: List headers from a subset of the files in the data file list. The subset is defined

as a list of file numbers.
COLUMNS 1: Format output into a single column of entries.
COLUMNS 2: Format output into two columns.
INCLUSIVE: ON includes header variables which are undefined. OFF excludes them.
hdrlist: List of header fields to be included in the special list.

DEFAULT VALUES

LISTHDR DEFAULT FILES ALL COLUMNS 1 INCLUSIVE OFF

DESCRIPTION

The user can define which items to list or can use either of two standard lists. The first list (DEFAULT)
contains all of the header fields. The second list (PICKS) contains those header fields which are directly
or indirectly used to define time picks. This list contains the following fields: B, E, O, A, Tn, KZTIME,
KZDATE. More standard lists can be added if needed. A special list can be defined by the user at any
time and can then be requested again by using the SPECIAL option. The full listing for a header field
consists of its name, an equals sign, and its current value. Some of the fields for some files will be
undefined. SAC stores a special value in those fields to flag them as undefined. The listing excludes
these undefined fields unless the INCLUSIVE option is ON. For integers and floats the undefined value
is -12345; for character strings and those integers which are used to indicate character strings, the
undefined value it "UNDEFINED".

If one reads in a waveform file and transforms to the frequency domain, the data extremes (MAXDEP,
MINDEP) will return values in LH for the time domain, not the frequency domain.

A description of each of the SAC header fields is contained in SAC Data File Format.
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ERROR MESSAGES

1301: No data files read in.

EXAMPLES

To get a two column listing of the time picks only:

SAC> LISTHDR PICKS COLUMNS 2

To get a default listing of the third and fourth files in the data file list:

SAC> LISTHDR FILES 3 4

To list the values of the begin and end time only:

SAC> LISTHDR B E

To define a special list of the station parameters:

SAC> LISTHDR KSTNM STLA STLO STEL STDP

To reuse this special list later during the same execution:

SAC> LISTHDR SPECIAL

To set default two column output:

SAC> LISTHDR COLUMNS 2 FILES NONE

LATEST REVISION

August 30, 2008 (Version 101.2)
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LOAD

SUMMARY

Load an external command.

external commands and load require extra work in the linux version of SAC.

SYNTAX

LOAD comname {ABBREV abbrevname}

INPUT

comname: The name of an external function to load from a shared object.
ABBREV abbrevname: An abbreviation or alias for comname.

DESCRIPTION

This command allows the user to load commands written to the SAC external command interface
specification (See EXTERNAL_INTERFACE help page). This command must be a function stored in
a shared object library ( a .so file- see UNIX LD manpage for details ). SAC will look in all shared object
libraries listed in environmental variable SACSOLIST. This environmental variable should contain one
or more names of shared objects in a blank delimited list. The path to these shared objects must be
specified in the LD_LIBRARY_PATH environmental variable. If SACSOLIST is not set, then SAC
will look for a shared object library called libsac.so, using the paths specified in LD_LIBRARY_PATH.
A library called libcom.so is distributed with SAC (see EXTERNAL COMMAND section below).

EXAMPLE

Set up your environment to have SAC look in the current directory for a command named foo from
a shared object called libbar.so. Set up an alias for foo called myfft.:

% setenv SACSOLIST "libcom.so libbar.so"
# Add the current directory to the search path.
% setenv LD_LIBRARY_PATH {$LD_LIBRARY_PATH}:.

% sac
SAC> load foo abbrev myfft * load the command
SAC> read file1.z file2.z file3.z * input files to pass to the command
SAC> myfft real-imag * invoke command with its arguments,

* commands must parse their own args.
SAC> psp

How to create a shared object library containing your command(s): Solaris:

cc -o libxxx.so -G extern.c foo.c bar.c

SGI:

cc -g -o libxxx.so -shared foo.c bar.c

LINUX: (gcc):
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gcc -o libxxx.so -shared extern.c foo.c bar.c sac.a

where sac.a is the sac library available where you got sac.

EXTERNAL COMMAND INCLUDED IN THE DISTRIBUTION OF SAC

There is one external command which is distributed with SAC. It is called FLIPXY. FLIPXY takes
as input one or more X-Y datafiles, and transposes the data. This command is in libcom.so in
${SACAUX}/external along with the source code of FLIPXY for reference. To load FLIPXY, libcom.so
must be included in SACSOLIST.

ERRORS

∙ 1028: External command does not exist:

– This means that SAC did not find your external command.

This error can arise for a couple of reasons. One possibility is that your LD_LIBRARY_PATH environmental
variable does not contain the path to your shared library. Another possibility is that you have not set your
SACSOLIST environmental variable to contain the names of your shared libraries.

LATEST REVISION

March 21, 1996 (Version 00.50)
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LOADCTABLE

SUMMARY

Allows the user to select a new color table for use in image plots.

SYNTAX

LOADCTABLE n | [options] [filelist]

where n is a number (currently between 1 and 17) of a standard SAC color table stored in directory SACAUX, or
where options is the following:

DIR CURRENT|name

options MUST preceed any element in the filelist.

INPUT

n: The number of a standard SAC color table.
DIR CURRENT: Load color table from the current directory. This is the directory from

which you started SAC.
DIR name: Load color table from the directory called name. This may be a relative or

absolute directory name.
filelist: file
file: A legal color table filename. This may be a simple filename or a pathname. The

pathname can be a relative or absolute one.

DESCRIPTION

This command allows the user to select a new color table or provide their own custom color table by
specifying the color table file with a pathname, relative to the current directory. If the DIR option is
not used, SAC looks first in SACAUX for the color table, then in the user’s working directory.

LATEST REVISION

May 26, 1995 (Version 00.31)
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LOG

SUMMARY

Takes the natural logarithm of each data point.

SYNTAX

LOG

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1340: data points outside allowed range contained in file

– All data points must be positive.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 15, 1985 (Version 9.10)
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LOG10

SUMMARY

Takes the base 10 logarithm of each data point.

SYNTAX

LOG10

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1340: data points outside allowed range contained in file

– All data points must be positive.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 15, 1985 (Version 9.10)
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LOGLAB

SUMMARY

Controls labels on logarithmically scaled axes.

SYNTAX

LOGLAB {ON|OFF}

INPUT

{ON}: Turn log labeling option on.
OFF: Turn log labeling option off.

DEFAULT VALUES

LOGLAB ON

DESCRIPTION

Labels are normally put on each decade of logarithmically interpolated axes. Secondary labels (ones
between full decades) are placed on these axes if this option is on and if there is enough room.

LATEST REVISION

January 8, 1983 (Version 8.0)
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LOGLIN

SUMMARY

Turns on logarithmic scaling for x axis and linear for y axis.

SYNTAX

LOGLIN

DEFAULT VALUES

Linear scaling for both axes.

SEE COMMANDS

LINLIN, LINLOG, LOGLOG

LATEST REVISION

January 8, 1983 (Version 8.0)
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LOGLOG

SUMMARY

Turns on logarithmic scaling for the x and y axes.

SYNTAX

LOGLOG

DEFAULT VALUES

Linear scaling for both axes.

SEE COMMANDS

LINLIN, LINLOG, LOGLIN

LATEST REVISION

January 8, 1983 (Version 8.0)
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LOWPASS

SUMMARY

Applies an IIR lowpass filter.

SYNTAX

LOWPASS {BUTTER|BESSEL|C1|C2},{CORNER v},
{NPOLES n},{PASSES n},{TRANBW v},{ATTEN v}

INPUT

BUTTER: Apply a Butterworth filter.
BESSEL: Apply a Bessel filter.
C1: Apply a Chebyshev Type I filter.
C2: Apply a Chebyshev Type II filter.
CORNER v: Set corner frequency to v.
NPOLES n: Set number of poles {range: 1-10}.
PASSES n: Set number of passes {n=1: causal, n=2: zero-phase}.
TRANBW v: Set the Chebyshev transition band width to v.
ATTEN v: Set the Chebyshev attenuation factor to v.

DEFAULT VALUES

LOWPASS BUTTER CORNER 0.4 NPOLES 2 PASSES 1 TRANBW 0.3 ATTEN 30.

DESCRIPTION

See the BANDPASS command for definitions of the filter parameters and descriptions on how to use
them.

EXAMPLES

To apply a four-pole Butterworth with a corner at 2 Hz.:

SAC> LOWPASS NPOLES 4 CORNER 2

To apply a two-pole two-pass Bessel with the same corner.:

SAC> LP N 2 BE P 2

A Butterworth causal low-pass filter will time shift (forward) the waveform by an amount that depends
on the corner frequency. The following macro will time-shift the data.:

SAC> setbb wf $1
SAC> setbb ts $2
SAC> r %wf
SAC> ch b (%ts + &1,b&)
SAC> write %wf%-TS
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If the macro is named time-shift.m, the waveform file named XXX and the time shift -0.25, the
following sequence will time-shift the data and output a file named XXX-TS. This macro will fail if
IZTYPE is IB.:

SAC> m time-shift.m XXX -0.25

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

∙ 1002: Bad value forcorner frequency larger than Nyquist frequency. See Chapter 4 of Rabinerand Gold,
Theory and Application of Digital Signal Processing, Prentice-Hall, 1975 for a discussion of IIR filters.

SEE COMMANDS

BANDPASS

LATEST REVISION

Version 101.6
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MACRO

SUMMARY

Executes a SAC macro file and the startup/init commands when invoking SAC.

SYNTAX

MACRO name {arguments}

INPUT

name: The name of the SAC macro to execute.
arguments: The arguments (if any) of the macro.

DESCRIPTION

A SAC macro is a file that contains a set of SAC commands that you want to execute as a group.
You can pass arguments to the macro, define default values for these arguments, evaluate blackboard
and header variables within the body of a macro, etc. The macro file can be in the current directory,
in a predefined directory you specify using the SETMACRO command, or in the global SAC macros
directory: ${SACHOME}/macros/ .

SEE COMMANDS

SETMACRO, INSTALLMACRO

LATEST REVISION

May 15, 1987 (Version 10.2)
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MAP

SUMMARY

Generate a GMT (Generic Mapping Tools) map which can include station/event symbols topography
and station names using all the files in SAC memory and an optional event file specified on the
command line. Event symbols can be scaled according to magnitude, residual, etc. A variety of
projections are available. The result of this command is a postscript file and a screen display of that
file plus a shell script with the GMT commands that produced the plot.

SYNTAX

MAP {MERcator | EQuidistant | AZimuthal_equidistant | ROBinson }
{WEST minlon} {EAST maxlon} {NORTH maxlat} {SOUTH minlat}
{MAGnitude | REsidual | RMean_residual}
{EVentfile filename} {TOPOgraphy} {STANames}
{MAPSCALE on|off } {PLOTSTATIONS on|off} {PLOTEVENTS on|off}
{PLOTLEGEND on|off} {LEGENDXY x y} {FILE output-file}

Note Shorthand notations for keywords are in capital letters.

INPUT OPTIONS

MERCATOR: Generate a Mercator projection. [ Default ]
EQUIDISTANT: Generate an Equidistant cylindrical projection. Linear in lati-

tude and longitude.
ROBINSON: Robinson projection, nice for world map.
LAMBERT: Good for large east-west areas.
UTM: Universal transverse mercator. (unimplemented) Distances from center

are true.

The following options allow the user to specify the map region. The default is to use the min and
max defined by the plotted stations and events.

WEST: Define minimum longitude for map window.
EAST: Define maximum longitude for map window.
NORTH: Define maximum latitude for map window.
SOUTH: Define minimum latitude for map window.
AUTOLIMITS: Automatically Determine the Limits [ Default ]

The following options allow the user to add locations and annotations to the map.

STANames: On | [ Off ]
MAPSCALE: On | [ Off ] - Plot a Distance Scale on the Map
PLOTSTATIONS: [ On ] | Off - Plot all the Stations from seismograms
PLOTEVENTS: [ On ] | Off - Plot all the Events from eventfile and/or seismo-

grams

The following options allow the user to scale the event symbols. The default is a constant symbol
size.

MAGnitude: Scale event symbols linearly with user0. [ Off ]
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REsidual: Scale event symbols linearly with abs(user0). [ Off ] Positive values are (+)
negatives are (-).

RMean_residual: Same as residual except mean is removed [ Off ] from all the residuals.
PLOTLEGEND: [ On ] | Off - Plot a legend for Earthquake Magnitudes and Residuals
LEGENDXY x y: Absolute Location to Plot the Legend [ 1,1 ] The location is relative

to the lower left corner of the Page Values for x and y are to be in inches. This is a
legend for Earthquake Magnitudes and Residuals

EVENTFILE: Specify a free-format ASCII text file containing additional event data. Each
line in the file contains data for a single event. The first two columns of each line must
contain latitude and longitude (in degrees), respectively. The third column is optional
and contains symbol size information (e.g., magnitudes, depth, travel-time residual,
...). The following is an example of a few lines in an eventfile:

38.5 42.5 6.5
25.5 37.3 5.5
44.2 40.9 5.7

TOPOgraphy: On | [ Off ] Setting TOPO on allows the user to add topography and
bathymetry to the maps. The command reads option (1) in grdraster.info, and the
data file referenced for that option must be installed. The topography color map used
is in $SACAUX/ctables/gmt.cpt. The grid files are written in the current directory.

The default output file is gmt.ps. An alternative file name can be specified using the FILE option.

DEFAULT VALUES

MAP MERCATOR TOPO off STAN off FILE gmt.ps PLOTSTATIONS on PLOTEVENTS on

A title can be added using ch TITLE "..." before running map.

HEADER DATA

Station latitudes (stla) and longitudes (stlo) must be set. If event latitudes (evla) and longitudes
(evlo) are set they will be included in the map. If this command is executed after running BBFK,
MAP will plot a great circle arc path along the back azimuth.

This version of MAP was based on version 4.0 of the Generic Mapping Tools software and it assumes
that the GMT4.0 software is loaded on the user’s machine and the executables are in the path.

The results of each MAP command are written to a shell file called gmt.csh, in the current directory.
The user can modify this file to take advantage of GMT options not readily available through SAC.
Default units are in inches, but can be changed in the shell script.

The results of each MAP command will automatically be displayed. The default program used to
create the display is gs (ghostscript). The user can choose an alternative display tool by setting the
SACPSVIEWER environmental variable. The default is:

setenv SACPSVIEWER "gs -sDEVICE=x11 -q -dNOPROMPT -dTTYPAUSE"

Possible values for SACPSVIEWER on different platforms may include:

Linux: gs, gv, ggv, evince
Mac/OSX: open, Preview, gs, gv
Sun/Solaris: gs, gv
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MARKPTP

SUMMARY

Measures and marks the maximum peak to peak amplitude of each signal within the measurement time window.

SYNTAX

MARKPTP {LENGTH v},{TO marker}

INPUT

LENGTH v: Change the length of the sliding window to v seconds.
TO marker: Define the first time marker in the header to store results. The time of the

minimum is stored in this marker. The time of the maximum is stored in the next
marker.

marker: T0|T1|T2|T3|T4|T5|T6|T7|T8|T9

DEFAULT VALUES

MARKPTP LENGTH 5.0 TO T0

DESCRIPTION

This command measures the times and the amplitude of the maximum peak-to-peak excursion of
the data within the current measurement time window (see MTW.) The results are written into the
header. The time of the minimum value (valley) is written into the requested marker. The time of
the maximum value (peak) is written into the next marker. The peak-to-peak amplitude is written
into USER0. The results are also written into the alphanumeric pick file if it is open (see OAFP.)

EXAMPLES

To set the measurement time window to be between the two header fields, T4 and T5, and the default
sliding window length and marker:

SAC> MTW T4 T5
SAC> MARKPTP

To set the measurement time window to be the 30 seconds immediately after the first arrival, and the
sliding window length to to 3 seconds, and the starting marker to T7:

SAC> MTW A 0 30
SAC> MARKP L 3. TO T7

HEADER CHANGES

Tn, USER0, KTn, KUSER0

SEE COMMANDS

MTW, OAPF
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LATEST REVISION

May 15, 1987 (Version 10.2)
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MARKTIMES

SUMMARY

Marks files with travel times from a velocity set.

SYNTAX

MARKTIMES {TO marker},{DISTANCE HEADER|v},
{ORIGIN HEADER|v|GMT time},{VELOCITIES v ...}

INPUT

TO marker: Define the first time marker in the header to store results. The time markers
are incremented for each requested velocity.

marker: T0|T1|T2|T3|T4|T5|T6|T7|T8|T9
DISTANCE HEADER: Use the distance (DIST) from the header in the travel time cal-

culations.
DISTANCE v: Use v as the distance in the travel time calculations.
ORIGIN HEADER: Use the origin time (O) in the header in the travel time calculations.
ORIGIN v: Use v as the offset origin time.
ORIGIN GMT time: Use the Greenwich mean time time as the origin time.
time: Greenwich mean time in the form of six integers: year, julian day, hour, minute,

second, and millisecond.
VELOCITIES v ...: Set the velocity set to use in the travel time calculations. Up to 10

velocities may be entered.

ALTERNATE FORMS

UTC for Universal Time Coordinate may be used instead of GMT.

DEFAULT VALUES

MARKTIMES VELOCITIES 2. 3. 4. 5. 6. DISTANCE HEADER ORIGIN HEADER TO T0

DESCRIPTION

This command marks travel travel times in the header, given the origin time of the event, the epicentral
distance, and an input velocity set. The following simple equation is used to estimate travel times.:

time(j) = origin + distance/velocity(j)

The results are written into the header in the requested time marker.
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EXAMPLES

To use the default velocity set but force the distance to be 340 kilometers and the first marker to be
T4:

SAC> MARKTIMES DISTANCE 340. TO T4

To select a different velocity set:

SAC> MARKT V 3.5 4.0 4.5 5.0 5.5

To set the origin time in GMT and store the results in T2:

SAC> MARKT ORIGIN GMT 1984 231 12 43 17 237 TO T2

HEADER CHANGES

Tn, KTn

LATEST REVISION

May 15, 1987 (Version 10.2)
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MARKVALUE

SUMMARY

Searches for and marks values in a data file.

SYNTAX

MARKVALUE {GE v|LE v},{TO marker}

INPUT

GE v: Search for and mark the first data point that is greater than or equal to v.
LE v: Search for and mark the first data point that is less than or equal to v.
TO marker: Define the time marker in the header in which to store the result.
marker: T0|T1|T2|T3|T4|T5|T6|T7|T8|T9

DEFAULT VALUES

MARKVALUE GE 1 TO T0

DESCRIPTION

This command searches for the requested value in each data file and marks the time of the first
occurance of that value. If a measurement time window has been defined (see MTW), only that
portion of each data file is searched. Otherwise the entire file is searched. The results are written into
the header in the requested time marker.

EXAMPLES

To search for the first data point whose value is at least 3.4 and to store the result in the header as
T7:

SAC> MARKVALUE GE 3.4 TO T7

To later perform that same search in the measurement time window 10 seconds long beginning at T4:

SAC> MTW T4 0 10
SAC> MARKVALUE

HEADER CHANGES

Tn, KTn

SEE COMMANDS

MTW

LATEST REVISION

May 15, 1987 (Version 10.2)
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MAT

SUMMARY

Copy SAC workspace into Matlab and either execute a user-specified m-file or else get a Matlab prompt for
interactive manipulation. The SAC workspace is updated with changes made to the data after the return from
Matlab.

SYNTAX

MAT [mfile]

DESCRIPTION

The mat command allows processing of SAC data from within SAC using the Matlab (Version 5) engine
and any user-written m-files. When this command is executed, the SAC workspace is copied into the
following Matlab variables: SeisData --- an M-points by N-traces array of waveforms. SACdata --- an
M-element structure array containing the header information from the SAC workspace. BlackBoard
--- a structure array containing any blackboard variables.

SEISDATA

If the SAC data are time-domain, the SeisData array is real. Other wise it is complex. However, be aware that
the default behavior of SAC’s fft command is to produce transformed data in amplitude-phase format while in
Matlab, the data will be treated as real-imaginary. The easiest way around that is to use the rlim option with
SAC’s fft.

You must return trace data from Matlab to SAC in the same domain as it was in before the mat command was
executed. Otherwise, changes to the trace data made in Matlab will not be preserved. Also, you must not change
the length of the traces in Matlab.

SACDATA

The SACdata structure array contains the following elements: times, station, event, user, descrip, evsta, llnl,
response, trcLen

Most of these elements are themselves structures and their members are as follows:

times station event user descrip evsta llnl
delta stla evla data(10) iftype dist xminimum
b stlo evlo label(3) idep az xmaximum
e stel evel iztype baz yminimum
o stdp evdp iinst gcarc ymaximum
a cmpaz nzyear istreg norid
t0 cmpinc nzjday ievreg nevid
t1 kstnm nzhour ievtyp nwfid
t2 kcmpnm nzmin iqual nxsize
t3 knetwk nzsec isynth nysize
t4 nzmsec

... continued on next page
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times station event user descrip evsta llnl
t5 kevnm
t6 mag
t7 imagtyp
t8 imagsrc
t9
f
k0
ka
kt1
kt2
kt3
kt4
kt5
kt6
kt7
kt8
kt9
kf

response is a 10-element array, and trcLen is a scalar. Thus, to reference the begin time for the 10th trace in
memory you would write: SACdata(10).times.b

To reference the first 4 characters of the station name for the first trace, you would write: SACdata(1).station.kstnm(1:4)

BLACKBOARD The BlackBoard variable is also a structure array which will be missing if you have no numeric or
string black board variables in the SAC workspace. Otherwise there is an element for each black board variable.
Each element is a structure containing a name and a value. You cannot create new black board variables in Matlab
(If you do, the changes will not be saved). However, you can modify the ones passed from SAC to Matlab. So, if
your Matlab script will create a number of output quantities that you want to store in SAC’s blackboard, create
the variables in SAC before executing the mat command.

MATLAB PATH

By default, the Matlab path available to you from within SAC will consist of the current directory, ~/matlab
and the $MATLAB hierarchy. You can add an additional directory to the Matlab path from within SAC using
the SETMAT command (SETMAT directoryName). Also, from within Matlab, you can modify the search path
command using the path command. (Type help path for more information).

EXITING THE MATLAB INTERPRETER

There are two ways to exit the Matlab interpreter and return to SAC. You can type "exitmat" at the SACMAT»
prompt. This will return you to SAC and leave the engine running. This can be useful if you intend to move back
and forth between the two environments frequently, since there is no delay associated with starting the Matlab
engine. However, a Matlab license will be tied up while you are running SAC and this may inconvenience other
users who cannot start a session. To exit the Matlab interpreter and/or close the engine, type "closemat" at
either the SACMAT» or the SAC> prompt.
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HEADER CHANGES

Potentially all. User is responsible for consistency of changes.

EXAMPLE

Execute an m-file that converts the data to their absolute values. Assume the m-file is named absv.m and contains
the one line SeisData=abs(SeisData):

SAC> mat absv

NOTES

You may find it easier to develop a complex m-file directly from Matlab rather than from within the SAC-Matlab
environment. The primary reasons are that there is no command line recall at the SACMAT» prompt and because
SACMAT does not trap ^C (used to stop errant m-files in Matlab). The easiest way to do this is to load your
data into SAC, start the Matlab engine with mat, and then type save. This will save the workspace in a file called
matlab.mat. You may then start a normal matlab session, and type load. This will load matlab.mat and you may
then develop your application within Matlab.

The entire range of plotting commands are available. However, if you execute your m-file from SAC (i.e. mat
mfilename) Matlab will return to SAC immediately after executing the last command in the m-file. Therefore,
if you want to look at your plots created in Matlab either execute the m-file from the Matlab command line, or
execute a pause in your Matlab script:

plot(SeisData)
pause(10)

LATEST REVISION

Aug 9, 1997 (Version 00.56a)
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MATHOP

SUMMARY

Controls Math Operator Precedence

SYNTAX

MATHOP NORMAL|MATH|FORTRAN|NONE|OLD

INPUT

NORMAL: Use Normal Math Operator Precedence
MATH: Same as Normal
FORTRAN: Same as Normal
NONE: Use No Operator Precedence
OLD: Same as None

DEFAULT VALUES

MATHOP NORMAL

DESCRIPTION

This command controls math operator prededence. Normally, multiplication and division have a higher
predecence than addition and subtraction. Exponentiation has the highest precedence.

Older version of SAC (pre-101.6) used a math evaluation without operator precedence. Terms were
evaluated in order where the earlier in the expression operators had higher precedence.

If matop is not called, the effect is the same as mathop normal. The function mathop has been
introduced to deal with scripts and macros that were written using the mathop old precedence.
Rather than change the coding, one simply enters mathop old before the lines with inline expressions.

EXAMPLES

With Operator Precedence:

SAC> mathop normal
SAC> evaluate 1+2*3
===> 7
SAC> evaluate 1+(2*3)
===> 7

Without Operator Precedence (as was true without mathop prior to v101.6):

SAC> mathop old
SAC> evaluate 1+2*3
===> 9
SAC> evaluate 1+(2*3)
===> 7
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LATEST REVISION

Version 101.6 (new)

294



MERGE

SUMMARY

Merges (concantenates) a set of files to data in memory.

SYNTAX

MERGE {VERBOSE} {GAP ZERO|INTERP} {OVERLAP COMPARE|AVERAGE}
{TOLERANCE_DELTA v} {filelist}

INPUT

GAP ZERO | INTERP: How to handle data gaps
∙ ZERO - Fill with 0.0 amplitude [default]
∙ INTERP - Interpolate, linear, within the data gap

OVERLAP COMPARE | AVERAGE: How to handle data overlaps
∙ COMPARE - Compare overlapping data points, exit on mismatch
∙ AVERAGE - Average overlapping data points

TOLERANCE_DELTA v: Tolerance between computed delta and delta reported in the
header. Default tolerance is 1e-6

VERBOSE: Describe the merge details
filelist: A list of SAC binary data files. This list may contain simple filenames, full or

relative pathnames, and wildcard characters. See the READ command for a complete
description.

DESCRIPTION

The data in the files in this merge list is appended or concantenated to the data in memory. Each pair
of files to be merged is checked to make sure they have the same sampling interval and station name.
Any number of file, in any order are able to be merged. Data currently in memory and data identified
in the merge command are merged together. If no data is specified with the merge command, data
currently in memory will be merged.

TOLERANCE_DELTA

For collections of files with high sample rates, long durations or both the computation of
time becomes less precise due to the limited precision of the delta value in the header.
To avoid this, a calculatd time-sampling is computed based on the difference in begin times
and with sufficient precision. If the calculated time-sampling is within the tolerance specified
by the TOLERANCE_DELTA, then the calculated time-sampling is used in place of the
value reported in the header. Use VERBOSE for more information about the calculated
and header-defined deltas:

SAC> merge verbose ./*.SAC
merge calculating delta
merge calculated delta: 4.000000000000000e-03 (assuming no-gaps)

delta in header 4.000000189989805e-03 (first file)
difference: 1.899898e-10 = abs( calc_delta - delta )
tolerance: 1.000000e-06
using calulcted delta

merging 24 files => 3600000 data points
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The calculated delta assumes no gaps and no overlaps for the input files as is determined
as

calc_delta = mean ( (file_{i+1}.b - file_{i}.b) / file_{i}.npts )

where the file_{i} comes before file_{i+1}.
To turn off computing the observed delta, use a value of <= 0.0

SAC r *SAC
SAC> merge verbose tol 0.0
merging 24 files => 3599999 data points
merge: Gap zero fill: [n: 899999 t: 3599.996171]
merge: Gap zero fill: [n: 1049999 t: 4199.996199]
.....

As soon as a significant gap or overlap is found between two files, all successive file boundaries will
have a significant gap or overlap as the mismatch will increase with increasing n. In this data set,
each file has 150000 points with a dt of 0.004s.
The output of Merge is a single file with the same name as the first file, so it was necessary to use
the read statement.

EXAMPLES

To merge FILE3, FILE4, FILE1 and FILE2 into one file:

SAC> READ FILE1 FILE2
SAC> MERGE FILE3 FILE4

or:

SAC> READ FILE1 FILE2 FILE3 FILE4
SAC> MERGE

or:

SAC> DELETECHANNEL ALL
SAC> MERGE FILE1 FILE2 FILE3 FILE4

To merge files for the same station, say ELKO.Z, from four different events each stored in a separate
UNIX directory:

SAC> READ data/event1/elko.z
SAC> MERGE data/event2/elko.z data/event3/elko.z data/event4/elko.z

HEADER CHANGES

NPTS, DEPMIN, DEPMAX, DEPMEN, E

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1803: No binary data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1306: Illegal operation on unevenly spaced file

∙ 1801: Header field mismatch:

∙ 9005: Amplitude mismatch
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WARNING MESSAGES

∙ 1805: Time gap (zeros added):

SEE COMMANDS

READ

LATEST REVISION

Version 102.0
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MESSAGE

SUMMARY

Sends a message to the user’s terminal.

SYNTAX

MESSAGE text

INPUT

text: Text of message to be sent. If there are blanks in the message it must be enclosed
within single quotes.

DESCRIPTION

This command is useful within macro files to send status or informational messages to the user while
the macro file is executing. It is not particularly useful in the interactive mode (unless you like to talk
to yourself.)

EXAMPLES

To send a message without any blanks:

SAC> MESSAGE FINISHED
FINISHED

To send a message with blanks, you must use single or double quotes:

SAC> MESSAGE ’Job has finished.’
Job has finished.

LATEST REVISION

January 8, 1983 (Version 8.0)
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METADATA

SUMMARY

Metadata is data about data content and is critical for analysis of timeseries data such as seismic data. IRIS has
various web-based tools that allow users to query, view, and download metadata. This command allows one to
insert available metadata into SAC data files.

SYNTAX

METADATA {catalog:eventid}
{file metadata_file}
{ph5}
{verbose}

INPUT

catalog:eventid: Set the event to use when specifying event metadata. An eventid can
be obtained using from the EVENT command

file metadata_file: Use the metadata from a file. The file may be either a text file or an
xml file. There are important differences between xml and text files. Input metadata
files must have channel level metadata, see the STATION command.

ph5: Get additional data from the IRIS PH5 Web service. This option provides access
to active-source data sets and their associated stations with high sample rates and
time-limited deployments.

VERBOSE: Watch the details of the metadata insertion process

DEFAULT VALUES

METADATA

DESCRIPTION

Insert metadata into files currently in memory. Metadata, i.e. sac headers, is only added for the station
if the station id (Network Station Location and Channel) are defined in the sac header. Metadata for
the event is only added if the event is specified as an command option.

Metadata for the station includes

∙ stla: Station Latitude
∙ stlo: Station Longitude
∙ stel: Station Elevation (in meters)
∙ stdp: Station Depth (always 0.0)
∙ cmpaz: Component Azimuth (degrees clockwise from North)
∙ cmpinc: Component Inclination (See discussion below)

Metadata for the event includes

∙ evla: Event Latitude
∙ evlo: Event Longitude
∙ evel: Event Elevation (always 0.0)
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∙ evdp: Event Depth in km
∙ origin time: (kzdate and kztime)
∙ iztype: set to IO
∙ kevnm: (if short enough)

Setting of kzdate, kztime and iztype is eqivalent to the following SAC commands:

SAC> ch o gmt 1994 160 00 33 16 230
SAC> ch iztype IO
SAC> ch allt (-1.0 * &1,o)

EXAMPLE

Adding Station Metadata

For data files missing station metadata, it is straightforward to insert this information by reading in the data and
issuing the METADATA command. For this to work, station identifiers (KNETWK, KSTNM, KHOLE, KCMPNM)
need to be defined:

SAC> read BK.BRK.00.BHZ.Q.2010.235.000000.sac
SAC> lh kcmpnm kstnm khole kcmpnm stlo stla stel stdp cmpaz cmpinc columns 2

FILE: BK.BRK.00.BHZ.Q.2010.235.000000.sac - 1
-----------------------------------------

kcmpnm = BHZ kstnm = BRK
khole = 00 kcmpnm = BHZ

SAC> metadata
Working on file: BK.BRK.00.BHZ.Q.2010.235.000000.sac [ OK ]

SAC> lh kcmpnm kstnm khole kcmpnm stlo stla stel stdp cmpaz cmpinc columns 2

FILE: BK.BRK.00.BHZ.Q.2010.235.000000.sac - 1
-----------------------------------------

kcmpnm = BHZ kstnm = BRK
khole = 00 kcmpnm = BHZ
stlo = -1.222610e+02 stla = 3.787352e+01
stel = 4.940000e+01 stdp = 2.700000e+00
cmpaz = 0.000000e+00 cmpinc = 0.000000e+00

Adding Station Metadata from a file

If the metadata exists in a .txt or .xml file, this information can be applied to existing data files. Input data files
must have channel level metadata.

SAC> read YE.SPOLE..BHZ.M.2013.304.000000.sac
SAC> lh kcmpnm kstnm khole kcmpnm stlo stla stel stdp cmpaz cmpinc columns 2

FILE: YE.SPOLE..BHZ.M.2013.304.000000.sac - 1
-----------------------------------------
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kcmpnm = BHZ kstnm = SPOLE
khole = kcmpnm = BHZ

SAC> metadata file station_info.xml
Working on file: YE.SPOLE..BHZ.M.2013.304.000000.sac [ OK ]

SAC> lh kcmpnm kstnm khole kcmpnm stlo stla stel stdp cmpaz cmpinc columns 2

FILE: YE.SPOLE..BHZ.M.2013.304.000000.sac - 1
-----------------------------------------

kcmpnm = BHZ kstnm = SPOLE
khole = kcmpnm = BHZ
stlo = 1.444400e+02 stla = -8.993000e+01
stel = 2.850000e+03 stdp = 0.000000e+00
cmpaz = 0.000000e+00 cmpinc = 0.000000e+00

Adding Event Metadata

Event metadata can be added to a data file by issuing the metadata command with a specified eventid, here we use
an eventid of gcmt:3279407. (See EVENT for a discussion of EventID.) Stationmetadata will also automatically
be added:

SAC> event time now -10y mag 9 gcmt
Origin Lat. Lon. Depth Mag. Agency EventID
2011-03-11T05:47:32 37.52 143.05 20.00 9.10 MW GCMT/- GCMT gcmt:3279407

SAC> data gcmt:3279407 net II sta BORG cha BHZ loc ’00’ dur 1min miniseed
Data Center: IRISDMC,http://ds.iris.edu

Writing data to fdsnws.2019.11.01.15.56.00.IRISDMC.mseed [ 8.00 KiB]

SAC> read fdsnws.2019.11.01.15.56.00.IRISDMC.mseed

SAC> metadata gcmt:3279407
Working on file: II.BORG.00.BHZ.M.2011.070.054732.sac [ OK ]

SAC> lh stlo stla evlo evla kevnm

FILE: II.BORG.00.BHZ.M.2011.070.054732.sac - 1
------------------------------------------

stlo = -2.132680e+01 stla = 6.474740e+01
evlo = 1.430500e+02 evla = 3.752000e+01
kevnm = gcmt:3279407

Alternatively, event metadata can be added at the time of downloaning data by specifying an eventid and converting
to SAC or reading the data into memory. The example below uses the eventid gcmt:3279407:

SAC> data gcmt:3279407 net II sta BORG cha BHZ loc ’00’ dur 1min read
Data Center: IRISDMC,http://ds.iris.edu

SourceID Start sample End sample Gap
XFDSN:II_BORG_00_B_H_Z 2011-03-11T05:47:32.019900 2011-03-11T05:48:31.969900 ==
Working on file: II.BORG.00.BHZ.M.2011.070.054732.sac [ OK ]
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SAC> lh stlo stla evlo evla kevnm

FILE: II.BORG.00.BHZ.M.2011.070.054732.sac - 1
------------------------------------------

stlo = -2.132680e+01 stla = 6.474740e+01
evlo = 1.430500e+02 evla = 3.752000e+01

kevnm = gcmt:3279407

PH5 Example: Given a SAC file missing station metadata where that metadata exists in the PH5 Web service
and not in the IRIS Web service, the PH5 option must be specified to obtain and insert the metadata. The PH5
options is appropriate for active source stations:

SAC> read 9A.22770..DPZ.D.2012.227.000000.sac
SAC> lh stlo stla

FILE: 9A.22770..DPZ.D.2012.227.000000.sac - 1
-------------------------------

SAC> metadata
Error 204 (HTTP):

SAC> metadata ph5
Working on file: 9A.22770..DPZ.D.2012.227.000000.sac [ OK ]

COMPONENT INCLINATION

The component inclination is defined differently between SAC and SEED/miniSEED. Sac defined the inclination
as degrees from vertical, what is typically thought of as an inclination. SEED/miniSEED defines the component
inclincation as a component dip, defined as degrees from horizontal down into the Earth.

Value SEED / miniSEED SAC
Horizontal 0.0 90.0
Up -90.0 0.0
Down 90.0 180.0

Data retrieved automatically is handled correctly and the conversion is seamless. For metadata from a file
specified by the file metadata_file command option, the type of file determines if the component is define as
a dip (miniSEED) or inclination (SAC). This is the same convection used in mseed2sac <https://seiscode.iris.
washington.edu/projects/mseed2sac> for consistency.

File Type Separator Convention Conversion Value
text , (comma) SAC / Inclination 0
text ’|’ (bar) SAC / Inclination 90
xml n/a miniSEED / Dip 90
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METADATA FORMAT

Metadata in xml format adheres to the FDSN Station format found at http://www.fdsn.org/xml/station/, but
it is easier to create the metadata file format using the STATION command with a channel option.

Metadata in text format is defined as one channel per line separated by either ’,’ (commas) or ’|’ (bars). The
value of the columns are in the following order (the same as mseed2sac)

∙ Network

∙ Station

∙ Location

∙ Channel

∙ Station Latitude

∙ Station Longitude

∙ Station Elevation

∙ Station Depth

∙ Component Azimuth (North = 0, East = 90)

∙ Component Inclination - Coordinate system is defined by the delimiter, see note above

∙ Instrument Name/Type

∙ Scale Factor (ignored)

∙ Scale Frequency (ignored)

∙ Scale Units (ignored)

∙ Sample Rate (ignored)

∙ Start time

∙ End time

SEE COMMANDS

STATION, DATA, RESPONSE, EVENT

LATEST REVISION

Version 102.0
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MTW

SUMMARY

Determines the measurement time window for use in subsequent measurement commands.

SYNTAX

MTW {ON|OFF|pdw}

INPUT

{ON}: Turn measurement time window option on but don’t change window values.
OFF: Turn measurement time window off. Measurements are done on the entire file.
pdw: Turn measurement time window on and set window values to a new "partial data

window." A pdw consists of a starting and a stopping value of the independent vari-
able, usually time, which defines the desired window of data that you wish to make
measurements on. See the CUT command for a complete explanation of how to define
and use a pdw. Some examples are given below.

DEFAULT VALUES

MTW OFF

DESCRIPTION

When this option is on, measurements are made on the data within the window only. When this option
is off, measurements are made on the entire file. This option currently applies to the MARKPTP and
MARKVALUE commands only. Others measurement commands will be added as needed.

EXAMPLES

Some examples of pdw are given below:

B 0 30: First 30 secs of the file.
A -10 30: From 10 secs before to 30 secs after first arrival.
T3 -1 T7: From 1 sec before T3 time pick to T7 time pick.
B N 2048: First 2048 points of file.
30.2 48: 30.2 to 48 secs relative to file zero.

SEE COMMANDS

CUT, MARKPTP, MARKVALUE

LATEST REVISION

May 15, 1987 (Version 10.2)
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MUL

SUMMARY

Multiplies each data point by a constant.

SYNTAX

MUL {v1 {v2 ... vn} }

INPUT

v1: Constant to multiply first file by.
v2: Constant to multiply second file by.
vn: Constant to multiply nth file by.

DEFAULT VALUES

MUL 1.

DESCRIPTION

This command will multiply each element of each data file in memory by a constant. The constant
may be the same or different for each data file. If there are more data files in memory than constants,
then the last constant entered is used for the remainder of the data files in memory.

EXAMPLES

To multiply each element of F1 by 5.1 and each element of F2 and F3 by 6.2:

SAC> READ F1 F2 F3
SAC> MUL 5.1 6.2

Note: MULTILPLY is also an INLINE function.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

LATEST REVISION

January 8, 1983 (Version 8.0)

305



MULF

SUMMARY

Multiplies a set of files by the data in memory.

SYNTAX

MULF {NEWHDR ON|OFF} filelist

INPUT

NEWHDR ON|OFF: By default, the resultant file will take its header field from the
original file in memory. Turning NEWHDR ON, causes the header fields to be taken
from the new file in the filelist.

filelist: A list of SAC binary data files. This list may contain simple filenames, full or
relative pathnames, and wildcard characters. See the READ command for a complete
description.

DESCRIPTION

This command can be used to multiply a single file by a set of files or to multiply one set of files by
another set. An example of each case is presented below. The files must be evenly spaced and should
have the same sampling interval and number of points. This last two restrictions can be eliminated
using the BINOPERR command. If there are more data files in memory than in the filelist, then the
last file in the filelist is used for the remainder of the data files in memory.

EXAMPLES

To multiply three files by a single file:

SAC> READ FILE1 FILE2 FILE3
SAC> MULF FILE4

To multiply two files by two other files:

SAC> READ FILE1 FILE2
SAC> MULF FILE3 FILE4

HEADER CHANGES

If NEWHDR is OFF (the default) the headers in memory are unchanged). If NEWHDR is ON, the
headers are replaced with the headers from the files in the filelist.

DEPMIN, DEPMAX, DEPMEN
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ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1803: No binary data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1306: Illegal operation on unevenly spaced file

∙ 1801: Header field mismatch:

– either the sampling interval or the number of points are not equal. - can be controlled using the
BINOPERR command.

WARNING MESSAGES

∙ 1802: Time overlap:

– the file multiplication is still performed.

SEE COMMANDS

READ, BINOPERR

LATEST REVISION

May 26, 1999 (Version 0.58)
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MULOMEGA

SUMMARY

Performs differentiation in the frequency domain.

SYNTAX

MULOMEGA

DESCRIPTION

This command multiplies each point of a spectral file by its frequency given by:

OMEGA = 2.0 * PI * FREQ

This is analogous to differentiating the equivalent time series file. The spectral file can in either
amplitude-phase or real-imaginary format.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

May 15, 1987 (Version 10.2)
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PLOTC

SUMMARY

Annotates SAC plots and creates figures using cursor.

SYNTAX

PLOTC {REPLAY|CREATE} {FILE|MACRO filename},
{BORDER {ON|OFF}}

INPUT

REPLAY: Replay or replot an existing file or macro. The difference between a file and a
macro is described below.

CREATE: Create a new file or macro.
FILE {filename}: Replay or create a file. The previous file is used if filename is omitted.
MACRO {filename}: Replay or create a macro.
BORDER {ON}: Turn border around plot on.
BORDER OFF: Turn border around plot off.

DEFAULT VALUES

PLOTC CREATE FILE OUT BORDER ON

DESCRIPTION

This command lets you annotate SAC plots and create figures for meetings and reports. A device with
cursor capability is required. You "build" a figure by placing objects and text on the terminal screen.
The cursor position determines where an object will be drawn and the character typed determines
what object is to be drawn. Objects include circles, rectangles, n-sided polygons, lines, arrows, and
arcs. Several ways of placing text are included.

This command creates two different type of output files, simple files and macro files. Both are
alphanumeric files that can be changed using an editor. They contain the history of the cursor
responses and locations from a single execution of the PLOTC command. A macro file, once created,
can be used in more than one plot or figure. It can be scaled in size and can also be rotated. A simple
PLOTC filename is the name you request with a ".PCF" appended to it. A macro file has a ".PCM"
appended to its’ name. This provides a check for SAC when you request a particular file and also lets
you distinguish these files in your directories.

When you create a new file or macro, SAC draws a rectangle on the screen showing you the allowable
area for the figure. It then turns the cursor on in the middle of this area. You move the cursor to the
desired location and type a character representing the object you want drawn or the action you want
to occur.

There are two types of cursor options, action and parameter-setting. The action options do something
(draw a polygon, place text, etc.) How they do that action is based in part upon the current values
of the parameter-setting options (how many sides on the polygon, what size text to draw, etc.) This
distinction is similiar to the idea of action and parameter-setting commands in SAC itself. The tables
on the following pages list the action and parameter-setting options.

When you replay a file or macro, the figure is redrawn on the terminal screen and then the cursor is
turned on. You may then add to the file or macro as if you were creating it for the first time. When you
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have created a figure that you want to send to a different graphics device, use the BEGINDEVICES
command to temporarily turn off the terminal and turn on the other device. Then simply replay the
file.

To annotate a SAC plot, execute the VSPACE command to set up the correct aspect ratio (see
below), execute the BEGINFRAME command to turn off automatic framing, execute the desired
SAC plot command, execute the PLOTC command (in create or replay mode), and then execute the
ENDFRAME command to resume automatic framing.

EXAMPLES

An example of the use of PLOTC to add annotation to a standard SAC plot is the figure in the
BANDPASS command description of this manual. The commands used to create that figure are
given below with comments given in parentheses:

** generate filter response
SAC> FG IMPULSE NPTS 1024
SAC> LOWPASS C2 NPOLES 7 CORNER 0.2 TRANBW 0.25 A 10
SAC> FFT

** set up desired plot options
SAC> AXES ONLY LEFT BOTTOM
SAC> TICKS ONLY LEFT BOTTOM
SAC> BORDER OFF
SAC> FILEID OFF
SAC> QDP OFF
SAC> VSPACE 0.75
SAC> BEGINFRAME
SAC> PLOTSP AM LINLIN
SAC> PLOTC CREATE FILE BANDPASS
SAC> ENDFRAME

PLOTSP was used to produce the curve of the filter response and the two axes. PLOTC was used
interactively to produce the annotation (i.e., the lines, arrows, and labels.) The viewspace command
constrains the plot be the largest enclosed area of the graphics screen that has an (y:x) aspect ratio
of 3:4. This is necessary so that when the output is later sent to the SGF device which also has
a 3:4 aspect ratio, everything will be plotted correctly. At this point you would have a file called
"BANDPASS.PCF" containing the annotations for this plot. To write this annotated plot to the SAC
graphics file:

SAC> BEGINDEVICES SGF
SAC> BEGINFRAME
SAC> PLOTSP
SAC> PLOTC REPLAY
SAC> ENDFRAME

A SAC graphics file will be created containing the annotated plot. Two examples (one somewhat
frivolous) of the use of PLOTC to create figures and viewgraphs are given on the following pages.
The replay files are also shown. (It is an exercise left to the reader to determine which of the examples
is frivolous.)

1. The circle and sector opcodes only produce correct output when you have set the
viewspace to a square one (VSPACE 1.0).

2. All all of the opcodes except text are scaled to fit in the graphics window.
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The text sizes aren’t currently scaled. This creates a problem when you create a figure and want to
enclose some text in a rectangle or a circle. In this case the graphics window must be the same size
as the output page in order to avoid misalignment.

This can be achieved by using the WINDOW command to set the horizontal (x) size of the window
to be 0.75 and the vertical (y) size to be 0.69. For example:

WINDOW_ 1 X 0.05 0.80 Y 0.05 0.74

SEE COMMANDS

VSPACE, BEGINDEVICES, BEGINFRAME, ENDFRAME

Action Options Table

char meaning
A Draw an arrow from ORIGIN to CURSOR.
B Draw border tick marks around plot region.
C Draw a circle centered at ORIGIN through CURSOR.
D Delete last action option from replay file.
G Set ORIGIN and make it global.
L Draw a line from ORIGIN to CURSOR.
M

Invoke a macro at CURSOR. Enter name of macro, scale factor, and rotation
angle. Previous values are used if omitted. Defaults are OUT, 1., and 0.

O Set ORIGIN at CURSOR.
N

Draw an n-sided polygon centered at ORIGIN with one vertex at CURSOR.

Q Quit PLOTC.
R

Draw a rectangle with opposing corners at ORIGIN and CURSOR.

S

Draw a sector of a circle centered at ORIGIN through CURSOR Move
CURSOR to define the sector angle. Type an S to get the sector whose
angle is less than 180 degrees or C to get its’ complement.

T Place a single line of text at cursor. Text is ended by a carriage-return.
U Place multiple lines of text at cursor. Text is ended by a blank line.

Notes

∙ CURSOR is the current cursor location

∙ ORIGIN is normally the last cursor location

311



∙ The G option forces ORIGIN to remain fixed

∙ The O option allows ORIGIN to move again

LATEST REVISION

October 11, 1984 (Version 9.1)
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NULL

SUMMARY

Controls the plotting of null values.

SYNTAX

NULL {ON|OFF|value}

INPUT

ON: Turns the NULL option on for plotting.
OFF: Turns the NULL option off for plotting.
value: Sets the value of a NULL to be value.

DEFAULT VALUES

NULL OFF

DESCRIPTION

Many times in a data set, when there are gaps in the data, no data is available. In many cases the
data has been set to a predefined value. Typical values are 0.0, -1.0, -99. Usually the user will not
want these values displayed on plots. The NULL command allows the user to define the NULL value
and not connect a line through these data points. To set the NULL value to -1.0 and enable the
NULL option during plotting:

SAC> NULL ON -1.0

LATEST REVISION

March 20, 1992 (Version 10.6e)
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OAPF

SUMMARY

Opens a alphanumeric pick file.

SYNTAX

OAPF {STANDARD|NAME},{file}

INPUT

STANDARD: Use the standard file id when writing picks. The standard id consists of the
event name, the station name, and the component azimuth and incident angles from
the SAC header.

NAME: Use the name of the SAC data file instead of the standard id.
file: The name of the alphanumeric pick file to open. If a file by that name already exists,

it is opened and new picks are added at the bottom.

DEFAULT VALUES

OAPF STANDARD APF

DESCRIPTION

The alphanumeric pick file can be used like a simple data base for picks produced by the automatic
picker (APK) and manual pick plot (PLOTPK) command. One line is written for each pick. Each
normal line in one of these files consists of the file id, the pick id, the time of the pick, the amplitude
of the pick, and some formatting information. These lines are 80 characters long. The file id is the
standard one consisting of selected fields from the header as mentioned above or the name of file.
The time of the pick is either the GMT time or the offset time. This depends upon the options
specified in the commands generating the pick, such as APK or PLOTPK. This leads to four distinct
formats, designated by a different character in column 79. Some lines, such as those from waveform
and peak-to-peak picks, contain additional fields after column 80. The maximum length of a line is
200 characters. The specific formats of these various lines are shown in the tables on the following
pages.

ERROR MESSAGES

∙ 1903: Can’t close previous card image pick file.

∙ 1902: Can’t open card image pick file

– Probably an illegal character in filename.

SEE COMMANDS

PLOTPK, APK, CAPF
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LATEST REVISION

January 8, 1983 (Version 8.0)

FILE FORMAT

Standard file id and GMT time options

column format contents
01 a16 event name
17 a8 station name
25 f7.2 component azimuth
32 f7.2 component incident angle
39 a4 pick id
43 i5 year of pick
48 i3 julian day
51 i3 hours
54 i3 minutes
57 f6.2 seconds
63 g10.4 amplitude of pick
74 a1 source of pick

∙ ∙ ∙ "A" if an automatic pick (APK)

∙ ∙ ∙ "M" if a manual pick (PLOTPK)

79 a1 "B"

File name and GMT time options

column format contents
01 a32 file name
39 a4 pick id
43 i5 year of pick
48 i3 julian day
51 i3 hours
54 i3 minutes
57 f6.2 seconds
63 g10.4 amplitude of pick
74 a1 source of pick
79 a1 "C"

Standard file id and offset time options
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column format contents
01 a16 event name
17 a8 station name
25 f7.2 component azimuth
32 f7.2 component incident angle
39 a4 pick id
53 g10.4 offset time of pick
63 g10.4 amplitude of pick
74 a1 source of pick
79 a1 "D"

File name and offset time options

column format contents
01 a32 file name
39 a4 pick id
53 g10.4 offset time of pick
63 g10.4 amplitude of pick
74 a1 source of pick
79 a1 "E"

For waveform picks, the pick time and amplitude is that of the first zero crossing. Additional waveform pick fields
are

column format contents
080 f6.3 incremental time of first peak
086 f6.3 incremental time of second crossing
092 f6.3 incremental time of second peak
098 f6.3 incremental time of third crossing
105 g10.4 amplitude of first peak
116 g10.4 amplitude of second peak

For peak-to-peak picks, the pick time and amplitude is that of the first peak. Additional peak-to-peak pick fields
are

column format contents
80 f6.3 incremental time of second peak
87 g10.5 amplitude of second peak
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OHPF

SUMMARY

Opens a HYPO formatted pick file.

SYNTAX

OHPF {file}

INPUT

file: Name of file to open. If a file by that name already exists, it is opened and new picks
are added at the bottom.

DEFAULT VALUES

OHPF HPF

DESCRIPTION

The HYPO pick file generated by SAC can be used as input to HYPO71 and similiar event location
programs. Picks from the automatic picker (APK) and manual pick plot (PLOTPK) commands are
written into this file once open. This file can be closed using the CHPF command. Opening of a new
HYPO pick file automatically closes the previously open one. Opening an existing HYPO pick file
automatically deletes the last line of the file, which should be the instruction card "10" that indicates
the end of the HYPO input file. Terminating SAC also automatically closes any open pick files. Event
delimiters can be written into a HYPO pick file with the WHPF command. See the reference for
details on the format of each card.

ERROR MESSAGES

∙ 1901: Can’t open HYPO pick file

– Probably an illegal character in filename.

– Occasionally a system error. If error persists contact the programmer.

SEE COMMANDS

APK, PLOTPK, WHPF, CHPF

REFERENCES

W.H.K. Lee and J.C. Lahr; HYPO71 (Revised): A Computer Program for Determining Hypocenter,
Magnitude, and First Motion Pattern of Local Earthquakes; U. S. Geological Survey report 75-311.

LATEST REVISION

March 20, 1992 (Version 10.6e)
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PAUSE

SUMMARY

Sends a message to the terminal and pauses.

SYNTAX

PAUSE {MESSAGE text},{PERIOD {ON|OFF|v}}

INPUT

MESSAGE text: Text of message to send to terminal before pausing. Enclose text in
single quotes if it contains any blanks.

PERIOD {ON}: Turn period option on but don’t change length of pause. When this
option is on, SAC pauses for a certain period of time and then resumes execution
automatically.

PERIOD OFF: Turn period option off. When this option is off, SAC pauses until you
type a carriage-return.

PERIOD v: Turn period option on and change length of pause to v seconds.

DEFAULT VALUES

PAUSE MESSAGE ’Pausing’ PERIOD OFF

DESCRIPTION

This command lets you temporarily suspend the execution of a SAC macro file. When this command
is executed, SAC sends a message to your terminal, pauses, and then either waits until you type a
carriage return or waits for a specified period of time.

This might be of interest if you wanted to study the output of a particular command before allowing
the next command in the macro to be executed. It is of particular interest in the preparation of macro
files to be used in demonstrations and tutorials. The ECHO command is also useful for preparing
such demonstrations.

SEE COMMANDS

ECHO

LATEST REVISION

May 15, 1987 (Version 10.2)
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PICKAUTHOR

SUMMARY

Tell sac to read author list (and possibly phase pick information) from a user-defined preferences file, or interactively
enter author list on the PICKAUTHOR command line.

SYNTAX

PICKAUTHOR author1 {author2 author3 ... }
PICKAUTHOR FILE {filename}
PICKAUTHOR PHASE {filename}

INPUT

authorlist: sac uses the input to create the author list.
FILE: if the FILE option is used, sac will read the author list from the preferences file. If

a filename is given on the command line, sac will read the specified file, else it will
read the most recently entered file name from a previous call to PICKAUTHOR. If no
filename was ever entered, sac will look for SACAUX/csspickprefs.

PHASE: this option behaves essencially like the FILE option with the added benefit of
having sac read specific header variable information as well.

DEFAULT VALUES

PICKAUTHOR FILE

DESCRIPTION

PICKAUTHOR is provided as a means to override the preferences file on the command line. It can
be used to provide a prioritized list of authors at the command line, or to redirect SAC from one
preferences file to another. For more on the preferences files, see PICKPREFS and READCSS.

Note If the user alters the preference settings while data is in the data buffers, the picks in the SAC
data buffer (the buffer visible to the user through LISTHDR and CHNHDR etc.) may be modified.

For example, if the author list is "john rachel michael" and some files are read with the READCSS
command some arrivals may be read with author = michael. (The user will proably not be aware
of who the author is for a given pick, because the author field in CSS does not appear in the SAC
format.) If the user later uses the PICKAUTHOR command to change the author list to "peter doug
rachel", then on a READCSS MORE command, no arrivals with author = michael will be read from
the data files, and the file already in memory will lose the picks which have michael as the author.
The user may not know why seemingly random picks have disappeard. For an explanation, type HELP
PICKPREFS.

SEE COMMANDS

PICKPREFS, READCSS, PICKPHASE
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PICKPHASE

SUMMARY

Tell sac to read phase pick information (and possibly the author list) from a user-defined preferences file, or
interactively enter phase pick information on the PICKPHASE command line.

SYNTAX

PICKPHASE header phase author {header phase author ... }
PICKPHASE FILE {filename}
PICKPHASE AUTHOR {filename}

INPUT

header: name of a header variable: t0 - t9.
phase: name of phase of pick desired for the given header variable.
author: name of the author desired for the given header or hyphen, "-", to tell sac to use

the author list.
FILE: if the FILE option is used, sac will read the phase pick info. from the preferences

file. If a filename is given on the command line, sac will read the specified file, else it
will read the most recently entered file name from a previous call to PICKPHASE. If
no filename was ever entered, sac will look for SACAUX/csspickprefs.

PHASE: this option behaves essencially like the FILE option with the added benefit of
having sac read the author list as well.

DEFAULT VALUES

PICKPHASE FILE

DESCRIPTION

PICKPHASE is provided as a means to override the preferences file on the command line. It can
be used to provide specific header/phase/author information at the command line, or to redirect
SAC from one preferences file to another. For more on the preferences files, see PICKPREFS and
READCSS.

Note If the user alters the preference settings while data is in the data buffers, the picks in the SAC
data buffer (the buffer visible to the user through LISTHDR and CHNHDR etc.) may be modified.
Eg. if the allowed phases include pP and PKiKP when some SAC files are read with the READ
command which have some pP picks or some PKiKP picks these picks would be present in the Tn
markers. If PICKPHASE is later used to remove pP and PKiKP from the allowed phases before the
next READCSS MORE call, then pP and PKiKP arrivals will not be read from the CSS files, and the
pP and PKiKP picks in the existing data will be removed from the Tn markers. For an explanation,
type HELP PICKPREFS.

SEE COMMANDS

PICKPREFS, READCSS, PICKAUTHOR
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PICKPREFS

SUMMARY

The PICKPREFS command is used to control the way that SAC manages and or loads picks from a variety of
input data formats (e.g., CSS, GSE, SUDS etc...) into the time marker variables T0 to T9 (aka. Tn). When this
option is OFF (the default), the picks loaded into the time markers correspond to the first picks that SAC finds
in the input data. If this options is ON, SAC will use the preferences file described in the READCSS command.

Note: Because of the structured nature of the preferences file (which aligns specific phases with specific marker
variables), and the free flowing nature of the interactions without the preferences, a change in the PICKPREFS
in the middle of processing can change the picks in the datafiles. See the descrition below for details.

SYNTAX

PICKPREFS ON
PICKPREFS OFF
PICKPREFS

INPUT

ON: instructs SAC to pass arrivals from the CSS buffer through the preferences file on its
way to the SAC buffer. This is useful in macros that require specific arrivals to be in
specific Tn header variables.

OFF: instructs SAC to bypass the preferences file and load the first 10 picks it encounters
for a given file. This is the default. It allows the user to be aware of picks s/he may
not be aware of with the PICKPREFS ON.
If now option is provided on the commandline, PICKPREFS will toggle the use of
preferences file ON or OFF.

DEFAULT VALUES

PICKPREFS OFF

DESCRIPTION

Since version 0.58, sac2000 has had two different header buffers: one formatted according to the SAC
file format, and one formatted according to the relational CSS 3.0 file format. Adding the CSS data
buffer has made it easier to read relational formats such as CSS, GSE, and SUDS. Having two buffers
has allowed the process management commands: COMMIT, ROLLBACK, and RECALLTRACE.

One drawback of having these two buffers is the complexity of moving arrivals from the dynamic CSS
arrival table to the rather ridged T0 - T9 picks in the SAC format. This problem was solved in version
0.58 by setting in place a preferences file called csspickprefs. This file is in the aux directory and can
be overridden by writing one of your own. For more information about how to use the csspickprefs
file, use HELP READCSS. For details on how to override the default preferences file, use HELP
PICKAUTHOR or HELP PICKPHASE.

The drawback of using the preferences file was that it would only accept phase names and/or au-
thor names listed in the preferences file or those entered at the command line with PICKPHASE or
PICKAUTHOR. In other words, if a CSS data file from either a flat-file, or the Oracle database has
a pP arrival, and pP is not specified in the preferences file, the user would never know that the pP is
there. The pP pick will be read into the CSS data buffer in SAC, but it will not be transfered to the
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SAC data buffer, and will not participate in any of the SAC commands. It may be written out by the
WRITECSS command, or it may get flushed out during a COMMIT command, and be lost entirely.

The solution we have worked out is to allow the user to bypass the preferences file. In version 0.59,
the default is to read the first 10 available picks from the CSS buffer directly into the SAC buffer
whenever data is transferred from the one to the other. By use of this new command, PICKPREFS,
the user can tell SAC to use the preferences file. This is useful if the user has a macro which expects
to find a specific phase in a specific Tn header variable.

Data is transfered from the CSS buffer to the SAC buffer on any READCSS, READGSE, or READSUDS
command, as well as COMMIT, ROLLBACK, and RECALLTRACE. COMMIT, ROLLBACK, or RE-
CALLTRACE get called by default by any of the following commands:

∙ any command that writes data (WRITE, WRITECSS, WRITEGSE, etc.)
∙ any command that reads data with the MORE option specified
∙ the SORT command.

If the user alters PICKPREFS and or the preference settings while data is in the data buffers, the picks
in the SAC buffer may be modified. Eg. if PICKPREFS is OFF (the default) when some SAC files are
read with the READ command they may have some pP picks or some PKiKP picks which would be
present in the Tn markers. If PICKPREFS is later turned OFF, for a READCSS, if pP and/or PKiKP
aren’t listed in the preferences file, then pP and PKiKP arrivals will not be read from the CSS files,
and the pP and PKiKP picks in the existing data will be removed from the Tn markers.

SEE COMMANDS

READCSS, READDB, PICKAUTHOR, PICKPHASE, COMMIT, ROLLBACK, RECALLTRACE
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PICKS

SUMMARY

Controls the display of time picks on most SAC plots.

SYNTAX

PICKS {ON|OFF} {pick type},{WIDTH v},{HEIGHT v}

where pick is one of the following:

O|A|F|Tn, n=0...9

where type is one of the following:

VERTICAL | HORIZONTAL | CROSS

INPUT

PICKS ON: Turn on pick display.
PICKS OFF: Turn off pick display.
pick: The name of a SAC time pick header variable: ,BREAK O|A|F|Tn, n=0...9
VERTICAL: A vertical line at time pick. Pick id at bottom right of line.
HORIZONTAL: A horizontal line at the data point nearest the time pick. Pick id is placed

above the line if the nearest time point is in the top part of the plot, otherwise it is
below the line.

CROSS: A vertical line at the time pick and a horizontal line at the nearest data point.
WIDTH v: For CROSS change width of pick display to v. Default: 0.1 of full plot width
HEIGHT v: For CROSS or HORIZONTAL, change height pick display to v. Default: 0.1

of full plot height

DEFAULT VALUES

PICK ON VERTICAL

DESCRIPTION

This command controls the display of time pick information on most SAC plots. These time picks
identify previously defined times of interest such as phase arrivals, event origin, etc. When this display
is on, each defined time pick is displayed on the plot at the time of the pick with a time pick id near
the line. The time pick id is a header variable 8 characters in length. KA, KF, KO, and KTn are the
time pick ids for A, F, O, and Tn respectively. If the time pick id is not defined, the name of the pick
itself is used. Each pick may be displayed as a vertical line, a horizontal line, or a cross.

EXAMPLES

To display time picks T4, T5, and T6 as crosses and to change the height and width of the crosses:

SAC> PICKS T4 C T5 C T6 C W 0.3 H 0.1

Other time pick displays will remain unchanged.
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LATEST REVISION

January 8, 1983 (Version 8.0)
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PLABEL

SUMMARY

Defines general plot labels and their attributes.

SYNTAX

PLABEL {n} {ON|OFF|text},{SIZE size},
{BELOW|POSITION x y {a}}

where size is one of the following:

TINY | SMALL | MEDIUM | LARGE

INPUT

n: Plot label number. If omitted, the previous label number is incremented by one.
ON: Turn this plot label on.
OFF: Turn this plot label off.
text: Change text of plot label. Also turns plot label on.
SIZE size: Change the plot label size.
TINY: Tiny text size has 132 characters per line.
SMALL: Small text size has 100 characters per line.
MEDIUM: Medium text size has 80 characters per line.
LARGE: Large text size has 50 characters per line.
BELOW: Position this label "below" the previous label.
POSITION x y a: Define a specific position for this label. The range
of the positions are: 0. to 1. for x and 0. to the maximum viewspace (normally 0.75)

for y. a is the angle of the label in degrees clockwise from horizontal.

DEFAULT VALUES

Default size is small.

Default position for label 1 is 0.15 0.2 0.

Default position for other labels is below previous label.

DESCRIPTION

This command lets you define general purpose plot labels for subsequent plot commands. You can
define the location and size of each label. The text quality and font used can be set using the GTEXT
command. You can also generate a title and axes labels using the TITLE, XLABEL, and YLABEL
commands.
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EXAMPLES

The following commands would generate a four line label in the upper left hand corner of subsequent
plots:

SAC> PLABEL ’Sample seismogram’ POSITION .12 .5
SAC> PLABEL ’from earthquake’
SAC> PLABEL ’on January 24, 1980’
SAC> PLABEL ’in Livermore Valley, CA’

An additional tiny label could be placed in the lower left hand corner:

SAC> PLABEL 5 ’LLNL station: CDV’ S T P .12 .12

SEE COMMANDS

GTEXT, TITLE, XLABEL, YLABEL

LATEST REVISION

July 22, 1991 (Version 9.1)
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PLOT

SUMMARY

Generates a single-trace single-window plot.

SYNTAX

PLOT {PRINT {pname} }

INPUT

PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the
default printer if pname is not used. (This makes use of the SGF capability.)

DESCRIPTION

Each data file is displayed in a separate plot. The total size of the plot is determined by the current
viewport (see XVPORT and VPORT.) The y axis limits for each plot can be scaled to the data file’s
extrema or they can have fixed limits. See the YLIM command for details. The x axis limits are
controlled by the XLIM command. A user controllable file identification (see FILEID) is generated for
each file in the plot. Time picks can be displayed (see PICKS).

If you are plotting to a graphics terminal or workstation, SAC will pause between each plot to give
you an opportunity to examine the plot. It will type "Waiting" in the text area and wait for your
response. You can type a carriage-return to see the next plot, the keyword "go" (or "g") to plot the
remainder of the files without pausing, or the keyword "kill" (or "k") to not plot the remainder of the
files at all.

ERROR MESSAGES

∙ 1301: No data files read in.

SEE COMMANDS

XVPORT, YVPORT, XLIM, YLIM, FILEID, PICKS, FILENUMBER

LATEST REVISION

January 8, 1983 (Version 8.0)
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PLOT1

SUMMARY

Generates a multi-trace multi-window plot.

SYNTAX

[P]LOT[1] {ABSOLUTE|RELATIVE},{PERPLOT {n|OFF|ON}} {PRINT {pname} }

INPUT

ABSOLUTE: Plots files treating time as an absolute. Files with different begin times will
be shifted relative to each other.

RELATIVE: Plots files relative to that file’s begin time.
PERPLOT n: Plots n files per frame.
PERPLOT ON: Plots n files per frame. Use last value for n.
PERPLOT OFF: Plots all files on one frame.
PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the

default printer if pname is not used. (This makes use of the SGF capability.)

ALTERNATE FORMS

PERPLOT ALL has the same meaning as PERPLOT OFF.

DEFAULT VALUES

PLOT1 ABSOLUTE PERPLOT OFF

DESCRIPTION

Each data file shares a common axis in the x direction, but each has a separate subplot region in
the y direction. The total size of the plot is determined by the current viewport (see XVPORT and
YVPORT.) The size of each subplot is determined by this viewport and the number of files plotted
on each frame. The y axis limits for each subplot can be scaled to that data file’s extrema or they
can have fixed limits. See the YLIM command for details. The x axis limits can also be fixed (see
XLIM) or scaled to the data. There are two types of x axis scaling for this type of plot: relative and
absolute. In absolute scaling the x axis limits become the smallest minimum and the largest maximum
for the active memory files. Time differences measured between points on different subplots will be
correct. In relative scaling mode, the x axis will run from zero to the maximum time differential (i.e.,
the maximum difference between end time and begin time) for the active memory files. Each file
will be plotted from the left edge of the plot, corresponding to zero on the x axis. The actual value
corresponding to this zero for each file will be given below the name of the file. This type of scaling
is useful if you are cutting the files relative to some time pick, say the first arrival time. It is then
easy to see the similarities or differences between the wave forms of each file. A user controllable file
identification (see FILEID) is generated for each file in the plot. Time picks can be displayed (see
PICKS).
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EXAMPLES

The zero time (KZDATE and KZTIME) has been set to the event origin time:

SAC> READ *V
ELK.V KNB.V LAC.V MNV.V
SAC> CUT -5 200
SAC> READ *V
ELK.V KNB.V LAC.V MNV.V
SAC> FILEID LOCATION UL TYPE LIST KSTCMP
SAC> TITLE ’Regional earthquake: &1,KZTIME& &1,KZDATE&’
SAC> QDP 2000
SAC> P1

Note the use of a UNIX wildcard character in the READ command, the echoing of the filelist by SAC,
the specification of a special file id, and the evaluation of several header variables to create the title.

ERROR MESSAGES

∙ 1301: No data files read in.

SEE COMMANDS

XLIM, YLIM, FILEID, PICKS, FILENUMBER

LATEST REVISION

January 8, 1983 (Version 8.0) Text altered in August 2011.
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PLOT2

SUMMARY

Generates a multi-trace single-window (overlay) plot.

SYNTAX

[P]LOT[2] {ABSOLUTE|RELATIVE} {PRINT {pname} }

INPUT

ABSOLUTE: Plot files treating time as an absolute. Files with different begin times will
be shifted relative to the first file.

RELATIVE: Plot each file relative to it’s own begin time.
PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the

default printer if pname is not used. (This requires that program sgftops is in the
path.)

DEFAULT VALUES

P2 ABSOLUTE

DESCRIPTION

All files in the data file list are plotted in the same plot window. An optional legend containing the
plot symbol and file name can be generated. Fixed x and y axis limits may be defined before using
this command. See the XLIM and YLIM commands. The plot is sized to the extrema of the entire file
list if fixed limits are not requested. The location of the legend is controlled by the FILEID command.

Unlike PLOT and PLOT1, PLOT2 will plot spectral data. Real/Imaginary data is plotted as Real
vs. Frequency. Amplitude/Phase data is plotted as Amplitude vs. Frequency. Imaginary and Phase
information are ignored. Spectral data is always plotted in relative mode. Note that in the fequency
domain,b, e, and delta are reset to 0, the Nqquist frequency, and df resjpectively. The header values
depmin and dapmax are not changed. As with PLOTSP, if XLIM is off, the plot starts at DF=DELTA
rather than 0. If XLIM or YLIM were changed before transferring to the frequency domain, it is best
to enter XLIM off and YLIM off before calling PLOT2.

Note: If for some reason, the user has both time-series data and spectral data in memory at the same
time and does not elect to use the RELATIVE option, the time-series files will be plotted ABSOLUTE
and the spectral files will be plotted RELATIVE. Relative mode means relative to the first file. So the
order of the files in memory will effect the relation of the plots with respect to each other.

EXAMPLES

The commands used to generate the example plot are given below:

SAC> READ MNV.Z.AM KNB.Z.AM ELK.Z.AM
SAC> XLIM 0.04 0.16
SAC> YLIM 0.0001 0.006
SAC> LINLOG
SAC> SYMBOL 2 INCREMENT
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SAC> TITLE ’Rayleigh Wave Amplitude Spectra for NESSEL’
SAC> XLABEL ’Frequency (Hz)’
SAC> PLOT2
SAC> FFT
SAC> XLIM off YLIM off
SAC> line increment list 1 3
SAC> PLOT2 print

ERROR MESSAGES

∙ 1301: No data files read in.

SEE COMMANDS

XLIM, YLIM, FILEID, FILENUMBER

LATEST REVISION

April 11, 2010 (Version 101.4)
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PLOTALPHA

SUMMARY

Reads alphanumeric data files on disk into memory and plots the data to the current output device. This differs
from readalpha followed by plot because it allows you to plot a label with each data point.

SYNTAX

READALPHA {options} {filelist}

where options is one or more of the following:

MORE
DIR CURRENT|name
FREE|FORMAT text
CONTENT text
PRINT {printer}

All options must preceed any element in the filelist.

The last two options may also be placed on the first line of file itself.

INPUT

MORE: Append the new data files after the old ones in memory. If this option is missing,
the new data replaces the old data in memory. See the READ command for more
details about this option.

DIR CURRENT: Read and plot all simple filenames (with or without wildcards) from the
current directory. This is the directory from which you started SAC.

DIR name: Read and plot all simple filenames (with or without wildcards) from the direc-
tory called name. This may be a relative or absolute directory name.

FREE: Read and plot the data in the filelist in free format (space delimited) mode.
FORMAT text: Read and plot the data in the filelist in fixed format mode. The format

statement to use is given in text.
CONTENT text: Define the content of the data in the filelist. The meaning of the

content text is described below.
PRINT {pname}: Print the resultant plot. If pname is specified, print to named printer,

else use default printer.
filelist: A list of alphanumeric files. This list may contain simple filenames, full or rel-

ative pathnames, and wildcard characters. See the READ command for a complete
description.

DEFAULT VALUES

PLOTALPHA FREE CONTENT Y. DIR CURRENT
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DESCRIPTION

All commands in SAC work on the data that is currently in memory. This data in memory is analogous
to the temporary or working files used by a text editor. The READ command reads binary SAC data
files into memory. This command can be used to read a wide variety of alphanumeric data files into
memory. These files can be in a fixed format or in free format. They may contain evenly or unevenly
spaced data. They may contain more than one set of data. There may be only one label and the
label is not retained in memory with the data.

The simplest use of this command is free field input of a Y data set. This is also the default. Free field
input of X-Y pairs can be done by simply changing the content option. By combining the fixed format
and content options, this command can also be used to read very complicated formatted output from
other programs directly into SAC. Multiple Y data sets can be read from the same file using this
method. Only a single X data set is allowed.

The basic header variables needed for processing are computed. These are NPTS, B, E, DELTA,
LEVEN, DEPMIN, DEPMAX, and DEPMIN. If there is only a single Y data set, the name of the data
file in memory will be the same as that of the alphanumeric disk file. If there are multiple Y data sets
in the file, a two digit sequence number is appended to the file name. Each line of the alphanumeric
data file is read in either free format or using the format statement provided. Each line can be up to
160 characters long. In the case of a free format file, the number of data entries in each line is also
determined. The content field is then used to determine what to do with each of these data entries.
Each specific character in the context field represents a different kind of data element and the order
of these characters mimics the order of the data in each line of the file. The meanings of the allowed
characters in the content field are given below:

L: Next entry is the label to plot with each data point (only one per data set).
Y: Next entry belongs to Y (dependent variable) data set.
X: Next entry belongs to X (independent variable) data set.
N: Next entry belongs to next Y data set.
P: Next pair of entries belong to X and Y data sets.
R: Next pair of entries belong to Y and X data sets.
I: Ignore (skip) this data element.

An optional repetition count may follow any of the above characters. This repetition count is a one
or two digit integer and has the same meaning as repeating the content character that number of
times. A period (".") is an infinite repetition count and means use the last characters meaning to
decode the remaining data elements in the line. The period can only appear at the end of a content
field.

EXAMPLES

To read and plot X-Y pairs in free format where the first field is the label:

SAC> PLOTALPHA CONTENT LP FILEA

You can’t break an X-Y pair between lines in the file.

ERROR MESSAGES

∙ 1301: No data files read in.

– haven’t given a list of files to read.

– none of the files in the list could be read.
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∙ 1020: Invalid inline function name:

– Expected inline function. Preceed parenthesis with an atsign.

∙ 1320: Available memory too small to read file

∙ 1314: Data file list can’t begin with a number.

∙ 1315: Maximum number of files in data file list is

WARNING MESSAGES

∙ 0101: opening file

∙ 0108: File does not exist:

HEADER CHANGES

B, E, DELTA, LEVEN, DEPMIN, DEPMAX, DEPMEN.

SEE COMMANDS

READ, WRITE, READALPHA

LATEST REVISION

July 22, 1992 (Version 10.6f)
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PLOTC

SUMMARY

Annotates SAC plots and creates figures using cursor.

SYNTAX

PLOTC {REPLAY|CREATE} {FILE|MACRO filename},
{BORDER {ON|OFF}}

INPUT

REPLAY: Replay or replot an existing file or macro. The difference between a file and a
macro is described below.

CREATE: Create a new file or macro.
FILE {filename}: Replay or create a file. The previous file is used if filename is omitted.
MACRO {filename}: Replay or create a macro.
BORDER {ON}: Turn border around plot on.
BORDER OFF: Turn border around plot off.

DEFAULT VALUES

PLOTC CREATE FILE OUT BORDER ON

DESCRIPTION

This command lets you annotate SAC plots and create figures for meetings and reports. A device with
cursor capability is required. You "build" a figure by placing objects and text on the terminal screen.
The cursor position determines where an object will be drawn and the character typed determines
what object is to be drawn. Objects include circles, rectangles, n-sided polygons, lines, arrows, and
arcs. Several ways of placing text are included.

This command creates two different type of output files, simple files and macro files. Both are
alphanumeric files that can be changed using an editor. They contain the history of the cursor
responses and locations from a single execution of the PLOTC command. A macro file, once created,
can be used in more than one plot or figure. It can be scaled in size and can also be rotated. A simple
PLOTC filename is the name you request with a ".PCF" appended to it. A macro file has a ".PCM"
appended to its’ name. This provides a check for SAC when you request a particular file and also lets
you distinguish these files in your directories.

When you create a new file or macro, SAC draws a rectangle on the screen showing you the allowable
area for the figure. It then turns the cursor on in the middle of this area. You move the cursor to the
desired location and type a character representing the object you want drawn or the action you want
to occur.

There are two types of cursor options, action and parameter-setting. The action options do something
(draw a polygon, place text, etc.) How they do that action is based in part upon the current values
of the parameter-setting options (how many sides on the polygon, what size text to draw, etc.) This
distinction is similiar to the idea of action and parameter-setting commands in SAC itself. The tables
on the following pages list the action and parameter-setting options.

When you replay a file or macro, the figure is redrawn on the terminal screen and then the cursor is
turned on. You may then add to the file or macro as if you were creating it for the first time. When you
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have created a figure that you want to send to a different graphics device, use the BEGINDEVICES
command to temporarily turn off the terminal and turn on the other device. Then simply replay the
file.

To annotate a SAC plot, execute the VSPACE command to set up the correct aspect ratio (see
below), execute the BEGINFRAME command to turn off automatic framing, execute the desired
SAC plot command, execute the PLOTC command (in create or replay mode), and then execute the
ENDFRAME command to resume automatic framing.

EXAMPLES

An example of the use of PLOTC to add annotation to a standard SAC plot is the figure in the
BANDPASS command description of this manual. The commands used to create that figure are
given below with comments given in parentheses:

SAC> FG IMPULSE NPTS 1024
SAC> LOWPASS C2 NPOLES 7 CORNER 0.2 TRANBW 0.25 A 10
SAC> FFT
SAC> AXES ONLY LEFT BOTTOM
SAC> TICKS ONLY LEFT BOTTOM
SAC> BORDER OFF
SAC> FILEID OFF
SAC> QDP OFF
SAC> VSPACE 0.75
SAC> BEGINFRAME
SAC> PLOTSP AM LINLIN
SAC> PLOTC CREATE FILE BANDPASS
SAC> ENDFRAME

PLOTSP was used to produce the curve of the filter response and the two axes. PLOTC was used
interactively to produce the annotation (i.e., the lines, arrows, and labels.) The viewspace command
constrains the plot be the largest enclosed area of the graphics screen that has an (y:x) aspect ratio
of 3:4. This is necessary so that when the output is later sent to the SGF device which also has
a 3:4 aspect ratio, everything will be plotted correctly. At this point you would have a file called
"BANDPASS.PCF" containing the annotations for this plot. To write this annotated plot to the SAC
graphics file:

SAC> BEGINDEVICES SGF
SAC> BEGINFRAME
SAC> PLOTSP
SAC> PLOTC REPLAY
SAC> ENDFRAME

A SAC graphics file will be created containing the annotated plot. Two examples (one somewhat
frivolous) of the use of PLOTC to create figures and viewgraphs are given on the following pages.
The replay files are also shown. (It is an exercise left to the reader to determine which of the examples
is frivolous.)

1. The circle and sector opcodes only produce correct output when you have set the
viewspace to a square one (VSPACE 1.0). Otherwise, they produce an ellipse with the
ratio of the minor to major axis equal to the aspect ratio of the viewspace.

2. All all of the opcodes except text are scaled to fit in the graphics window.

The text sizes aren’t currently scaled. This creates a problem when you create a figure and want to
enclose some text in a rectangle or a circle. In this case the graphics window must be the same size
as the output page in order to avoid misalignment.
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This can be achieved by using the WINDOW command to set the horizontal (x) size of the window
to be 0.75 and the vertical (y) size to be 0.69. For example: WINDOW 1 X 0.05 0.80 Y 0.05 0.74
This command must be executed before the window is created (i.e. before the BEGINWINDOW or
BEGINDEVICES command.)

3. The text feature of this command works only in SunView graphics windows.

SEE COMMANDS

VSPACE, BEGINDEVICES, BEGINFRAME, ENDFRAME

ACTION OPTIONS TABLE

char meaning
A Draw an arrow from ORIGIN to CURSOR.
B Draw border tick marks around plot region.
C Draw a circle centered at ORIGIN through CURSOR.
D Delete last action option from replay file.
G Set ORIGIN and make it global.
L Draw a line from ORIGIN to CURSOR.
M

Invoke a macro at CURSOR. Enter name of macro, scale factor, and ro-
tation angle. Previous values are used if omitted. Defaults are OUT,
1., and 0.

O Set ORIGIN at CURSOR.
N

Draw an n-sided polygon centered at ORIGIN with one vertex at CUR-
SOR.

Q Quit PLOTC.
R

Draw a rectangle with opposing corners at ORIGIN and CURSOR.

S

Draw a sector of a circle centered at ORIGIN through CURSOR
Move CURSOR to define the sector angle. Type an S to get
the sector whose angle is less than 180 degrees or C to get its’
complement.

T Place a single line of text at cursor. Text is ended by a carriage-return.
U Place multiple lines of text at cursor. Text is ended by a blank line.

Notes

∙ CURSOR is the current cursor location
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∙ ORIGIN is normally the last cursor location
∙ The G option forces ORIGIN to remain fixed
∙ The O option allows ORIGIN to move again
∙ The Q option is not automatically copied to the file but may be added to it with a

text editor.

If SAC does not see a Q in the file during replay mode, it goes back into cursor mode after displaying
the contents of the file. This lets you append more options to the end of a file. If SAC does see a Q
in the file, it displays the contents and ends PLOTC.

∙ A line beginning with an asterisk is treated as a comment line.

LATEST REVISION

March 20, 1992 (Version 10.6e)
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PLOTCTABLE

TABLE

Parameter-Setting Options These options consist of sets of two to four characters enclosed by square brackets.
More than one set can be enclosed within the same set of brackets. For example, "[ALAFF7]" changes to large
filled arrow heads and to text font 7. You MUST type only one character at a time and wait for the cursor to
reappear before typing the next character.

chars meaning
AT Set arrow head size to TINY.
AS Set arrow head size to SMALL. [Default]
AM Set arrow head size to MEDIUM.
AL Set arrow head size to LARGE.
AF Set arrow head type to FILLED.
AU Set arrow head type to UNFILLED. [Default]
AV Set arrow shaft type to VISIBLE. [Default]
AI Set arrow head shaft type to INVISIBLE.
BHn Set number of horizontal border tick marks to n, n=0,99. [Default=9]
BVn Set number of vertical border tick marks to n, n=0,99. [Default=9]
CN Set color to NORMAL. [Default]
CR Set color to RED.
CG Set color to GREEN.
CY Set color to YELLOW.
CB Set color to BLUE.
CM Set color to MAGENTA.
CC Set color to CYAN.
CW Set color to WHITE.
Fn Set text font number to n, n=1,8. [Default=1]
HL Set horizontal text justification to LEFT. [Default]
HC Set horizontal text justification to CENTER.
HR Set horizontal text justification to RIGHT.
Ln Set linestyle to n, n=1,4. [Default=1]
Nn Set number of polygon sides to n, n=2,9. [Default=3]
QN Set text quality to HARDWARE.
QS Set text quality to SOFTWARE. [Default]
ST Set text size to TINY.
SS Set text size to SMALL. [Default]
SM Set text size to MEDIUM.
SL Set text size to LARGE.
VB Set vertical text justification to BOTTOM.
VC Set vertical text justification to CENTER. [Default]
VT Set vertical text justification to TOP.
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PLOTDY

SUMMARY

Creates a plot with error bars.

SYNTAX

PLOTDY {ASPECT ON|OFF} {PRINT pname} name|number name|number { name|number }

INPUT

ASPECT: ON maintains a 3/4 aspect ratio. OFF allows the aspect ratio to vary with the
dimensions of the window.

PRINT {pname}: Print the resultant plot. If a printer name is given, print to that printer,
else use default printer.

name: The name of a data file in the data file list.
number: The number of a data file in the data file list.

DESCRIPTION

This command allows you to plot a data set with error bars. The first data file you select (either by
name or number) is plotted along the y axis. The second data file is the dy value. If a third data file
is selected it is the positive dy value.

Assume you have an evenly spaced ascii file that contains two columns of numbers. The first is the
y-value. The second column is the dy-value. You wish to read these into SAC and plot the data with
error bars.:

SAC> READALPHA CONTENT YY MYFILE
SAC> PLOTDY 1 2

ERROR MESSAGES

∙ 1301: No data files read in.

LATEST REVISION

July 22, 1992 (Version 10.6f)
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PLOTPK

SUMMARY

Produces a plot for the picking of arrival times.

SYNTAX

PLOTPK options

where options are one or more of the following:

{PERPLOT {ON|OFF|n}},
{BELL {ON|OFF}},
{ABSOLUTE|RELATIVE},
{REFERENCE {ON|OFF|v}},
{MARKALL {ON|OFF}},
{SAVELOCS {ON|OFF}}

INPUT

PERPLOT n: Plots n files per frame.
PERPLOT ON: Plots n files per frame. Use last value for n.
PERPLOT OFF: Plots all files on one frame.
BELL OFF: keystrokes are silent.
BELL ON: Rings bell on each keystroke in active window.
ABSOLUTE: Plot files treating time as an absolute. Files with different begin times will

be shifted relative to each other.
RELATIVE: Plot files relative to that file’s begin time.
GMT: Display pick times in absolute (GMT) format.
ZERO: Display pick times relative to each files’s zero time.
REFERENCE v: Turn reference line display on and change reference value to v.
REFERENCE ON: Turn reference line display on using last value of v.
REFERENCE OFF: Turn reference line display off.
MARKALL ON: Store header picks in all of the files displayed on a particular plot.
MARKALL OFF: Store header pick only in the file marked by the horizontal cursor.
SAVELOCS OFF: Do not save pick locations in the blackboard.
SAVELOCS ON: Save pick locations (from l cursor command) to blackboard variables.

DEFAULT VALUES

PLOTPK PERPLOT OFF ABSOLUTE REFERENCE OFF MARKALL OFF SAVELOCS ON

DESCRIPTION

The format of the PLOTPK plot is similiar to the PLOT1 plot. When the crosshairs comes on,
you position the crosshair center at a point on the displayed waveform and enter single-character
keystrokes to perform various functions. Some but not all keystrokes produce graphic output on the
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screen. Error and output messages are printed at the top of the plot window. Mouse clicks will
identify the time and amplitude of the cursor position. A mouse drag will initiate a zoom operation.

If one tries to resize the plot window during PPK, SAC exits with an error message. Plot window
resizing must be done before entering PPK.

Picks that are currently in the header are automatically displayed on the screen as vertical lines at
the pick time with labels. Output from some keystrokes can be directed to the SAC header, to an
alphanumeric file, or a hypo pick file if open (see OAPF and OHPF). If REFERENCE is on with a
value v, if z is typed, there will be a "zero-level" horizontal line drawn at the cursor’s vertical position
plus two additional horizontal lines at +/- v.

If option SAVELOCS is on, cursor locations from the L cursor option are saved to blackboard variables
as follows:

NLOCS: The number of locations picked during the execution of this command. This is
initialized to 0 each time PLOTPK is invoked and incremented by 1 each time a cursor
location pick is made.

XLOCn: The x value for the nth cursor location pick. This will be the GMT time of the
pick if the reference time fields in the header are defined. Otherwise, this will be an
offset time.

YLOCn: The y value for the nth cursor location pick.

The command PLOTPKTABLE lists valid cursor options for plotpk.

EXAMPLE

The following example starts by opening an alphanumeric pick file, reads in a time-series file UOM1.Z (that is in
directory doc/examples/),and calls ppk. In ppk I first expand the window to fill the screen, then it picks the P
arrival and the P amplitude and then the S arrival time and amplitude. After exiting ppk, I display the picks from
the header and the bb variables. I close the APF file and display its contents:

SAC> oapf name
SAC> r UOM1.Z
SAC> ppk

** Description Key (case-insensitive)

** Zoom in to the P arrival: x then x (or click and drag)

** Pick P arrival time: i u 0 p (Impulsive, Up, Quality 0, P arrival)

** Pick P amplitude: l

** Expand view: o

** Zoom in to the S arrival: x then x (or click and drag)

** Pick S arrival time: i u 1 s (Impulsive, Up, Quality 1, S arrival)

** Pick S amplitude: l

** Quit PPK: q
SAC> lh picks

AMARKER = 0.25379 (IPU0) T0MARKER = 0.44422 (ISU1)
SAC> getbb ! Note that picks are not saved as bb variables, only l

TLOC1 = 0.274248
TLOC2 = 0.465606
XLOC1 = ’NOV 04 (308), 2011 17:17:22.967’
XLOC2 = ’NOV 04 (308), 2011 17:17:23.159’
YLOC1 = 811.226
YLOC2 = 12580.1

SAC> capf
SAC> cat APF

UOM1.Z IPU0 2011308 17 17 22.95 18.04
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UOM1.Z LOC 2011308 17 17 22.97 811.2
UOM1.Z ISU1 2011308 17 17 23.14 -8.896
UOM1.Z LOC 2011308 17 17 23.16 1.258e+04

SAC>

The P pick is stored in header variable A, and the (IPU) in KA. The S pick is stored in T0 with (ISD1) in KT0.

HEADER CHANGES

Depending upon user responses any of A, KA, F, KF, Tn, KTn.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1202: Maximum number of vars sections exceeded:

WARNING MESSAGES

∙ 1502: Bad cursor position. Please retry.

– cursor is positioned outside of the plot window.

∙ 1503: Invalid character. Please retry.

– A character was input that SAC didn’t recognize as a legal response.

∙ 1905: Need an integer. Retry.

– Didn’t input an integer following the T response.

∙ 1906: Need an integer in the range 0 to 4. Retry.

– Didn’t input a 0, 1, 2 or 3 after a Q response.

– Adjust cursor position and retry. Plot is always in ABSOLUTE mode.

SEE COMMANDS

PLOT1, OHPF, OAPF, APK, PLOTPKTABLE

LATEST REVISION

Version 102.0
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PLOTPKTABLE

PLOTPK Cursor Options

char meaning
a Designate first arrival in header {1,7}.
b Display previous plot (if there is one).
c Evaluate first arrival and end of event {1,4,7}.
d Set phase direction to DOWN (precedes P or S phase pick).
e Set phase onset to EMERGENT (precedes P or S phase pick)
f Define end of event {1,2,3,7}..
g Display picks to terminal in HYPO format {4}.
h If CHPF precedes call to PLOTPK, write picks to HYPO pick file {3,4}.
i Set phase onset to IMPULSIVE (precedes P or S phase pick).
j Set noise level {2,6,8}.
l Saves and lists x and y values for cursor location {2,4}.
m Compute maximum amplitude waveform {2,3,5}.
n Display next plot (if there is one).
o

Zoom Out => Displays previous plot window. A maximum of five windows are saved.

p Designate P wave arrival time {1,2,3,7}.
q Terminate PLOTPK immediately.
s Designate S wave arrival time {1,2,3,7}.
t

Designate user time Tn in header {1,2,7}. Next keystroke should be an integer between 0
and 9.

u Set phase direction to UP (precedes P or S phase pick).
v Define a Wood-Anderson waveform {2,5}.
w Define a general waveform {2,5}.
x

Set Zoom window

∙ Set beginning of zoomed plot

∙ If x is second keystroke, set end of zoomed window and display

∙ If s is second keystroke, defined zoomed plot limits are saved and used as xlims for
subsequent plots

z

Set zero (reference) level {2,6,8}. If reference is on with a value f, two more horizon-
tal lines are drawn at +/- f from the z line.

’+’ Set phase direction to PLUS (precedes P or S phase pick).
... continued on next page
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char meaning
’-’ Set phase direction to MINUS (precedes P or S phase pick).
’ ’ Set the phase direction to NEUTRAL (precedes P or S phase pick).
’n’ Set phase quality to n, n=0,1,2,3, or 4. (precedes P or S phase pick)

Notes

∙ {1} Written to SAC header.

∙ {2} Written to alphanumeric pick file if open.

∙ {3} Written to HYPO pick file if open.

∙ {4} Written to terminal window.

∙ {5} Terminal echo is a box encompassing waveform.

∙ {6} Place horizontal cursor at designated level before typing command letter.

∙ {7} Terminal window echo is a labeled vertical line.

∙ {8} Terminal window echo is a labeled horizontal line.

LATEST REVISION

Version 102.0
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PLOTPM

SUMMARY

Generates a "particle-motion" plot of pairs of data files.

SYNTAX

PLOTPM {PRINT {pname} }

INPUT

PRINT {pname}: Print the resultant plot. If a printer name is specified, print to that
printer, else use default printer.

DESCRIPTION

In a particle-motion plot one evenly spaced file is plotted against another. For each value of the
independent variable, normally time, the value of the dependent variable of the first file is plotted
along the y axis and the value of the dependent variable of the second file is plotted along the x axis.
For a pair of seismograms this type of plot shows the motion of a "particle" in the plane of the two
seismograms as a function of time. A square plot is generated, with the limits along each axis being
the minimum and maximum values of the dependent variable. Annotated axes are generated along
the bottom and left. Axes labels and title can be set by the XAXIS, YAXIS, and TITLE commands.
If no x and y axis labels are set, then the name and azimuth of the station are used as axes labels.
The XLIM command can be used to control how much of each file to plot.

EXAMPLES

To create a particle-motion plot of two seismograms, XYZ.T and XYZ.R and set up your own axes
labels and title:

SAC> READ XYZ.T XYZ.R
SAC> XLABEL ’Radial component’
SAC> YLABEL ’Transverse component’
SAC> TITLE ’Particle-motion plot for station XYZ’
SAC> PLOTPM

If you wanted to plot only a small part of each file around the first arrival time, you could use the
XLIM command:

SAC> XLIM A -0.2 2.0
SAC> PLOTPM

You could also use PLOTPK, possibly in a different graphics window as in this example, to mark
which portion of the files you wanted to see in the particle motion plot:

SAC> BEGINWINDOW 2
SAC> PLOTPK
SAC> ... mark the portion you want using X and S
SAC> ... terminate PLOTPK with a Q
SAC> BEGINWINDOW 1
SAC> PLOTPM
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LATEST REVISION

May 15, 1987 (Version 10.2)
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PLOTSP

SUMMARY

Plots spectral data in several different formats.

SYNTAX

PLOTSP {type},{mode}

where type is one of the following:

ASIS | RLIM | AMPH | RL | IM | AM | PH

where mode is one of the following:

LINLIN | LINLOG | LOGLIN | LOGLOG

INPUT

ASIS: Plot components in their present format.
RLIM: Plot real and imaginary components.
AMPH: Plot amplitude and phase components.
RL: Plot real component only.
IM: Plot imaginary component only.
AM: Plot amplitude component only.
PH: Plot phase component only.
LINLIN: Set x-y scaling mode to linear-linear.
LINLOG: Set x-y scaling mode to linear-logarithmic.
LOGLIN: Set x-y scaling mode to logarithmic-linear.
LOGLOG: Set x-y scaling mode to logarithmic-logarithmic.

DEFAULT VALUES

PLOTSP ASIS LOGLOG

DESCRIPTION

SAC data files may contain either time-series data or spectral data. Certain fields in the header
distinguish between the two formats. Most plot commands (PLOT, PLOT1, etc.) only plot time-
series data. This command lets you plot spectral data.

You may plot one or both spectral components using this command. One frame is generated for each
spectral component plotted. Other plot formats will be added as needed. You can also select the
scaling mode to be used. This scaling mode applies only to PLOTSP.
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EXAMPLES

To get a logarithmic-linear plot of the spectral amplitude of a data file:

SAC> READ FILE1
SAC> FFT
SAC> PLOTSP AM LOGLIN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1305: Illegal operation on time series file

LATEST REVISION

May 15, 1987 (Version 10.2)
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PLOTXY

SUMMARY

Plots one or more data files versus another data file.

SYNTAX

PLOTXY name|number name|number { name|number ... }

INPUT

name: The name of a data file in the data file list.
number: The number of a data file in the data file list.

DESCRIPTION

This command lets you plot one or more data files versus another data file. The first data file you
select (either by name or number) becomes the independent variable and is plotted along the x axis.
The remainder of the data files you select become the dependent variables and are plotted along the
y axis. All of the graphics environment commands such as TITLE, LINE, and SYMBOL can be used
to control attributes about the plot.

This command can be used to easily plot multi-columned data that has been read in with the READAL-
PHA command. In this case it can be viewed as a spreadsheet like plotting command. An example is
given below.

EXAMPLES

Assume you have an ascii file that contains four columns of numbers. You wish to read these into
SAC and plot various columns versus each other. The following commands would read this file in and
store it as four separate data files inside SAC, turn linestyle incrementing on and then plot the first,
third, and fourth columns versus the second column:

SAC> READALPHA CONTENT YNNN MYFILE
SAC> LINE INCREMENT ON
SAC> PLOTXY 2 1 3 4

LATEST REVISION

April 21, 1989 (Version 10.4c)
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PRINT

SUMMARY

Prints the most recent SGF file. This command requires that at least one SGF file has been produced.

SYNTAX

PRINT {printer}

INPUT

printer: sends output to the named printer, if no printer name is supplied, it will print to
the system’s default printer.

Note: PRINT will not work if the SGF device has remained off since boot. Use BEGIN-
DEVICES to turn on the SGF device. Use the SGF command to set prefered behavior
for the SGF device. The SGF command has an overwrite option which prevents disk
file buildup by clobbering previous SGF files with the new ones.

DEFAULT VALUES

PRINT

ERROR MESSAGES

∙ 2405: Cannot PRINT: no SGF files produced.

SEE COMMANDS

SGF, BEGINDEVICES

LATEST REVISION

April 22, 1999 (Version 0.58)
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PRINTHELP

SUMMARY

Prints hardcopies of information about SAC commands and features.

SYNTAX

PRINTHELP {item ...}

INPUT

item: The (full or abbreviated) name of a command, module, subprocess, feature, etc.

DEFAULT VALUES

If no item is requested, an introductory help package is printed.

DESCRIPTION

Each requested item in the help package is printed in the order they are requested. A short message
is printed if no information is available for an item. The help package for each command consists
of the entry in the SAC Command Reference Manual. The help package for non-commands may be
paragraphs from the SAC Users Manual or other information.

EXAMPLES

To get the introductory help package type:

SAC> PRINTHELP

Now lets say you want information on several commands:

SAC> PRINTHELP READ CUT BEGINDEVICE PLOT

ERROR MESSAGES

∙ 1103: No help package is available.

– SAC can’t find the help package. Check your SACAUX environment.

SEE COMMANDS

HELP

LATEST REVISION

November 13, 1998 (Version 0.58)
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PRODUCTION

SUMMARY

Controls the production mode option.

SYNTAX

PRODUCTION ON|OFF

INPUT

ON: Turn production mode option on.
OFF: Turn production mode option off.

DEFAULT VALUES

PROD OFF

DESCRIPTION

When this option is on, fatal errors terminate SAC immediately. When this option if off, control is
returned to the terminal after fatal errors.

LATEST REVISION

January 8, 1983 (Version 8.0)
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QDP

SUMMARY

Controls the "quick and dirty plot" option.

SYNTAX

QDP {ON|OFF|n},{TERM ON|OFF|n},{SGF ON|OFF|n}

INPUT

ON: Turn QDP option on for both the terminal and SAC Graphics File (SGF) devices.
OFF: Turn QDP option off for both devices.
n: Turn QDP option on for both devices and change the approximate number of data

points to plot to n.
TERM ON: Turn quick and dirty plotting on for the terminal.
TERM OFF: Turn quick and dirty plotting off for the terminal.
TERM n: Turn QDP option on for the terminal and change the approximate number of

data points to plot to n.
SGF ON: Turn quick and dirty plotting on for the SGF.
SGF OFF: Turn quick and dirty plotting off for the SGF.
SGF n: Turn QDP option on for the SGF and change the approximate number of data

points to plot to n.

DEFAULT VALUES

QDP TERM 5000 SGF 5000

DESCRIPTION

Plotting large files (greater than say 1000 points) can take a long time. The "quick and dirty plot"
option speeds up plotting by NOT plotting each data point. When this option is on, SAC will compute
a section size by dividing the number of data points in the file by the number of data points you want
displayed. The larger the file, the more data points in each section.

SAC then computes and displays only the minimum and the maximum data point in each section.
SAC displays a "desampling factor" (half the section size) in a small box in the corner of the plot
when this option is on. Displayed data points may be somewhat closer or further apart than this
number indicates since the extremum in each region are being plotted.

There is a separate QDP option for the terminal and the SAC Graphics File device. The terminal
QDP factor also applies to the XWINDOWS and SUNWINDOWS graphics devices. By default the
QDP factor is considerably smaller for the terminal than for the SGF. This allows for very fast plots
to the terminal and a more representative plot to the SGF. If both devices are on at the same time,
the terminal QDP option applies. You may turn either of these options off or change the number of
displayed points.
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EXAMPLES

Assume FILE1 has 2100 data points and FILE2 has 4700 data points. If you typed:

SAC> READ FILE1 FILE2
SAC> BEGINDEVICES TERMINAL
SAC> PLOT

both plots would contain approximately 200 data points. The plot of FILE1 would contain approxi-
mately every tenth data point and the plot of FILE2 every twenty-third data point. The section size
is rounded down to ensure that you will see at least the number of requested data points. If you now
plotted those same files to the SGF:

SAC> BEGINDEVICES SGF
SAC> PLOT

both plots would contain approximately 1000 data points. If both devices were on, the plots would
contain approximately 200 data points, the factor for the terminal.

LATEST REVISION

February 20, 1985 (Version 9.13)
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QUANTIZE

SUMMARY

Converts continuous data into its quantized equivalent.

SYNTAX

QUANTIZE [GAINS n ...],[LEVEL v],[MANTISSA n]

INPUT

GAINS n ...: Set list of allowed gains. They must be monotonically decreasing. The
maximum number of allowed gains is 8.

LEVEL v: Set the quantization level of the lowest gain. This is the value of the least
significant bit in volts.

MANTISSA n: Set the number of bits in the mantissa.

DEFAULT VALUES

QUANTIZE GAINS 128 32 8 1 LEVEL 0.00001 MANTISSA 14

DESCRIPTION

This command exercises a quantization algorithm equivalent to the "rounding" quantization described
in Oppenheim and Schafer (1975, Fig. 9.1). The number of bits used in this algorithm are partitioned
into the bits used to represent the characteristic (exponent), the sign bit, and the mantissa bits.
The user can specify the number of bits used for the mantissa. The quantization level (value of
least significant bit or LSB) can also be specified by the user. The default quantization level is 10
microvolts. The error of the signal represented by this quantized function is numerically equal to
one-half of this quantization level. In the spectral domain, this error or quantization noise is:

ERROR = 1/12 * (DELTA * LEVEL^2)

where DELTA is the sampling interval. This quantization noise is measured in units of counts*counts/Hz,
as a power spectral density. The rms-squared quantization noise is:

(1/6)*LEVEL^2.

However, this is an accurate approximation to the noise due to quantization only if the rms level of
the signal is much larger than the rms quantization noise. In other words, if the signal is not resolved
by several hundred counts, then there is a correlation between the quantization noise and the signal
being quantized. The fraction of correlation is approximately equal to the ratio of the LEVEL to the
rms of the signal being quantized (see Fig. 11.13, Oppenheim and Schaffer, 1975). The gains can
be specified by the user to simulate the gain steps in an automatic gain-ranging system. The default
gains are those of the Regional Seismic Test Network (RSTN.) Oppenheim, Alan V., and Ronald W.
Schafer; Digital Signal Processing; Prentice-Hall; 1975; 585pp.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN
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LATEST REVISION

May 15, 1987 (Version 10.2)
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QUIT

SUMMARY

Terminates SAC.

SYNTAX

QUIT

ALTERNATE FORMS

END, EXIT, and DONE are also allowed.

DESCRIPTION

This command terminates SAC gracefully. (There are a number of ways to terminate it ungracefully!)
Before terminating, SAC ends all active graphics devices, closes all output files, and destroys any
temporary files it has created.

LATEST REVISION

October 11, 1984 (Version 9.1)
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QUITSUB

SUMMARY

Terminates the currently active subprocess.

SYNTAX

QUITSUB

DESCRIPTION

This command terminates the currently active subprocess, returning to the main SAC command
environment. Files in memory are retained. There are currently two subprocesses available in SAC:

∙ SPE Spectral Estimation Subproess
∙ SSS Signal Stacking Subprocess

SEE COMMANDS

SPE, SSS

LATEST REVISION

October 11, 1984 (Version 9.1)
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READ

SUMMARY

Reads data from on disk into memory.

SYNTAX

READ [options] [filelist]

where options is one or more of the following:

MORE
TRUST ON|OFF
COMMIT|ROLLBACK|RECALLTRACE
DIR CURRENT|name
XDR
ALPHA
SEGY

ALL options must preceed any element in the filelist.

INPUT

MORE: Place the new data files in memory AFTER the old ones. If this option is omitted,
the new data files REPLACE the old ones.

Note: if the MORE option is not specified, the COMMIT, ROLLBACK, and RECALL-
TRACE options have no effect.

TRUST ON|OFF: This option is used to resolve an ambiguity in converting files from
SAC to CSS format. When converting data, matching event IDs could mean the files
have identical event information, or they could be an artifact of the merging of these
two very different formats. When TRUST is ON, SAC is more likely to accept matching
event IDs as identical event information than when TRUST is OFF, depending on the
history of READ commands associated with the current data files in memory.

COMMIT: If the MORE option is specified, the COMMIT option commits headers and
waveforms in SAC memory -- removing any previous versions of headers or waveforms
from RAM -- prior to reading more files. COMMIT is the default.

ROLLBACK: If the MORE option is specified, the ROLLBACK option reverts to the last
committed version of the header and waveform before reading more files.

RECALLTRACE: If the MORE option is specified, the RECALLTRACE option:
∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

HELP RECALLTRACE for a list of header variables which are committed, and
which are rolled back.)

DIR CURRENT: Read all simple filenames (with or without wildcards) from the current
directory. This is the directory from which you started SAC.

DIR name: Read all simple filenames (with or without wildcards) from the directory called
name. This may be a relative or absolute directory name.
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XDR: The input files are in XDR format. This format is used for moving binary data files
to/from a different architecture, such as a pc running LINUX.

ALPHA: The input files are SAC formatted alphanumeric (ascii) files. the ALPHA option
is incompatible with the XDR option.

SEGY: Read file formatted according to the IRIS/PASSCAL form of the SEGY format.
This format allows one waveform per file.

filelist: file | wild .
file: A legal filename. This may be a simple filename or a pathname. The pathname can

be a relative or absolute one. See the DESCRIPTION and EXAMPLES sections below
for more details.

wild: A wildcard laden token that expands to a list of filenames. See the DESCRIPTION
and EXAMPLES sections below and the WILD command for more details.

DEFAULT VALUES

READ COMMIT DIR CURRENT

DESCRIPTION

All commands in SAC work on the data that is currently in memory. This data in memory is analogous
to the temporary or working files used by a text editor. The READ command transfers data from one
or more disk files into memory. The default is to read all of the data from each disk file.

AUTO-DETECTION: SAC will attempt to determine the types of files for reading. Known file types
include SAC binary, SAC alphanumeric, SEG-Y, and miniSEED. If the type of file is specifiled using
ALPHA or SEGY it will be assumed all files are of that type.

miniSEED: All data within a miniSEED file will be read into memory.

The CUT command can be used to specify that only a portion of each disk file be read. SAC files
produced in or after the year 2000 are presumed to have a four digit value for the year. Files with
two digit year values will be assumed to be in the twentieth century, and will be incremented by 1900.
Normally all data in memory prior to the execution of another READ command is lost. The new data
replaces the old data.

If the keyword MORE is the second symbol in the command, the new data is placed in memory after
the old data. The data file list becomes the concatenation of the old file list and the new file list.
There are three cases where the MORE option may be useful:

1. The filelist is too long to be typed on one line.
2. A name was misspelled in a long filelist.
3. A file is read, some analysis performed, and a comparison with the original is desired.

Examples of each of these cases are given below. The filenames may be simple filenames in the current
directory or they may be absolute or relative pathnames pointing to other directories on your system.
Examples of an absolute pathname is:

/disk/dir/subdir/file

Examples of a relative pathnames is:

./subdir/file

../subdir2/file
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In the above examples "disk" is the name of a physical disk partition, "dir" is the name of a top
level directory, "subdir" is a subdirectory of that partition, and "file" is a file in that subdirectory. In
general there is no limit on the nesting of subdirectories. The first relative-pathway example assumes
the user is in subdir.

Filenames may also contain wild-card characters. You can use them match a single character, to
match zero or more characters, and to form groupings of characters. Some examples are given below.
See the WILD command for more examples and a complete explanation of all the wildcarding options.

* Important * SAC has two data buffers; this is what allows SAC to provide the COMMIT, ROLL-
BACK and RECALLTRACE commands. One data buffer stores the header information in SAC format,
and the second stores headers in CSS 3.0 format. This CSS 3.0 data buffer allows seamless consistency
with CSS 3.0 in READCSS and WRITECSS; it also allows direct access to the CSS 3.0 formatted
Oracle database.

In CSS (a relational format), it is important to maintain consistency with the event IDs (evid, or nevid
in SAC). In SAC format (a very flat format), such consistency is not as important, and in some cases,
it is lost. Anytime data is loaded into SAC, it is stored in both buffers. When transfering data from
SAC to CSS data buffers, there is a potential ambiguity in handling event information. If matching
evids are found, it could be that the two files have identical event information, or it could be that the
match is an artifact of the merge of these two different data formats within SAC.

Two pieces of information are involved in resolving this ambiguity, one is the history of data loaded
into SAC memory, and the other is the confidence the user sets with the TRUST ON|OFF option on
the command line of most Read commands and ADDSTACK. It is expected that the user will have
some idea if the data files are consistent, if they share event information, etc. The history of data
loaded into SAC memory begins when data is loaded into memory without the MORE option, and
ends the next time data is loaded into memory without the MORE option. Any time in between that
data is loaded into memory with the MORE option, it becomes part of the existing history.

EXAMPLES

In the following examples is it assummed that the following SAC data files are in your current disk
directory: F01, F02, F03, and G03. In these examples, the UNIX wildcard characters (e.g., "?"
matches any single character and "*" matches zero or more characters) are used. See the WILD
command for more information on how to use wildcards. To read the first three files:

SAC> READ F01 F02 F03

The following command produces the same result using the wildcard operator:

SAC> READ F*

This command also produces the same result by using the concatenation operator:

SAC> READ F0[1,2,3]

To read the second, third, and fourth files:

SAC> R F02 ?03

The following examples show the use of the MORE option:

SAC> R F03 G03

files F03 and G03 are in memory:

SAC> R F01 F02
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files F01 and F02 are in memory:

SAC> R MORE F03 G03

files F01, F02, F03, and G03 are in memory
This example uses the MORE option when a filename was misspelled:

SAC> R F01 G02 F03
WARNING: File does not exist: G02
Will read the remainder of the data files.

files F01 and F03 are in memory:

SAC> R MORE F02

files F01, F03, and F02 are now in memory:
note the order of the files in this case.
If you wanted to apply a highpass filter to a data file and then graphically compare the results to the
original:

SAC> READ F01
SAC> HIGHPASS CORNER 1.3 NPOLES 6
SAC> READ MORE F01
SAC> PLOT1

plot shows filtered and original data
Now assume you were in the directory "/me/data" when you started up SAC and that you wanted to
work with the data files in the subdirectories "event1" and "event2":

SAC> READ DIR EVENT1 F01 F02

files in directory /me/data/event1 are read:

SAC> READ F03 G03

files in same directory are read:

SAC> READ DIR EVENT2 *

all files in /me/data/event2 are read:

SAC> READ DIR CURRENT F03 G03

files in directory /me/data are read.
Note For examples of the differing behavior between the COMMIT, ROLLBACK, RECALLTRACE
options, see the commands of the same names.

ERROR MESSAGES

∙ 1301: No data files read in.

– haven’t given a list of files to read.
– none of the files in the list could be read.

∙ 1320: Available memory too small to read file

∙ 1314: Data file list can’t begin with a number.

∙ 1315: Maximum number of files in data file list is

∙ 6002: No more data-sets available.
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WARNING MESSAGES

∙ 0101: opening file

∙ 0108: File does not exist:

∙ 0114: reading file

– Normally when SAC encounters one of these errors it skips that file and reads the remainder. These
errors can be made to be fatal using the READERR command.

HEADER CHANGES

E, DEPMIN, DEPMAX, DEPMEN, B if cut option is on.

SEE COMMANDS

CUT, READERR, WILD, COMMIT, ROLLBACK, RECALLTRACE

LATEST REVISION

Version 102.0
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READBBF

SUMMARY

Reads a blackboard variable file into memory.

SYNTAX

READBBF {file}

INPUT

file: The name of a blackboard variable file. It may be a simple filename or a relative or
absolute pathname.

DEFAULT VALUES

READBBF BBF

DESCRIPTION

This command lets you read in a blackboard variable file. This file must have been previously written
to disk using the WRITEBBF command. This feature lets you save information from one execution
of SAC to another. You can also add coding to your own programs to access the information in these
blackboard variable files. This lets you transfer information between your own programs and SAC.
See the SAC Subroutines Reference Manual for details.

SEE COMMANDS

WRITEBBF, SETBB, GETBB

LATEST REVISION

May 15, 1987 (Version 10.2)
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READCSS

SUMMARY

Read data files in CSS external format from disk into memory.

NOTE: The READCSS command reads flat files which adhere to CSS 3.0 or 2.8 data formats. The following
tables are supported for version 3.0:

wfdisc, wftag, origin, arrival, assoc, sitechan, site, affiliation, origerr, origin, event, sensor, instrument, gregion,
stassoc, remark sacdata.

For version 2.8 only wfdisc, arrival, and origin are supported. Previous versions of READCSS required that the
origin file have only one line which would be associated with the waveforms pointed to by the wfdisc file. The
current version can extract the correct origin (or origins) using information from a wftag file or using an evid
column in the wfdisc file (position 284 - 291). If no such information is available, READCSS will default to its
previous behavior, and use the first row in the origin file. There is now no information lost when data is read
using READCSS. Although existing SAC commands can only access a subset of the CSS data, everything read
from CSS flatfiles is retained in memory and will be written to disk with the WRITECSS command.

READCSS now reads a non-standard table named sacdata (written by the WRITECSS command) which holds
data from the SAC header that does not have a place in the standard schema. With the sacdata table, there is
now no information loss when SAC data is written in CSS format and then re-read. For instance, you can now
write frequency domain data to disk with WRITECSS and re-read it later with READCSS.

READCSS now has a binary option that allows it to read binary CSS files written by WRITECSS. In binary mode
the css options have no effect. That is, the entire contents of the specified file(s) will be read.

READCSS supports the following binary datatypes: On bigendin machines (eg. Sun) t8, t4, f8, f4, s4, s3, s2, i4,
i2, g2, e1, and ri (real-imag).

On littleendin machines (eg. DEC or PC) f8, f4, t8, t4, i4, i2, s4, s2, and g2

SYNTAX

READCSS {BINARY|ASCII} {MAXMEM v} {MORE} {TRUST ON|OFF} {VERBOSE ON|OFF}
{SHIFT ON|OFF} {COMMIT|ROLLBACK|RECALLTRACE} {DIR name}
wfdisclist {filelist} {css options}

The css options are one or more of the following:

STATION station
CHANNEL channel
BANDWIDTH band code
ORIENTATION orientation code

which causes this command to further select from files that are qualifying members of filelist based on the content
of their corresponding records in the wfdisc file.

INPUT

ASCII: (Default) Reads normal ASCII flatfiles.
BINARY: Reads binary CSS files. See the WRITECSS command for more information on

this format.
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TRUST ON|OFF: This option is used to resolve an ambiguity in converting files from SAC
to CSS format. When converting the data, matching event IDs could mean the files
have identical event information, or they could be an artifact of the merging of these
two very different formats. When TRUST is ON, SAC is more likely to accept matching
event IDs as identical event information than when TRUST is OFF, depending on the
history of READ commands associated with the current data files in memory.

MAXMEM: Specify the maximum fraction of physical memory to use when reading large
data sets. When this limit is reached, no more waveforms will be read, although other
tables may still be read. The default value for MAXMEM is 0.3.

MORE: See the READ command.
VERBOSE ON|OFF: If VERBOSE is ON, SAC displays extended information about the

waveforms being read, and prints a summary of the CSS tables that were filled. SAC
also displays a progress indicator for the conversion to SAC internal format.

SHIFT ON|OFF: If SHIFT is on, the origin time is set to zero, and other time related
header variables are shifted back to be consistent with the origin time. Some of the
distance related header variables are also affected. SHIFT ON is the default.

COMMIT: If the MORE option is specified, the COMMIT option commits headers and
waveforms in SAC memory -- removing any previous versions of headers or waveforms
from RAM -- prior to reading more files. COMMIT is the default.

ROLLBACK: If the MORE option is specified, the ROLLBACK option reverts to the last
committed version of the header and waveform before reading more files.

RECALLTRACE: If the MORE option is specified, the RECALLTRACE option:
∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

RECALLTRACE for a list of which header variables are committed, and which are
rolled back.)
Note if the MORE option is not specified, the COMMIT, ROLLBACK, and RE-
CALLTRACE options have no effect.

DIR name: The directory to be searched for wfdisc(s).
wfdisclist: The name(s) of one or more wfdisc files.
filelist: A list of data file names contained in the previously specified wfdisc(s). These files

will be searched for first in the directory specified with the DIR option, then using the
path specified in the wfdisc. If no filelist is supplied, all the data files defined in the
specified wfdisc(s) will be read into memory.

STATION station: station is a string of six or fewer characters. Selects those lines from
the .wfdisc file whose KSTNM matches station. station may contain * and ? wildcards.

CHANNEL channel: channel is a string of eight or fewer characters. Selects those lines
from the .wfdisc file whose channel specifier matches channel. channel may contain *
and ? wildcards.

BANDWIDTH type: A 1-letter code. Usual values are
∙ E Extremely Short Period
∙ S Short Period
∙ H High Broad Band
∙ B Broad Band
∙ M Mid Period
∙ L Long Period
∙ V Very Long Period
∙ U Ultra Long Period
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∙ R Extremely Long Period
Selects those files whose ’chan’ field has a leading character which is s, m or l. The
character * selects all.

ORIENTATION type: Usual values are:
Z N E: Vertical North East
A B C: Triaxial along edges of cube standing on corner
1 2 3: Orthogonal but non-standard orientation

Selects those files whose ’chan’ field has a final character which matches code. The
character * selects all.

MAGNITUDE

∙ MB

∙ MS

∙ ML

∙ DEF

Determines which value of magnitude to put into SAC’s magnitude hearder variable. MB gets the bodywave
magnitude, MS gets the surfacewave magnitude, ML gets the local magnitude, and def (the default) follows this
algorithm: if Ms exists and is greater than or equal to 6.6, take it, else, if Mb exists take it, else, if Ms exists take
it, else take Ml.

DEFAULT VALUES

READCSS * ASCII MAXMEM 0.3 VERBOSE OFF COMMIT STATION * BAND * CHAN * ORIENT *

DESCRIPTION

All commands which load data into memory have are now monitored to maintain a level of confidence in
the event information when moved from the SAC data buffer to the CSS data buffer. For READCSS,
when the confidence is HIGH that all the data files are cosistent in the numbering of event IDs,
matching event IDs are treated as having identical event information. When the confidence is LOW
in READCSS, matching event IDs are understood as an artifact, and new event IDs are generated for
the incoming file. For more details see READ.

How READCSS reads picks from the .arrival file:

SAC has two data buffers. One holds the data in SAC format, and one holds it in CSS3.0 format.
READCSS reads all the available arrivals into the CSS buffer. Only 10 picks will fit into the SAC
formatted buffer. The command PICKPREFS controls the way the picks are transfered from the CSS
buffer to the SAC buffer.

There is a preferences file which SAC uses to determine which phases and authors’ picks to trans-
fer between buffers. The default preferences file is ${SACAUX"/csspickprefs. This default can be
overridden by either the PICKAUTHOR or PICKPHASE commands. These commands can select a
user-defined preferences file, or they can interactively override the preferences file.

If PICKPREFS is OFF (the default), SAC will transfer the first 10 picks from the CSS data buffer to
the SAC data buffer. If PICKPREFS is ON, SAC will transfer the picks according to the preferences
file, or the PICKAUTHOR and PICKPHASE commands.

The following is an example of a preferences file:

368



john
rachel
michael

t0 P -
t1 Pn rachel
t2 Pg -
t3 S -
t4 Sn -
t5 Sg -
t6 Lg -
t7 LR -
t8 Rg -
t9 pP -

Note: phase names are case sensitive; author names are not.

The first few lines are a prioritized list of author names (analysts who have made picks) that sac
can use to select picks from the data. The remaining lines tell sac which css phase picks should be
mapped into which sac header variables (T0 through T9). A hyphen (-) in the third column tells sac
to use the prioritized author list. An optional author name can be specified in the third column which
will overide the default author list for this pick.

For a given waveform, sac will choose from the available picks those which match the given phase
and author name. If an author name is specified in the third column, sac will try to match that; if it
fails to match that author name, it will leave the header variable undefined. If the third column has a
hyphen, sac will try to match the first name in the list; if it fails it will try to match the second name
and so on until it gets a match, or the author list is exhaused (in which case the header variable is
left undefined). In the example file shown above, T0 will have a P phase with john, rachel, or micheal
as the author, or it will be left blank; T1 will have a Pn phase and rachel as the author, or it will be
left blank. For each pick header variable there is a corresponding string header variable (KT0 through
KT9). These will be populated with the phase names of the corresponding picks.

The basic format of the preferences file is: Author names are delimited by newlines. There are no
blank lines before the first author name, and no blank spaces at the begining of a line. There are no
blank spaces in the middle of an author name. Author names must be unique. Author names may be
up to 15 characters long. There may be any number of author names.

The names are listed in order of priority, the most important author name first. The last name in the
author list is followed by an empty line to designate the end of the author list.

The header variable information occupies 10 lines in three columns. The first column simply lists
the names of the header variables in numerical order. The second column lists specific phase names;
phase names can be up to eight characters long. The third column can have a specific author name,
or a hyphen. The columns are separated by tabs. There are no spaces anywhere in these 10 lines.

SEE COMMANDS

READ, PICKPREFS, PICKAUTHOR, PICKPHASE, CRR (COMMIT, ROLLBACK, RECALLTRACE)

LATEST REVISION

See the READ command. Oct. 27, 1998 (Version 00.58)
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READDB

SUMMARY

Reads data from Oracle database into memory.

Note As of v101.5, the Oracle database has been removed from the distribution.
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READERR

SUMMARY

Controls errors that occur during the READ command.

SYNTAX

READERR {BADFILE FATAL|WARNING|IGNORE},
{NOFILES FATAL|WARNING|IGNORE}
{MEMORY SAVE|DELETE}

INPUT

BADFILE: Errors that occur when the file could not be read or didn’t exist.
NOFILES: None of the files in the read filelist could be read.
FATAL: Make error condition fatal. Send error message and stop processing the command.
WARNING: Send warning message but continue processing the command.
IGNORE: Ignore condition and continue processing the command.
MEMORY: Action on files in memory if no files could be read.
DELETE: This MEMORY option indicates that files previously in memory are to be

deleted.
SAVE: This MEMORY option indicates that files previously in memory are to remain in

memory.

DEFAULT VALUES

READERR BADFILE WARNING NOFILES FATAL MEMORY DELETE

DESCRIPTION

Several errors can occur when you try to read a data file into memory using the READ command.
The file may not exist or it may exist but can’t be read. When SAC encounters one of these bad files,
it normally sends a warning message and then tries to read the rest of the files in the filelist. If you
want SAC to stop reading in files whenever a bad file is encountered set the BADFILE condition to
FATAL. If you don’t even want to see the warning message, set the BADFILE condition to IGNORE.

If none of the files in the filelist could be read, SAC normally sends an error message and stops
processing. If you want SAC to send a warning message or ignore this problem completely, set the
NOFILES condition accordingly. Also, any files previously in memory can be deleted (removed from)
or remain in memory by using the MEMORY DELETE or MEMORY SAVE options. The CUTERR
command can be used to control certain errors that occur due to bad cut parameters.

SEE COMMANDS

READ, CUTERR

LATEST REVISION

March 20, 1992 (Version 10.6e)
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READGSE

SUMMARY

Read data files in GSE 2.0 format from disk into memory.

Note: GSE data enters SAC via SAC’s CSS data buffers. To understand how arrivals are handled, see
READCSS and PICKPREFS.

SYNTAX

READGSE {MAXMEM v} {MORE} {VERBOSE ON|OFF} {SHIFT ON|OFF}
{COMMIT|ROLLBACK|RECALLTRACE} {DIR name} filelist

INPUT

MAXMEM: Specify the maximum fraction of physical memory to use when reading large
data sets. When this limit is reached, no more waveforms will be read, although other
tables may still be read. The default value for MAXMEM is 0.3.

MORE: See the READ command.
VERBOSE ON|OFF: If VERBOSE is ON, SAC displays extended information about the

waveforms being read, and prints a summary of the CSS tables that were filled. SAC
also displays a progress indicator for the conversion to SAC internal format.

Note: the SHIFT option is moot at this point. For the time being, origin information is
not read because it cannot be associated with a waveform. The release of GSE 2.1
format should allow us to make the association, then we will be able to read origin,
and the SHIFT option will have meaning.

SHIFT ON|OFF: If SHIFT is on, the origin time is set to zero, and other time related
header variables are shifted back to be consistent with the origin time. Some of the
distance related header variables are also affected. SHIFT ON is the default.

COMMIT: If the MORE option is specified, the COMMIT option commits headers and
waveforms in SAC memory -- removing any previous versions of headers or waveforms
from RAM -- prior to reading more files. COMMIT is the default.

ROLLBACK: If the MORE option is specified, the ROLLBACK option reverts to the last
committed version of the header and waveform before reading more files.

RECALLTRACE: If the MORE option is specified, the RECALLTRACE option:
∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

RECALLTRACE for a list of which header variables are committed, and which are
rolled back.)
Note if the MORE option is not specified, the COMMIT, ROLLBACK, and RE-
CALLTRACE options have no effect.

DIR name: The directory to be searched for gsefile(s).
filelist: The name(s) of one or more gse files.

DEFAULT VALUES

READGSE * MAXMEM 0.3 VERBOSE OFF COMMIT
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DESCRIPTION

Any command which loads data into memory is monitored to maintain a level of confidence in the
event infomation when transfered from the SAC data buffer to the CSS data buffer. When READGSE
is used, the confidence is set to LOW, indicating that SAC should consider any matching event IDs
as artifacts and reassign the event ID of the incoming file. For more details, see READ.

NOTES

The following GSE Data messages can be read:

∙ WAVEFORM

∙ STATION

∙ CHANNEL

∙ ARRIVAL

Waveform formats of INT, CM6, and CM8 can be read.

Arrivals, although read, will not appear in SAC since the DETECTIONS message is not yet read, and
without a DETECTION ID, arrivals cannot be associated with channels.

LATEST REVISION

April 22, 1999 (Version 00.58)
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READHDR

SUMMARY

Reads headers from SAC data files into memory.

SYNTAX

READHDR [options] [filelist]

where options is one or more of the following:

MORE
TRUST ON|OFF
COMMIT|ROLLBACK|RECALLTRACE
DIR CURRENT|name

ALL options must preceed any element in the filelist.

INPUT

MORE: Place the new data file headers in memory AFTER the old ones. If this option is
omitted, the new data file headers REPLACE the old ones.

Note: if the MORE option is not specified, the COMMIT, ROLLBACK, and RECALL-
TRACE options have no effect.

TRUST ON|OFF: This option is used to resolve an ambiguity in converting files from SAC
to CSS format. When converting the data, matching event IDs could mean the files
have identical event information, or they could be an artifact of the merging of these
two very different formats. When TRUST is ON, SAC is more likely to accept matching
event IDs as identical event information than when TRUST is OFF, depending on the
history of READ commands associated with the current data files in memory.

COMMIT: If the MORE option is specified, the COMMIT option commits headers and
waveforms in SAC memory -- removing any previous versions of headers or waveforms
from RAM -- prior to reading more files. COMMIT is the default.

ROLLBACK: If the MORE option is specified, the ROLLBACK option reverts to the last
committed version of the header and waveform before reading more files.

RECALLTRACE: If the MORE option is specified, the RECALLTRACE option:
∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

HELP RECALLTRACE for a list of which header variables are committed, and
which are rolled back.)

DIR CURRENT: Read all simple filenames (with or without wildcards) from the current
directory. This is the directory from which you started SAC.

DIR name: Read all simple filenames (with or without wildcards) from the directory called
name. This may be a relative or absolute directory name.

filelist: file | wild .
file: A legal filename. This may be a simple filename or a pathname. The pathname can

be a relative or absolute one. See the DESCRIPTION and EXAMPLES sections of the
READ command for more details.
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wild: A wildcard laden token that expands to a list of filenames. See the DESCRIPTION
and EXAMPLES sections of the READ command and the WILD command for more
details.

DESCRIPTION

This command reads the headers from a set of SAC files into memory. You can then list the header
contents (LISTHDR), change header values (CHNHDR), and then write the headers back to disk
(WRITEHDR). This is much faster than reading entire files into memory, when only the headers are
needed.

All commands which load data into memory have are now monitored to maintain a level of confidence in
the event information when moved from the SAC data buffer to the CSS data buffer. For READHDR,
when the confidence is HIGH that all the data files are cosistent in the numbering of event IDs,
matching event IDs are treated as having identical event information. When the confidence is LOW
in READHDR, matching event IDs are understood as an artifact, and new event IDs are generated
for the incoming file. For more details use HELP READ.

ERROR MESSAGES

∙ 1301: No data files read in.

– haven’t given a list of files to read.

– none of the files in the list could be read.

∙ 1314: Data file list can’t begin with a number.

∙ 1315: Maximum number of files in data file list is

∙ 1335: Illegal operation---only data file headers in memory.

– only LISTHDR, CHNHDR, and WRITEHDR operations. can be performed after a READHDR.

WARNING MESSAGES

∙ 0101: opening file

∙ 0108: File does not exist:

∙ 0114: reading file

– Normally when SAC encounters one of these errors it skips that file and reads the remainder. These
errors can be made to be fatal using the READERR command.

SEE COMMANDS

READ, LISTHDR, CHNHDR, WRITEHDR, READERR, COMMIT, ROLLBACK, RECALLTRACE

LATEST REVISION

Oct. 27, 1998 (Version 0.58)
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READSDD

SUMMARY

Reads data from SDD data files on disk into memory.

SYNTAX

READSDD [options] [filelist]

where options is one or more of the following:

MORE
COMMIT|ROLLBACK|RECALLTRACE
DIR CURRENT|name

ALL options must preceed any element in the filelist.

INPUT

MORE: Place the new data files in memory AFTER the old ones. If this option is omitted,
the new data files REPLACE the old ones.

Note: if the MORE option is not specified, the COMMIT, ROLLBACK, and RECALL-
TRACE options have no effect.

COMMIT: If the MORE option is specified, the COMMIT option commits headers and
waveforms in SAC memory -- removing any previous versions of headers or waveforms
from RAM -- prior to reading more files. COMMIT is the default.

ROLLBACK: If the MORE option is specified, the ROLLBACK option reverts to the last
committed version of the header and waveform before reading more files.

RECALLTRACE: If the MORE option is specified, the RECALLTRACE option:
∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

HELP RECALLTRACE for a list of which header variables are committed, and
which are rolled back.)

DIR CURRENT: Read all simple filenames (with or without wildcards) from the current
directory. This is the directory from which you started SAC.

DIR name: Read all simple filenames (with or without wildcards) from the directory called
name. This may be a relative or absolute directory name.

filelist: file|wild .
file: A legal filename. This may be a simple filename or a pathname. The pathname can

be a relative or absolute one.
wild: A wildcard laden token that expands to a list of filenames. more details.

DEFAULT VALUES

READ COMMIT DIR CURRENT
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DESCRIPTION

All the same restrictions apply to READSDD as to the READ command. See the READ command
DESCRIPTION and EXAMPLES sections for more detail.

Any command which loads data into memory is monitored to maintain a level of confidence in the
event infomation when transfered from the SAC data buffer to the CSS data buffer. When READSDD
is used, the confidence is set to LOW, indicating that SAC should consider any matching event IDs
as artifacts and reassign the event ID of the incoming file. For more details, use HELP READ.

LATEST REVISION

Oct. 27, 1998 (Version 0.58)
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READSP

SUMMARY

Reads spectral files written by WRITESP and WRITESPE.

SYNTAX

READSP {AMPH|RLIM|SPE} {filelist}

INPUT

RLIM: Read real and imaginary components.
AMPH: Read amplitude and phase components.
SPE: Read spectral estimation subprocess files. The data is converted from power to

amplitude. The phase component is set to zeros.
filelist: A list of SAC binary data files. This list may contain simple filenames, full or

relative pathnames, and wildcard characters. See the READ command for a complete
description.

DEFAULT VALUES

READSP AMPH

DESCRIPTION

The WRITESP command writes each spectral data component to disk as a separate file. You may
then process each component separately. This command lets you reconstruct the spectral data from
the two components. See the WRITESP documentation for more details. The SPE option allows you
to read in and convert to spectral format, files that were written using the WRITESPE command in
the Spectral Estimation Subprocess. This allows you to use commands such as MULOMEGA and
DIVOMEGA on these spectral estimates.

Any command which loads data into memory is monitored to maintain a level of confidence in the
event infomation when transfered from the SAC data buffer to the CSS data buffer. When READSP
is used, the confidence is set to LOW, indicating that SAC should consider any matching event IDs
as artifacts and reassign the event ID of the incoming file. For more details, use HELP READ.

EXAMPLES

See the example in the WRITESP documentation.

SEE COMMANDS

WRITESP

REFERENCES

Spectral Estimation Subprocess Manual
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LATEST REVISION

April 21, 1989 (Version 10.4c)
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READSUDS

SUMMARY

Read data files in PC-SUDS format from disk into memory.

Note SUDS data enters SAC via SAC’s CSS data buffers. To understand how arrivals are handled, use HELP
READCSS and HELP PICKPREFS.

SYNTAX

READSUDS {MAXMEM v} {MORE} {VERBOSE ON|OFF} {SHIFT ON|OFF}
{COMMIT|ROLLBACK|RECALLTRACE} {DIR name} filelist

INPUT

MAXMEM: Specify the maximum fraction of physical memory to use when reading large
data sets. When this limit is reached, no more waveforms will be read, although other
tables may still be read. The default value for MAXMEM is 0.3.

MORE: See the READ command.
VERBOSE ON|OFF: If VERBOSE is ON, SAC displays extended information about the

waveforms being read, and prints a summary of the CSS tables that were filled. SAC
also displays a progress indicator for the conversion to SAC internal format.

SHIFT ON|OFF: If SHIFT is on, the origin time is set to zero, and other time related
header variables are shifted back to be consistent with the origin time. Some of the
distance related header variables are also affected. SHIFT ON is the default.

COMMIT: If the MORE option is specified, the COMMIT option commits headers and
waveforms in SAC memory -- removing any previous versions of headers or waveforms
from RAM -- prior to reading more files. COMMIT is the default.

ROLLBACK: If the MORE option is specified, the ROLLBACK option reverts to the last
committed version of the header and waveform before reading more files.

RECALLTRACE: If the MORE option is specified, the RECALLTRACE option:
∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

HELP RECALLTRACE for a list of which header variables are committed, and
which are rolled back.)

Note if the MORE option is not specified, the COMMIT, ROLLBACK, and RECALL-
TRACE options have no effect.

DIR name: The directory to be searched for sudsfile(s).
filelist: The name(s) of one or more suds files.

DEFAULT VALUES

READSUDS * MAXMEM 0.3 VERBOSE OFF COMMIT
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DESCRIPTION

See the READ command. Oct. 27, 1998 (Version 00.58)

Any command which loads data into memory is monitored to maintain a level of confidence in the event
infomation when transfered from the SAC data buffer to the CSS data buffer. When READSUDS is
used, the confidence is set to LOW, indicating that SAC should consider any matching event IDs as
artifacts and reassign the event ID of the incoming file. For more details, use HELP READ.

NOTES

READSUDS assumes that the data are still in PC byte-order, and swaps bytes as necessary while
reading the files.

The following SUDS headers should be populated:

∙ DESCRIPTRACE

∙ STATIONCOMP

∙ FEATURE

∙ EVENT

∙ ORIGIN

Statident structs for a given channel must have all fields set identically to allow joining: i.e. dt-
>dt_name = fe->fe_name = sc->sc_name.

There should be only 1 origin and 1 event in the SUDS file since PC-SUDS has no way to associate
origins with features or descriptraces.

ev->number must equal or->number to associate the event with the origin.

SUDS Magnitude, Authority, Program, Instrument, and Phase codes must be from the following code
lists in order to translate to CSS.

Suds Magnitude Codes

or->mag_type in origin (type char):
S: "ms"
b: "mb"
c: "md"
l: "ml"
m: "mw"
s: "ms"
w: "mw"

Suds Authority codes

or->authority in origin (type short): ev->authority in event

1000: "USGS-Menlo-Park"
1002: "CALNET"
1050: "RTP-USGS-Menlo-Park"
2000: "Geophysical-Institute-U-of-Alaska"
3000: "University-of-Washington"
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4000: "Lamont-Doherty-Geological-Observatory"
5000: "IRIS"
5100: "GSN"
5200: "ASRO"
5300: "PASSCAL"
6000: "LLNL"
7000: "LBL"
8000: "LANL"

Suds program codes

or->program in origin (type char):

’7’: "Hypo-71"
’h’: "HypoInverse"
’l’: "HypoLayer"
’c’: "Centroid"
’v’: "Velest"

Suds event codes

ev->ev_type in event (type char):

’e’: "ke" known earthquake
’E’: "qb" quarry blast
’n’: "kn" known nuclear explosion
’i’: "iq" icequake
’r’: "rq" regional earthquake
’t’: "tq" teleseismic earthquake
’K’: "kr" known rockburst
’k’: "sr" suspected rockburst
’m’: "sm" suspected mine explosion
’M’: "km" known mine explosion
’s’: "se" suspected earthquake
’S’: "sn" suspected nuclear explosion
’l’: "ls" landslide
’d’: "si" suspected induced event
’D’: "ki" known induced event
’x’: "sx" suspected experimental explosion
’X’: "kx" known experimental explosion

Suds instrument codes

suds_statident->inst_type (type short):

0: "Unk"
1: "sp-usgs"
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2: "sp-wwssn"
3: "lp-wwssn"
4: "sp-dwwssn"
5: "lp-dwwssn"
6: "hglp-lamont"
7: "lp-hglp-lamont"
8: "sp-sro"
9: "lp-sro"
10: "sp-asro"
11: "lp-asro"
12: "sp-rstn"
13: "lp-rstn"
14: "sp-uofa-U-of-Alaska"
15: "STS-1/UVBB"
16: "STS-1/VBB"
17: "STS-2"
18: "FBA-23"
19: "Wilcoxin"
50: "USGS-cassette"
51: "GEOS"
52: "EDA"
53: "Sprengnether-refraction"
54: "Teledyne-refraction"
55: "Kinemetrics-refraction"
300: "amplifier"
301: "amp/vco"
302: "filter"
303: "summing-amp"
304: "transmitter"
305: "receiver"
306: "antenna"
307: "battery"
308: "solar-cell"
309: "discriminator"
310: "discr-rack"
311: "paper-recorder"
312: "film recorder"
313: "smoked glass recorder"
314: "atod convertor"
315: "computer"
316: "clock"
317: "time receiver"
318: "magnetic tape"
319: "magntic disk"
320: "optical disk"
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SUDS Phases

suds phases in fe->feature (type short)

0: "none"
1: "window"
2: "f finis"
3: "MaxAmp"
50: "P-first"
51: "P"
52: "P*"
53: "PP"
54: "PPP"
55: "PPPP"
56: "PPS"
57: "Pg"
58: "Pn"
59: "Pdiff"
60: "PcP"
61: "PcPPKP"
62: "PcS"
63: "pP"
64: "pPP"
65: "PKP"
66: "PKPPKP"
67: "PKPPKS"
68: "PKPSKS"
69: "PKS"
70: "pPKS"
71: "PKKP"
72: "PKKS"
73: "PcPPKP"
74: "PcSPKP"
100: "S-first"
101: "S"
102: "S*"
103: "SS"
104: "SSS"
105: "SSSS"
106: "Sg"
107: "Sn"
108: "ScS"
109: "SPcS"
110: "sS"
111: "sSS"
112: "sSSS"
113: "SScS"
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114: "ScSPKP"
115: "ScP"
116: "SKS"
117: "SKKS"
118: "SKKKS"
119: "SKSSKS"
120: "SKP"
121: "SKKP"
122: "SKKKP"
201: "Lg"
202: "Lr"
203: "Lr2"
204: "Lr3"
205: "Lr4"
206: "Lq"
207: "Lq2"
208: "Lq3"
209: "Lq4"
301: "t"

SEE COMMANDS

READ, PICKAUTHOR, PICKPHASE, COMMIT, ROLLBACK, RECALLTRACE

LATEST REVISION

October 27, 1998 (Version 00.58)
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READTABLE

SUMMARY

Reads alphanumeric data files in collumn format on disk into memory.

SYNTAX

READTABLE {options} {filelist}

where options is one or more of the following:

MORE
TRUST ON|OFF
COMMIT|ROLLBACK|RECALLTRACE
DIR CURRENT|name
FREE|FORMAT text **** NOTE: the FORMAT option is not working. ****
CONTENT text
HEADER number

ALL options must preceed any element in the filelist. The last two options may also be placed on the first line
of file itself.

INPUT

MORE: Append the new data files after the old ones in memory. If this option is missing,
the new data replaces the old data in memory. See the READ command for more
details about this option.

Note: if the MORE option is not specified, the COMMIT, ROLLBACK, and RECALL-
TRACE options have no effect.

TRUST: This option is used to resolve an ambiguity in converting files from SAC to CSS
format. When converting the data, matching event IDs could mean the files have
identical event information, or they could be an artifact of the merging of these two
very different formats. When TRUST is ON, SAC is more likely to accept matching
event IDs as identical event information than when TRUST is OFF, depending on the
history of READ commands associated with the current data files in memory.

COMMIT: If the MORE option is specified, the COMMIT option commits headers and
waveforms in SAC memory -- removing any previous versions of headers or waveforms
from RAM -- prior to reading more files. COMMIT is the default.

ROLLBACK: If the MORE option is specified, the ROLLBACK option reverts to the last
committed version of the header and waveform before reading more files.

RECALLTRACE: If the MORE option is specified, the RECALLTRACE option:
∙ reverts to the last committed version of the waveform
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

HELP RECALLTRACE for a list of which header variables are committed, and
which are rolled back.)

DIR CURRENT: Read all simple filenames (with or without wildcards) from the current
directory. This is the directory from which you started SAC.
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DIR name: Read all simple filenames (with or without wildcards) from the directory called
name. This may be a relative or absolute directory name.

FREE: Read the data in the filelist in free format (space delimited) mode.
FORMAT text: Read the data in the filelist in fixed format mode. The format statement

to use is given in text.
CONTENT text: Define the content of the data in the filelist. The meaning of the

content text is described below.
HEADER: The number of header lines in the file to skip.
filelist: A list of alphanumeric files. This list may contain simple filenames, full or rel-

ative pathnames, and wildcard characters. See the READ command for a complete
description.

DEFAULT VALUES

READTABLE COMMIT FREE CONTENT Y. DIR CURRENT

DESCRIPTION

All commands in SAC work on the data that is currently in memory. This data in memory is analogous
to the temporary or working files used by a text editor. The READ command reads binary SAC data
files into memory. This command can be used to read a wide variety of alphanumeric data files into
memory. These files can be in a fixed format or in free format. They may contain evenly or unevenly
spaced data. They may contain more than one set of data. Once in memory the WRITE command
can be used to create SAC binary data files for later use.

The simplest use of this command is free field input of a Y data set. This is also the default. Free field
input of X-Y pairs can be done by simply changing the content option. By combining the fixed format
and content options, this command can also be used to read very complicated formatted output from
other programs directly into SAC. Multiple Y data sets can be read from the same file using this
method. Only a single X data set is allowed.

The basic header variables needed for processing are computed. These are NPTS, B, E, DELTA,
LEVEN, DEPMIN, DEPMAX, and DEPMIN. If there is only a single Y data set, the name of the data
file in memory will be the same as that of the alphanumeric disk file. If there are multiple Y data sets
in the file, a two digit sequence number is appended to the file name.

Each line of the alphanumeric data file is read in either free format or using the format statement
provided. Each line can be up to 160 characters long. In the case of a free format file, the number
of data entries in each line is also determined. The content field is then used to determine what to
do with each of these data entries. Each specific character in the context field represents a different
kind of data element and the order of these characters mimics the order of the data in each line of
the file. The meanings of the allowed characters in the content field are given below:

Y: Next entry belongs to Y (dependent variable) data set.
X: Next entry belongs to X (independent variable) data set.
N: Next entry belongs to next Y data set.
P: Next pair of entries belong to X and Y data sets.
R: Next pair of entries belong to Y and X data sets.
I: Ignore (skip) this data element.

An optional repetition count may follow any of the above characters. This repetition count is a one
or two digit integer and has the same meaning as repeating the content character that number of
times. A period (".") is an infinite repetition count and means use the last characters meaning to
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decode the remaining data elements in the line. The period can only appear at the end of a content
field.
Any command which loads data into memory is monitored to maintain a level of confidence in the event
infomation when transfered from the SAC data buffer to the CSS data buffer. When READTABLE
is used, the confidence is set to LOW, indicating that SAC should consider any matching event IDs
as artifacts and reassign the event ID of the incoming file. For more details, use HELP READ.

EXAMPLES

To read in X-Y pairs in free format where there may be any number of pairs on the same line:

SAC> READTABLE CONTENT P. FILEA

You can’t break an X-Y pair between lines in the file. Assume you have a file which contains formatted
data including a set of X and Y data buried somewhere in the middle of each line. Other data that
is of no interest is also on each line. Also assume that the Y data preceeds the X data in each line.
Once the format statement needed to read in the proper data is determined, the following command
could be used:

SAC>READTABLE CONTENT R FORMAT \(24X,F12.3,14X,F10.2\) FILEB

Special Note: The atsign "" BEFORE EACH LEFT AND RIGHT PARENTHESIS IS SAC’s escape
character, and is necessary because SAC uses parenthesis in inline functions. Since there is no repeat
count, only a single Y-X pair will be read from each line of the file.
Assume you have a file, FILEC, which contains a table consisting of an X value followed by Y values
belonging to seven different data sets on each line. This data is in (8F10.2) format. To create seven
different sets of data in memory, the following command could be used:

SAC> READTABLE CONTENT XN . FORMAT \(8F10.2\) FILEC

This would produce seven different "data files" in memory with the names FILEC01, FILEC02, etc.
Now assume that you did not want the fifth Y data set to be read. This could be done by executing
the following command:

SAC> READTABLE CONTENT XN6 FORMAT \(5F10.20X,2F10.2\) FILEC

Another way that means less typing but is slightly less efficient is given below:

SAC> READTABLE CONTENT XN4IN2 FORMAT \(8F10.2\) FILEC

Note: for examples of the behavior of the COMMIT, ROLLBACK, and RECALLTRACE
options, see the commands of the same names.

ERROR MESSAGES

∙ 1301: No data files read in.

– haven’t given a list of files to read.
– none of the files in the list could be read.

∙ 1020: Invalid inline function name:

– Expected inline function. Preceed parenthesis with an atsign.

∙ 1320: Available memory too small to read file

∙ 1314: Data file list can’t begin with a number.

∙ 1315: Maximum number of files in data file list is
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WARNING MESSAGES

∙ 0101: opening file

∙ 0108: File does not exist:

HEADER CHANGES

B, E, DELTA, LEVEN, DEPMIN, DEPMAX, DEPMEN.

SEE COMMANDS

READ, WRITE, COMMIT, ROLLBACK, RECALLTRACE

LATEST REVISION

Oct. 27, 1998 (Version 0.58)
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REPORT

SUMMARY

Informs the user about the current state of SAC.

SYNTAX

REPORT {list}

where list is one or more of the following:

APF, COLOR, CUT,
DEVICES, FILEID, GTEXT,
HPF, LINE, MEMORY,
MTW, PICKS, SYMBOL,
TITLE, XLABEL,
XLIM, YLABEL, YLIM,
WINDOW

INPUT

APF: The name of the alphanumeric pick file.
COLOR: The current color attributes. No color table is read in until a graphics device is

activated. Unless a graphics device has been activated, this report will not be correct.
CUT: The current CUT status.
DEVICES: A list of the graphics devices available on your system.
FILEID: The current file id display attributes.
GTEXT: The current graphics text attributes.
HPF: The name of the HYPO pick file.
LINE: The current linestyle attributes.
MEMORY: A dump of the available memory blocks from the memory manager. This is

probably of little interest unless the memory manager is not working properly.
MTW: The current measurement time window status.
PICKS: The current time pick display attributes.
SYMBOL: The current symbol drawing attributes.
TITLE: The current plot title attributes.
XLABEL: The current x axis label attributes.
XLIM: The current x axis plot limits.
YLABEL: The current y axis label attributes.
YLIM: The current y axis plot limits.
WINDOW: The current window sizes

DESCRIPTION

This command can be used to find out about the current values of certain SAC options. The values
are printed to the terminal.
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EXAMPLES

To get a list of the current color attributes:

SAC> REPORT COLOR
COLOR option is ON
DATA color is YELLOW
INCREMENT data color is OFF
SKELETON color is BLUE
BACKGROUND color is NORMAL

To get the names of the HYPO and card image pick files:

SAC> REPORT APF HPF
Alphanumeric pick file is MYPICKFILE
HYPO pick file is HYPOPICKFILE

LATEST REVISION

Version 102.0
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RESPONSE

SUMMARY

Download responses in sac-polezero or evalresp format

SYNTAX

RESPONSE {sacpz | polezero | pz | evalresp | evresp | resp }
{network network} {station station}
{location location} {channel channel}
{time time} {time start end}
{verbose}

INPUT

sacpz | polezero | pz: Download SAC polezero response files (default)
evalresp | evresp | resp: Download evalresp response files
network: Set the network to download the response of
station: Set the station to download the response of
location: Set the location to download the response of
channel: Set the channel to download the response of
time time-of-data: Set a specific time that the response includes
time start end: Set the time range to download responses
verbose: Watch the details of the response download process

DEFAULT VALUES

RESPONSE SACPZ

DESCRIPTION

Download responses for time-series data in memory or specified using the command options.

Data in Memory. To download responses for data in memory, the following header values must be
defined:

∙ knetwk (Network)
∙ kstnm (Station name)
∙ khole (Location identifier)
∙ kcmpnm (Component)
∙ kzdate/kztime (Absolute time of the data, Optional)

An example of getting the response for XE.DOOR..BHZ in either sacpz or evalresp:

SAC> r XE.DOOR..BHZ.M.1994.160.003345.sac
SAC> response
Writing data to
SAC_PZs_XE_DOOR__BHZ_1994-06-09T00:33:45_1994-06-09T01:33:44 [ 1.02 KiB]
SAC> response evalresp
Writing data to RESP.XE.DOOR..BHZ [ 49.80 KiB]
SAC>
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For specific responses, use the net, sta, loc, and cha options:

SAC> response resp net BK sta BKS loc * cha BHZ
Writing data to RESP.BK.BKS..BHZ [ 73.52 KiB]

Time Range: If no time period is specified, then the total duration is requested. See DATA ACCESS for time
formats.

Wildcards are possible only in the location and channel command options.

Output file names are in the form of:

∙ SAC_PZs_net_sta_loc_cha_time

∙ SAC_PZs_net_sta_loc_cha_start_end

∙ RESP.net.sta.loc.cha

If any of the parts (net, sta, loc, or cha) are wildcards, they are left blank in the filename. If the file already exists,
a period with a number is appended to the filename, e.g.:

∙ RESP.BK.BKS..BHZ

∙ RESP.BK.BKS..BHZ.0

∙ RESP.BK.BKS..BHZ.1

File TRANSFER discusses sac POLEZERO files and RESP files and shows how they are used to instrument-correct
a time-series data file.

ERROR MESSAGES

∙ 3264: Response request either requires a data file with meta data knetwm, kstnm, khole, kcmpnm
[kzdate/kztime] or net, sta, loc, and cha [time/start/end]

SEE COMMANDS

STATION, DATA, METADATA, EVENT, DATA ACCESS, TRANSFER

LATEST REVISION

Version 102.0
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REVERSE

SUMMARY

Reverse the order of data points.

SYNTAX

REVERSE

DESCRIPTION

This command reverses the order of data points in each file in memory.

LATEST REVISION

May 15, 1987 (Version 10.2)
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RGLITCHES

SUMMARY

Removes glitches and timing marks.

SYNTAX

RGLITCHES options

where options are one or more of the following:

THRESHOLD v
TYPE LINEAR|ZERO
WINDOW ON|OFF|pdw
METHOD ABSOLUTE|POWER|RUNAVG

INPUT

THRESHOLD v: Set onset threshold level to v. Data points whose absolute values are
greater than or equal to v are corrected.

TYPE LINEAR: Correct data points above the threshold by linearly interpolating between
the data points on each side of the bad data.

TYPE ZERO: Correct data points above the threshold by setting them to zero.
METHOD ABSOLUTE: Corrects data points having absolute values >= the threshold

v.
METHOD POWER: Corrects data points where the power of the signal computed using

a backward difference method exceeds the threshold v.
METHOD RUNAVG: Corrects data points by calculating a running average and standard

deviation in a window SWINLEN seconds long that moves from the end of the trace to
the beginning of the trace in 1-point increments. Each new point is compared to the
average, and if it differs by more than THRESH2 times the current standard deviation,
and if the difference is greater than MINAMP counts, it is replaced by the current
mean. This method is always applied to the entire seismogram.

There are three options associated with the RUNAVG method. These are

SWINLEN v: Set length in seconds of running average window.
THRESH2 v: Set the threshold value for glitches.
MINAMP v: Set the minimum amplitude for glitches.
WINDOW ON: Only correct data points within the previously defined pdw.
WINDOW OFF: Correct data points within the entire data file.
WINDOW pdw: Only correct data points within the defined pdw. A pdw consists of a

starting and a stopping value of the independent variable, usually time, which defines
the desired window of data that you wish to make measurements on. See the CUT
command for a complete explanation of how to define and use a pdw. Some examples
are given below.

DEFAULT VALUES

RGLITCHES THRESHOLD 1.0E+10 TYPE LINEAR WINDOW OFF METHOD ABSOLUTE SWINLEN 0.5
THRESH2 5.0 MINAMP 50
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DESCRIPTION

This command can be used to smooth out irregularities caused by "glitches" in the data acquistion
system and by timing marks produced by some data acquistion systems. It checks each data point
to see if it’s value is greater than or equal to the requested "onset threshold level". It then zeros out
these bad data points or linearly interpolates between the data point just before and the data point
just after the bad ones. You can have it remove glitches in the entire file or select a smaller portion
of the file by setting the window. Using this option lets you remove glitches that are smaller than the
maximum in the entire data file.

EXAMPLES

Some examples of pdw are given below:

B 0 30: First 30 secs of the file.
T3 -1 T7: From 1 sec before T3 time pick to T7 time pick.
30.2 48: 30.2 to 48 secs relative to file zero.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

LATEST REVISION

March, 1997 (Version 00.53a)
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RMEAN

SUMMARY

Removes the mean.

SYNTAX

RMEAN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

DEPMAX DEPMIN DEPMEN

LATEST REVISION

October 11, 1984 (Version 9.1)
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RMS

SUMMARY

Computes the root mean square of the data within the measurement time window.

SYNTAX

RMS {NOISE ON|OFF|pdw},{TO USERn}

INPUT

NOISE ON: Turn noise normalization option on.
NOISE OFF: Turn noise normalization option off.
NOISE pdw: Turn noise normalization option on and change noise "partial data window."

A pdw consists of a starting and a stopping value of the independent variable, usually
time, which defines the desired window of data that you wish to make measurements
on. See the CUT command for a complete explanation of how to define and use a
pdw. Some examples are given below.

TO USERn: Define the user header variable in which to store the result. n is an integer
in the range 0 to 9.

DEFAULT VALUES

RMS NOISE OFF TO USER0

DESCRIPTION

This command computes the root mean square of the data within the current measurement time
window (see MTW.) The result is written into one of the floating point user header variables. The
result may be corrected for noise if desired by defining a noise window. The general form of the
calculation is: where the first summation is over the signal window and the second is over the
optional noise window.

EXAMPLES

To compute the uncorrected root mean square of data between the two header fields, T1 and T2,
and to store the result into the USER4 header field:

SAC> MTW T1 T2
SAC> RMS TO USER4

To compute the corrected root mean square using a noise window 5 seconds long ending at the header
field T3:

SAC> MTW T1 T2
SAC> RMS NOISE T3 -5.0 0.0

HEADER CHANGES

USERn
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SEE COMMANDS

MTW, CUT

LATEST REVISION

March 22, 1991 (Version 10.6d)
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ROTATE

SUMMARY

Rotates a pair of data components through an angle.

SYNTAX

ROTATE {to GCP|TO v|THROUGH v|,{NORMAL|REVERSED}

INPUT

TO GCP: Rotate to the "great circle path". Both components must be horizontals. The
station and event coordinates header fields must be defined.

TO v: Rotate to the angle v (degrees). Both components must be horizontals.
THROUGH v: Rotate through the angle v in degrees. One component may be vertical.
NORMAL: Output (horizontal) components with the second leading the first by 90 degrees

(clockwise rotation looking down).
REVERSED: Output (horizontal) components with the second lagging the first by 90

degrees (counterclockwise rotation looking down).

DEFAULT VALUES

ROTATE TO GCP NORMAL

DESCRIPTION

Pairs of data components are rotated in this command. Each pair must have the same station and
event header variables, NPTS, B, and DELTA

TO option: Both components must be horizontals: CMPAZ must be defined and CMPINC must be
90 degrees. After the rotation is completed, the first component of each pair will be directed along the
angle given after the TO keyword. If the TO GCP option is used, the station and header fields STLA,
STLO, EVLA, and EVLO must be defined so that the backazimuth (BAZ) can be calculated. After the
rotation, the first component will be directed along the angle given by the station-event backazimuth
plus or minus 180 degrees (to keep the final angle between 0 and 360 degrees). This component
therefore points from the event toward the station (the radial direction), and the second component
is called "transverse" or "tangential". (The (upward) vertical, radial, and transverse directions form
a left-handed coordinate system.)

The NORMAL and REVERSED options apply only to horizontal rotations. If the NORMAL option
is used, the second component leads the first by 90 degrees. If the REVERSED option is used, it
lags the first by 90 degrees. ROTATE TO GCP REVERSED results in a transverse component in the
opposite direction from ROTATE TO GCP NORMAL, a convention preferred by some researchers.

EXAMPLES

To rotate a pair of horizontals to a specified angle for the first component:

SAC> READ XYZ.N XYZ.E
SAC> ROTATE TO 123.43
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To rotate two sets of horizontals so that the first component in each set along the great circle path
and then write SAC files for the radial and transverse components:

SAC> READ ABC.N ABC.E DEF.N DEF.E
SAC> ROTATE TO GCP
SAC> W ABC.R ABC.T DEF.R DEF.T

HEADER CHANGES

CMPAZ, CMPINC, KCMPNM, DEP*

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 2001: Command requires an even number of data files.

∙ 2004: Insufficient header information for rotation:

– STLA, STLO, EVLA, EVLO must be defined for GCP option.

∙ 2002: Following files are not an orthogonal pair:

∙ 2003: Following files are not both horizontals:

– TO option only works on horizontals.

LATEST REVISION

January 8, 1983 (Version 8.0)

401



ROTINC

SUMMARY

Rotate a set of 3 perpendicular components either around the vertical (V) direction (TO VRT or TO VNE) or
around the Transverse (T) direction (TO LQT)

SYNTAX

Rotations around the vertical (cmpinc = 0 degrees) direction:

ROTINC {TO VRT|VNE}

Rotations around the transverse (cmpaz = baz-90) direction:

ROTINC {TO LQT} {ANGLE angle}

or:

ROTINC {TO LQT} {iP | iS} {vP alpha} {vS beta} {RAY p} {VERBOSE}

INPUT

TO VRT: rotate into vertical,radial, transverse coordinate system
TO VNE: rotate into system aligned with vertical, north, and east
TO LQT: rotate into P, SV, and SH coordinate system
ANGLE a: Rotation through an angle a (V to L) around T. L cmpinc = a
iP: incident P wave: calculated L cmpinc is the incident P apparent angle
iS: Incident S wave: calculated Q cmpinc is the incident SV apparent angle
vP v: v is P-wave velocity at the surface (default 5.8)
vS v: v is S-wave velocity at the surface (default 3.36)
RAY p: ray parameter, p in sec/km (no default value, so must be set)
VERBOSE: prints information to the screen for iP or iS options (default off)

DESCRIPTION

Given three perpendicular components of a recorded time series, ROTINC rotates the set into the
selected coordinate system. It works its way through all records in memory until it fails to find three
consecutive perpendicular traces. It assumes vertical up (cmpinc = 0.0), cmpaz measured clockwise
from N. T to the right from the vertical-radial plane facing towards the station (baz - 90). Hence,
VNE, VRT, and LQT are all left-handed coordinate systems.

For TO LQT, the "TO LQT" can be left out because that is the only option for which there are
additional arguments. For TO LQT, there are two choices:

1 ROTINC ANGLE a: rotation around the T axis (a=0.0 is up)
2.ROTINC iP or ROTINC iS: rotation around T, through a calculated angle that is calcu-
lated assuming the P or SV wave is incident on the free surface (top of a half space). For
iP, the output cmpinc for L is often called the apparent angle: the arctangent of the radial
(R) amplitude divided by the vertical (V) amplitude. For iS, the output cmpinc for Q is
the incident SV apparent angle. For ROTINC iS, the incident SV angle must be less than
the critical angle: vP * RAY < 1.0.
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EXAMPLES

Rotations around the vertical are straightforward: either TO VNE or TO VRT with no arguments.

Here are examples for TO LQT. For a rotation around T through an angle 24.44:

SAC> ROTINC ANGLE 24.44 (or ROTINC TO LQT ANGLE 24.44)
Input: rotation angle from V to L

For a free-surface correction (Note: one must specify RAY.) Here p = sin(21.32)/5.8) = 0.063, where 21.32 is
the P incident angle:

SAC> ROTINC iP RAY 0.063 VERBOSE
Incident P wave; free-surface response
vP: 5.80 km/s vS: 3.36 km/s Ray Param: 0.063000 s/km
Apparent angle: 24.44

SAC> message &1,cmpinc &1,kcmpnm
24.4416
L

Generally vP and vS are the velocities in the surface layer. If the wavelength of the dominant arrivals are larger
than the thickness of that layer, one may have to average over two or more layers. This can be tested by
plotting the vertical-radial particle motion (PLOTPM) as the output motion is along the apparent angle. The
ray parameter will not be changed. Here is an example for the same ray but assuming the wavelengths are long
enough to average over the whole crust:

SAC> ROTINC iP vp 8.04 vs 4.47 RAY 0.063 VERBOSE
Incident P wave; free-surface response
vP: 8.04 km/s vS: 4.47 km/s Ray Param: 0.063000 s/km
Apparent angle: 32.71

Here is an example for iS (p = sin(23.12)/3.36) = 0.1169, where 23.12 is the SV incident angle:

SAC> ROTINC iS RAY 0.1169 VERBOSE
Incident S wave; free surface response
vP: 5.80 km/s vS: 3.36 km/s Ray Param: 0.116900 s/km
Apparent angle: 115.82

SAC> message &2,cmpinc &2,kcmpnm
115.817
Q

There is often interference with other arrivals for SV on the vertical, so the SV on V and R are generally not that
similar. Hence V-R particle motion is less useful for SV than it is for P.

EQUATIONS

The relevant cmpinc (apparent angle) is computed using the following equations:

∙ iP:
L cmpinc = atan(2*Vs*p*sqrt(1-(Vs*p)**2)/(1-2*(Vs*p)**2) )

∙ iS:
Q cmpinc = atan(Vp*(1-2*(Vs*p)**2))/(2*Vs**2*p*sqrt(1-(Vp*p)**2)) )

where p is the ray parameter. Equations are based on Problem 5.6 in Aki and Richards, 2002, pg. 184.
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HEADER CHANGES

CMPINC, CMPAZ, KCMPNM, DEPMAX, DEPMIN, DEPMEN

AUTHOR

This command was originally contributed by Frederik Tilmann in 2015,

LATEST REVISION

May 2017 (Version 102.0)
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RQ

SUMMARY

Removes the seismic Q factor from spectral data.

SYNTAX

RQ [Q v],[R v],[C v]

INPUT

Q v: Set quality factor to v.
R v: Set distance in km. to v.
C v: Set group velocity in km/sec to v

DEFAULT VALUES

RQ Q 1. R 0. C 1.

DESCRIPTION

The equation used to correct the amplitude is given below:

AMP_corrected(F) = AMP_uncorrected(F) * Exp( (pi*R*F) / (Q*C) )

where: F is the frequency in Hz. R is the distance in km. C is the group velocity in km/sec. Q is the
the nondimensional quality factor.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1305: Illegal operation on time series file

WARNING MESSAGES

∙ 1604: Following file now in amplitude-phase format:

– file was in real-imaginary format.

LIMITATIONS

Can only handle constants for the various parameters. Modifications to allow these parameters to
vary with frequency may be added at a later date.
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LATEST REVISION

January 8, 1983 (Version 8.0)
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RTREND

SUMMARY

Removes the linear trend.

SYNTAX

[RTR]END [QUIET|VERBOSE]

INPUT

QUIET: If given, supresses screen output
VERBOSE: If given, there is output to the screen about slope removed, etc.
DEFAULT VALUES: RTR QUIET

DESCRIPTION

A least-squares curve-fit to a straight line is calculated. This straight line (trend and intercept) is then
"subtracted" from the data. The data does not have to be evenly spaced. The sequence RMEAN ;
RTREND gives the same result as siimply entering RTREND.

OUTPUT: The best-fitting straight line parameters for the last file in the data file list are written to
blackboard variables begining with RTR.

∙ RTR_SLP is the slope of the line.

∙ RTR_SDSLP is the standard deviation in the slope.

∙ RTR_YINT is the y intercept of the line.

∙ RTR_SDYINT is the standard deviation in the y intercept.

∙ RTR_SDDTA is the standard deviation in the data.

∙ RTR_CORRCF is the data correlation coeficient.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

July, 2011 (Version 101.5)
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SAVEIMG

SUMMARY

Saves a display graphics window to an image file in a variety of formats

SYNTAX

[SAVE]IMG filename.format

INPUT

filename: Filename for the saved image.
format: Format for saved file from among one of the four choices:

∙ ps (Postscript);
∙ pdf (Portable Document Format);
∙ png (Image file) [No longer included in the binary SAC package]
∙ xpm (Pixmap format)

DESCRIPTION

This command will save a current plot to an image file format including Postscript (ps), Portable
Document Format (pdf), Image file (png), and Pixmap file (xpm). The format is derived from the
filename’s extension.

An advantage of SAVEIMG to producing SGF files is that letters and numbers in .sgf files are made
up of drawn line segments, while those in the .ps or .pdf images produced by SAVEIMG use the
Postscript feature of producing fonts directly. Also, for many applications, a lower-resolution .png or
.xpm file is sufficient. Because of potential problems with portability, the PNG format is not enabled
in the default builds of SAC.

The title in a save xxx.pdf is made with a font that is larger than that used in a title for p1 or p1
print because in producing the PDF file, a postscript font (with higher resolution) is used.

It is possible to produce plots in .png format if one builds SAC from sources (see ${SACHOME}/README}.

Output .xpm and .png files will have the aspect ratio of the current window. (See WINDOW for
instructions about choosing the size and aspect ratio of display windows.) The .pdf and .ps files
produced by SAVEIMG will have a fixed aspect ratio of X/Y = 11/8.5 = 1.2941. To make the output
.ps or .pdf file look most like a P1 or P2 output it is best to choose a display window aspect ratio of
1.2941.

As with .sgf files, the plots will not have a tight boundingbox. For .sgf files the script ${SA-
CHOME}/bin/sgftoeps.csh will produce an EPS file with a tight boundingbox if the program Gh-
sostscript (gs) is in the path. Similar scripts could be written for the output files from SAVEIMG.

To save a plot using SAVEIMG, the plot must already be visible. SAVEIMG will not work in the
SSS subprocess, but if one enters qs after creating the plot, SAVEIMG can then be used for that
image. Also, if a frame has been opened to produce multiple panels in a single file, saveimg cannot be
used until after the ENDFRAME command. See ${SACHOME}/aux/macros/demo for scripts with
examples.
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EXAMPLES

To save a spectrogram in three different formats:

SAC> fg seismo
SAC> spectrogram
SAC> save spectrogram.ps
SAC> save spectrogram.xpm
SAC> save spectrogram.pdf

The plots at the end of the CONVOLVE, CORRELATE, and TUTORIAL help file have an aspect
ratio of 3.78 (because the larger aspect ratio takes less vertical space, which is useful if the plot is to
be included in a docyment). The following commands can be used to produce such a plot file:

SAC> fg seismo
SAC> window 3 x .04 .94 y .48 .93 aspect 3.78
SAC> bw 3
SAC> p2
SAC> save seismo.xpm

LATEST REVISION

version 102.0
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SCALLOP

Note: This command has been renamed SONOGRAM (SONO). Either command, SONOGRAM or SCALLOP,
will do the same thing.

SUMMARY

Calculate a spectrogram equal to the difference between two smoothed versions of the same spectrogram.

SYNTAX

SCALLOP options

where options are one or more of the following:

WINDOW v
SLICE v
ORDER n
CBAR {ON|OFF}
YMIN v
YMAX v
FMIN v
FMAX v
BINARY|FULL
METHOD {PDS|MEM|MLM}
{COLOR|GRAY}
PRINT {pname}

INPUT

WINDOW v: Set the sliding data window length in seconds to v. This window length
determines the size of the fft.

SLICE v: Set the data slice interval in seconds to v. A single spectrogram line is produced
for each slice interval.

ORDER n: Specifies the number of points in the autocorrelation function used to compute
the spectral estimate.

CBAR {ON|OFF}: Turn reference color bar on or off.
BINARY|FULL: Produce a binary image, or a full color image.
YMIN v: Specifies the minimum frequency to plot.
YMAX v: Specifies the maximum frequency to plot.
FMIN v: Specifies the smallest bandwidth over which each slice in the spectrogram will

be smoothed.
FMAX v: Specifies the maximum bandwidth over which each slice in the spectrogram will

be smoothed.
METHOD {PDS|MEM|MLM}: Specifies the type of spectral estimator used. MLM

stands for maximum likelihood and MEM stands for maximum entropy spectral esti-
mators, respectively. See description and references below.

{COLOR|GRAY}: Specifies a color or grayscale image.
PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the

default printer if pname is not used. (This makes use of the SGF capability.)
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DEFAULT VALUES

SCALLOP WINDOW 2 SLICE 1 METHOD MEM ORDER 100 YMIN 0 YMAX FNYQUIST FMIN 2.0
fmax 6.0 full color

DESCRIPTION

The scalloping command computes a spectrogram equal to the difference between two smoothed
version of the same spectrogram. Depending on the choice of smoothing parameters, fmin and fmax,
the resulting spectrogram can enhance small amplitude spectral features that are more difficult to
observe in a conventional spectrogram. This is particularly useful when looking for features like high
frequency spectral modulations in seismic signals from mine blasts (c.f., Hedlin, 1990, Wuster, 1993).

LIMITATIONS

The size of the image in the frequency direction is 512.

PROBLEMS

There is currently very little error checking of the headers to make sure that they are from the same
component and are contiguous in time. This will be corrected in the future.

HEADER VARIABLES

REQUIRED: DELTA
CHANGED: NPTS, DELTA, B, E, IFTYPE, DEPMIN, DEPMAX, DEPMEN
CREATED: NXSIZE, XMINIMUM, XMAXIMUM, ,BREAK NYSIZE, YMINIMUM, YMAX-

IMUM

LATEST REVISION

May 26, 1995 (Version 00.31)
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SETBB

SUMMARY

Sets (defines) values of blackboard variables.

SYNTAX

SETBB variable {APPEND} value {variable {APPEND} value ...}

INPUT

variable: The name of a blackboard variable. It may be a new variable or one that already
has a value. The variable name can be up to 32 characters in length.

value: The new value of that blackboard variable. It must be enclosed in single or double
quotes if it contains any spaces.

APPEND: Append value to the old value of variable. If this option is omitted then the
new value replaces the old value.

DESCRIPTION

The blackboard is a place to temporarily store information. This information can later be accessed
by the GETBB command or used directly in a command by preceeding the name of the variable
with a percent sign ("%".) If you want to concantenate some other text string on the end of a
blackboard variable you need to put a second percent sign at the end of the name. You can also
use the EVALUATE command to perform basic arithmetic operations on blackboard variables and
store the results in new blackboard variables. You can unset (delete) blackboard variables using the
UNSETBB command.

EXAMPLES

To set several blackboard variables at once:

SAC> SETBB C1 2.45 C2 4.94

To later use these variables in a command:

SAC> BANDPASS CORNERS %C1 %C2

To set a blackboard variable that contains spaces:

SAC> SETBB MYTITLE ’Sample filter response’

To check and make sure the value is correct:

SAC> GETBB MYTITLE
MYTITLE = Sample filter response

To later use this variable in the title command it must be enclosed in quotes and have a percent sign
on both ends of the name:

SAC> TITLE ’%MYTITLE%’

See the section on Macros in the SAC Users Manual for more examples of the use of blackboard
variables in macros.
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OUTPUT_FORMAT

Prior to SAC v102.0, floating-point numbers in message, listhdr, and evaluate displayed limited pre-
cision. OUTPUT_FORMAT, introduced in v102.0, allows one to see values with higher precision.
The command syntax is setbb output_format xxx, where xxx can be default (%g), short (%.4f), long
(%.15f), shortG (%.5g), longG (%.15g), shortE (%.4e), longE(%.15e), and off (reverts to old SAC
format). For examples showing the utility of OUTPUT_FORMAT, see the section on Floating-Point
Precision in SAC in TUTORIAL.

SEE COMMANDS

GETBB, EVALUATE, UNSETBB, LISTHDR, MESSAGE

LATEST REVISION

Version 102,0
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SETDEVICE

SUMMARY

Defines a default graphics device to use in subsequent plots.

SYNTAX

SETDEVICE name

INPUT

name: The name of a graphics device.

DESCRIPTION

This command lets you define the name of a default graphics device to use in subsequent plots. This
command is only useful before you do any plotting. It should be placed in your default macro file. You
can override the name specified in this command by using the BEGINDEVICES command. See the
section on Graphics Devices in the SAC Users Manual. Also see the section on Macros for information
on specifying and using a default macro file.

SEE COMMANDS

BEGINDEVICES

LATEST REVISION

May 15, 1987 (Version 10.2)
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SETMACRO

SUMMARY

Defines a set of directories to search when executing a SAC macro file.

SYNTAX

SETMACRO {MORE} directory {directory ...}

INPUT

directory: The name of a directory in which SAC macro files are stored. This may be
either a relative or absolute directory name. On some operating systems, the directory
path may be case sensitive.

DESCRIPTION

This command lets you define a set of directories to search when executing SAC macro files using the
MACRO command. You can define up to 100 such directories.

MORE: When the MORE option is used with setmacro, the specified directories are added to the
existing list. When MORE is not used with setmacros, the existing list is replaced with the new list.

When the MACRO command is run, SAC searches for the macro in the current directory; if no file
is found with the given name, SAC searches the directories listed in SETMACRO in the order that
they are listed. If there are still no files found with the given name, SAC searches the global macro
directory.

See the section on Macros in the SAC Users Manual.

SEE COMMANDS

MACRO

LATEST REVISION

December 5, 1996 (Version 52a)
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SGF

SUMMARY

Controls the SAC Graphics File (SGF) device options.

SYNTAX

SGF {options}

where options are one or more of the following:

PREFIX text
NUMBER n
DIRECTORY CURRENT|pathname
SIZE NORMAL|FIXED v|SCALED v
OVERWRITE ON|OFF

INPUT

PREFIX text: Set the frame prefix to text (up to 24 characters long.)
NUMBER n: Set next frame number to n. If n is zero, then SAC searches the directory

for SGFs and sets the frame number to the next value in the sequence.
DIRECTORY CURRENT: Put the SGFs in the current directory.
DIRECTORY pathname: Put the SGFs in the directory specified by pathname.
SIZE NORMAL: Produce a "normal" sized plot. A normal plot has a viewspace (the

maximum plotting area) of 10 by 7.5 inches. Using default values, the viewport (the
portion of the viewspace where the plot is drawn excluding axes and labels) itself is
approximately 8 by 5 inches.

SIZE FIXED v: Produce a plot where the x viewport is v inches in length.
SIZE SCALED v: Produce a plot where the x viewport in inches is determined by multi-

plying v by the x world coordinate limits.
OVERWRITE ON|OFF: When it is turned on, the file numbers are not incremented.

Each new file erases the previous file. This is especially useful with the PRINT option
on most plot commands.

DEFAULT VALUES

SGF PREFIX F NUMBER 1 DIRECTORY CURRENT SIZE NORMAL

ALTERNATE NAMES: ID for PREFIX and FRAME for NUMBER.

DESCRIPTION

This command controls the frame naming conventions and final plot size for subsequent SAC Graphics
Files. Each frame is stored in a separate file on disk. Each frame name is made up of four parts. In
order they are:

pathname: The optional directory path name.
prefix: The frame prefix.
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number: The three digit frame number.
.sgf: The suffix used to denote a SAC Graphics File.

By default the frame prefix is simply the letter "f", the frame number 1 and the files are put in the
current directory (i.e. the first name is "f001.sgf".) You might want to changed the prefix to identify
a set of files you wish to save. You can also specify a directory in which to store the files. This is
very useful when you are changing directories while running SAC and want all the frame files in one
place. The frame number is incremented each time a new frame is created. You can force the frame
number to start at any given value. Starting at a number other than 1 might be useful if you are
generating figures for a report over several days and wish to keep them in sequential order.

The folowing paragraph was writen more thaan 20 years ago, and so far as we can see the size options
in the current SGFTOPS program provides a much cleaner way to change the overall size of the plot
in an SGF file. Based on sample runs using the examples given below, the output SGF files all have
the same physical size, and the aspect ratio of the plots are all the same. Hence, SGF SIZE simply
introduces a scaling factor for the plots. We are leaving in the paragraph and examples because they
seem to work, and there may be a feature we are missing.

There are several options that can be used to control the size of the plot. A normal plot has viewspace
limits of 10 by 7.5 inches. Using the default viewport limits, this results in an approximately 8 by 5
inch plot. You can force the x viewport to a fixed length or you can have the x viewport be scaled
to the world coordinate limits of your data. This size information is written to the SGF. It is the
responsibility of program that converts a SGF to a specific output device to generate the coding to
produce a correctly sized plot. SGFTOPS performs this conversion correctly although plots larger
than a single page have to post-processed correctly.

EXAMPLES

To define a directory other than where you are attached and to reset to frame number to the next
value in a sequence:

SAC> SGF DIRECTORY /MYDIR/SGFSTORE FRAME 0

To set the x viewport plot size to 3 inches (i.e., wallet size):

SAC> SGF SIZE FIXED 3.0

For create a poster size plot to put on your wall:

SAC> SGF SIZE FIXED 30.0

To set the x viewport plot size to be 1 inch long for every 10 seconds of seismic data:

SAC> SGF SIZE SCALED 0.1

In this last example, a plot where the data was 60 seconds in duration would be 6 inches long whereas
a plot where the data was 600 seconds in duration would be 60 inches long and would require special
post processing to produce.

SEE COMMANDS

BEGINDEVICES

LATEST REVISION

May 6, 2010 (Version 101.4)
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SMOOTH

SUMMARY

Applies an arithmetic smoothing algorithm to the data.

SYNTAX

SMOOTH {MEAN|MEDIAN},{HALFWIDTH n}

INPUT

MEAN: Apply a mean (average) smoothing algorithm.
MEDIAN: Apply a median point smoothing algorithm.
HALFWIDTH n: Set halfwidth of smoothing window to n. The moving window will

contain n points on each side of the point being smoothed.

DEFAULT VALUES

SMOOTH MEAN HALFWIDTH 1

DESCRIPTION

This command applies an arithmetic smoothing algorithm to each data point. The type of algorithm
and the size of the sliding window around each data point can be varied. The size of the window is
defined by specifying its halfwidth. This forces the moving window to be centered around each data
point and forces the window size to be an odd number of points, which makes the algorithms easier
and less ambiguous.

HEADER CHANGES

DEPMIN, DEPMAX,DEPMEN

LATEST REVISION

April 13, 1987 (Version 10.1)
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SONOGRAM

SUMMARY

Calculate a spectrogram equal to the difference between two smoothed versions of the same spectrogram.

SYNTAX

SONOGRAM options

where options are one or more of the following:

WINDOW v
SLICE v
ORDER n
CBAR {ON|OFF}
YMIN v
YMAX v
FMIN v
FMAX v
BINARY|FULL
METHOD {PDS|MEM|MLM}
{COLOR|GRAY}
PRINT {pname}

INPUT

WINDOW v: Set the sliding data window length in seconds to v. This window length
determines the size of the fft.

SLICE v: Set the data slice interval in seconds to v. A single spectrogram line is produced
for each slice interval.

ORDER n: Specifies the number of points in the autocorrelation function used to compute
the spectral estimate.

CBAR {ON|OFF}: Turn reference color bar on or off.
BINARY|FULL: Produce a binary image, or a full color image.
YMIN v: Specifies the minimum frequency to plot.
YMAX v: Specifies the maximum frequency to plot.
FMIN v: Specifies the smallest bandwidth over which each slice in the spectrogram will

be smoothed.
FMAX v: Specifies the maximum bandwidth over which each slice in the spectrogram will

be smoothed.
METHOD {PDS|MEM|MLM}: Specifies the type of spectral estimator used. MLM

stands for maximum likelihood and MEM stands for maximum entropy spectral esti-
mators, respectively. See description and references below.

{COLOR|GRAY}: Specifies a color or grayscale image.
PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the

default printer if pname is not used. (This makes use of the SGF capability.)

DEFAULT VALUES

SONOGRAM WINDOW 2 SLICE 1 METHOD MEM ORDER 100 YMIN 0 YMAX FNYQUIST FMIN 2.0
fmax 6.0 full color
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DESCRIPTION

The sonogram command computes a spectrogram equal to the difference between two smoothed
version of the same spectrogram. Depending on the choice of smoothing parameters, fmin and fmax,
the resulting spectrogram can enhance small amplitude spectral features that are more difficult to
observe in a conventional spectrogram. This is particularly useful when looking for features like high
frequency spectral modulations in seismic signals from mine blasts (c.f., Hedlin, 1990, Wuster, 1993).

LIMITATIONS

The size of the image in the frequency direction is 512.

PROBLEMS

There is currently very little error checking of the headers to make sure that they are from the same
component and are contiguous in time. This will be corrected in the future.

HEADER VARIABLES

REQUIRED: DELTA
CHANGED: NPTS, DELTA, B, E, IFTYPE, DEPMIN, DEPMAX, DEPMEN
CREATED: NXSIZE, XMINIMUM, XMAXIMUM, ,BREAK NYSIZE, YMINIMUM, YMAX-

IMUM

LATEST REVISION

May 26, 1995 (Version 00.31)
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SORT

SUMMARY

Sorts files in memory by header fields.

SYNTAX

SORT header {ASCEND|DESCEND} {header {ASCEND|DESCEND} ... }

INPUT

HEADER: header field upon which to sort the files.
ASCEND: Sort files on header in ascending order. This is the default.
DESCEND: Sort files on header in descending order

DESCRIPTION

Sort the files in memory in order according to the header field given. The earlier a header field appears
on the command line, the higher priority that field will receive in the sort, the first field receiving the
highest priority, and subsequent fields used to break ties. No more than five header fields may be
entered. Each may be followed by either ASCEND or DESCEND to indicate the direction of the sort
on that particular field. If neither ASCEND nor DESCEND is specified, ASCEND will be used by
default. If Sort is called without specifying any header fields, it will sort on the fields specified in the
previous call to SORT. If the first call to SORT is without any header fields, it will produce error
1379.

DEFAULTS

It is presumed that all sorts will be in ascending order unless DESCEND is specified on the command line.

ERROR MESSAGES

∙ 1379: No SORT parameters given

∙ 1380: Too many SORT parameters:

∙ 1381: Not a valid SORT parameter:

∙ 1383: SORT failed

WARNING MESSAGES

∙ 1384

LATEST REVISION

October 27, 1998 (Version 0.58)
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SPECTROGRAM

SUMMARY

Calculate a spectrogram using all of the data in memory.

SYNTAX

SPECTROGRAM options

where options are one or more of the following:

WINDOW v
SLICE v
ORDER n
CBAR ON | OFF
SQRT | NLOG | LOG10 | NOSCALING
YMIN v
YMAX v
METHOD PDS | MEM | MLM
COLOR | GRAY
PRINT pname

INPUT

WINDOW v: Set the sliding data window length in seconds to v. This window length
determines the size of the fft.

SLICE v: Set the data slice interval in seconds to v. A single spectrogram line is produced
for each slice interval.

ORDER n: Specifies the number of points in the autocorrelation function used to compute
the spectral estimate.

CBAR {ON|OFF}: Turn reference color bar on or off.
{SQRT|NLOG|LOG10|NOSCALING}: Specify natural log, log base 10, or square root

scaling of amplitudes.
YMIN v: Specifies the minimum frequency to plot.
YMAX v: Specifies the maximum frequency to plot.
METHOD {PDS|MEM|MLM}: Specifies the type of spectral estimator used. MLM

stands for maximum likelihood and MEM stands for maximum entropy spectral esti-
mators, respectively. See description and references below.

{COLOR|GRAY}: Specifies a color or grayscale image.
PRINT {pname}: Prints the resulting plot to the printer named in pname, or to the

default printer if pname is not used. (This makes use of the SGF capability.)

DEFAULT VALUES

SPECTROGRAM WINDOW 2 SLICE 1 METHOD MEM ORDER 100 NOSCALING YMIN 0 YMAX
FNYQUIST COLOR
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DESCRIPTION

A spectrogram is computed by calculating power spectra of consecutive, possibly overlapping time
windows of data and plotting the spectra side by side along a time axis. The spectra are calculated from
a truncated autocorrelation function using either the maximum likelihood method (MLM), maximum
entropy method (MEM), or Power Density Spectral method (PDS). In general, the high resolution,
maximum likelihood and maximum entropy methods are preferred because they improve resolution
and because they do not produce artifacts (sidelobes) in the spectra due leakage of energy between
different frequencies. Descriptions of these techniques can be found in Kanasewich (1981) and Lacoss
(1971) and the references therein. The length of the truncated autocorrelation function is determined
by the order parameter. To maintain consistency with the spe subroutines we have set the defaults
order to 200 for the power density spectra (pds) and 100 for the maximum entropy and maximum
likelihood spectral estimates. In sac the length of each data window is determined by the window
parameter. The spacing between spectra along the spectrograms time axis is determined by the slice
parameter. The difference between these two parameters determines the amount of overlap between
adjacent time window as indicated in the diagram below.:

Time --->
0 1 2 3 4 5 6 7 8 9 10 11
|.....|.....|.....|.....|.....|.....|.....|.....|.....|.....|.....|
|__^__| window 1, First time will be at the center of this window.

|__^__| window 2
|__^__| window 3

|.....| Slice: Difference between the start times of adjacent windows.

The start and end points on the spectrograms time axis depend on the length of the time series being
analysed and the window and slice parameters. The spectrogram’s start time is one-half a window
later than the time series start time because it is defined as the center of time of the first window.
SAC doesn’t pad the start of the data with zeros.

Kanasewich, E. R., "Time Sequence Analysis in Geophysics", The University of Alberta Press, Ed-
monton, 1981.

Lacoss, R. T., Data Adaptive Spectral Analysis Methods", Geophysics, Vol. 36, 661-675, 1971.

LIMITATIONS

The size of the image in the frequency direction is 512.

PROBLEMS

There is currently very little error checking of the headers to make sure that they are from the same
component and are contiguous in time. This will be corrected in the future.

HEADER VARIABLES

REQUIRED: DELTA
CHANGED: NPTS, DELTA, B, E, IFTYPE, DEPMIN, DEPMAX, DEPMEN
CREATED: NXSIZE, XMINIMUM, XMAXIMUM, ,BREAK NYSIZE, YMINIMUM, YMAX-

IMUM
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LATEST REVISION

May 26, 1995 (Version 00.31)

424



SQR

SUMMARY

Squares each data point.

SYNTAX

SQR

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 8, 1983 (Version 8.0)
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SQRT

SUMMARY

Takes the square root of each data point.

SYNTAX

SQRT

Note: SQRT is also an INLINE function.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1702: Non-positive values found in file

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 8, 1983 (Version 8.0)
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STATION

SUMMARY

Search for station by region, identifier, channel and date

SYNTAX

STATION {time start end}
{network ne,tw,or,ks}
{station stat,ions}
{location lo,ca,ti,on,00,10,--}
{channel cha,nne,els,BH?,HHZ,LHE}
{outfile filename}
{origin lon lat}
{id:eventid}
{radius min_radius max_radius}
{ph5}
{region w e s n}
{level station|channel}
{epochs on|off}
{showtimes}
{verbose}

INPUT

Time: Set the start and end times. End times can be set relatively. See DATA ACCESS
for time formats.

Region west east south north: Set the geographic bounds of the search region
Radial min max: Set the radius limits of the search region. See ORIGIN and id:eventid
Origin lon lat: Set the origin (Lon, Lat) for a radial search
catalog:eventid: Set the origin and time from an event’s origin time and location. This

can be used with a region search.
Network: Set a collection of networks. Accepts lists and wildcards.
Station: Set a collection of stations. Accepts lists and wildcards.
Location: Set a collection of locations. Accepts lists and wildcards.
Channel: Set a collection of channels. Accepts lists and wildcards.
Level: Station or Channel, Station level metadata only includes Station location, Chan-

nel level metadata includes component orientation and can be used as input to the
METADATA command

ph5: Get additional data from the IRIS PH5 Web service. This option provides access
to active-source data sets and their associated stations with high sample rates and
time-limited deployments.

Epochs: ∙ Off - Combine all stations with the same Network and Station, using the first
value encountered

∙ On - Treat individual time epochs for stations separately, This will result in multiple
stations with the same Network and Station, but with different epochs. This option
changes how txt/csv output is written, not XML.

ShowTimes: Show start and end date-times in the output.
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Outfile: Save the station search into a file. Files ending in .xml are saved as FDSNSta-
tionXML documents; those ending in .txt and others are saved as "csv" text. The
Epochs option will modify how the output appears.

Verbose: Watch the details of the search process

DEFAULT VALUES

station epochs off

This command gets everything; you have been warned.

DESCRIPTION

Search a collection of stations meeting a set of criteria.

Searching can be done geographically using a Region or Radial search. For the Radial search the
origin location (Lon, Lat) needs to be specified using either the Origin option or from an id:eventid.
See EVENT for a discussion of eventid.

Setting the Time for a search can be done using two times, start and end, or using start and a relative
offset.

If you want a particular Network or set of Stations, those can be entered directly in list form separated
by commas ’,’ using wildcards and negation, see examples below. Channels are supported just as
networks and stations.

Locations are the same as well, but unless you have specific knowledge it is best to ignore the Location
option, see examples below.

Specifying id:eventid will set the time of the search and the origin location for a radial search. Timing
and origin location information is obtained from online catalogs. Non-existant eventid will return an
error. This can be useful for getting stations lists for specific stations.

EXAMPLES

The station database has intriguing station data. Lets see if there are stations on the Moon. The Moon Landing
was in 1969 and the network code is XA, one of many temporary networks:

SAC> station net XA time 1969-1 +4y
Net Sta Lat. Lon. Elev. SiteName
XA S12 -3.0400 -23.4200 0.00 ALSEP 12, Oceanus Procellarum, Moon
XA S14 -3.6500 -17.4800 0.00 ALSEP 14, Fra Mauro, Moon
XA S15 26.0800 3.6600 0.00 ALSEP 15, Hadley Rille, Moon
XA S16 -8.9700 15.5100 0.00 ALSEP 16, Descartes, Moon

We would like stations close to the 2004 Sumartran M9 Event. First lets get the event id:

SAC> event time 2004-1 +1yr mag 9
Origin Lat. Lon. Depth Mag. Agency EventID
2004-12-26T00:58:53 3.29 95.98 30.00 9.10 mw US/official usgs:official20041226005853450_30

Using that eventid we can search for stations nearby:
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SAC> station usgs:official20041226005853450_30 radial 0 5
Net Sta Lat. Lon. Elev. SiteName
PS PSI 2.6938 98.9237 987.00 Parapat, Indonesia
SY GSI 1.3039 97.5755 107.00 GSI synthetic
SY LHMI 5.2288 96.9472 3.00 LHMI synthetic
SY PSI 2.6938 98.9237 987.00 PSI synthetic

There are stations that are only contain synthetics, Network SY. Lets get rid of those:

SAC> station usgs:official20041226005853450_30 radial 0 5 net -SY
Net Sta Lat. Lon. Elev. SiteName
PS PSI 2.6938 98.9237 987.00 Parapat, Indonesia

Epochs can be confusing as stations are serviced and instruments are changed, new epochs or time ranges are
added. For example IU.ANMO has been operating since the mid-1990s and has multiple time periods:

SAC> station net IU sta ANMO epochs on
Net Sta Lat. Lon. Elev. SiteName
IU ANMO 34.9459 -106.4572 1850.00 Albuquerque, New Mexico, USA
IU ANMO 34.9459 -106.4572 1850.00 Albuquerque, New Mexico, USA
IU ANMO 34.9502 -106.4602 1839.00 Albuquerque, New Mexico, USA
IU ANMO 34.9459 -106.4572 1820.00 Albuquerque, New Mexico, USA
IU ANMO 34.9459 -106.4572 1820.00 Albuquerque, New Mexico, USA
IU ANMO 34.9459 -106.4572 1820.00 Albuquerque, New Mexico, USA

SAC> station net IU sta ANMO epochs off
Warning: Multiple instances of net.sta, likely mutiple epochs
Net Sta Lat. Lon. Elev. SiteName
IU ANMO 34.9459 -106.4572 1850.00 Albuquerque, New Mexico, USA

SAC> station net IU sta ANMO epochs on showtimes
Net Sta Lat. Lon. Elev. TimeOn TimeOff
IU ANMO 34.9459 -106.4572 1850.00 1989-08-29T00:00:00 1995-07-14T00:00:00
IU ANMO 34.9459 -106.4572 1850.00 1995-07-14T00:00:00 2000-10-19T16:00:00
IU ANMO 34.9502 -106.4602 1839.00 2000-10-19T16:00:00 2002-11-19T21:07:00
IU ANMO 34.9459 -106.4572 1820.00 2002-11-19T21:07:00 2008-06-30T00:00:00
IU ANMO 34.9459 -106.4572 1820.00 2008-06-30T00:00:00 2008-06-30T20:00:00
IU ANMO 34.9459 -106.4572 1820.00 2008-06-30T20:00:00 2599-12-31T23:59:59

(To fit on the page, the last column SiteName is left out. For all of them it is Albuquerque, New Mexico, USA.)

PH5 Example: Active-source stations are typically not available through the IRIS Web Service, but can be
accessed through the PH5 Web Services. Station 9A.22770 is one of these stations. To access its information,
you need to specify the PH5 option to tell SAC to also search within PH5:

SAC> station net 9A station 22770
Error 404 (HTTP): No Content

SAC> station net 9A station 22770 PH5
Net Sta Lat. Lon. Elev. SiteName
9A 22770 44.4122 -115.4911 1966.30 Deformation and magmatic modification ...
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ERROR MESSAGES

SEE COMMANDS

EVENT, DATA, RESPONSE, METADATA, DATA ACCESS

LATEST REVISION

Version 102.0

430



STRETCH

SUMMARY

Stretches (upsamples) data, including an optional interpolating FIR filter.

SYNTAX

STRETCH {n},{FILTER {ON|OFF}}

INPUT

n: Set upsampling factor. Must be in the range 2 to 7.
FILTER {ON}: Turn interpolating filter option on.
FILTER OFF: Turn interpolating filter option off.

DEFAULT VALUES

STRETCH 2 FILTER ON

DESCRIPTION

By using the interpolating filter option, this command can be used to create a file with a smaller
sampling interval (more data points) but which looks similar to the original. Care should be taken
when using this command, because the filter does effect the frequency content. When this filter
option is off, the appropriate number of zeros are simply inserted between each of the original data
points.

HEADER CHANGES

NPTS, DELTA, E, DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

May 15, 1987 (Version 10.2)
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SUB

SUMMARY

Subtracts a constant from each data point.

SYNTAX

SUB {v1 {v2 ... vn} }

INPUT

v1: Constant to subtract from first file.
v2: Constant to subtract from second file.
nv: Constant to subtract from nth file.

DEFAULT VALUES

SUB 0

DESCRIPTION

This command will subtract a constant from each element of each data file currently in memory. The
constant may be the same or different for each data file. If there are more data files in memory than
constants, then the last constant entered is used for the remainder of the data files in memory.

EXAMPLES

To subtract 5.1 from each element of F1 and 6.2 from each element of F2 and F3:

SAC> READ F1 F2 F3
SAC> SUB 5.1 6.2

Note: SUBTRACT is also an INLINE function.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1307: Illegal operation on spectral file

LATEST REVISION

January 8, 1983 (Version 8.0)
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SUBF

SUMMARY

Subtracts a set of data files from data in memory.

SYNTAX

SUBF {NEWHDR ON|OFF} filelist

INPUT

NEWHDR ON|OFF: By default, the resultant file will take its header field from the
original file in memory. Turning NEWHDR ON, causes the header fields to be taken
from the new file in the filelist.

filelist: A list of SAC binary data files. This list may contain simple filenames, full or
relative pathnames, and wildcard characters. See the READ command for a complete
description.

DESCRIPTION

This command can be used to subtract a single file from a set of files or to subtract one set of files
from another set. An example of each case is presented below. The files must be evenly spaced
and should have the same sampling interval and number of points. This last two restrictions can be
eliminated using the BINOPERR command. If there are more data files in memory than in the filelist,
then the last file in the filelist is used for the remainder of the data files in memory.

EXAMPLES

To subtract one file from three other files:

SAC> READ FILE1 FILE2 FILE3
SAC> SUBF FILE4

To subtract two files from two other files:

SAC> READ FILE1 FILE2
SAC> SUBF FILE3 FILE4

HEADER CHANGES

If NEWHDR is OFF (the default) the headers in memory are unchanged). If NEWHDR is ON, the
headers are replaced with the headers from the files in the filelist.

DEPMIN, DEPMAX, DEPMEN
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ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1803: No binary data files read in.

∙ 1307: Illegal operation on spectral file

∙ 1306: Illegal operation on unevenly spaced file

∙ 1801: Header field mismatch:

– either the sampling interval or the number of points are not equal. - can be controlled using the
BINOPERR command.

WARNING MESSAGES

∙ 1802: Time overlap:

– the file subtraction is still performed.

SEE COMMANDS

READ, BINOPERR

LATEST REVISION

May 26, 1999 (Version 0.58)
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SYMBOL

SUMMARY

Controls the symbol plotting attributes.

SYNTAX

SYMBOL {ON|OFF|n} {SIZE v},{SPACING v},
{INCREMENT {ON|OFF}},{LIST STANDARD|nlist}

INPUT

ON: Turn symbol plotting on. Don’t change symbol number.
OFF: Turn symbol plotting off.
n: Turn symbol plotting on. Change symbol number to n. There are 16 different symbols.

A symbol number of 0 is the same as turning symbol plotting off.
SIZE v: Set symbol size to v. A value of 0.01 sets the size to 1 percent of the full plot

size.
SPACING v: Set symbol spacing to v. This is the minimum spacing between drawn

symbols. Use 0 if you want a symbol at every data point. Use 0.2 to 0.4 for annotating
lines.

INCREMENT {ON}: Increment symbol number after each data file. The symbol number
is the next one in the symbol list.

INCREMENT OFF: Do not increment symbol number.
LIST nlist: Change the content of the symbol list. Enter list of symbol numbers. Sets

symbol number to first entry in list and turns symbol plotting on.
LIST STANDARD: Change to the standard symbol list. Sets symbol number to first

entry in list and turns symbol plotting on.

DEFAULT VALUES

SYMBOL OFF SIZE 0.01 SPACING 0. INCREMENT OFF LIST STANDARD

DESCRIPTION

The figure that follows shows each of the sixteen symbols. Symbol 1 cannot be scaled in size. It is a
replacement for the point symbol which does not show up well on many devices (e.g. Versatec, pen
plotter). This figure also shows examples of different symbol size and spacing values. These symbol
attributes are independent of the line drawing attributes defined by the LINE command. With line
drawing on, they can be used to annotate different lines on the same plot. By turning the line drawing
off, they can be used to create scatter plots.

If you are plotting several data files on the same plot, you may want each to be plotted with a
different symbol. This is done using the INCREMENT option. When this option is on, the symbol is
incremented from a list of symbols each time a data file is plotted. The default symbol list contains
symbols 2 through 16. You may change the order or content of this list using the LIST option. This
is useful if you are doing a series of overlay plots (see PLOT2) and want the same symbols used in
the same order on each plot. A symbol number of 0 is the same as turning symbol plotting off. This
is useful in the LIST option and the LINE command to display some data with lines and some with
symbols on the same plot. See the example below.
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EXAMPLES

To create a scatter plot, turn the line drawing off, choose an appropriate symbol, and plot:

SAC> LINE OFF
SAC> SYMBOL 5
SAC> PLOT

To annotate four solid lines on a PLOT2 plot using symbols 7, 4, 6, and 8, and a spacing of 0.3:

SAC> LINE SOLID
SAC> SYM SPACING .3 INCREMENT LIST 7 4 6 8
SAC> R FILE1 FILE2 FILE3 FILE4
SAC> PLOT2

To plot three files on the same plot using PLOT2 with the first file plotted using a solid line and no
symbol, the second with no line and a triangle symbol, and the third with no line and a cross symbol:

SAC> READ FILE1 FILE2 FILE3
SAC> LINE LIST 1 0 0 INCREMENT
SAC> SYMBOL LIST 0 3 7 INCREMENT
SAC> PLOT2

SEE COMMANDS

LINE

LATEST REVISION

October 11, 1984 (Version 9.1) Summary of SYMBOL Command Attributes
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SYNCHRONIZE

SUMMARY

Synchronizes the reference times of all files in memory.

SYNTAX

SYNCHRONIZE {ROUND {ON|OFF}} {BEGIN {ON|OFF}}

INPUT

ROUND {ON}: Turn begin time rounding on. When this opotions is on, the begin times
for each file are rounded to the nearest multiple of the sampling interval.

ROUND OFF: Turn begin time rounding off.
BEGIN {ON}: Sets begin time of each file to zero.
BEGIN OFF: Maintains the GMT values of the reference times.

DEFAULT VALUES

SYNCHRONIZE ROUND OFF BEGIN OFF

DESCRIPTION

This command synchronizes the references times for all files in memory. It determines the latest
starting time of all files by examining their reference times and beginning offset times. This latest
starting time then becomes the reference time for ALL of the files in memory. New values for all of
the offset times (B, E, A, Tn, etc.) for each of the files are then calculated.

This command is useful when a set of files have different reference times and you want to use the
CUT or XLIM command to analyze or plot portions of them. Once they have been synchronized to
the same reference time, the cuts will then refer to the exact same GMT time window. If the BEGIN
option is used, GMT values of reference times are not preserved. The BEGIN option sets the kztime
of all files the same, it sets the kzdate of all files the same, and it sets the begin time of all files to
zero. Other reference points retain their relation to the begin time of the file.

EXAMPLES

Assume you read two files into memory with different reference times:

SAC> READ FILE1 FILE2
SAC> LISTHDR B KZTIME KZDATE

FILE: FILE1
-----------

B = 0.
KZTIME = 10:38:14.000
KZDATE = MAR 29 (088), 1981

FILE: FILE2
-----------
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B = 10.00
KZTIME = 10:40:10.000
KZDATE = MAR 29 (088), 1981

The files have the same reference date but different reference times and different beginning offsets.
Now if you execute the SYNCHRONIZE command followed by another LISTHDR you would find:

SAC> SYNCHRONIZE
SAC> LISTHDR

FILE: FILE1
-----------

B = -126.00
KZTIME = 10:40:20.000
KZDATE = MAR 29 (088), 1981

FILE: FILE2
-----------

B = 0.
KZTIME = 10:40:20.000
KZDATE = MAR 29 (088), 1981

Now the files in memory have the same reference time which is the beginning of the later file. If there
had been any defined time markers in these headers, their values would be adjusted so that they point
to the same time as before.

HEADER CHANGES

NZYEAR, NZJDAY, NZHOUR, NZMIN, NZSEC, NZMSEC, B, E, A, O, Tn.

LATEST REVISION

May 15, 1987 (Version 10.2)
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SYSTEMCOMMAND

SUMMARY

Executes system commands from SAC.

SYNTAX

[S]YSTEM[C]OMMAND command {options}

INPUT

command: The name of the system command.
options: Any options needed by that command.

DESCRIPTION

This command allows you to execute system command while running SAC.

EXAMPLES

To get a list of files in the current UNIX directory:

SAC> SYSTEMCOMMAND LS
... produces a list of files

LATEST REVISION

May 15, 1987 (Version 10.2)
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TAPER

SUMMARY

Applies a symmetric taper to each end of data.

SYNTAX

TAPER {TYPE HANNING|HAMMING|COSINE},{WIDTH v}

INPUT

TYPE HANNING: Apply a Hanning taper.
TYPE HAMMING: Apply a Hamming taper.
TYPE COSINE: Apply a cosine taper.
WIDTH v: Set the taper width on each end to v. This is a value between 0.0 and 0.5.

DEFAULT VALUES

TAPER TYPE HANNING WIDTH 0.05

DESCRIPTION

A taper is a monotonically varying function between zero and one. It is applied in a symmetric manner
to the data such that the signal is zero for the first and last data points and increases smoothly to its
original value at an interior point relative to each end.

The COSINE option here is computed using the sin() function as:

DATA(J) = DATA(J) * SIN(OMEGA*J) where OMEGA = PI/(2*N)

where N is the length of the taper on each end, and J runs from 1 to N.

The general form for the Hanning or Hamming taper is:

DATA(J)=DATA(J)*(F0-F1*COS(OMEGA*(J))

This equation would be applied to the left-hand side of each signal. A symmetric one is applied to
the right hand side. The following table defines the various parameters used in the different tapers.

TYPE OMEGA F0 F1
HANNING PI/N 0.50 0.50
HAMMING PI/N 0.54 0.46

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file
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HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

LATEST REVISION

January 15, 1985 (Version 9.10)
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TICKS

SUMMARY

Controls the location of tick marks on plots.

SYNTAX

TICKS ON|OFF|ONLY sides

where sides is the keyword:

ALL

or one or more of the following:

TOP,BOTTOM,RIGHT,LEFT

INPUT

ON: Turn ticks on for listed sides; others unchanged.
OFF: Turn ticks off for listed sides; others unchanged.
ONLY: Turn ticks on only for listed sides; others off.
ALL: All four ticks.
TOP: X axis above viewport.
BOTTOM: X axis below viewport.
RIGHT: Y axis to right of viewport.
LEFT: Y axis to left of viewport.

DEFAULT VALUES

TICKS ON ALL

DESCRIPTION

Tick marks can be drawn on one or more of the four sides of a plot. They are drawn at the current
division spacing controlled by the XDIV command. Tick marks are automatically drawn on sides
where annotated axes have been requested using the AXES command.

EXAMPLES

To turn on the top tick marks and leave the others unchanged:

SAC> TICKS ON TOP

To turn off all tick marks (at least where there are no annotated axes):

SAC> TICKS OFF ALL

To turn tick marks on for the bottom side and off for the rest:

SAC> TICKS ONLY BOTTOM
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SEE COMMANDS

XDIV, AXES

LATEST REVISION

January 8, 1983 (Version 8.0)
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TITLE

SUMMARY

Defines the plot title and attributes.

SYNTAX

TITLE {ON|OFF|text},{LOCATION location},{SIZE size}

where location is one of the following:

TOP|BOTTOM|RIGHT|LEFT

and where size is one of the following:

TINY|SMALL|MEDIUM|LARGE

INPUT

ON: Turn title option on. Don’t change title text.
OFF: Turn title option off.
text: Turn title option on. Change text of title. If text contains embedded blanks, it must

be enclosed in single quotes.
LOCATION location: Change location of title.
TOP: Top of the plot window.
BOTTOM: Bottom of the plot window.
RIGHT: To the right of the plot window.
LEFT: To the left of the plot window.
SIZE size: Change title text size.
TINY: Tiny text size has 132 characters per line.
SMALL: Small text size has 100 characters per line.
MEDIUM: Medium text size has 80 characters per line.
LARGE: Large text size has 50 characters per line.

DEFAULT VALUES

TITLE OFF LOCATION TOP SIZE SMALL

DESCRIPTION

If this option is on, a title is placed on each plot. The size and location of the title can be changed
as well as the text of the title itself. The text quality and font used can be set using the GTEXT
command.

SEE COMMANDS

GTEXT
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LATEST REVISION

January 8, 1983 (Version 8.0)
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TRACE

SUMMARY

Controls the tracing of blackboard and header variables.

SYNTAX

TRACE [ON|OFF] name [name ...]

INPUT

ON: Turn tracing on for variables that follow.
OFF: Turn tracing off for variables that follow.
name: The name of the blackboard or header variable to trace. If this is a header variable

it is of the form: filename,hdrname where filename is the name (or number) of the
SAC data file and hdrname is the name of a SAC header variable.

DEFAULT VALUES

TRACE ON

DESCRIPTION

This command can be used to trace or track the values of SAC blackboard or header variables while
SAC is executing. It is useful primarily for debugging long or complicated macros. When the tracing
for a variable is turned on, its current value is printed. While the tracing is on, its value is checked
after the execution of each command. Each time its value changes a new output line is printed. When
tracing is turned off, its current value is also printed.

EXAMPLES

To turn tracing on for the blackboard variable called TEMP1 and for the header variable called T0
belonging to the file called MYFILE:

SAC> TRACE ON TEMP1 MYFILE,T0
TRACE (on) TEMP1 = 1.45623
TRACE (on) MYFILE,T0 = UNDEFINED

As you execute commands, either typed at the terminal or executed from a macro, SAC will check
the values of the variables versus the saved value and print a message whenever either one of them
changes. Assume that some calculations are performed that caused TEMP1 to change and T0 to
become defined. SAC would print the messages:

TRACE (mod) TEMP1 = 2.34293
TRACE (mod) MYFILE,T0 = 10.3451

Later in the processing TEMP1 may change again:

TRACE (mod) TEMP1 = 1.93242

When the tracing is turned off, SAC will print the current value one last time:
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SAC> TRACE OFF TEMP1 MYFILE,T0
TRACE (off) TEMP1 = 1.93242
TRACE (off) MYFILE,T0 = 10.3451

LATEST REVISION

January 27, 1989 (Version 10.4B)
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TRANSCRIPT

SUMMARY

Controls output to the transcript files.

SYNTAX

TRANSCRIPT options

where options are one or more of the following:

OPEN|CREATE|CLOSE|CHANGE|WRITE|HISTORY
FILE filename
CONTENTS ALL|list
MESSAGE text

where list is one or more of the following:

ERRORS
WARNINGS
OUTPUT
COMMANDS
MACROS
PROCESSED

INPUT

OPEN: Open and append transcript to the bottom of an existing file.
CREATE: Create a new transcript file.
CLOSE: Close an open transcript file. (NEW version 101.2)
CHANGE: Change the contents of an open transcript file.
WRITE: Write message to transcript file without changing its status or contents.
HISTORY FILE filename: Save/restore command-line history to a file.
FILE filename: Define the name of a transcript.
MESSAGE text: Write message contained in text to transcript file. This message can be

used to identify the processing being done or to identify different events as they are
being processed. This message is NOT retained between executions of this command.

CONTENTS ALL: Define the contents of the transcript file to be all input/output types.
CONTENTS list: Define the contents of the transcript file. This is a list of the types of

input and output to include in the file.
ERRORS: Error messages generated during the execution of a command.
WARNINGS: Warning messages generated during the execution of a command.
OUTPUT: Output messages generated during the execution of a command.
COMMANDS: Raw commands as they were typed at the terminal.
MACROS: Raw commands as they appears in a macro file.
PROCESSED: Processed commands originating from the terminal or a macro file. A

processed command is one where all macro arguments, blackboard variables, header
variables, and inline functions have been processed (evaluated) and substituted into
the raw command.
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DEFAULT VALUES

TRANSCRIPT OPEN FILE TRANSCRIPT CONTENTS ALL

DESCRIPTION

A transcript file can be used to record the results of executing SAC. It can be a complete or partial
transcript. It can contain the results from one or more executions. You can have up to five transcripts
active at any given time, each keeping track of different aspects of the execution. One use as illustrated
below is to record the commands typed at the terminal and to later use this as a macro file.

EXAMPLES

To create a new transcript file called MYTRAN containing everything except the processed commands:

SAC> TRANSCRIPT CREATE FILE MYTRAN CONTENTS ERRORS WARNINGS OUTPUT

COMMANDS MACROS

If later during this session you did not want the macro commands to be sent to this file you would
use the CHANGE option:

SAC> TRANSCRIPT CHANGE FILE MYTRAN CONTENTS ERRORS WARNINGS OUTPUT

COMMANDS

To define a transcript file called MYRECORD which records the commands as they are typed at the
terminal:

SAC> TRANSCRIPT CREATE FILE MYRECORD CONTENTS COMMANDS

Later this file, perhaps after some editing, could be used as a macro to automatically execute the same
set of commands. In the final example assume you needed to process a number of events overnight.
You could set up transcript files for each of these events (with different names) that recorded the
results of the processing. In addition you could store any error messages from the processing of all of
these events in a single transcript file:

SAC> TRANSCRIPT OPEN FILE ERRORTRAN CONTENTS ERRORS
SAC> TRANSCRIPT WRITE MESSAGE ’Processing event 1’

These commands would be placed in the macro that processes each event. It is assumed that the
name of the event is passed into the macro as the first argument. By using the open option, the
message and any errors would be appended to the end of the file. By examining this error transcript
the next day, you could quickly see whether any errors occurred during processing and for which events
these errors occurred.

To save a command-line transcript that records SAC commands from curent and future runs, use:

SAC> TRANSCRIPT HISTORY FILE .sachist

This creates and writes to a transcript file, "./.sachist", in the current directory. Any commands
stored there are loaded into your command history, and you can scroll back through them. If this
command is in your startup initialization macro, there will be a separate command-line history for
each directory in which you run SAC. In a new run of SAC, the up/down or previous/next keys scroll
through the complete history. You can edit a previously-typed command and enter it again. If you
do not enter this command within SAC or in an initialization macro, the command-line history will
be automatically logged to ~/.sac_history. See README_utils in subdirectory sac/utils for further
discussion.
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LATEST REVISION

September 2008 (version 101.2)
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TRANSFER

INTRODUCTION

Performs deconvolution to remove an instrument response and convolution to apply another instrument response.

SYNTAX

[TRANS]FER {FROM type {options}} , {TO type {options}} ,
{FREQlimits f1 f2 f3 f4} , {PREWhitening ON|OFF|n},

INPUT

FROM type: Instrument deconvolution using spectral division, EVALRESP, POLEZERO,
or FAPfile
EVALRESP, POLEZERO, and FAPfile are described below.

TO type: Insert the instrument type by convolution using spectral multiplication.
The allowed instrument types and their options for both TO and FROM are listed in
a table below.

FREQLIMIS: Default is it is not used. See discussion below
PREWHITENING ON: Turns on prewhitening in the time domain before spectral oper-

ations, and compensating dewhitening in the time domain after spectral operations.
PREWHITENING OFF: Turns off prewhitening.
PREWHITENING n: Turns on prewhitening and change the prewhitening order to n. If

the user turns it on without specifying the order, it will default to n=6, unless the
order has been changed in the WHITEN command.

DEFAULT VALUES: TRANS FROM NONE TO NONE PREWHITENING OFF

DESCRIPTION

The default input and output "instrument" in TRANSFER is displacement, which in SAC is designated
as NONE. Hence, if a FROM type or a TO type is not specified, SAC assumes it to be NONE. If
the output instrument is NONE, IDEP in the SAC header is set to DISPLACEMENT (NM) - SAC’s
convention for displacement. If TRANSFER uses TO VEL or TO ACC, the header variable IDEP is
changed accordingly for all waveforms in memory.

If the TO type is specified as anything other than NONE, VEL, or ACC, the waveforms in memory are
transformed to that instrument type. If the FROM instrument type is NONE, then no instrument is
removed, and the original trace is presumed to be a displacement. This is useful for adding instrument
responses to synthetic seismograms (example below).

Care must be taken when calling TRANSFER a second time within a single SAC session, because in
the second call TRANSFER will use the same arguments for FROM, TO, FREQ, etc. as in the first
call unless an alternative argument is explicitly provided.

Many of the instruments have options that further specify the response. The most common of these
options is the instrument subtype. A few instruments require that certain numerical parameters be
specified and do not use the subtype option. For a list of instruments and a list of the instruments
that use subtypes or other parameters, see the table below.

When TRANSFER was introduced more than 20 years ago, the data acquisition systems were much
simpler. The seismometers in the list at the end of this message include the most popular ones used
previously. The evolution of data handling by IRIS is described in DATA ACCESS.

The EVALRESP program calculates the complete system response from response (RESP) files pro-
duced by commands given in RESPONSE or programs such as RDSEED. The code used in SAC does
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not recognize all the options available in the current version of EVALRESP (v5.0, August 2019). If
one wants an option only available in the full program, one can first run EVALRESP with a FAP
output option and use the FAP option (see below) to correct the SAC data file. The source code
for program EVALRESP can be downloaded from URL <http://ds.iris.edu/ds/nodes/dmc/software/
downloads/>.

The SAC sign convention for Laplace/Fourier transforms is the same as that used in SEED and
EVALRESP: phase for a causal response decreases with increasing frequency. For displacements, the
SAC convention is nm, while RESP files use meters. NOTE: The EVALRESP option in TRANSFER
converts the output to the SAC convention. For other options (FAP, PZ) it may be necessary to
manually change the units. (See examples below.)

FREQLIMITS f1 f2 f3 f4 All seismometers have zero response at zero frequency. When deconvolving
and not convolving with another response (e.g. "TO NONE"), it is therefore necessary to modify the
response at very low frequencies. At high frequencies, the signal-to-noise ratio is often low, so it may
be desirable to dampen the response. FREQLIMITS serves this purpose within SAC. FREQLIMITS
has both a low-pass and a high-pass taper. It is necessary that f1 < f2 < f3 < f4. The taper is unity
between f2 and f3 and zero below f1 and above f4. Frequencies f1 and f2 specify the high-pass filter
at low frequencies, while frequencies f3 and f4 specify the low-pass filter at high frequencies. Both f3
and f4 should be less than the Nyquist frequency: 0.5/DELTA. The filters applied between f1 and f2
and between f3 and f4 are quarter cycles of a cosine wave. To avoid ringing in the output time series,
a suggested rule-of-thumb is f1 <= f2/2 and f4 >= 2*f3.

If you want to do a low-pass filter but have no filtering at low frequencies, one way is to set f1=-2
and f2=-1. If you want to do a high-pass filter but have no filtering at the high frequencies, for a
Nyquist frequency of 0.5, set f3=10. and f4=20.

Note that because this filter has zero phase, it is not causal. As a result, if npts is not a power of
2, the output amplitude will not be zero outside the interval (f1,f4). If it is important to have the
number of points an exact power of 2, the help file for CUT explains how to modify your file within
SAC.

NOTE that the default has no FREQLIMITS. It is strongly advised that one includes FREQLIMITS
if one is doing a deconvolution.

Prewhitening can be used to flatten the spectrum of the input time series before transforming in the
frequency domain. This should reduce the dynamic range of the spectral values, and improve the
accuracy of the overall operation at high frequencies for seismic data. The default for prewhitening
is off. See command WHITEN for further information.

FROM EVALRESP

This option enables the application of transfer functions extracted from SEED data volumes using the
EVALRESP code (Version 3.3.3). To use this option, one needs a RESP file. The RESP files must
be in the current directory or must be specified by full path and name.

There is no formal documentation for the RESP files themselves, but since they refer directly to the
SEED format, please refer to the SEED manual to learn more about the values.

To identify the correct RESP file and to extract the proper transfer function from that file, EVALRESP
uses information from the SAC headers. The fields are station (KSTNM), channel (KCMPNM), date
and time (KZDATE & KZTIME), network (KNETWK), and location ID (KHOLE). Outside of SAC,
location ID is referred to as LOCID; it commonly distinguishes between multiple instruments with the
same network, station and channel names, operating at the same time. Data received from IRIS in
SAC format (or converted to SAC with RDSEED) will have KHOLE set to a valid LOCID if one is
necessary. If the user is informed of real LOCIDs in the EVALRESP file, the user can set KHOLE with
CHNHDR. SAC will use KHOLE as LOCID if it is a two character alpha-numeric string (padded with
spaces or not).
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It is possible to override the header values by specifying additional options to EVALRESP. The possible
options are:

STATION, CHANNEL, NETWORK, DATE, TIME, LOCID, FNAME

and each option must be followed by an appropriate value. If DATE is not set in the header and
is not specified as an option, then the current date is used in the search. If TIME is not set in the
seismogram header and is not specified as an option, then the current system time is used in the
search. If network is not specified, then the search for a transfer function defaults to use any network.
If LOCID is not set at the command line or in KHOLE/LOCID, then the search for the transfer
function defaults to use any LOCID. To force TRANSFER to use a specific SEED response file use
the FNAME option followed by the filename.

If the FNAME option is not specified EVALRESP will attempt to identify the correct file in the current
working directory using the general form:

RESP.<NET>.<STA>.<LOCID>.<CHAN>

for example: "RESP.IU.ANMO..BHZ"

The embedded version of EVALRESP is configured to always produce a displacement response in SI
units (i.e. displacement in meters), which SAC scales internally by a factor of 1.0e9 to nanometers,
the SAC convention for displacement units.

EVALRESP EXAMPLE

To remove the instrument response from the seismogram in memory (assuming a response file exists):

SAC> r 2006.253.14.30.24.0000.TA.N11A..LHZ.Q.SAC
SAC> RTR
SAC> TAPER
SAC> TRANS FROM EVALRESP TO NONE freq 0.004 0.007 0.2 0.4

To remove the instrument response from the same waveform but using a response contained in file
/tmp/Responses/RESP.TA.N11A..LHZ:

SAC> SETBB RESP "/tmp/Responses/RESP.TA.N11A..LHZ"
SAC> r 2006.253.14.30.24.0000.TA.N11A..LHZ.Q.SAC
SAC> RTR
SAC> TAPER
SAC> TRANSFER FROM EVALRESP FNAME %resp TO NONE FREQLIM 0.004 0.007 0.2 0.4

To remove the instrument response from 16.42.05.5120.TS.PAS.BHZ.SAC and apply the response
from station COL, channel BHZ for the same time period:

SAC> R 16.42.05.5120.TS.PAS.BHZ.SAC
SAC> RTR
SAC> TAPER
SAC> TRANS FROM EVALRESP TO EVALRESP STATION COL

To display the instrument response in units of displacement for station COL, channel BHZ, network
IU, for the date 1992/02 and time 16:42:05:

SAC> FG IMPULSE NPTS 16384 DELTA .05 BEGIN 0.
SAC> TRANS TO EVALRESP STATION COL CHANNEL BHZ NETWORK IU DATE 1992/2 TIME 16:42:05
SAC> FFT
SAC> PSP AM
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COMMENTS: rtr removes any trend and offset. Because the FFT called by TRANSFER pads with
zeroes to a power of 2 number of points, TAPER eliminates any large jumps at the ends of the
time series. FREQLIMITS is necessary for deconvolution TO NONE because the instrument has zero
response at zero frequency.

FROM POLEZERO

POLEZERO is an instrument type that can be used to put in or take out the (analog) seismometer
response. A good reference is Appendix C in the SEED manual.

A polezero file as written may be for displacement, velocity, or acceleration, and the units of the
output should be known in advance. If the polezero file was written by program RDSEED 5.0 or later,
this information is included in the file (see example below).

The transfer function, H(s), is the Laplace transform of the linear system impulse response of the
seismometer. The Laplace variable s = 2*pi*i*f, where f is the frequency in Hz.

The response H(w) is the ratio of the product of the difference between s and each of the np poles
and nz zeros:

(s-z )*(s-z )*...*(s-z )
1 2 nz

H(s) = -------------------------
(s-p )*(s-p )*...*(s-p )

1 2 np

The options in the file (poles, zeros, constant, and comment lines) are keyword driven and numbers are
in free format. CONSTANT is a scaling factor. (See IRIS DMC’s SAC PZ web service <http://service.
iris.edu/irisws/sacpz/> or the SEED manual for how it is defined.) The default for CONSTANT is
1.0 if one omits this line. one specifies the number of poles by putting a line in the file with the
keyword "POLES" followed by an integer number (np in the above example). The next np lines in
the file, each containing two floating-point numbers, are the poles for this instrument. One specifies
the zeros with a line starting with "ZEROS" followed by an integer specifying the number of zeros
(nz). Because a typical polezero file has one or more zeros that are (0.0,0.0), SAC does not require
one to write out a line for a zero equal to (0.0,0.0), so the number of zeros lines can be less than nz.
One may specify up to 30 poles and 30 zeros.

The original SAC polezero files only contained poles, zeroes, and a constant. About ten years ago it
was decided that supplying formatted comments as a header in the polezero file helps users organize
and understand the origins of the coefficients presented. For this reason, since 2011 SAC supports
the annotated polezero file, produced by RDSEED (starting with v5.2, October 2011) or available for
the IRIS SACPZ archive. Depending on the request format, a polezero file returned by sacpz may
include multiple polezero files covering more than one time epoch as well as more than one station
and/or channel. A call to TRANSFER using such a file will work satisfactorily for all waveforms in
memory with annotation values that match the header values.

Options for specifying the NETWORK, STATION, LOCID, CHANNEL, DATE, TIME are available
for the POLEZERO option as they are in the EVALRESP option.

The polezero file below was written by program RDSEED (v5.2):

* **********************************
* NETWORK (KNETWK): II

* STATION (KSTNM): PFO

* LOCATION (KHOLE): 00

* CHANNEL (KCMPNM): BHZ

* CREATED : 2011-08-11T00:24:07

* START : 2010-07-30T18:50:00
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* END : 2599-12-31T23:59:59

* DESCRIPTION : Pinon Flat, California, USA

* LATITUDE : 33.610700

* LONGITUDE : -116.455500

* ELEVATION : 1280.0

* DEPTH : 5.3

* DIP : 0.0

* AZIMUTH : 0.0

* SAMPLE RATE : 20.0

* INPUT UNIT : M

* OUTPUT UNIT : COUNTS

* INSTTYPE : Streckeisen STS-1 Seismometer with Metrozet E300

* INSTGAIN : 3.314400e+03 (M/S)

* COMMENT : S/N #119005

* SENSITIVITY : 5.247780e+09 (M/S)

* A0 : 7.273290e+01

* **********************************
ZEROS 6
-7.853982e+01 +0.000000e+00
-1.525042e-01 +0.000000e+00
-1.525042e-01 +0.000000e+00
POLES 6
-1.207063e-02 +1.224561e-02
-1.207063e-02 -1.224561e-02
-1.522510e-01 +9.643684e-03
-1.522510e-01 -9.643684e-03
-4.832398e+01 +5.817080e+01
-4.832398e+01 -5.817080e+01
CONSTANT 3.816863e+11

For this transfer function, there are six poles, for which the complex values are listed on the six lines
following the line POLES 6. There are six zeros, but because only three are listed, the three not listed
have the value of (0.0,0.0).

The INPUT UNIT for any polezero produced by sacpz or evalresp will be "M", so seismometers and
accelerometers perform a simple conversion to address integration. An accelerometer will add two
"zeros" to the beginning of a channel’s zero response to step down to displacement. For velocity, the
program just adds one "zero". The number of zeros in stage 0 in the RESP file may differ from the
number in the polezero file because INPUT UNIT in the polezero is fixed while "Response in units"
in the RESP file is not.

Note that when one compares the SAC waveform file to the polezero file, the SAC header value
COMPINC differs by 90 degrees from the polezero DIP: CMPINC is degrees from the upward vertical,
and DIP is the downward positive angle from horizontal. The polezero AZIMUTH uses the same
convention as the SAC header CMPAZ.

To use this option, one specifies the type to be POLEZERO and the [S]ubtype is the name of the file.
This may be a file in the current directory or in some other directory if one specifies the absolute or
relative pathname.

POLEZERO SEARCH

If a SUBTYPE with FILENAME is not set, SAC will search the current directory for SAC Polezero
files named like:

SAC_PZs_NETWORK_STATION_CHANNEL_LOCID_*

456



where NETWORK, STATION, CHANNEL, LOCID are either those defined in the SAC Header or
specified on the command like, e.g.:

TRANSFER from POLEZERO NETWORK BK STATION CMB to NONE

Matching files will be searched for the correct response using the associated metadata. The first file
found with the correct metadata will be used for the response. Files with no associated metadata are
assumed to be the correct response.

Use the DIR option to specify an alternative search directory, for example:

TRANSER from POLEZERO DIR resp to NONE

will search for responses like:

resp/SAC_PZs_NET_STAT_CHAN_LOC_*

An simple example of the automatic polezero search option would be to remove the responses for all
files in memory, assuming the responses are in the current directory

SAC> READ *.XT.*.BHZ.SAC
XT.ATAT.01.BHZ.M.2001.255.084837.SAC
XT.DAWA.01.BHZ.M.2001.255.084837.SAC

SAC>
SAC> rtrend
SAC> transfer from POLEZERO to NONE FREQLIMITS (1/120) (1/60) 6 7
Using polezero response for ATAT, BHZ, XT, 01 from SAC_PZs_XT_ATAT_BHZ_01_
Station (ATAT ), Channel (BHZ )
Using polezero response for DAWA, BHZ, XT, 01 from SAC_PZs_XT_DAWA_BHZ_01_
Station (DAWA ), Channel (BHZ )

If the responses are instead in a directory named responses, a DIR responses should be added to the
FROM part section, e.g.:

SAC> transfer from POLEZERO DIR responses to NONE FREQLIMITS (1/120) (1/60) 6 7
Using polezero response for ATAT, BHZ, XT, 01 from responses/SAC_PZs_XT_ATAT_BHZ_01_
Station (ATAT ), Channel (BHZ )
Using polezero response for DAWA, BHZ, XT, 01 from responses/SAC_PZs_XT_DAWA_BHZ_01_
Station (DAWA ), Channel (BHZ )

POLEZERO EXAMPLES

The PZ file SAC_PZs_XC_OR075_LHZ is the correct one to remove the instrument response from
waveform OR075_LHZ.SAC:

SAC> SETBB pzfile "SAC_PZs_XC_OR075_LHZ"
SAC> READ OR075_LHZ.SAC
SAC> RTR
SAC> TAPER
SAC> TRANS FROM POLEZERO S %pzfile TO NONE FREQ 0.008 0.016 0.2 0.4
SAC> MUL 1.0e9
SAC> w OR075.z

The MUL 1.0e9 command converts the displacement output from the POLEZERO meters to the SAC
default of nanometers.

For the above example, suppose one had not used SAC_PZs_XC_OR075_LHZ but instead has used
an inappropriate PZ file: SAC_PZs_wrong. The following procedure shows how one can use one call
to TRANSFER to take out the incorrect response and put in the correct response:
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SAC> READ OR075.z
SAC> write OR075.zbad
SAC> SETBB pzo "SAC_PZs_wrong"
SAC> SETBB pzn "SAC_PZs_XC_OR075_LHZ"
SAC> TRANS FROM POLEZERO S %pzn TO POLEZERO S %pzo FREQ 0.008 0.015 0.2 0.4
SAC> write OR075.z

The first write statement makes a copy of the original file.
As a final example we consider the case for which one has several stations and BH* channels for
waveforms from an event in the calling directory written by RDSEED v5.2. Assume one has made a
call to sacpz or concatenated all the BH* PZ files for this event into a single file named event.pz. The
following sequence will read all the BH* waveforms into memory and overwrite those files in memory
with instrument-corrected waveforms:

SAC> r *BH*SAC
SAC> rtr;taper
SAC> TRANS FROM POLEZERO S event.pz freq 0.05 0.1 10.0 15.0

FROM FAPfile

Reintroduced into SAC in version 101.4, is the FAPfile option. A FAPfile is an ascii file in which each
line has three entries: a frequency (in HZ), an amplitude, and a phase (in degrees that will decrease
with increasing frequency). This FROM option will deconvolve the waveform over the frequency range
from the frequency in the first line to the frequency in the last line. The frequencies need not be
equally spaced. When applying the correction, for frequencies less that the frequency in the first line,
the amplitude and phase of that first line are used. Similarly, for frequencies greater than that in the
last line, the amplitude and phase for the frequency in the last line are used.
As of version 3.3.2 in EVALRESP, a FAPfile output can be generated. An advantage of using a
FAPfile generated by EVALRESP rather than a POLEZERO file generated from the same RESP file
is that one can include additional stages of the instrument response and/or control more explicitly
the frequency range over which the correction is applied. Historically, a FAPfile was used because one
did not have a polezero file for the instrument or the full response included analog stages.
The format of a FAPfile is consistent with that produced by the standalone program EVALRESP, but
is different from the format used by (pre-200S) SAC2000.

FAPfile EXAMPLES

Suppose one has a FAPfile fap.n11a.lhz_0.006-0.2, where the name is a short-hand for the fact that
the frequency range is fro m0.006 HZ to 0.2 HZ, and one wants to remove the instrument response
from waveform 2006.253.14.30.24.0000.TA.N11A..LHZ.Q.SA.

SAC> READ 2006.253.14.30.24.0000.TA.N11A..LHZ.Q.SAC
SAC> RTR
SAC> TAPER
SAC> TRANSFER FROM FAP S fap.n11a.lhz_0.006-0.2 FREQ 0.004 0.006 0.1 0.2
SAC> MUL 1.0e9

COMMENTS: As with the EVALRESP and POLEZERO options, one should accompany the in-
strument correction with a FREQLIMITS option to handle the highest and lowest frequencies. (The
Nyquist for this LHZ file is 0.5 Hz.). As discussed above, if FAP comes from EVALRESP, the units
need to be converted from SI units (meters for displacement) to the SAC convention.

AVAILABLE INSTRUMENT TYPES
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ACC acceleration [+]
BBDISP Blacknest specification of Broadband Displacement
BBVEL Blacknest specification of Broadband Velocity
BENBOG Blacknest specification of Benioff by Bogert
DSS LLNL Digital Seismic System
DWWSSN Digital World Wide Standard Seismograph Station
EKALP6 Blacknest specification of EKA LP6
EKASP2 Blacknest specification of EKA SP2
ELMAG Electromagnetic
EVALRESP Response specified in SEED RESP files [++]
GBALP Blacknest specification of GBA LP
GBASP Blacknest specification of GBA SP
GENERAL General seismometer
GSREF USGS Refraction
HFSLPWB Blacknest specification of HFS LPWB
IW EYEOMG-spectral differentiation
LLL LLL broadband analog seismometer
LLSN LLSN L-4 seismometer
LNN Livermore NTS Network instrument
LRSMLP Blacknest specification of LRSM LP
LRSMSP Blacknest specification of LRSM SP
NONE displacement, this is the default [+]
NORESS NORESS (NRSA)
NORESSHF NORESS high frequency element
OLDBB Old Blacknest specification of BB
OLDKIR Old Blacknest specification of Kirnos
POLEZERO reads Pole Zero file [++]
PORTABLE Portable seismometer with PDR2
PTBLLP Blacknest specification of PTBL LP
REDKIR Blacknest specification of RED Kirnos
REFTEK Reftek 97-01 portable instrument
RSTN Regional Seismic Test Network
S750 S750 Seismometer
SANDIA Sandia system 23 instrument
SANDIA3 Sandia new system with SL-210
SRO Seismic Research Observatory
VEL velocity [+]
WA Wood-Anderson
WABN Blacknest specification of Wood-Anderson
WIECH Wiechert seismometer
WWLPBN Blacknest specification of WWSSN long period
WWSP WWSSN short period
WWSPBN Blacknest specification of WWSSN short period
YKALP Blacknest specification of YKA long period
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YKASP Blacknest specification of YKA short period

NOTE [ + ] ACC, VEL, and NONE do not refer to actual seismometer specifications but to acceler-
ation, velocity, and displacement respectively. When these are specified as the TO type, IDEP is set
accordingly.

NOTE [ ++ ] EVALRESP and POLEZERO do not refer to actual seismometer specifications. They
are described in greater detail above.

INSTRUMENT TYPE OPTIONS

SUBTYPE: the following instrument types use the following subtypes:

LLL: LV, LR, LT, MV, MR, MT, EV, ER, ET, KV, KR, KT

LNN: BB, HF

NORESS: LP, IP, SP

POLEZERO: name of file to be read

RSTN: [CP, ON, NTR, NY, SD][KL, KM, KS, 7S][Z, N, E]

SANDIA: [N, O][T, L, B, D, N, E][V, R, T]

SRO: BB, SP, LPDE

FREEPERIOD v: ELMAG, GENERAL, IW, LLL SUBTYPE BB, REFTEK (v must be 15.0 or 30.0
for ELMAG)

MAGNIFICATION n: ELMAG, GENERAL (n must be 375, 750, 1500, 3000, or 6000 for ELMAG)

NZEROS n: GENERAL, IW

DAMPING v: GENERAL, LLL SUBTYPE BB, REFTEK

CORNER v: LLL SUBTYPE BB, REFTEK

GAIN v:

HIGHPASS v: REFTEK

EXAMPLES

To remove the instrument response from the RSTN station NYKM.Z and apply the instrument
response for DSS without prewhitening (which is the default):

SAC> READ NYKM.Z
SAC> TRANS FROM RSTN SUBTYPE NYKM.Z TO DSS PREW OFF

To remove the LLL broadband instrument response and apply the SRO instrument response with
frequency tapering and prewhitening:

SAC> READ ABC.Z
SAC> TRANS FROM LLL TO SRO FREQ .02 .05 1. 2. PREW 2

The passband of the resulting trace will be flat from .05 Hz to 1 Hz and will be zero below .02 Hz
and above 2 Hz. Prewhitening of order 2 is applied in the time domain before deconvolution and the
effect is removed in the time domain after convolution.

To transfer from the electromagnetic instrument response to displacement:

SAC> READ XYZ.Z
SAC> TRANSFER FROM ELMAG FREEP 15. MAG 750. TO NONE
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INSTRUMENT DETAILS IN TRANSFER

INSTRUMENT TYPES AND THEIR DEFINITIONS

Type Definition
ACC Acceleration
DSS LLNL Digital Seismic System
DWWSSN Digital World Wide Standard Seismograph Station
ELMAG Electromagnetic
GENERAL General seismometer
GSREF USGS Refraction
IW EYEOMG-spectral differentiation
S750 S750 Seismometer
LLL LLL broadband analog seismometer
LLSN LLSN L-4 seismometer
LNN Livermore NTS Network instrument
NORESS NORESS (NRSA)
NORESSHF NORESS high frequency element
POLEZERO Instrument specification in terms of poles and zeros
PORTABLE Portable seismometer with PDR2
RSTN Regional Seismic Test Network
REFTEK Reftek 97-01 portable instrument
SANDIA Sandia system 23 instrument
SANDIA3 Sandia new system with SL-210
SRO Sesimic Research Observatory
VEL Velocity Spectal Operator
WA Wood-Anderson
WIECH Wiechert seismometer
WWSP WWSSN short period
NONE No instrument

References to the Blacknest specifications for various instrument types were removed from the documentation in
version 10.6e and are no longer supported, although these instruments still remain in the SAC program.

INSTRUMENTS WHICH REQUIRE SUBTYPES

Instrument Subtype
LLL LV, LR, LT, MV, MR, MT, EV, ER, ET, KV, KR, KT, BB (station and component

abbreviation, or broadband)
LNN BB, HF (broadband or high frequency)
NORESS LP, IP, SP (long-, intermediate- or short-period)
POLEZERO file (file describing poles and zeroes)
RSTN [CP, ON, NT, NY, SD][KL, KM, KS, 7S][Z, N, E] (station; KS36000 long-, medium-

or short-period, or S750 short-period; component)
SANDIA [N, O][T, L, B, D, N, E][V, R, T] (new or old acquisition system; station abbreviation;

component)
SRO BB, SP, LP (broadband, short or long period)
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INSTRUMENTS WHICH REQUIRE OTHER OPTIONS

Instrument Options
ELMAG

∙ FREEPERIOD v where v = one of 15.0,30.0

∙ MAGNIFICATION n where n = one of 375,750,1500,3000,6000

GENERAL

∙ FREEPERIOD v

∙ DAMPING v

LLL

∙ SUBTYPE BB

∙ DAMPING v

∙ FREEPERIOD v

REFTEK

∙ FREEPERIOD v

∙ DAMPING v

∙ CORNER v

∙ HIGHPASS v
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TRAVELTIME

SUMMARY

Computes traveltimes of selected phases for pre-defined velocity models. This routine has the same source
code as SSS/TRAVELTIME. If one is in SSS, one can use different plotting routines. For an exampole, see
SSSTRAVELTIME.

SYNTAX

TRAVELTIME {MODEL string} {ONLINE} {VERBOSE | QUIET} {PICKS number}
{PHASE phase list} {CLEAR} {ONRECORD ON|OFF} {M | KM}

INPUT

MODEL: iasp91 [default], ak135. Traveltimes are calculated using the iaspei-tau pro-
cedures and traveltime tables. (For further informati, see documentation referenced
below.)

ONLINE: Retrieve traveltimes from the IRIS Traveltime Web Service. This uses Crotwell’s
TauP Toolkit internally. In addition to iasp91 and ak135, it includes model prem. Also,
it includes additional phases, and some phase groupings are not the same as for the
iaspei-tau tables used by SAC. (For further informati, see documentation referenced
below.)

VERBOSE | QUIET: If VERBOSE is among the options in the TRAVELTIME command
line, phase arrival times are displayed relative to both the origin time (O) and the
first-point time (B). If instead, QUIET is among the options, nothing is displayed.
VERBOSE is the default.

PICKS: There are 10 time picks in the SAC header: t0 to t9. If the number is n
(0<=n<=9), the first phase will be at Tn. The default is n=0. If PICKS is in-
cluded among the command-line options and if phases are within the taime range of
and seismogram in memory, the picks will be included in the header for that seismo-
gram and will be displayed in subsequent plots such as PLOT1 and PLOTPK. The
default is not to have PICKS on, but if PICKS is turned on, it will remain on for
subsequent runs with the same data set. Traveltimes are calculated relative to the
origin (O) but the displayed and stored Tn times are relative to (B).

PHASE: List of phases for which times are displayed (unless QUIET is turned on). Phase
names are generally case sensitive. As of SAC v102.0, verbose ... phase displays phases
in chronological order, and the sorting is done before comparison with PICKS list If
PICKS n is among the command-line options, the phase arrival times and their times
and labels will be added to the header starting at Tn. If n is 0, one can have up to 10
phases put in the header and available for subsequent plots. If n is 8, one can have at
most 2 new phases added to the header.

ONRECORD ON|OFF: If the command line has ONRECORD ON, phases are displayed
(VERBOSE) and/or included as a PICK if the arrival time is between (B) and (E) for
each station. ONRECORD OFF is the Default

CLEAR: Clears the phase list from previous runs. An empty phase list will be populated
with the DEFAULT phases (see below) or values taken from the environment variable
SAC_TRAVELTIME_PHASES. (See below.) In the command line, CLEAN must
come before PHASE

M | KM: If M is among the options in the command line, SAC interprets EVDP as being
in meters. If KM is displayed, EVDP is interpreted as being in kilometers. M was
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the default in SAC until 2005. For all runs of TRAVELTIME VERBOSE, the depth is
printed to the screen so it is obvious whether meters or kilometers were used

DEFAULT VALUES: MODEL iasp91 ONRECORD OFF KM PHASE P S Pn Pg Sn Sg

DESCRIPTION

All waveforms in memory must have event and station locations defined as well as the event
depth and the origin time.
The traveltime tables use the stored degree-distance measure (GCARC), which is calculated
from the event and station latitudes and longitudes using spherical-triangle geometry after
converting geographic latitudes to geocentric.
A quick way to find out all the possible phases that could be be visible on a seismogram
according to TRAVELTIME, use phase all. Eg..:

SAC> read my-seismogram
SAC> traveltime verbose phase all
SAC> traveltime verbose onrecord on clear phase all

The second traveltime command displays only arrivals that are between (B) and (E) for my-seismogram.
The clear option removes phase data from memory for the previous call .

As discussed in DATAGEN, seismograms from a deep-focus event have been added: ${SACHOME}/aux/datagen/deep/.
Arrivals are sharp, and several converted phases can be seen. We use that event to demonstrate how
to use TRAVELTIME:

SAC> datagen sub deep bla.r
SAC> lh b e o gcarc evdp

b = 5.911000e+02 e = 1.499100e+03
o = 0.000000e+00 gcarc = 8.627435e+01
evdp = 6.110000e+02

SAC> traveltime verbose picks 0 onrecord on phase all
traveltime: depth: 611.000 km
...
traveltime: setting phase SKSac at 1265.9326 s [ t = 1265.9326 s ] t9
...

SAC> traveltime picks 9 clear phase SKS
traveltime: depth: 611.000 km
traveltime: error finding phase SKSdf
traveltime: setting phase SKSac at 1265.9326 s [ t = 1265.9326 s ] t9

In the traveltime call, arrival SKSac was the 10th arrival so would be the last stored pick. If clear had
not been included in the second command, the VERBOSE output would have been incorrect. (Try
it.) Prior to SAC v102.0, phase SKS would have returned error finding phase SKS.

Next are the commands and an output plot for a run using the radial component for four stations
and six phases. Because plot command PLOT1 plots traces from top-to-bottom in the order read in,
we manually re-ordered the files so that distance increases from first to last. Phase sPP is not in the
isasp-tau tables but is in the ONLINE tau-p tables. (A nice feature for SAC TRAVELTIME is the
ability to combine phases from multiple traveltime table in a single plot:

SAC> datagen sub deep kev.r kip.r pas.r bla.r
SAC> rtr
SAC> traveltime quiet online picks 0 phase sPP
SAC> traveltime picks 1 phase P pP sP S sS SKS
SAC> FILEID LOCATION UL TYPE LIST KSTCMP
SAC> TITLE ’Sakhalin Island Event: &1,KZDATE&, Depth is &1,EVDP& KM’
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SAC> p1
SAC> save sakhalin-picks_p1.pdf

In SSSTRAVELTIME a plot is created for the same seismograms and phases using PLOTRECORD-
SECTION.

DEFAULT PHASES

The default phases for TRAVELTIME are set as local crustal phases: "P S Pn Pg Sn Sg". If a different
set of default phases is desired the environment variable SAC_TRAVELTIME_PHASES can be set
to override the default. The variable is comma or space delimited. For teleseismic data, one might
use "P pP sS S pS sS PP SS". An alternative is to use "all" to capture as many phases as possible.

Note:Environmental variables must be set outside of SAC. In the sh shell, for all, enter export
SAC_TRAVELTIME_PHASES-"all". For shell csh: setenv SAC_TRAVELTIME_PHASES "all".

REFERENCES

Iaspei-tau: https://seiscode.iris.washington.edu/projects/iaspei-tau/

TauP Toolkit: http://www.seis.sc.edu/downloads/TauP/taup.pdf Section 4: Phase naming in TauP

IRIS DMC IRISWS traveltime Web Service Documentation https://service.iris.edu/irisws/traveltime/
1/
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LATEST REVISION

Version 2.0
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TSIZE

SUMMARY

Controls the text size attributes.

SYNTAX

TSIZE {size v},{RATIO v},{OLD|NEW}

where size is one of the following:

TINY|SMALL|MEDIUM|LARGE

INPUT

size v: Change the value of one of the text sizes to v.
RATIO v: Change the text width to height ratio to v.
OLD: Change the values of all the text sizes to their "old" values. These are the values

used by SAC prior to Version 9.
NEW: Change the values of all the text sizes to their "new" values. These are the default

values when SAC is initialized.

DEFAULT VALUES

TSIZE RATIO 1.0 NEW

DESCRIPTION

Most of the text annotation commands (TITLE, XLABEL, FILEID, etc.) allow you to change the
size of the text being displayed. You may choose from a set of four named sizes (TINY, SMALL,
MEDIUM, and LARGE.) Each named size has an initial value given in the table below. These sizes
are the height of a character as a fraction of the full (0.0 to 1.0) viewspace. There are times when you
may want some of this annotation to be of a size different from these default values. TSIZE allows
you to redefine any or all of these four named sizes. You may also use this command to change the
width to height ratio of the characters.

The default text sizes were changed, starting with Version 9 of SAC. The new set covers a wider range
and generally looks better on most devices. You can easily change back to the original set of sizes
by using the OLD option. This might be useful if you want to create a plot that looks very similar
to one that was generated using an older version of SAC. Also old PLOTC files and macros will not
look the same when replotted unless you first set the text sizes to their old values. The NEW option
resets the sizes to their default values.

DEFAULT TEXT SIZES

NAME A B C D E
TINY 0.015 66 50 68 110
SMALL 0.020 50 37 66 82
MEDIUM 0.030 33 25 44 55
LARGE 0.040 25 18 33 41
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The column definitions in the table above are as follows:

∙ A Height of character as a fraction of full viewspace.
∙ B Number of lines of text in full viewspace.
∙ C Number of lines of text in a normal viewspace. Normal means 0. to

1. in x and 0. to 0.75 in y.
∙ D Minimum number of characters per normal viewspace line.
∙ E Average number of characters per normal viewspace line. This is larger

because the text is proportionally spaced.

EXAMPLES

To change the definition of MEDIUM and then use it to create a specially sized title:

SAC> TSIZE MEDIUM 0.35
SAC> TITLE ’Rayleigh Wave Spectra’ SIZE MEDIUM
SAC> PLOT2

To reset this (and any other) size definitions to their default values:

SAC> TSIZE NEW

SEE COMMANDS

TITLE, XLABEL, FILEID, PLOTC

LATEST REVISION

July 22, 1991 (Version 9.1)

469



UNSETBB

SUMMARY

Unsets (deletes) blackboard variables.

SYNTAX

UNSETBB ALL | variable ...

INPUT

ALL: Unset all of the currently defined blackboard variables.
variable: Unset the blackboard variable variable.

DESCRIPTION

The blackboard is a place to temporarily store information. Blackboard variables are defined using the
SETBB and EVALUATE commands. They can be accessed by the GETBB command or used directly
in a command by preceeding the name of the variable with a percent sign ("%".) This command
allows you to unset previously defined blackboard variables. You may unset all variables or only a
named subset.

EXAMPLES

To unset several blackboard variables at once:

SAC> UNSETBB C1 C2 X

To unset all blackboard variables:

SAC> UNSETBB ALL

SEE COMMANDS

SETBB, EVALUATE, GETBB

LATEST REVISION

January 26, 1989 (Version 10.4B)
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UNWRAP

SUMMARY

Computes amplitude and unwrapped phase.

SYNTAX

UNWRAP {FILL {ON|OFF|n}},{INTTHR v},{PVTHR v}

INPUT

FILL {ON}: Turn zero fill option on.
FILL OFF: Turn zero fill option off.
FILL n: Turn zero fill option on and change fill value to n.
INTTHR v: Change the integration threshold constant to v.
PVTHR v: Change the principal value threshold constant to v.

DEFAULT VALUES

UNWRAP FILL OFF INTTHR 1.5 PVTHR 0.5

DESCRIPTION

This command transforms time-series data in memory to spectral data containing amplitude and
"unwrapped" phase components. This procedure works for data with a "smoothly varying phase."
The data is filled with zeros to the next power of two before being transformed. You may specify a
larger number of zeros by using the FILL option.

This is an implementation of the algorithm due to Tribolet. Two methods are used to estimate the
unwrapped phase at each frequency. One is to numerically integrate the phase derivative through
the use of the fast Fourier transform. The step size used in this trapezoidal integration is halved at
each frequency if necessary to obtain a consistent estimate. You can control the threshold value on
this check using the INTTHR option. This value is in radians. Decreasing INTTHR will improve the
phase estimate. Too small a value, however, will not allow the solution to converge.

The second method used in this algorithm is to first compute the principle value of the phase using
the inverse tangent function. The unwrapped phase is estimated by adding multiples of 2*PI to the
principal value until the discontinuities are reduced to values less than a threshold value. You control
the threshold value on this check using the PVTHR option. Again, decreasing this threshold value
will improved the phase estimate, but will also increase the chance that no solution may be found.
Initial trial values for these two thresholds are usually such that:

PI/4 < PVTHR < INTTHR < 2*PI

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1606: Maximum allowable DFT is

– Too many data points in file.
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WARNING MESSAGES

∙ 1610: Unwrap failed at data point for file

– Adjust threshold constants and retry.

HEADER CHANGES

B, E, and DELTA are changed to the beginning, ending and sampling frequencies of the transform
respectively. The original values of B, E, and DELTA are saved as SB, SE, and SDELTA and are
restored when an inverse transform is performed.

REFERENCES

Tribolet, Jose M.; "A New Phase Unwrapping Algorithm"; IEEE Transactions on Acoustics, Speech,
and Signal Processing; Vol. ASSP-25, No 2, April 1977; page 170.

LATEST REVISION

January 8, 1983 (Version 8.0)
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VSPACE

SUMMARY

Changes the maximum size and shape of plots.

SYNTAX

VSPACE FULL|v

INPUT

FULL: Use full viewspace. This is the largest possible screen or window size.
v: Force the viewspace to have a y:x aspect ratio of v. The largest possible area with this

aspect ratio becomes the viewspace.

DEFAULT VALUES

VSPACE FULL

DESCRIPTION

The viewspace represents that portion of the viewing surface on which plots can be drawn. There is
a large variation in viewspace shapes and sizes between different graphics devices:

1. Although differing greatly in size, many graphics terminals have an aspect ratio of
0.75. Some terminals, however, have different aspect ratios. The HP 26xx family of
terminals have an aspect ratio of 0.5. The Tektronix 4025 terminals can have a wide
range of aspect ratios, depending upon how many lines on the screen are assigned to
the alphanumeric display and how many to the graphic display.

2. The SAC Graphics File (SGF) has an aspect ratio of 0.75 This is the approximate ratio
of a standard sheet of 8.5 by 11 paper.

3. The graphics windows created by the XWINDOWS or SUNWINDOWS device can have
any aspect ratio you wish.

This variation among graphics devices can be a problem if you are need complete control over the size
and shape of a plot. This command gives you control over the shape of a plot by letting you select
a fixed aspect ratio. (SAC does not currently give you much control over the size.) The default is
to plot to the full viewspace. If you do select a fixed aspect ratio, then the viewspace becomes the
largest enclosed area on the device with that aspect ratio.

This command is useful when you are creating a figure on an interactive device using PLOTC that
you eventually want to send to the SGF device. You should set the aspect ratio to 0.75 before doing
any plotting. This will ensure that the figure will have the same in the SGF file as it is does on the
interactive device. Another use is when you want a square viewspace independent of the graphics
device. This is easily done by requesting an aspect ratio of 1.0.

LATEST REVISION

May 15, 1987 (Version 10.2)
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WAIT

SUMMARY

Tells SAC whether or not to pause between plots.

SYNTAX

WAIT {ON|OFF|EVERY}

INPUT

{ON}: Turn wait option on in normal mode.
OFF: Turn wait option off.
EVERY: Turn wait option on in every plot mode.

DEFAULT VALUES

WAIT ON

DESCRIPTION

When you read in more than one data file and then plot them using the PLOT command, one frame
is generated for each file. If you are plotting to the terminal, SAC normally pauses after each plot and
sends the message "WAITING" to the terminal. You can then hit the return key to see the next plot,
type "GO" to have SAC plot the rest of the current set of plots without pausing, or type "KILL" to
terminate the plotting of this set of files. SAC does not pause after the last plot, because the normal
input prompt serves the same function. When this wait option is off, SAC does not pause between
plots. With the wait option in the "every plot" mode SAC will pause between every plot, not just the
ones generated by the PLOT command. This is useful when you are running SAC under the control
of a command file or job control program.

EXAMPLES

The following example shows how SAC functions in the normal wait mode:

SAC> READ FILE1 FILE2 FILE3 FILE4
SAC> PLOT

waiting {plot of FILE1 to terminal}
SAC> (return)
SAC> waiting {plot of FILE2}
SAC> kill {user has seen enough}

(prompt) {SAC now waiting for next command}

LATEST REVISION

October 11, 1984 (Version 9.1)

474



WHITEN

SUMMARY

Flattens the spectrum of the input time series.

SYNTAX

WHITEN {N} {FILTERDESIGN|FD}

INPUT

N: The order (number of poles). The higher this number, the flatter the resultent data.
High orders can clean the data up better, but they can clean the data up too much,
and important data can be lost if the order is set too high. The default is 6.

FD: Performs something akin to the filterdesign command. Using the whitening coeffi-
cients, it designs the whitening filter. Output is written to disc as a set of three output
files per input file. Output files have the following suffixes:

.imp: impulse response

.spec: spectral
responses (amplitude and phase), and .gd = group delay. Note that while the group
delay claims to be a time series file, it is really a frequency series.

DEFAULT VALUES

WHITEN 6

DESCRIPTION

Add white noise to the data. Flattens the spectrum of the input time series. When this is performed
prior to the spectral commands (like those in SPE, or transfer or spectrogram), it reduces the dynamic
range of the spectral values, and improves the accuracy of the overall operation at high frequencies
for seismic data.

Note WHITEN can be called from within the SPE subprocess, or from SAC’s main shell. The
WHITEN in SPE maintains the order separately from the WHITEN in the main shell. From the main
shell, you can call WHITEN 4. Future calls to WHITEN from the main shell will have an order of
4, but calls to WHITEN in SPE will still have order of 6, unless it is changed at the commandline
in SPE. Furthermore, the order in SPE is the same as the order related to the PREWHITEN option
in SPE’s COR command (setting one sets the other). Also the order in the main shell’s WHITEN
command is the same as the order in the TRANSFER command’s PREWHITEN option.

SEE COMMANDS

SPE, SPE_COR, TRANSFER
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WHPF

SUMMARY

Writes auxiliary cards into the HYPO pick file.

SYNTAX

WHPF IC n m

INPUT

IC n m: Insert an "instruction card" with the two integers n and m in columns 18 and 19.
Allowed values for n are 0, 1, 5, and 6. Allowed values for m are 0, 1, and 9.

DESCRIPTION

The "instruction card" can be used to separate events in a HYPO pick file. See the HYPO71 manual
for details on the use of this card. Closing an open HYPO pick file (CHPF command) or quitting
SAC automatically appends the "10" instruction card to the HYPO pick file.

ERROR MESSAGES

∙ 1908: HYPO pick file not open.

SEE COMMANDS

CHPF, OHPF W.H.K. Lee and J.C. Lahr; HYPO71 (Revised): A Computer Program for Determining
Hypocenter, Magnitude, and First Motion Pattern of Local Earthquakes; U. S. Geological Survey
report 75-311.

LATEST REVISION

March 20,1992 (Version 10.6e)
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WIDTH

SUMMARY

Controls line-width selection for graphics devices.

SYNTAX

WIDTH {ON|OFF|linewidth} options

where options are one or more of the following:

{SKELETON width}
{INCREMENT {ON|OFF}}
{LIST STANDARD|widthlist}

and where linewidth, width and widthlist are integer values.

The LIST option must appear last in this command.

INPUT

WIDTH ON: Turn WIDTH option on but don’t change current width values.
WIDTH OFF: Turn width option off.
WIDTH linewidth: Change data width to linewidth and turn WIDTH option on.
SKELETON width: Change width of skeleton to width and turn WIDTH option on.
INCREMENT {ON}: Increment width from widthlist list after each data file is plotted.
INCREMENT OFF: Do not increment data line width.
LIST widthlist: Change the content of the width list. Enter list of widths. Sets data

width to first width in list and turns width option on.
LIST STANDARD: Change to the standard width list. Sets data width to first width in

list and turns width option on.

DEFAULT VALUES

WIDTH OFF SKELETON 1 INCREMENT OFF LIST STANDARD

DESCRIPTION

This command controls width attributes for those devices which can display a large number of line-
widths. The data width is the width that is used when plotting the data files. The data width may
be automatically incremented from a width list after each data file is plotted. The skeleton width is
the width used to plot the axes. Only plot axes change with SKELETON option. Grids, text, labels
and frame ids are always displayed with the thin line-width of value 1.

If plotting several data files on the same plot, you may want each to be in a different width. This is
done using the INCREMENT option. When this option is on, the data width is incremented from a
list of widths each time a data file is plotted. The order and value of widths in the standard (default)
list is:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

You may change the order or content of this list using the LIST option. This is useful for doing overlay
plots (see PLOT2) when you want the same widths used in the same order on each plot.

477



EXAMPLES

To select an incrementing data width starting with 1:

SAC> WIDTH 1 INCREMENT

To set up an incrementing data width list of 1, 3, and 5 with an skeleton of 2:

SAC> WIDTH SKELETON 2 INCREMENT list 1 3 5

LATEST REVISION

June 20, 1992 (Version 10.6e)
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WIENER

SUMMARY

Designs and applies an adaptive Wiener filter.

SYNTAX

WIENER {[W]INDOW pdw} {[N]COEFF n} {MU OFF | ON | v}
{[EPS]ILON OFF | ON | e}

INPUT

WINDOW pdw: Set filter design window to pdw. A partial data window which consists
of a start time and stop time. These times can be absolute ones or ones relative to
certain header fields. See the CUT command for details on pdw.

NCOEFF n: Set the number of filter coefficients to n.
MU off | on | v: Set the adaptation step size parameter. Off sets mu to zero. On sets

mu = 1.95 / Rho(0). Where Rho(0) is the autocorrelation in pdw at zero lag. v sets
mu = v.

EPSILON e: Set ridge regression parameter to epsilon. Can help stabilize the wiener filter
by increasing the diagonal elements of the autocorrelation matrix by epsilon. When
epsilon is ON, SAC will use the value entered by the user (or zero if no value was
entered). When epsilon is OFF, SAC will loop through the following increasing values
of epsilon (0.0, 1e-5, 1e-4, 1e-3, 1e-2), until the wiener filter is stable, or until the list
has been exhausted. If epsilon == 0 does not work, SAC will produce one or more
warning messages. If none of the values work, SAC will produce an error message.

DEFAULT VALUES

WIENER WINDOW B 0 10 NCOEFF 30 MU OFF EPSILON OFF

DESCRIPTION

A prediction error filter is designed using the Yule-Walker Method from an autocorrelation function
estimated from the designated partial data window. This window can be any portion of the file. The
filter is then applied to the entire signal, i.e. the signal is replaced by the residual error sequence.
This filter may be used as a prewhitener or as a detection preprocessor for transient signals. The filter
can be made adaptive in time by specifying a non-zero value for MU. Large values of MU may cause
instability.

EXAMPLES

The following command would apply a non-adaptive filter, with the first ten seconds being the design
window:

SAC> WIENER WINDOW B 0 10 MU 0.

The following command would apply a filter with 40 coefficients, with a design window from the
beginning of the file to 1 second before the first arrival:

SAC> WIENER NCOEFF 40 WINDOW B A -1
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HEADER CHANGES

DEPMIN, DEPMAX, DEPMEN

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1306: Illegal operation on unevenly spaced file

∙ 1307: Illegal operation on spectral file

∙ 1608: Bad Wiener filter noise window for file

– Filter design window does not lie within file window.

– Make sure header fields used in window are defined.

WARNING MESSAGES

∙ 1609: Numerical instability in Wiener filter for file

∙ 1614: Numerical instability in Wiener;

– will retry with epsilon = e where e denotes the next value of epsilon to be tried.

– The filtered data may or may not be incorrect.

SEE COMMANDS

CUT

LATEST REVISION

March 12, 1997 (Version 00.53)
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WILD

SUMMARY

Sets wildcard characters used in read commands to expand filelists.

SYNTAX

WILD {ECHO {ON|OFF}},{SINGLE char},{MULTIPLE char},
{CONCATENATION chars}

INPUT

ECHO {ON}: Turn echoing of expanded filelist on. Echoing is only when this option is
on and there are wildcard characters in the filelist.

ECHO OFF: Turn echoing of expanded filelist off.
SINGLE char: Change the character used to match single characters.
MULTIPLE char: Change the character used to match multiple characters.
CONCATENATION chars: Change the two characters used to enclose concatenation

lists.

DEFAULT VALUES

OPTION UNIX VAX PRIME
ECHO ON ON ON
SINGLE ? ? +
MULTIPLE * * ’
CONCATENATION [,] (,) [,]

DESCRIPTION

This feature is available at the command level of many modern operating systems and is called
"wildcarding" or "filename expansion." It is a notation that allows you to abbreviate filenames and to
specify entire groups of files using a simple shorthand notation. SAC has implemented wildcarding,
along with several extensions, in its READ, READALPHA, and READHDR commands. Using this
notation, you can easily access lists such as:

∙ All files beginning with the letters "abc".
∙ All files ending with the letter "z".
∙ All files with exactly three letters in their names.

There are three elements in this wildcard notation. We will use the default wildcard characters for
the UNIX version in this description and in the examples below. The defaults may be different on the
computer you are using. You may also use this command to change the characters to be anything you
want. The multiple match character ("*") is used to match an arbitrary character string, including
an empty string. The single match character ("?") is used to match any single character. The
concatenation characters ("[" and "]") are used to enclose a comma delimited list of character strings
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to match. The character strings in a concatenation list may not contain the single or multiple match
wildcard characters. These are the steps that SAC uses to perform this wildcard filename expansion:

1) Strip away the directory part of the token if it exists. Otherwise use the current
directory.

2) Make a system call to get a list of all files in the directory.
3) If a concatenation list is in the token, form new tokens from each character string in

the concatenation list with the other characters in the token and then match them to
the list of files. If there is no concatenation list in the token, simply match the token
to the list of files.

4) Remove any duplicates matches to form the expanded filelist.
5) Echo the expanded filelist if requested.
6) Attempt to read the expanded filelist into memory.

Each operating system uses a somewhat different scheme to store and access files in a directory.
The system call in (1) above reflects these differences. For example, the filenames are returned in
alphabetical order in UNIX but are not on the PRIME or VAX. The order of the files in a PRIME
directory is arbitrary. These differences are reflected in the order of the files in the expanded filelist.
You may have to experiment with different variations of wildcard characters and concatenation lists
if the order of the files in the expanded list is important.

The examples below will help clarify how to use these wildcard elements. One useful feature is that
SAC saves the character strings contained in the concatenation list. When you enter an empty list,
then the previous list is reused. This can save a lot of typing.

EXAMPLES

Assume that the contents of the current directory contain the following files in the order shown:

ABC DEF STA01E STA01N STA01Z STA02E STA02N STA02Z STA03Z

Also, assume that expanded filelist echoing is on. The following shows how the various wildcarding
elements can be used to read parts of the above filelist into memory.:

SAC> READ S*
STA01E STA01N STA01Z STA02E STA02N STA02Z STA03Z

SAC> READ *Z
STA01Z STA02Z STA03Z

SAC> READ ???
ABC DEF

SAC> READ STA01[Z,N,E]
STA01Z STA01N STA01E

SAC> READ *[Z,N,E]
STA01Z STA02Z STA03Z STA01N STA02N STA01E STA02E

SAC> READ *1[Z,N,E] *2[ ]
STA01Z STA01N STA01E STA02Z STA02N STA02E

LIMITATIONS

You may have only one concatenation string in a token. This limitation will be eliminated in a future
version. Several other wildcard and filename expansion options will also be added at that time.
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SEE COMMANDS

READ, READALPHA, READHDR

LATEST REVISION

May 15, 1987 (Version 10.2)
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WINDOW

SUMMARY

Sets the location, size, and aspect ratio of graphics windows.

SYNTAX

WINDOW n {XSIZE xwmin xwmax} {YSIZE ywmin ywmax}
{ASPECT [ value | ON | OFF ]}

INPUT

n: The graphics window number of interest. There are a total of nine possible graphics
windows [ 1 - 9 ].

X xwmin xwmax: Set the x (horizontal) location of graphics window n on the screen.
xwmin is the location of the left edge of the window and xwmax is the location of
the right edge. The range of these screen coordinates is 0.0 to 1.0. xsize = xwmax -
xwmin.

Y ywmin ywmax: Set the y (vertical) location of graphics window n on the screen. ywmin
is the location of the bottom edge of the window and ywmax is the location of the top
edge. The range of these screen coordinates is 0.0 to 1.0. ysize = ywmax - ywmin.

ASPECT VALUE: If ASPECT is ON (OFF is default), xwmax is not used and the xsize
is set so that the aspect ratio (xsize/ysize) on the screen for the window is VALUE if
given or the default if not explicitly given. The default for VALUE is 11.0/8.5 = 1.294.

DEFAULT SETTINGS

n xwmin xwmax ywmin ywmax
1 0.05 0.65 0.45 0.95
2 0.07 0.67 0.43 0.93
3 0.09 0.69 0.41 0.91
4 0.11 0.71 0.39 0.89
5 0.13 0.73 0.37 0.87

The default is n = 1.

For versions 101.5 through 101.6a, the default for ASPECT was ON, so xwmax was not used in the default
windows. If you prefer the 2011 - 2018 windows, use a init.m macro (see ${SACHOME}/README) with the
following lines:

window 1 x 0.05 0.65 y 0.45 0.95 aspect on
window 2 x 0.07 0.67 y 0.43 0.93 aspect on
window 3 x 0.09 0.69 y 0.41 0.91 aspect on
window 4 x 0.11 0.71 y 0.39 0.89 aspect on
window 5 x 0.13 0.73 y 0.37 0.87 aspect on
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DESCRIPTION

The default window set is useful if one wants to create and compare several plots in a single SAC
session. For an example about how to produce a screen with several separate but related plots, see
${SACHOME}/aux/macros/demo.

The BEGINWINDOW command lets you select the window in which to display subsequent plots.
BEGINWINDOW will create the requested window -- erasing its contents, if it already existed. If
one wants to change a setting from the default setting, the WINDOW command must be called
BEFORE a call to BEGINWINDOW. On most systems the user can also move and resize these
windows dynamically using the mouse and pop-up menus. Generally but not always, the moving of a
window will result in the current plot being redraw automatically, whereas the resizing of a window
results in the current plot being redrawn but not rescaled. The next plot in a resized window will be
scaled correctly.

If ASPECT is OFF, the aspect ratio of the displayed window depends on the aspect ratio of the screen.
Older terminals typically had an x:y aspect ratio of 4:3; newer ones are more varied, but many have
an aspect ratio of 16:10 or 16:9.

SAVEIMG has instructions how to create plot files from displayed windows, but for PDF or PS plots,the
aspect ratio is fixed to 11.0/8.5 (1.294). To get the best resolution for such plots, it is best to have
the window aspect ration at or near 1.294.

For screens with large aspect ratios, width/height > 2.0 or < 0.5, e.g. multiple monitors and high-end
displays and if ASPECT is OFF, the APSECT ratio will automatically be turned ON and set to 11/8.5
= 1.294. This behavior attempts to avoid ultra-wide display windows.

Prior to 2011 (when ASPECT was introduced), the most recent revision to WINDOW was in 1986,
and computer monitors have evolved considerably since then.

EXAMPLES

To see the current window values:

SAC> report window

To change from the default (n = 1) to give more space at the left of the screen:

SAC> window 1 x 0.25 0.85
SAC> beginwindow 1

The y limits will be unchanged.

Note that the order matters:

SAC> window 1 ASPECT 1.33 x 0.25 0.85
SAC> bw 1

will not give the same answer as

SAC> window 1 x 0.25 0.85 ASPECT (4.0 / 3.0)
SAC> bw 1

which ignores xwmax and fixes the aspect ratio to 4/3 = 1.33 because later items on the command
line take precedence

LATEST REVISION

2019 (v 102.0)
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WRITE

SUMMARY

Writes data in memory to disk.

SYNTAX

WRITE {options} {namingoptions}

where options are one or more of the following:

SAC|ALPHA|XDR
COMMIT|ROLLBACK|RECALLTRACE
DIR OFF|CURRENT|name
KSTCMP

These options MUST preceed any element in the namingoptions:

OVER
APPEND text
PREPEND text
DELETE text
CHANGE text1 text2
filelist

Only one of these naming options is allowed at a time.

INPUT

no arguments: Use previous format and previous write filelist.
SAC: Write in SAC binary data file format.
ALPHA: Write in SAC alphanumeric data file format.
SEGY: Write file formatted according to the IRIS/PASSCAL form of the SEGY format.

This format allows one waveform per file. Note only evenly-spaced, time-series files
will be written in SEGY.
Since SAC stores the waveform as a series of real*4 numbers, and SEGY stores the
waveform as a series of long integers, the datapoints from SAC are normalized to the
maxmimum allowable integer. The scale field in SEGY is determined to be the factor
which will restore the waveform as close as possible to that of the original SAC file,
when read with the READ SEGY command.
The following SAC header fields are saved as the following SEGY header fields

SAC SEGY
KZDATE year, day, hour, minute, second, and m_secs are .
KZTIME set to BEGIN time corrected by KZDATE and KZTIME.
BEGIN trigyear, trigday, trighour, trigminute, trigsecond,
ORIGIN and trigmills are ORIGIN corrected by KZDATE & TIME.
NPTS sampleLength and/or num_samps

... continued on next page
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SAC SEGY
DELTA deltaSample and/or samp_rate
DEPMAZ max, corrected by SEGY’s scale.
DEPMIN min, corrected by SEGY’s scale.
DIST sourceToRecDist
STLA recLatOrY (written as latitude in degrees)
STLO recLongOrX (written as longitude in degrees)
EVLA sourceLatOrY (written as latitude in degrees)
EVLO sourceLongOrX (written as longitude in degrees) lats and

lons are multiplied by 3600 to correct units
STEL recElevation
EVEL sourceSurfaceElevation
EVDP sourceDepth
KSTNM station_name
KCMPNM channel_name
KEVNM event_number (only if KEVNM is numeric and < 1e09)

The following SEGY fields are hardwired

SEGY Value
elevationScale 1
coordScale 1
coordUnits 2
gainType 1
gainConst 1
data_form 1

XDR: Write in SAC binary xdr format. This format is used for the moving binary data
files to/from a different architecture, such as a pc running LINUX.

COMMIT: Commits headers and waveforms in SAC memory -- removing any previous
versions of headers or waveforms from RAM -- prior to writing files. COMMIT is the
default.

ROLLBACK: reverts to the last committed version of the header and waveform before
writing files.

RECALLTRACE: ∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (See

RECALLTRACE for a list of which header variables are committed, and which are
rolled back.)

DIR OFF: Turn directory option off. When off, writes to current directory.
DIR CURRENT: Turn directory option on and set name of write directory to the "current

directory" (e.g. the directory from which you started SAC.)
DIR name: Turn directory option on and set name of write directory to name. Write all

filenames to the directory called name. This may be a relative or absolute directory
name.

KSTCMP: Use the KSTNM and KCMPNM header variables to define a file name for each
data file in memory. The names generated will be checked for uniqueness, and will
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have sequencing digits added as necessary to avoid name clashes.
OVER: Use current read filelist as write filelist. Overwrite files on disk with data in memory.
APPEND text: Write filelist is created by appending text to each name in the current

read filelist.
PREPEND text: Write filelist is created by prepending text to each name in the current

read filelist.
DELETE text: Write filelist is created by deleting the first occurrence of text in each

name in the current read filelist.
CHANGE text1 text2: Write filelist is created by changing the first occurrence of text1

in each name in the current read filelist to text2.
filelist: Write filelist is set to filelist. This list may contain simple filenames, relative

pathnames, or full pathnames. It may not contain wildcards.

DEFAULT VALUES

WRITE SAC COMMIT

DESCRIPTION

This command allows you, at any point in the processing of data, to save the results on disk. Several
disk file formats are available. More will be added as needed. Each file in memory is written without
being cut or desampled.

Most of the time, you will want to use to the SAC data file format. This is a compact binary file
format which is fast to read and write. It contains a large header record and one or two data records.
See the Users Manual for details on the physical format. The alphanumeric data file format is an
ASCII equivalent of the SAC data file format. It takes up much more room on disk and is much slower
to read and write. It is useful if you wish to look at the content of the file using a text editor or wish
to transfer data to a different kind of computer.

You can directly specify the names of the files to write or you can indirectly specify them by having
SAC modify the names of files that are currently in memory. The OVER options sets the write file
list to the read file list. It is used to overwrite the last set of disk files read with the data that is
currently in memory. The APPEND, PREPEND, DELETE, or CHANGE options create a write file
list by modifying each of the names in the read file list in the requested way. This is very useful in
macros where you are automatically processing large numbers of data files and need to keep trace of
the output files in a consistent manner. The write file list is output when any of these four options is
selected. This lets you see the names that were actually used.

EXAMPLES

To filter a set of data files and then save the results in a new set of data files:

SAC> READ D1 D2 D3
SAC> LOWPASS BUTTER NPOLES 4
SAC> WRITE F1 F2 F3

This could have also been done using the CHANGE option:

SAC> READ D1 D2 D3
SAC> LOWPASS BUTTER NPOLES 4
SAC> WRITE CHANGE D F
s: F1 F2 F3
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Notice that SAC output the write file list in this case. To replace the original data on disk with the
filtered data the third line in the above example would be:

SAC> WRITE OVER

Note: for examples of the behavior of COMMIT, ROLLBACK, and RECALLTRACE, see the commands
of the same name.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1311: No list of filenames to write.

∙ 1312: Bad number of files in write file list:

– the number of files in the write file list must be the same as the number in the data file list (the
number read into memory).

∙ 1303: Overwrite flag is not on for file

– header variable LOVROK is .FALSE.

– this provides some protection for valuable data.

SEE COMMANDS

READ, COMMIT, ROLLBACK, RECALLTRACE

ACKNOWLEDGEMENTS

Our thanks to Steve Roecker or RPI for providing SAC2SEGY which served as our starting point.

LATEST REVISION

Oct. 27, 1998 (Version 0.58)
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WRITEBBF

SUMMARY

Writes a blackboard variable file to disk.

SYNTAX

WRITEBBF {file}

INPUT

file: The name of a blackboard variable file. It may be a simple filename or a relative or
absolute pathname.

DEFAULT VALUES

WRITEBBF BBF

DESCRIPTION

This command lets you write a blackboard variable file to disk. It can later be read into SAC using the
READBBF command. This feature lets you save information from one execution of SAC to another.
You can also add coding to your own programs to access the information in these blackboard variable
files. This lets you transfer information between your own programs and SAC. See the SAC Subroutines
Reference Manual for details.

SEE COMMANDS

READBBF, SETBB, GETBB

LATEST REVISION

May 15, 1987 (Version 10.2)
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WRITECSS

SUMMARY

Writes data in memory to disk in CSS 3.0 format.

SYNTAX

WRITE {BINARY|ASCII} {COMMIT|ROLLBACK|RECALLTRACE}
{DIR ON|OFF|CURRENT|name} name

INPUT

ASCII: (Default) Write standard ASCII flatfiles.
BINARY: Write output as a single CSS 3.0 binary file.
COMMIT: The COMMIT option commits headers and waveforms in SAC memory prior

to writing the traces. COMMIT is the default.
ROLLBACK: The ROLLBACK option reverts to the last committed version of the header

and waveform before writing the traces.
RECALLTRACE: The RECALLTRACE option:

∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform before

writing the traces. (use HELP RECALLTRACE for a list of which header variables
are committed, and which are rolled back.)

DIR ON: Turn directory option on but don’t change name of write directory.
DIR OFF: Turn directory option off. When off, writes to current directory.
DIR CURRENT: Turn directory option on and set name of write directory to the "current

directory" (e.g. the directory from which you started SAC.)
DIR name: Turn directory option on and set name of write directory to name. Write all

files to the directory called name. This may be a relative or absolute directory name.
name: Write filelist in set to name. There should be only one name specified. It may

not contain wildcards. For ASCII output, name will be prepended to the table name
for each flatfile. (i.e. name.wfdisc, name.origin, ...). In BINARY mode, name is the
output file name.

DEFAULT VALUES

WRITECSS ASCII COMMIT DIR OFF

DESCRIPTION

This command allows you, at any point in the processing of data, to save the results to disk in CSS
3.0 format. In ASCII mode (default) one or more ASCII flatfiles are written. The exact files written
will depend upon the source of the data but can be any of:

wfdisc, wftag, origin, arrival, assoc, sitechan, site, affiliation, origerr, origin, event, sensor, instrument,
gregion, stassoc, remark sacdata.
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In Binary mode a single file will be written containing the same set of tables as would be written in
ASCII mode, but with all tables in binary format and with the waveform data embedded in the file.

For more information on the CSS format see the "Center for Seismic Studies Version 3 Database:
Schema Reference Manual".

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1311: No list of filenames to write.

∙ 1312: Bad number of files in write file list

SEE COMMANDS

READ, READCSS, WRITE, COMMIT, ROLLBACK, RECALLTRACE

LATEST REVISION

October 27, 1998 (Version 00.58)
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WRITEGSE

SUMMARY

Write data files in GSE 2.0 format from memory to disk.

SYNTAX

WRITEGSE {TYPE} {SOURCE ON|OFF|str} {DIR name} filename

INPUT

TYPE: Determines wether the data are written in ascii integer format (INT) or as com-
pressed gse format (CM6). Default is INT.

SOURCE str: str is a string 20 characters or less specifying the institution at which the
GSE file was written. str is written in the MSG_ID line of the resultant GSE file.

DIR name: The directory in which to write the gsefile. This directory name is the same
one that is used in WRITE command.

filename: The name of the gse file to be written.

DEFAULT VALUES

WRITEGSE INT SOURCE OFF

DESCRIPTION

Writes all data in memory to a single file according to the GSE 2.0 data format

The following GSE Data messages are written:

∙ WAVEFORM
∙ STATION
∙ CHANNEL
∙ ARRIVAL
∙ ORIGIN

Waveforms are written in INT format: floating point data is truncated to the nearest integer.

Note There is no way in GSE 2.0 to associate ORIGIN data with a waveform, so SAC’s READGSE
command does not read ORIGIN data, but WRITEGSE writes it.

Note SAC does not currently read nor write DETECTIONS information. Therefore, ARRIVAL infor-
mation is not associated with specific channels.

LATEST REVISION

April 22, 1999 (Version 00.58)
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WRITEHDR

SUMMARY

Overwrites the headers on disk with those in memory.

SYNTAX

WRITEHDR

DESCRIPTION

The data on disk is NOT overwritten by this command. Use the WRITE OVER command to overwrite
headers and data. The WRITEHDR command should NEVER be used if the CUT option is on. The
header in memory is modified to reflect the effects of the CUT, but the data on disk is not modified.
Use of the WRITEHDR command on cut data files will have the effect of apparently shifting and
truncating the data on disk in time.

ERROR MESSAGES

∙ 1301: No data files read in.

HEADER CHANGES

Updates headers on disk.

LIMITATIONS

See description above about use of CUT and WRITEHDR.

SEE COMMANDS

CUT, WRITE

LATEST REVISION

Oct. 27, 1998 (Version 0.58)
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WRITESDD

SUMMARY

Writes data in memory to disk in SDD format.

SYNTAX

WRITESDD {options} {namingoptions}

where options are one or more of the following:

DIR ON|OFF|CURRENT|name

These options MUST preceed any element in the naming options:

OVER
APPEND text
PREPEND text
DELETE text
CHANGE text1 text2
filelist

Only one of these namingoptions is allowed at a time.

INPUT

DIR ON: Turn directory option on but don’t change name of write directory.
DIR OFF: Turn directory option off. When off, write files to current directory.
DIR CURRENT: Turn directory option on and set name of write directory to the "current

directory" (e.g. the directory from which you started SAC.)
DIR name: Turn directory option on and set name of write directory to name. Write all

filenames to the directory called name. This may be a relative or absolute directory
name.

OVER: Use current read filelist as write filelist. Overwrite files on disk with data in memory.
APPEND text: Write filelist is created by appending text to each name in the current

read filelist.
PREPEND text: Write filelist is created by prepending text to each name in the current

read filelist.
DELETE text: Write filelist is created by deleting the first occurrence of text in each

name in the current read filelist.
CHANGE text1 text2: Write filelist is created by changing the first occurrence of text1

in each name in the current read filelist to text2.
filelist: Write filelist is set to filelist. This list may contain simple filenames, relative

pathnames, or full pathnames. IT MAY NOT CONTAIN WILDCARDS.

LATEST REVISION

September 08, 1990 (Version 10.6)
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WRITESP

SUMMARY

Writes spectral files to disk as "normal" data files.

SYNTAX

WRITESP {type} {COMMIT|ROLLBACK|RECALLTRACE} {OVER|filelist}

where type is one of the following:

ASIS|RLIM|AMPH|RL|IM|AM|PH

INPUT

ASIS: Write components in their present format.
RLIM: Write real and imaginary components.
AMPH: Write amplitude and phase components.
RL: Write real component only.
IM: Write imaginary component only.
AM: Write amplitude component only.
PH: Write phase component only.
COMMIT: Commits headers and waveforms in SAC memory -- removing any previous

versions of headers or waveforms from RAM -- prior to writing files. COMMIT is the
default.

ROLLBACK: reverts to the last committed version of the header and waveform before
writing files.

RECALLTRACE: ∙ reverts to the last committed version of the waveform,
∙ reverts to the last committed version of those header variables closely linked

to the waveform,
∙ commits those header variables which are loosely linked to the waveform.

(use HELP RECALLTRACE for a list of which header variables are committed, and
which are rolled back.)

filelis: A list of SAC binary data files. This list may contain simple filenames and full or
relative pathnames.

DEFAULT VALUES

WRITESP ASIS COMMIT

DESCRIPTION

SAC data files may contain either time-series data or spectral data. Certain fields in the header
distinguish between the two formats. When you read (see READ) a time-series file into memory, take
the fast fourier transform (see FFT), and write the data to disk (see WRITE), then the data on disk
will be in the spectral format.

Certain operations can only be performed on time-series data and certain operations only on spectral
data. For example, you can’t apply a taper to spectral data files or multiply two spectral files together.
This is a protection mechanism built into SAC.
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Sometimes, however, you may need to perform some of these operations on spectral data. To override
SAC’s protection mechanism, you can use this command to write spectral data to disk as time-series
data. Each component is written as a separate data file. You may then read these files back into
SAC and perform any operation that you wish, since SAC thinks they are time series data files. Once
these calculations are completed, you may write the modified data back to disk using the WRITE
command. If you wish to reconstruct the spectral data file, use the READSP command. To help you
keep track of the data on disk, SAC appends a suffix to the filename you request that identifies the
spectral component stored in that file. The suffixes are ".RL", ".IM", ".AM", and ".PH"" for the
real component, imaginary component, amplitude, and phase respectively.

EXAMPLES

Assume that you want to perform some operations on the spectral amplitude of FILE1:

SAC> READ FILE1
SAC> FFT AMPH
SAC> WRITESP OVER

SAC will then write out two files, FILE1.AM and FILE1.PH. Now you perform the operations on the
amplitude file:

SAC> READ FILE1.AM
SAC> ...perform operations.
SAC> WRITE OVER

Now the files on disk represent the modified spectral data. If you wanted to reconstruct the SAC
spectral data file and take the inverse transform:

SAC> READSP FILE1
SAC> IFFT
SAC> WRITE FILE2

Note for examples of the behavior of COMMIT, ROLLBACK, and RECALLTRACE, see the commands
of the same name.

ERROR MESSAGES

∙ 1301: No data files read in.

∙ 1305: Illegal operation on time series file

HEADER CHANGES

B, E, and DELTA for the files on disk will contain the beginning, ending, and incremental frequency
in Hz.

SEE COMMANDS

READSP, COMMIT, ROLLBACK, RECALLTRACE

LATEST REVISION

Oct. 27, 1998 (Version 0.58)
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XDIV

SUMMARY

Controls the x axis division spacing.

SYNTAX

XDIV {NICE|INCREMENT v|NUMBER n},{POWER {ON/OFF}}

INPUT

NICE: Use "nice-numbered" division spacings.
INCREMENT v: Set division spacing increment to v.
NUMBER n: Set number of division spacings to n.
POWER {ON}: Turn power option on. When this option is on, SAC may print the

division spacings as a number raised to a power of 10.
POWER OFF: Turn power option off.

DEFAULT VALUES

XDIV NICE POWER ON

DESCRIPTION

This command controls the selection of x axis division spacings. Most of the time the default "nice-
numbered" spacings are satisfactory. SAC determines these based on the minimum and maximum
axis limits, the length of the axis, and the current axis character size.

You may also force the division spacing to be a certain value by use of the INCREMENT option or
you may set the number of division spacings by use of the NUMBER option.

LATEST REVISION

October 11, 1984 (Version 9.1)
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XFUDGE

SUMMARY

Changes the x axis "fudge factor."

SYNTAX

XFUDGE {ON|OFF|v}

INPUT

{ON}: Turn fudge option on but don’t change fudge factor.
OFF: Turn fudge option off.
v: Turn fudge option on and change fudge factor to v.

DEFAULT VALUES

XFUDGE 0.03

DESCRIPTION

When this option is on, the actual axis limits are changed by a "fudge factor". The algorithm for a
linearly interpolated axis is:

XDIFF = XFUDGE*(XMAX-XMIN)
XMIN = XMIN-XDIFF
XMAX = XMAX+XDIFF

where XMIN and XMAX are the data extrema and XFUDGE is the fudge factor. The algorithm is
similiar for logarithmically interpolated axes. The fudge option only applies when the axis limits are
scaled to the data extrema (see XLIM.)

SEE COMMANDS

XLIM

LATEST REVISION

January 8, 1983 (Version 8.0)

499



XFULL

SUMMARY

Controls plotting of x axis full logarithmic decades.

SYNTAX

XFULL {ON|OFF}

INPUT

{ON}: Turn full decade plotting on.
OFF: Turn full decade plotting off.

DEFAULT VALUES

XFULL ON

DESCRIPTION

Full decade plotting applies only when logarithmic interpolation is being used and when the fixed
limits option is off (see XLIM.) When on, the actual axis limits will be set to the first full decade
before and after the data limits. When off, the actual data limits will be used.

SEE COMMANDS

XLIM

LATEST REVISION

January 8, 1983 (Version 8.0)
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XGRID

SUMMARY

Controls plotting of grid lines in the x direction.

SYNTAX

XGRID {ON|OFF|SOLID|DOTTED}

INPUT

{ON}: Turn x axis grid plotting on but don’t change grid type.
OFF: Turn x axis grid plotting off.
SOLID: Turn x axis grid plotting on using solid grid lines.
DOTTED: Turn x axis grid plotting on using dotted grid lines.

DEFAULT VALUES

XGRID OFF

DESCRIPTION

This command controls only x grid lines. The GRID command can be used to control grid lines in
both directions.

SEE COMMANDS

GRID

LATEST REVISION

January 8, 1983 (Version 8.0)
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XLABEL

SUMMARY

Defines the x axis label and attributes.

SYNTAX

XLABEL {ON|OFF|text},{LOCATION location},{SIZE size}

where location is one of the following:

TOP | BOTTOM | RIGHT | LEFT

and where size is one of the following:

TINY | SMALL | MEDIUM | LARGE

INPUT

{ON}: Turn x axis labeling option on. Don’t change text.
OFF: Turn x axis labeling option off.
text: Turn x axis labeling option on. Change text of label. If text contains embedded

blanks, it must be enclosed in single quotes.
LOCATION location: Change location of x axis label.
TOP: Top of the plot window.
BOTTOM: Bottom of the plot window.
RIGHT: To the right of the plot window.
LEFT: To the left of the plot window.
SIZE size: Change x axis label text size.
TINY: Tiny text size has 132 characters per line.
SMALL: Small text size has 100 characters per line.
MEDIUM: Medium text size has 80 characters per line.
LARGE: Large text size has 50 characters per line.

DEFAULT VALUES

XLABEL OFF LOCATION BOTTOM SIZE SMALL

DESCRIPTION

If this option is on, an x axis label is placed on each plot. The size and location of the x axis label
can be changed as well as the text of the x axis label itself. The text quality and font used can be
set using the GTEXT command.

SEE COMMANDS

GTEXT
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LATEST REVISION

January 8, 1983 (Version 8.0)
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XLIM

SUMMARY

Determines the plot limits for the x axis.

SYNTAX

XLIM {ON|OFF|pdw|SIGNAL}

INPUT

{ON}: Turn x limits on but don’t change limits.
OFF: Turn x limits off.
pdw: Turn x limits on and set limits to a new "partial data window." A pdw consists

of a starting and a stopping value of the independent variable, usually time, which
defines the desired window of data that you wish to plot. See the CUT command for
a complete explanation of how to define and use a pdw. Some examples are given
below.

SIGNAL: Equivalent to typing: A -1 F +1.

DEFAULT VALUES

XLIM OFF

DESCRIPTION

When this option is on, fixed plot limits are used for the x axis. When this option is off, the limits are
scaled to the data. Fixed x limits can be used to "blowup" part of the data currently in memory.

EXAMPLES

In these examples we assume time is the independent variable and seconds are the units.:

B 0 30: First 30 secs of the file.
A -10 30: From 10 secs before to 30 secs after first arrival.
T3 -1 T7: From 1 sec before T3 time pick to T7 time pick.
B N 2048: First 2048 points of file.
30.2 48: 30.2 to 48 secs relative to file zero.

SEE COMMANDS

CUT

LATEST REVISION

January 8, 1983 (Version 8.0)
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XLIN

SUMMARY

Turns on linear scaling for the x axis.

SYNTAX

XLIN

DEFAULT VALUES

Linear scaling.

LATEST REVISION

January 8, 1983 (Version 8.0)
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XLOG

SUMMARY

Turns on logarithimic scaling for the x axis.

SYNTAX

XLOG

DEFAULT VALUES

Linear scaling.

LATEST REVISION

January 8, 1983 (Version 8.0)
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XVPORT

SUMMARY

Defines the viewport for the x axis.

SYNTAX

XVPORT xvmin xvmax

INPUT

xvmin: X axis viewport minimum value. Must be in the range 0.0 to xvmax.
xvmax: X axis viewport maximum. Must be in the range xvmin to 1.0.

DEFAULT VALUES

XVPORT 0.1 0.9

DESCRIPTION

The viewport is the portion of the viewspace (see VSPACE command) in which the actual plot is
drawn. The coordinate system used to define the viewspace and viewport is called a virtual coordinate
system. A virtual coordinate system does not depend upon the size, shape, or resolution of a particular
physical device’s display surface. SAC’s coordinate system runs from 0.0 to 1.0 in both the x and y
directions. The lower left hand corner of the viewspace is the point (0.0, 0.0) and the upper right
hand corner of the viewspace is the point (1.0, 1.0). (See the figure on the next page.) The use of
this coordinate system lets you position a plot without worrying about a specific output device.

The XVPORT and YVPORT commands control where in the viewspace a specific plot is to be drawn.
The default values use most of the viewspace for the plot while leaving some room on each side for
axes, labels, and a title. You can place a particular plot anywhere you want using these commands.
When used in conjunction with the BEGINFRAME and ENDFRAME commands, these commands let
you create your own special layout by putting several different plots on the same frame.

EXAMPLES

See the example in the BEGINFRAME documentation.

SEE COMMANDS

VSPACE, BEGINFRAME

REFERENCES

Principles of Interactive Computer Graphics, Second Edition; William M. Newman and Robert F.
Sproull; 1979; McGraw-Hill.

LATEST REVISION

January 8, 1983 (Version 8.0) Viewspace and Viewport Coordinates
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YDIV

SUMMARY

Controls the y axis division spacing.

SYNTAX

YDIV {NICE|INCREMENT v|NUMBER n},{POWER {ON/OFF}}

INPUT

NICE: Use "nice-numbered" division spacings.
INCREMENT v: Set division spacing increment to v.
NUMBER n: Set number of division spacings to n.
POWER {ON}: Turn power option on. When this option is on, SAC may print the

division spacings as a number raised to a power of 10.
POWER OFF: Turn power option off.

DEFAULT VALUES

YDIV NICE POWER ON

DESCRIPTION

This command controls the selection of y axis division spacings. Most of the time the default "nice-
numbered" spacings are satisfactory. SAC determines these based on the minimum and maximum
axis limits, the length of the axis, and the current axis character size.

You may also force the division spacing to be a certain value by use of the INCREMENT option or
you may set the number of division spacings by use of the NUMBER option.

LATEST REVISION

October 11, 1984 (Version 9.1)
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YFUDGE

SUMMARY

Changes the y axis "fudge factor."

SYNTAX

YFUDGE ON|OFF|v

INPUT

ON: Turn fudge option on but don’t change fudge factor.
OFF: Turn fudge option off.
v: Turn fudge option on and change fudge factor to v.

DEFAULT VALUES

YFUDGE 0.03

DESCRIPTION

When this option is on, the actual axis limits are changed by a "fudge factor". The algorithm for a
linearly scaled axis is:

YDIFF = YFUDGE*(YMAX-YMIN)
YMIN = YMIN-YDIFF
YMAX = YMAX+YDIFF

where YMIN and YMAX are the data extrema and YFUDGE is the fudge factor. The algorithm is
similiar for logarithmically scaled axes. The fudge option only applies when the axis limits are scaled
to the data extrema (see YLIM.)

SEE COMMANDS

YLIM

LATEST REVISION

January 8, 1983 (Version 8.0)
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YFULL

SUMMARY

Controls plotting of y axis full logarithmic decades.

SYNTAX

YFULL {ON|OFF}

INPUT

{ON}: Turn full decade plotting on.
OFF: Turn full decade plotting off.

DEFAULT VALUES

YFULL ON

DESCRIPTION

Full decade plotting applies only when logarithmic scaling is being used and when the fixed limits
option is off (see YLIM.) When on, the actual axis limits will be set to the first full decade before and
after the data limits. When off, the actual data limits will be used.

SEE COMMANDS

YLIM

LATEST REVISION

January 8, 1983 (Version 8.0)
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YGRID

SUMMARY

Controls plotting of grid lines in the y direction.

SYNTAX

YGRID {ON|OFF|SOLID|DOTTED}

INPUT

{ON}: Turn y axis grid plotting on but don’t change grid type.
OFF: Turn y axis grid plotting off.
SOLID: Turn y axis grid plotting on using solid grid lines.
DOTTED: Turn y axis grid plotting on using dotted grid lines.

DEFAULT VALUES

YGRID OFF

DESCRIPTION

This command controls only y grid lines. The GRID command can be used to control grid lines in
both directions.

SEE COMMANDS

GRID

LATEST REVISION

January 8, 1983 (Version 8.0)
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YLABEL

SUMMARY

Defines the y axis label and attributes.

SYNTAX

YLABEL {ON|OFF|text},{LOCATION location},{SIZE size}

where location is one of the following:

TOP | BOTTOM | RIGHT | LEFT

and where size is one of the following:

TINY | SMALL | MEDIUM | LARGE

INPUT

{ON}: Turn y axis labeling option on. Don’t change text.
OFF: Turn y axis labeling option off.
text: Turn y axis labeling option on. Change text of label. If text contains embedded

blanks, it must be enclosed in single quotes.
LOCATION location: Change location of y axis label.
TOP: Top of the plot window.
BOTTOM: Bottom of the plot window.
RIGHT: To the right of the plot window.
LEFT: To the left of the plot window.
SIZE size: Change y axis label text size.
TINY: Tiny text size has 132 characters per line.
SMALL: Small text size has 100 characters per line.
MEDIUM: Medium text size has 80 characters per line.
LARGE: Large text size has 50 characters per line.

DEFAULT VALUES

YLABEL OFF LOCATION LEFT SIZE SMALL;

DESCRIPTION

If this option is on, a y axis label is placed on each plot. The size and location of the y axis label can
be changed as well as the text of the y axis label itself. The text quality and font used can be set
using the GTEXT command.

SEE COMMANDS

GTEXT
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LATEST REVISION

January 8, 1983 (Version 8.0)
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YLIM

SUMMARY

Determines the plot limits for the y axis.

SYNTAX

YLIM {ON|OFF|ALL|min max|PM v ....}

INPUT

{ON}: Turn y limits option on, but don’t change limits.
OFF: Turn y limits option off.
ALL: Scale y limits to the minimum and maximum of all files in memory.
min max: Turn fixed y option on and change limits to min and max.
PM v: Turn fixed y option on and change limits to minus and plus the absolute value of

v. ,SKIP You may define different y limit options for each file in memory if you wish.
The first entry in the command applies to the first file in memory, the second entry to
the second file, etc. The last entry applies to the remainder of the files in memory.

DEFAULT VALUES

YLIM OFF

DESCRIPTION

When this option is on, fixed limits are used in plotting. When off, the limits are scaled to the data.
The limits can also be scaled to the entire data set if desired. Different values may be set for each
file in memory.

EXAMPLES

Consider the following set of commands:

SAC> YLIM 0.0 30.0 ALL OFF
SAC> READ FILE1 FILE2 FILE3
SAC> PLOT

FILE1 would be plotted with y limits of 0.0 and 30. FILE2 would be scaled to the minimum and
maximum values of all files in memory. FILE3 would be scaled to its own minimum and maximum
values. If more than three files were read in, they would also be scaled to their own minimum and
maximum values.

LATEST REVISION

January 8, 1983 (Version 8.0)
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YLIN

SUMMARY

Turns on linear scaling for the y axis.

SYNTAX

YLIN

DEFAULT VALUES

Linear scaling.

LATEST REVISION

January 8, 1983 (Version 8.0)
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YLOG

SUMMARY

Turns on logarithimic scaling for the y axis.

SYNTAX

YLOG

DEFAULT VALUES

Linear scaling.

LATEST REVISION

January 8, 1983 (Version 8.0)
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YVPORT

SUMMARY

Defines the viewport for the y axis.

SYNTAX

YVPORT yvmin yvmax

INPUT

yvmin: Y axis viewport minimum value. Must be in the range 0.0 to yvmax.
yvmax: Y axis viewport maximum. Must be in the range yvmin to 1.0.

DEFAULT VALUES

YVPORT 0.15 0.9

DESCRIPTION

The viewport is the portion of the viewspace (see VSPACE command) in which the actual plot is
drawn. The coordinate system used to define the viewspace and viewport is called a virtual coordinate
system. A virtual coordinate system does not depend upon the size, shape, or resolution of a particular
physical device’s display surface. SAC’s coordinate system runs from 0.0 to 1.0 in both the x and y
directions. The lower left hand corner of the viewspace is the point (0.0, 0.0) and the upper right
hand corner of the viewspace is the point (1.0, 1.0). (See the figure in the XVPORT documentation.)
The use of this coordinate system lets you position a plot without worrying about a specific output
device.

The XVPORT and YVPORT commands control where in the viewspace a specific plot is to be drawn.
The default values use most of the viewspace for the plot while leaving some room on each side for
axes, labels, and a title. You can place a particular plot anywhere you want using these commands.
When used in conjunction with the BEGINFRAME and ENDFRAME commands, these commands let
you create your own special layout by putting several different plots on the same frame.

EXAMPLES

See the example in the BEGINFRAME documentation.

SEE COMMANDS

VSPACE, XVPORT, BEGINFRAME

REFERENCES

Principles of Interactive Computer Graphics, Second Edition; William M. Newman and Robert F.
Sproull; 1979; McGraw-Hill.
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LATEST REVISION

January 8, 1983 (Version 8.0)
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ZCOLORS

SUMMARY

Controls the color display of contour lines.

SYNTAX

ZCOLORS {ON|OFF} {options}

where options is currently limited to:

LIST c1 c2 ... cn

INPUT

ON: Turn color display of contour lines on.
OFF: Turn color display of contour lines off.
LIST c1 c2 . cn: Set the list of contour color names to use. Each entry in this list is used

for the corresponding contour level. If the number of contour levels is larger than the
length of this list, the entire list is repeated.

cn: The name of a color from SAC’s current color table.

DEFAULT VALUES

ZCOLORS OFF LIST RED GREEN BLUE

SEE COMMANDS

CONTOUR, COLOR

LATEST REVISION

April 30, 1990 (Version 10.5b)
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ZLABELS

SUMMARY

Controls the labeling of contour lines with contour level values.

SYNTAX

ZLABELS {ON|OFF} {options}

where options are one or more of the following:

SPACING v1 {v2 {v3} }
SIZE v
ANGLE v
LIST c1 c2 ... cn

The LIST option must appear last in this command.

INPUT

ON: Turn labeling of contour lines on.
OFF: Turn labeling of contour lines off.
SPACING v1 {v2 {v3} }: Set the minimum, optimum, and maximum spacing between

adjacent labels (in viewport coordinates) to v1, v2, and v3 respectively. If the second
or third values are omitted, the previous values are used.

SIZE v: Set the size (height) of the labels (in viewport coordinates) to v.
ANGLE v: Set the desired maximum text angle the labels (in degrees from horizontal) to

v.
LIST c1 c2 . cn: Set the list of contour labels to use. Each entry in this list is used for

the corresponding contour level. If the number of contour levels is larger than the
length of this list, the entire list is repeated.

cn: ON|OFF|INT|FLOATn|EXPn|text
ON: Place a label on corresponding contour line. Use Fortran’s free format capabilities to

format the label from the contour level value.
OFF: Do not place a label on corresponding contour line.
INT: Place an integer label on corresponding contour line.
FLOATn: Place a floating point label on corresponding contour line with n values to the

right of the decimal point. If n is omitted, the previous value for n is used.
EXPn: Place an exponentially formatted label on corresponding contour line with n values

to the right of the decimal point. If n is omitted, the previous value for n is used.
text: Use text to label the corresponding contour line.

DEFAULT VALUES

ZLABELS OFF SPACING 0.1 0.2 0.3 SIZE 0.0075 ANGLE 45.0 LIST ON

EXAMPLES

See CONTOUR for examples of the use of ZLABELS.
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SEE COMMANDS

CONTOUR

LATEST REVISION

April 30, 1990 (Version 10.5b)
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ZLEVELS

SUMMARY

Controls the contour line spacing in subsequent contour plots.

SYNTAX

ZLEVELS {options}

where options are one or more of the following:

SCALE
RANGE v1 v2
INCREMENT v
NUMBER n
LIST v1 v2 ... vn

INPUT

SCALE: Scale the range of the contour levels to the data.
RANGE v1 v2: Set the range (minimum and maximum) of the contour levels to v1 and

v2. You should use either the SCALE or the RANGE option but not both.
INCREMENT v: Set the increment between contour levels to v.
NUMBER n: Set the number of contour levels to n. You should use either the INCRE-

MENT or the NUMBER option but not both.
LIST v1 v2 . vn: Set the list of contour levels to v1, v2, etc. All other options are ignored

if you use this one.

DEFAULT VALUES

ZLEVELS SCALE NUMBER 20

EXAMPLES

See CONTOUR for examples of the use of ZLEVELS.

LIMITATIONS

The maximum number of contour levels is 40.

SEE COMMANDS

CONTOUR

LATEST REVISION

April 30, 1990 (Version 10.5b)
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ZLINES

SUMMARY

Controls the contour linestyles in subsequent contour plots.

SYNTAX

ZLINES {ON|OFF} {options}

where options are one or more of the following:

LIST n1 n2 ... nn
REGIONS v1 v2 ... vn

INPUT

ON: Turn display of contour lines on.
OFF: Turn display of contour lines off.
LIST n1 n2 . nn: Set list of linestyles to use. Each entry in this list is used for the

corresponding contour level. If the number of contour levels is larger than the number
of entries in the list, the entire list is repeated.

REGIONS v1 v2 . vn: Set list of contour regions. The length of this list should be one
less than the linestyle list. Contour levels less than a contour region value are assigned
the linestyle of the corresponding entry in the linestyle list. Contour levels above the
last contour region value are assigned the value of the last entry in the linestyle list.

DEFAULT VALUES

ZLINES ON LIST 1

EXAMPLES

To set up contours which cycle between four different linestyles:

SAC>ZLINES LIST 1 2 3 4

To set contours with dotted lines representing levels below 0.0 and solid lines representing contours
above 0.0:

SAC>ZLINES LIST 2 1 REGIONS 0.0

See CONTOUR for more examples of the use of ZLINES.

SEE COMMANDS

CONTOUR

LATEST REVISION

April 30, 1990 (Version 10.5b)
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ZTICKS

SUMMARY

Controls the labeling of contour lines with directional tick marks.

SYNTAX

ZTICKS {ON|OFF} {options}

where options are one or more of the following:

SPACING v
LENGTH v
DIRECTION DOWN|UP
LIST c1 c2 ... cn

INPUT

ON: Turn tick mark labeling of contour lines on.
OFF: Turn tick mark labeling of contour lines off.
SPACING v: Set the spacing between adjacent tick marks (in viewport coordinates) on

each line segment to v.
LENGTH v: Set the length of each tick mark (in viewport coordinates) to v.
DIRECTION DOWN: Tick marks point in the direction of decreasing z value.
DIRECTION UP: Tick marks point in the direction of increasing z value.
LIST c1 c2 . cn: Set the list of contour ticks marks to use. Each entry in this list is used

for the corresponding contour level. If the number of contour levels is larger than the
length of this list, the entire list is repeated. A value of ON means that tick marks are
placed on that contour line. A value of OFF means that no tick marks are placed on
that contour line. line.

DEFAULT VALUES

ZTICKS OFF SPACING 0.1 LENGTH 0.005 DIRECTION DOWN LIST ON

EXAMPLES

See CONTOUR for examples of the use of ZTICKS.

SEE COMMANDS

CONTOUR

LATEST REVISION

April 30, 1990 (Version 10.5b)
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3 Signal-Stacking Subprocess

Signal Stacking Subprocess

Introduction

A subprocess is like a small program within the main SAC program. You start a subprocess by typing
its name (SSS in this case.) You can terminate it and return to the main program using the quitsub
command. You can also terminate SAC from within a subprocess using the QUIT command.

While within a subprocess, you can execute any command belonging to that subprocess plus a limited
number of main SAC commands.

SSS is a package for doing signal stacking (i.e. summation or beamforming).

Each signal (i.e. SAC file) has properties such as a static delay, epicentral distance, weighting factor,
and polarity associated with it. The dynamic delays can be calculated using a normal moveout or
refracted wave velocity model.

Certain delay properties can be automatically incremented between summations. Files are easily added
to or removed from the stack file list. The time window for the stack is easily adjusted. Files which
do not contain data throughout the stack time window are filled with zeros.

The stack file list can be plotted with or without the summation. Each summation can be saved on
disk for later use. A record section plot is also included in this subprocess.

The SS commands are listed below in alphabetical order. A list of the allowed main SAC commands
is also shown. You can also use all of the SAC macro features in this subprocess.

SSS Commands

ADDSTACK: Add a new file to the stack file list.

CHANGESTACK: Change properties of files currently in the stack file list.

DELETESTACK: Deletes one or more files from the stack file list.

DELTACHECK: Change the sampling rate checking option.

DISTANCEAXIS: Define the record section plot distance axis parameters.

DISTANCEWINDOW: Controls distance window properties on subsequent record section plots.

GLOBALSTACK: Sets global stack properties.

INCREMENTSTACK: Increments properties for files in the stack file list.

LISTSTACK: Lists the properties of the files in the stack file list.

PLOTRECORDSECTION: Plots a record section of the files in the stack file list.

PLOTSTACK: Plots the files in the stack file list.

QUITSUB: Terminates the Signal Stacking Subprocess.

SUMSTACK: Sums the files in the stack file list.

TIMEAXIS: Controls the time axis properties on subsequent record section plots.

TIMEWINDOW: Sets the time window limits for subsequent stack summation.

SSSTRAVELTIME: Function traveltime called from within SSS.Computes traveltime curves for pre-
defined models

VELOCITYMODEL: Sets stack velocity model parameters for computing dynamic delays.

VELOCITYROSET: Controls placement of a velocity roset on subsequent record section plots.

WRITESTACK: Writes a stack summation to disk.

ZEROSTACK: Zeros or reinitializes the signal stack.
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Main SAC Commands

This is a list of the allowed main SAC commands. Their abbreviated names are also allowed.

AXES BEGINDEVICES BEGINFRAME
BEGINWINDOW BORDER COLOR
COMCOR COPYHDR DATAGEN
ECHO ENDDEVICES ENDFRAME
ERASE EVALUATE FLOOR
GETBB GRID GTEXT
HELP INSTALLMACRO LISTHDR
LINE LINLIN LINLOG
LOGLAB LOGLIN LOGLOG
MACRO MESSAGE PAUSE
PLABEL PLOTC QDP
QUIT READBBF REPORT
SETBB SETDATADIR SETDEVICE
SETMACRO SGF SYMBOL
SYNTAX SYSTEMCOMMAND TICKS
TITLE TSIZE VSPACE
WAIT WINDOW WRITEBBF
XDIV XFUDGE XFULL
XGRID XLABEL XLIM
XLIN XLOG XVPORT
YDIV YFUDGE YFULL
YGRID YLABEL YLIM
YLIN YLOG YVPORT
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ADDSTACK

SUMMARY

Add a new file to the stack file list.

SYNTAX

[A]DD[S]TACK filename [property ...]

where property is one or more of the following:

TRUST ON|OFF
[W]EIGHT v
[DI]STANCE v
[BE]GINTIME v
[END]TIME v
[DE]LAY v [[S]ECONDS|[P]OINTS]
[I]NCREMENT v [[S]ECONDS|[P]OINTS]
[N]ORMAL
[R]EVERSE

INPUT

filename: Name of the file to be added to the stack file list.
TRUST ON|OFF: This option is used to resolve an ambiguity in converting files from

SAC to CSS format. When converting the data, matching event IDs could mean the
files have identical event information, or they could be an artifact of the merging of
these two very different formats.
When TRUST is ON, SAC is more likely to accept matching event IDs as identical event
information than when TRUST is OFF, depending on the history of READ commands
associated with the current data files in memory.

[W]EIGHT v: Weighting factor for this file in the range zero to one. Each data point is
multiplied by this value when the stack is summed.

[DI]STANCE v: Station to epicenter distance in kilometers for this file. This is used to
calculate dynamic time delays.

[BE]GINTIME v: Time of the begining of the event.
[END]TIME v: Time of the end of the event.
[DE]LAY v [[S]ECONDS|[P]OINTS]: Static time delay to apply to file. This delay is in

either seconds or number of data points.
[I]NCREMENT v [[S]ECONDS|[P]OINTS]: Static time delay increment for this file.

This increment is in either seconds or number of data points. The static time delay is
incremented by this ammount each time the incrementstack command is executed.

[N]ORMAL: File has normal polarity.
[R]EVERSED: File has reversed polarity. (Each data point in the signal is multiplied by

-1.0 when the stack is summed.)

DEFAULTS VALUES

Each file is given the global property value if no local one is entered. The default units for the DELAY
and INCREMENT options is SECONDS.
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DESCRIPTION

There are seven properties associated with each stack list file. They are

∙ the weighting factor.
∙ the station to epicenter distance.
∙ the begin time of the event.
∙ the end time of the event.
∙ the static time delay in either seconds or number of data points.
∙ the static time delay increment in either seconds or number of data points
∙ the polarity of the file, either normal or reversed.

There is a global value associated with each of these properties. They are defined by the
globalstack command. When a file is added to the stack file list, that file’s properties will
be set to the global value if no local value is given. The changestack command can be
used to change a file’s properties after it has been added to the stack file list.
All commands which load data into memory have are now monitored to maintain a level
of confidence in the event information when moved from the SAC data buffer to the CSS
data buffer. For ADDSTACK, when the confidence is HIGH that all the data files are
cosistent in the numbering of event IDs, matching event IDs are treated as having identical
event information. When the confidence is LOW in ADDSTACK, matching event IDs are
understood as an artifact, and new event IDs are generated for the incoming file. For more
details use HELP READ.

EXAMPLES

The following examples illustrate several of the features of the Signal Stacking Module. Suppose you
entered the following set of commands:

SAC> GLOBALSTACK DELAY 1.0 INCREMENT 0.03
SAC> ADDSTACK FILEA DELAY 2.0
SAC> ADDSTACK FILEB DELAY 3.0 INCREMENT 0.01 REVERSED
SAC> ADDSTACK FILEC
SAC> ADDSTACK FILED WEIGHT 0.5

The first command changes the global property values for time delay and time delay increment. The
other global properties have their default values. FILEA’s properties would be the global ones except
for the time delay. FILEB’s properties would be the global ones except for the time delay, the time
delay increment, and the signal polarity. FILEC’s properties would be the same as the global ones.
FILED’s properties would be the global ones except for the weighting factor. Now you enter:

SAC> SUMSTACK

The summation is done on the four files in the stack file list:

FILEA, FILEB, FILEC, and FILED.

The time delays are 2.0, 3.0, 1.0, and 1.0 respectively. The polarity of FILEC is reversed. FILED’s
weighting in the summation is half that of the other files. Now you enter:

SAC> INCREMENTSTACK
SAC> CHANGESTACK FILEC NORMAL
SAC> SUMSTACK

This stack is performed with the following delays:
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2.03, 3.01, 1.03, and 1.03. The polarity of FILEC is now normal.

Now you enter:

SAC> DELETESTACK FILED
SAC> INCREMENTSTACK
SAC> SUMSTACK

This third stack is performed on the three files:

FILEA, FILEB, and FILEC. The delays are 2.06, 3.02, and 1.06 respectively.

ERRORS MESSAGES

∙ 5108: Maximum length of stack file list exceeded.

∙ 1306: Illegal operation on unevenly spaced file

– stacking module requires evenly spaced data files.

∙ 1307: Illegal operation on spectral file

∙ 5109: Sampling intervals are not equal.

– the sampling rates for all files in the stack file list must agree to within a given tolerance.

∙ the SRCHECK command can turn this check off or change the tolerance.

∙ the default check is for agreement within machine roundoff error.

LIMITATIONS

The maximum number of files in the stack file list is limited to the maximum number of data files
allowed by SAC.

SEE COMMANDS

GLOBALSTACK, SUMSTACK, CHANGESTACK, INCREMENTSTACK, DELETESTACK
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CHANGESTACK

SUMMARY

Change properties of files currently in the stack file list.

SYNTAX

[C]HANGE[S]TACK filename|filenumber property {property}

where property is one or more of the following:

[W]EIGHT v
[DI]STANCE v
[BE]GINTIME v
[END]TIME v
[DE]LAY v {S]ECONDS]|[P]OINTS}
[I]NCREMENT v {[S]ECONDS|[P]OINTS}
[N]ORMAL
[R]EVERSED

INPUT

filename: The name of the file in the stack file list.
filenumber: The number of the file in the stack hfile list.
[W]EIGHT v: Weighting factor for this file in the range zero to one. Each data point is

multiplied by this value when the stack is summed.
[DI]STANCE v: Station to epicenter distance in kilometers for this file. This is used to

calculate dynamic time delays.
[BE]GINTIME v: Time of the begining of the event.
[END]TIME v: Time of the end of the event.
[DE]LAY v {[S]ECONDS|[P]OINTS}: Static time delay to apply to file. This delay is

in either seconds or number of data points.
[I]NCREMENT v {[S]ECONDS|[P]OINTS}: Static time delay increment for this file.

This increment is in either seconds or number of data points. The static time de-
lay is incremented by this ammount each time the INCREMENTSTACK command is
executed.

[N]ORMAL: File has normal polarity.
[R]EVERSED: File has reversed polarity. (Each data point in the signal is multiplied by

-1.0 when the stack is summed.)

DESCRIPTION

This command allows you to change any of the properties associated with files in the stack file list.
These properties are discussed in more detail in the ADDSTACK command and an example of the use
of this command is given there. This command leaves all other properties for all other files unchanged.

ERROR MESSAGES

∙ 5106: File name not in stack file lists:
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SEE COMMNADS

ADDSTACK
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DELETESTACK

SUMMARY

Deletes one or more files from the stack file list.

SYNTAX

[D]ELETE[S]TACK filename|filenumber {filename|filenumber...}

INPUT

filename: The name of the file in the stack file list.
filenumber: The number of the file in the stack file list.

EXAMPLES

See the example for the ADDSTACK command.

ERROR MESSAGES

∙ 5106: File name not in file list

∙ 5107: File number not in file list

SEE COMMANDS

ADDSTACK
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DELTACHECK

SUMMARY

Change the sampling rate checking option.

SYNTAX

DELTACHECK ON | OFF | [R]OUNDOFF | v

INPUT

:ON; Turn sampling rate checking option on.

OFF: Turn sampling rate checking option off.
ROUNDOFF: Turn sampling rate checking option on and force sampling rates to agree

within machine roundoff factor.
v: Turn sampling rate checking option on and force sampling rates to agree within a

tolerance of $v$.

DEFAULTS VALUES

DELTACHECK ROUNDOFF

DESCRIPTION

This command changes the sampling rate checking option. When this option is off, no check is made
to see if the sampling rates for each of the files in the stack file list agree.

When this option is on, then the sampling rates must agree within a given tolerance or it is considered
an error.

The tolerance can be set to a factor near the roundoff error for a particular machine or it can be set
to a specific value.

The absolute value of the difference between all sampling rates must be less than or equal to this
tolerance in order to be allowed.

ERROR MESSAGES

The check is done and the error is reported as files are added to the stack file list (see ADDSTACK).
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DISTANCEAXIS

SUMMARY

Define the record section plot distance axis parameters.

SYNTAX

[D]ISTANCE[A]XIS FIXED v|SCALED v

INPUT

FIXED v: Force axis length to be $v$ cm long.
SCALED v: Allow the axis length to be scaled to the data. The axis length (in cm) will

be the range of the axis (in km.) divided by v.

DEFAULTS VALUES

DISTANCEAXIS FIXED 35

DESCRIPTION

This command defines the properties of the distance axis for subsequent record section plots (see
PLOTRECORDSECTION.) The length of the axis can be a fixed size or it can be scaled to the range
of the axis variable (distance in this case.) The TIMEAXIS command controls the time axis properties.

EXAMPLES

If you entered the following command:

SAC> DISTANCEAXIS SCALED 2.0

and the minimum and maximum distances in the data set being plotted are 150 and 300 km respec-
tively, the distance axis would be 75 cm long.

KNOWN BUGS

The y to x aspect ratio defined by this command and by the TIMEAXIS command is correct on plots
to any device. The physical size requested is ignored when plotting to an interactive device (e.g.
TERMINAL, XWINDOWS)

If the SGF device is requested, the physical size is stored in these files. The current SGF plot
programs do not have the capability to make arbitrary sized plots (i.e. panelling). This panelling
option is planned for a future release.

SEE COMMANDS

PLOTRECORDSECTION, TIMEAXIS
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DISTANCEWINDOW

SUMMARY

Controls the distance window properties on subsequent record section plots.

SYNTAX

[D]ISTANCE[W]INDOW [options]

where options is one or more of the following:

[U]SEDATA|[W]IDTH v|[F]IXED v1 v2
[UN]ITS [K]ILOMETERS|[D]EGREES

INPUT

USEDATA: Use the minimum and maximum values of the distance properties of the files
in the stack file list.

WIDTH v: Use the minimum value of the distance property of the files in the stack file
list but force the width to be a fixed value. The maximum distance is then set to the
minimum distance plus v.

FIXED v1 v2: Fix the minimum and maximum distances to be v1 and v2 respectively.
UNITS KILOMETERS: Set the distance window units to be in kilometers.
UNITS DEGREES: Set the distance window units to be in degrees of arc.

DEFAULTS VALUES

DISTANCEWINDOW USEDATA UNITS KILMETERS

KNOWN BUGS

The KILOMETER option is not currently implemented.

SEE COMMANDS

PLOTRECORDSECTION

535



GLOBALSTACK

SUMMARY

Sets global stack properties.

SYNTAX

[G]LOBAL[S]TACK property [property ...]

where property is one or more of the following:

[W]EIGHT v
[DI]STANCE v
[DE]LAY v [[S]ECONDS|[P]OINTS]
[I]NCREMENT v [[s]ECONDS|[P]OINTS]
[N]ORMAL
[R]EVERSED

INPUT

[W]EIGHT v: Global weighting factor in the range zero to one.
[DI]STANCE v: Global station to epicenter distance in kilometers.
[DE]LAY v [[S]ECONDS|[P]OINTA]: Global static time delay. This delay is in either

seconds or number of data points.
[I]NCREMENT v [[S]ECONDS|[P]OINTS]: Global static time delay increment. This

increment is in either seconds or number of data points.
[N]ORMAL: Normal global polarity property.
[R]EVERSED: Reversed global polarity property.

DESCRIPTION

This command allows you to define global stack properties. These global properties are associated
with each file as it is added to the stack file list (see ADDSTACK) unless local values are given for
that file. These properties are discussed in more detail in the ADDSTACK command and an example
of the use of this command is given there.

SEE COMMANDS

ADDSTACK
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INCREMENTSTACK

SUMMARY

Increments properties for files in the stack file list.

SYNTAX

[I]NCREMENT[S]TACK

DEFAULTS VALUES

All property INCREMENT values are initially 0.

DESCRIPTION

The properties that can be incremented are the static time delay, the apparent velocity, and the velocity
model intercept time. Property increment values of 0. obviously leave those properties unchanged.
The apparent velocity or the velocity model intercept time can be incremented, and the other one
calculated in order to maintain a zero delay at a specified point.

EXAMPLES

An example of the use of this command to INCREMENT static time delays is shown in the ADDSTACK
command. An example of the use of this command to increment dynamic delays is given below::

SAC> ADDSTACK FILEA
SAC> ADDSTACK FILEB
SAC> ADDSTACK FILEC
SAC> ADDSTACK FILED
SAC> VELOCITYMODEL 1 REFR VAPP 7.9 VAPPI 0.1 T0VM CALC DIST 320. TVM 45.
SAC> SUMSTACK
SAC> WRITESTACK STACK1
SAC> INCREMENTSTACK
SAC> SUMSTACK
SAC> WRITESTACK STACK2
SAC> INCREMENTSTACK
SAC> SUMSTACK
SAC> WRITESTACK STACK3

The above commands will produce three summations, the results being stored in SAC files STACK1,
STACK2, and STACK3. The refracted wave velocity model is used and the apparent velocities, VAPP
are 7.9, 8.0 and 8.1 respectively. The velocity model intercept time, T0VM, is calculated in each case
to maintain a zero delay at the point 320. km and 45. seconds.

SEE COMMANDS

VELOCITYMODEL
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LISTSTACK

SUMMARY

Lists the properties of the files in the stack file list.

SYNTAX

[L]IST[S]TACK {[N]ARROW |[W]IDE}

INPUT

NARROW: Use the narrow report format. Two lines of about 70 characters in width are
output for each file.

WIDE: Use the wide report format. A single line of about 120 characters in width is
output for each file.

DEFAULT VALUES

LISTSTACK NARROW
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PLOTRECORDSECTION

SUMMARY

Plots a record section of the files in the stack file list.

SYNTAX

[P]LOT[R]ECORD[S]ECTION [ options ]

where options are one or more of the following:

[L]ABLES ON | OFF | headerfield
[O]RIGIN [D]EFAULT | [R]EVERSED
[R]EFERENCELINE ON | OFF
[S]IZE v
[W]EIGHT ON | OFF
[P]OLARITY ON | OFF
[C]URSOR ON | OFF
[RED]UCED ON | OFF | [P]HASE phase_name | [V]ELOCITY velocity_value
[A]SPECT ON | OFF
[ORIE]NT [P]ORTRAIT | [L]ANDSCAPE
[T]TIME ON | OFF | [D]EFAULT | TEXT
[X]LABEL ON | OFF | [D]EFAULT | TEXT
[Y]LABEL ON | OFF | [D]EFAULT | TEXT
PRINT {pname}

INPUT

LABELS ON | OFF: Turn the file labeling option on or off. When this option is on, each
file is labeled with header field.

LABELS headerfield: Turn the file labeling option on and set the name of the header
field.

ORIGIN DEFAULT | REVERSED: In portrait mode, distance is along the y axis and
default puts the distance origin at the top left corner. In landscape mode, distance is
along the x axis and default puts the distance origin at the bottom left corner.

REFERENCELINE ON | OFF: Turn reference line option on or off. When this option is
on, a vertical dotted line is drawn at the distance property value for each file.

SIZE v:
WEIGHT ON | OFF: Turn the file weighting option on or off.
POLARITY ON | OFF: Turn the file polarity option on or off.
CURSOR ON | OFF: See below.
REDUCED ON | OFF | VELOCITY number | PHASE name: Reduced travel time curves

can be computed relative to a specific velocity or a phase from the traveltime curves.
See SSSTRAVELTIME.

ORIENT portrait | landscape: In portrait mode, horizontal axis indicates time and the
vertical axis indicates event to station distance. In landscape mode, the horizontal axis
indicates the event to station distance and time is along the vertical axis.

TTIME ON | OFF | DEFAULT | TEXT: Turn traveltime curves on. Traveltime curves
must have been computed with the traveltime command.

XLABEL ON | OFF | DEFAULT | TEXT: Turn xlabel on and/or set xlabel text.
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YLABEL ON | OFF | DEFAULT | TEXT: Turn ylabel on and/or set ylabel text.
PRINT {pname}: Print the resultant plot. If pname is specified, print to named printer,

else use default printer.

DEFAULT VALUES

PLOTRECORDSECTION LABELS filename ORIGIN default REFERENCELINE on
SIZE 0.1 WEIGHT on POLARITY on ORIENT portrait REDUCED off
CURSOR off TTIME off

DESCRIPTION

This command plots the files in the stack file list in a record section format. The effect of a particular
velocity model can easily be seen with this plot. In portrait mode, the x axis is time, the y axis is
epicentral distance. Landscape mode reverses these axes. The zero amplitude of each file is plotted
at its epicentral distance along the distance axis. A distance must be defined for all files in the stack
file list for this plot to be generated. The distance can come from the header or it can be defined
in the DISTANCE option of the GLOBALSTACK, ADDSTACK, or CHANGESTACK command. The
DISTANCEWINDOW and TIMEWINDOW commands control how much data will be displayed. The
DISTANCEAXIS and TIMEAXIS commands control the size of each axis and thus the aspect ratio
of the complete plot. Dynamic delays are controlled by the use of the VELOCITYMODEL command.
A line showing the effects of a second velocity model is also controlled by the VELOCITYMODEL
command. A velocity rosette showing the effects of other velocities can be placed on this plot. It
is controlled by the VELOCITYROSET command. Static delays if they have been defined are also
applied to each of the signals.

CURSOR ON MODE

In cursor on mode two additional functionalities are available: zooming and apparent velocity deter-
mination. The zoom capability requires the user to specify where to crop the picture. The user does
this by moving the cursor to one corner of the desired display area and typing c1 (no mouse click
is needed) and moving the cursor to the opposite corner and typing c2. When the user types c2,
plotrecordsection replots the data including only those data files which lie within the distance window,
and cutting off all the data points which fall outside the time window.

The user can type o (the letter ’o’) to replot the original. Zoomed plots can be nested to five levels
(ie, you can zoom a previously zoomed plot, entering o causes prs to unzoom one level and replot).
The cursor on option also allows the user to measure apparent velocity by moving the cursor and
typing v1 and v2 to mark the points. Once the v2 is selected, the apparent velocity is printed on the
output device and stored in a blackboard variable, vapp. Multiple v2 values can be set but only the
latest will be stored in the blackboard variable. While the cursor is on, the available commands in the
plot window are c1, c2, v1, v2, and q which quits cursor on (q returns control to the sss subprocess).

SEE COMMANDS

GLOBALSTACK. ADDSTACK, CHANGESTACK DISTANCEWINDOW, TIMEWINDOW, DISTANCEAXIS,
TIMEAXIS, VELOCITYMODEL, VELOCITYROSET, FILENUMBER
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PLOTSTACK

SUMMARY

Plots the files in the stack file list.

SYNTAX

[P]LOT[S]TACK [ options ]

where options are one or more of the following:

[S]UM ON | OFF
[P]ERPLOT ON | OFF | n
[W]EIGHT ON | OFF
[P]OLARITY ON | OFF

INPUT

SUM ON | OFF: When this option is on the summed file is plotted first followed by the
files in the stack file list. When this option is off, the summed file is not plotted.

PERPLOT ON | OFF: Turn the per plot option on or off. When this option is on, a
fixed number of files are plotted in each frame. When this option is off, all of the files
in the stack file list are plotted in a single frame.

PERPLOT n: Turn the per plot option on and set the number of files per frame to n.
WEIGHT ON | OFF: Turn the file weighting option on or off.
POLARITY ON | OFF: Turn the file polarity option on or off.

DEFAULTS VALUES

PLOTSTACK SUM ON PERPLOT OFF WEIGHT ON POLARITY ON

DESCRIPTION

This command plots the files in the stack file list. The files are always plotted with their delays. They
may be plotted with or without their weighting factors and polarities. They may also be plotted with
or without the summed signal.

A selectable number of the files can be plotted on each frame. The format of the plot is identical to
that of the PLOT1 command. Each file is plotted in its own subplot region.

These subplot regions have a common x axis and separte y axes. A legend consisting of the file name
and any non-default properties is placed in the upper left-hand corner of each subplot region.

SEE COMMANDS

TIMEWINDOW
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SUMSTACK

SUMMARY

Sums the files in the stack file list.

SYNTAX

[S]UM[S]STACK [[N]ORMALIZATION ON|OFF]

INPUT

NORMALIZATION ON | OFF: Turn normalization option on or off. When this option
is on the resulting summation is normalized by dividing each point by a factor that is
the sum of each file’s weight.

DEFAULTS VALUES

SUMSTACK NORMALIZATION ON

DESCRIPTION

This command sums the files in the stack file list. A stack time window (see TIMEWINDOW) must
have been defined before this command is executed. Each signal is shifted in accordance with its
static and dynamic delays. Zeros are added to the sum for that part of each file that is not in the
time window. Each file is given the requested weighting and files with reversed polarity are inverted.

A plot of the summation is automatically produced. The summation can be saved on disk using the
WRITESTACK command.

ERRORS MESSAGES

∙ 5103: No time window defined.

SEE COMMANDS

TIMEWINDOW, WRITESTACK
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TIMEAXIS

SUMMARY

Controls the time axis properties on subsequent record section plots.

SYNTAX

[T]IME[A]XIX [F]IXED v|[S]CALED v

INPUT

FIXED v: Fix the length of the time axis in cm to v.
SCALED v: Scale the length of the time axis in cm to be v times the total time window.

DEFAULTS VALUES

TIMEAXIS FIXED 23.0

EXAMPLES

If you are making several record setion plots with different time windows and you want each 2 seconds
on these plots to be 1 cm long:

SAC> TIMEAXIS SCALED 0.5

KNOWN BUGS

The y and x aspect ration defined by this command and by the DISTANCEAXIS command is correct
onplots to any device. The physical size requested is ignored when plotting to an interactive device
(e.g. TERMINAL, XWINDOWS) If the SGF device is requested, the physical size is stored in these
files. The current SGF plot programs do not have the capability to make arbitrary sized plots (i.e.
panelling). This panelling option is planned for a future release.

SEE COMMANDS

PLOTRECORDSECTION, DISTANCEAXIS
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TIMEWINDOW

SUMMARY

Sets the time window limits for subsequent stack summations.

SYNTAX

[T]IME[W]INDOW v1 v2

INPUT

v1 v2: The time window limits to use when reading in files before doing a stack summation.

DEFAULT VALUES

None. You MUST specify a time window before doing a summation

DESCRIPTION

This command sets the stack time window. This is the time window that will be used in subsequent
SUMSTACK PLOTSTACK, and PLOTRECORDSECTION commands. The stack time window must
be defined before any of these commands are executed. If a particular file does not fall entirely
within this stack time window enough zeros are added before or after the actual data to make up the
difference.

SEE COMMANDS

SUMSTACK, PLOTSTACK, PLOTRECORDSECTION
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SSSTRAVELTIME

SUMMARY

Computes traveltime of selected phases for pre-defined velocity models Description and examples assume the calls
are made from within SSS. The source file is the same as the non-SSS version, and this file has only an example
that uses SSS plotting. For the full description, see TRAVELTIME.

EXAMPLE

This example is the same traveltime run as in TRAVELTIME, but here for the final plot we use PLOTRECORD-
SECTION:

SAC> datagen sub deep bla.r kev.r kip.r pas.r ; rtr
SAC> SSS
SAC/SSS> traveltime quiet picks 0 phase sPP
SAC/SSS> traveltime quiet picks 1 phase P pP sP S sS SKS
SAC/SSS> dw units degrees fixed 50 90 ; tw 400 1500
SAC/SSS> prs orient port ttime on labels kstcmp
SAC/SSS> save sakhalin-picks-prs.xpm

One must put SAC files in memory before entering SSS. We use the default aspect ratio in prs, so if we had used
SAVEIMG to create a PDF file, the output plot would have errors.

See Commands

TRAVELTIME PLOTRECORDSECTION TIMEWINDOW DISTANCEWINDOW SAVEIMG

LATEST REVISION

Version 102.0
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VELOCITYMODEL

SUMMARY

Sets stack velocity model parameters for computing dynamic delays.

SYNTAX

[V]ELOCITY[M]ODEL n options

where options are one or more of the following:

ON|OFF
REFRACTEDWAVE|NORMALMOVEOUT
FLIP
VAPP v|CALCULATE
T0VM v|CALCULATE
DVM v1 [v2]
TVM v1 [v2]
VAPPI v
T0VMI v

INPUT

n: Set velocity model number. This is either "1" or "2". The use of each velocity model
is described below.

ON|OFF: Turn velocity model option on or off. When this option is on the model is
applied. When off it is ignored.

REFRACTEDWAVE: Turn velocity model option on and change to the "refracted wave"
model.

NORMALMOVEOUT: Turn velocity model option on and change to the "normal move-
out" model.

FLIP: Interchange the properties of the two velocity models.
VAPP v: Set the apparent velocity to v.
VAPP CALCULATE: Have SAC calculate the apparent velocity.
T0VM v: Set the time axis intercept to v.
T0VM CALCULATE: Have SAC calculate the time axis intercept.
DVM v1 [v2]: Define one or two reference distances.
TVM v1 [v2]: Define one or two reference times.
VAPPI v: Set the apparent velocity increment to v. The apparent velocity is incremented

by this ammount each time the INCREMENTSTACK command is executed.
T0VMI v: Set the time axis intercept increment to v. The time axis intercept is incre-

mented by this ammount each time the INCREMENTSTACK command is executed.

DEFAULT VALUES

VELOCITYMODEL 1 OFF
VELOCITYMODEL 2 OFF
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DESCRIPTION

The first velocity model is used in calculating dynamic station delays for a particular phase.

It is applied when doing a stack summation ( SUMSTACK), a stack plot ( PLOTSTACK), or a record
section plot ( PLOTRECORDSECTION.) The second velocity model is used in the record section
plot to show delays associated with a second phase. The parameters associated with the two velocity
models can be easily flipped.

There are two different types of velocity models ("refracted wave" and "normal moveout") that can
be applied. They are defined by the following equations:

TDELAY = TVM(1) - ( T0VM + DIST / VAPP )
TDELAY = TVM(1) - SQRT ( T0VM**2 + ( DIST / VAPP )**2 )

There are several ways in which these velocity model delays can be calculated:

Enter values for VAPP, T0VM, and TVM(1) directly.

Enter values for DVM(1), TVM(1), and either VAPP or T0VM. SAC will calculate the missing variable
such that TDELAY will be zero at the distance given by DVM(1).

Enter values for DVM(1), TVM(1), DVM(2), and TVM(2). SAC will calculate both VAPP and T0VM
such that TDELAY will be zero at the distance given by DVM(1).

EXAMPLES

To set the first stack velocity model the refracted wave model with an apparent velocity of 6.5 km/sec
and to have SAC calculate T0VM such that the delay at 200 km will be zero:

SAC> VELOCITYMODEL 1 REFRACTEDWAVE VAPP 6.5 T0VM CALCULATE DVM 200 TVM 35

SEE COMMANDS

SUMSTACK, PLOTSTACK, PLOTRECORDSECTION
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VELOCITYROSET

SUMMARY

Controls the placement of a velocity roset on subsequent record section plots.

SYNTAX

[V]ELOCITY[R]OSET [ON|OFF] [[L]OCATION UL|UR|LL|LR]

INPUT

ON | OFF: Turn velocity roset plotting option on or off.
LOCATION UL|UR|LL|LR: Change location on plot of velocity roset. Locations are

respectively upper left, upper right, lower left, and lower right of the record section
plot.

DEFAULTS

VELOCITYROSET OFF LOCATION LL
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WRITESTACK

SUMMARY

Writes the stack summation to disk.

SYNTAX

[W]RITE[S]TACK {COMMIT|ROLLBACK|RECALLTRACE} [filename]

INPUT

COMMIT: Commits headers and waveforms in SAC memory -- removing any previous
versions of headers or waveforms from RAM -- prior to writing files. COMMIT is the
default.

ROLLBACK: reverts to the last committed version of the header and waveform before
writing files.

RECALLTRACE: ∙ reverts to the last committed version of the waveform
∙ reverts to the last committed version of those header variables closely linked to

the waveform,
∙ commits those header variables which are loosely linked to the waveform. (use

HELP RECALLTRACE for a list of which header variables are committed, and
which are rolled back.)

filename: The name of the disk file into which the summation is to be written.

DEFAULT VALUES

WRITESTACK SUM COMMIT
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ZEROSTACK

SUMMARY

Zeros or reinitializes the signal stack.

SYNTAX

[Z]ERO[S]TACK

DESCRIPTION

This command zeros the signal stack. It deletes all entries in the stack file list and sets the global
stack properties back to their original values.
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4 Spectral-Estimation Subprocess

Spectral Estimation (SPE)

Introduction

A subprocess is effectively a small program within the main SAC program. You start a subprocess by typing its
name (SPE in this case.) You can terminate it and return to the main program using the QUITSUB command.
You can also terminate SAC from within a subprocess using the QUIT command.

While within a subprocess, you can execute any command belonging to that subprocess plus a limited number of
main SAC commands.

SPE is a Spectrum Estimation package intended primarily for use with stationary random processes. It contains
three different spectral estimation techniques:

∙ Power Density Spectra (PDS),

∙ Maximum Likelihood Method (MLM), and

∙ Maximum Entropy Method (MEM).

These are all indirect methods, because they use a sample correlation function, rather than the data itself, to
estimate the spectral content.

SPE Commands

COR: Computes the correlation function.

MEM: Calculates the spectral estimate using Maximum Entropy Method.

MLM: Calculates the spectral estimate using Maximum Likelihood Method.

PDS: Calculates the spectral estimate using Power Density Spectra Method.

PLOTCOR: Plots the correlation function.

PLOTPE: Plots the RMS prediction error function.

PLOTSPE: Plots the spectral estimate.

QUITSUB: Terminates a SAC subprocess.

READCOR: Almost the same as the normal READ. See below.

WRITECOR: Writes a SAC file containing the correlation function.

WRITESPE: Writes a SAC file containing the spectral estimate.

Their abbreviated names are also allowed.

Main SAC Commands executable from within the SPE subprocess:

AXES BEGINDEVICES BEGINFRAME
BEGINWINDOW BORDER COLOR
COMCOR COPYHDR DATAGEN
ECHO ENDDEVICES ENDFRAME
ERASE EVALUATE FLOOR
GETBB GRID GTEXT
HELP INSTALLMACRO LINE
LINLIN LINLOG LOGLAB
LOGLIN LOGLOG MACRO
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MESSAGE PAUSE PLABEL
PLOTC QDP QUIT
READALPHA READBBF REPORT
SETBB SETDATADIR SETDEVICE
SETMACRO SGF SYMBOL
SYNTAX SYSTEMCOMMAND TICKS
TITLE TSIZE VSPACE
WAIT WINDOW WRITEBBF
XDIV XFUDGE XFULL
XGRID XLABEL XLIM
XLIN XLOG XVPORT
YDIV YFUDGE YFULL
YGRID YLABEL YLIM
YLIN YLOG YVPORT

The Theory

SPE is intended primarily for use with stationary random processes. It implements three different indirect spectral
estimators. They are called indirect, because they do not estimate the spectrum directly from the data, but from
a sample correlation function that is computed from the data. The choice of indirect methods is a matter of taste,
since direct spectral estimation techniques are also available. The correlation function itself is a useful quantity.
You may wish to examine it in the course of performing spectral estimation tasks.

The choice of indirect techniques is supported by "Spectral Analysis and Its Application," by Jenkins and Watts,
a respected reference on the subject of spectrum estimation.

The type of spectrum estimated by SPE is properly described as the power density spectrum, with the spectrum
defined in the frequency domain. Thus, the estimated power delivered by the random process in some band of
frequencies is the integral of the spectral power density estimate over that band of frequencies.

User Control

SPE affords the user some control over the details of estimation process. For some, with experience in estimating
spectra, this is highly desirable. Defaults are provided for those who do not wish to become involved in the details
of the theory.

The user has a choice of data window type, size, and the number of windows used when estimating the correlation
function. Generally these parameters control the resolution of the estimate, and the amount of reduction of
variance desired in the final estimate. In addition, prewhitening of the data may be specified as part of the process
of estimating the correlation function. Prewhitening often has the effect of mitigating a severe "window bias"
that can occur in spectral estimates having a high dynamic range. The warping of the spectrum that occurs with
prewhitening is compensated for in the final result. In this implementation, low-order prediction error filters are
used for prewhitening.

The Estimators

The user has a choice of three spectral estimators: Power Density Spectra ( PDS), Maximum Likelihood Method
( MLM), and Maximum Entropy Method ( MEM). Command COR must be run before running any of these.

PDS: The PDS estimator is quite simple: the sample correlation function is multiplied by a correlation
window, then the result is transformed with an FFT to obtain the spectral estimate. The user
again has a choice of the window type and the size of the window. The above mentioned book
by Jenkins and Watts could be considered as the detailed documentation for the PDS technique.
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MLM: The MLM estimator generates a spectral estimate which is the power output of a bank of
narrow band-pass filters which have been optimized to reject out-of-band power. The result is a
smoothed, parametric estimate of the power density spectrum. The user can choose the number
of parameters. Documentation for this method can be found in the paper by Richard Lacoss in
the IEEE book "Modern Spectrum Analysis" by Donald Childers.

MEM: The MEM estimator is another parametric method, which uses a prediction error filter to
whiten the data. The resulting spectral estimate is proportional to the inverse of the filter’s
power frequency response. The user is free to choose the order of the prediction error filter.
Documentation for this method can be found in the review paper on linear prediction by John
Makhoul in "Modern Spectrum Analysis." The formal name of the actual method implemented
is the Yule-Walker method.

Diagnostics

In addition to the spectrum, several diagnostic functions can be calculated and plotted. The prediction error
can be plotted as a function of order. This plot can be used to select a good size for the prediction error filter
used in the MEM method. Since much is known about the performance of the PDS estimator, more diagnostic
information is available for this method in SPE. The 90 confidence limits can be estimated theoretically, as can
the frequency resolution of the estimate. Both of these quantities can be indicated on a PDS spectral plot.

Differences between SPE> and SAC>

There are two primary differences between SPE and the main SAC program. Only one data file can be processed
by SPE at a time. This is because SPE produces and stores a number of auxiliary functions (the correlation
function, the prediction error function, and the spectral estimate itself) as it proceeds. This restriction to a single
data file may be removed in the future. The second difference is that, unlike SAC itself, there is a specific order
or progression in which the commands are generally executed.

Initialization

This progression begins when the SPE command is executed. A data file must be in memory when SPE is
initiated. While in SPE, command READ can be used to read in an additional file at any time. Space for the
above mentioned auxiliary functions is created for each new file.

READCOR run from within SPE works just like the READ command in the main SAC program with two exceptions.

First, only ONE file may be read in while in SPE. Second, executing this command deletes any correlation
function or spectral estimate that may already have been computed. Parameters within SPE, such as the number
of prewhitening coefficients or the window type and length, are not changed when this command is executed.

To reinitialize all SPE parameters, terminate the subprocess using the QUITSUB command and then start it over
again.

Correlation

The correlation function is then computed, using the COR command. COR must be run prior to running a spectral
estimator. The correlation function may be saved as a SAC data file using the WRITECOR command and later
read back in using the READCOR command. This is more efficient than recomputing the correlation each time,
especially if the data file is very long. At this point, you may wish to examine the correlation function using the
PLOTCOR command. You may also wish to examine the prediction error function using the PLOTPE command
if you are going to use the MEM method.
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Estimation

Now you are ready to select one of the three spectral estimation techniques using the PDS, MLM, or MEM
commands. If the data file has a non-zero mean, MLM and MEM may not work correctly. Running command
RMEAN before entering SPE should solve this problem. Each technique has its own options. You may now examine
the resulting spectrum using the PLOTSPE command. There are several different scaling options available. You
can also save the spectral estimate as a SAC data file using the WRITESPE command.

Termination

At this point you have several options: you can select a different spectral estimate technique, read in a different
correlation function, read in a different data file, terminate the subprocess using the QUITSUB command, or
terminate SAC using the QUIT command.
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COR

SUMMARY

Computes the correlation function.

SYNTAX

COR {[N]UMBER n|ON|OFF}, {[L}ENGTH v}, {[T]YPE type}
{[P]REWHITEN ON|OFF|n}, {[S]TOCASTIC|[TR]ANSIENT}

where type is one of the following:

[HAM]MING
[HAN]NING
[C]OSINE
[R]ECTANGLE
[T]RIANGLE

INPUTS

NUMBER n: Fix number of windows to n.
NUMBER {ON}: Fix number of windows to previous value.
NUMBER OFF: Compute number of windows based upon data length and window length.

There will be no data overlap when using this option.
LENGTH v: Set window length to v seconds.
TYPE type: Set window type. The advantages of each is discussed below.
PREWHITEN {ON}: Turn prewhitening of data on.
PREWHITEN OFF: Turn prewhitening of data off.
PREWHITEN n: Turn prewhitening of data on and change number of coefficients to n.
STOCHASTIC: Set correlation scaling assuming that the data is stochastic (random.)
TRANSIENT: Set correlation scaling assuming that the data is transient (signal.)

DEFAULT VALUES

COR NUMBER OFF TYPE HAMMING PREWHITEN OFF

Note that if PREWHITEN is turned on without specifying the order, it will default to 6 unless it has been previously
set by the WHITEN command in SPE.

DESCRIPTION

This correlation command assumes that the data is stationary. Under that assumption the data
is segmented into many windows, and a sample correlation function is calculated for each window.
These sample correlation functions are averaged to produce a more stable estimate of the underlying
correlation function of the random process. The number of windows, the window length, and the
window type (called a data window, to distinguish it from a window used in the PDS command) are
under user control. If the window length times the number of windows exceeds the total data length,
the program overlaps the windows. The amount of overlap is not under user control.
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For a fixed data size, there is obviously a tradeoff between the number of windows to be used and
the window size. This tradeoff ultimately results in a tradeoff between the bias and variance of the
spectral estimates made using the correlation function.

The frequency-domain resolution of a spectral estimator depends on the length of the available cor-
relation and, therefore, indirectly on the size of the data window. The larger the correlation window,
the smaller the bias in the spectral estimate resulting from frequency-domain smoothing.

However, as the data window size is increased, fewer windows can be used in the averaging process.
Consequently, the variance of the correlation function estimate increases, and with it, the variance of
the spectral estimate.

The choice of data window type can be used to fine-tune the tradeoff between bias and variance.
The smoother windows tend to taper the data off near the window edges, effectively reducing window
length. Thus, the windows can be overlapped more, and more can be used. This choice decreases
variance at the expense of increasing bias.

There is another important source of bias when the dynamic range of the spectrum is quite large.
This is the effect of window leakage, that shows up most clearly when the PDS estimator is used.
Power leakage through the sidelobes of the Fourier Transform of the correlation window puts a floor
on the estimated spectrum. In typical seismic data, this floor is quite regular and appears at high
frequencies, where the spectrum is typically quite small. The correlation function estimator has an
optional prewhitening capability that mitigates the sidelobe-leakage problem. A low-order prediction
error filter is used to flatten the spectrum of the data prior to the calculation of the correlation
function. The effect of the filter is compensated for in the calculation of the spectrum.

Prewhitening of the data is done in place and thus corrupts the original signal. If you use prewhitening,
quit the subprocess, and wish to use the original signal in some other operation, you MUST reread it
into SAC.

This correlation function is used in the calculation of the spectral estimate.

COR must therefore be executed before PDS, MLM, or MEM.

You may plot the correlation function using the PLOTCOR command and save it as a SAC data file
using the WRITECOR command. Such a file can then be read in using READCOR.

HEADER CHANGES

DEPMIN, DEPMAX, DEPMIN

SEE COMMANDS

PLOTCOR, WRITECOR, WHITEN, READCOR
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MEM

SUMMARY

Calculates the spectral estimate using the Maximum Entropy Method.

SYNTAX

MEM {[O]RDER n}, {[N]UMBER n}

INPUT

ORDER n: Set the order of the prediction error filter in lags to n.
NUMBER n: Set the number of points to be used in the spectral estimate.

DEFAULT VALUES

MEM ORDER 25

DESCRIPTION

This command implements the Maximum Entropy Method estimator. This estimator is a parametric
method, which uses a prediction error filter to whiten the data. The resulting spectral estimate is
proportional to the inverse of the filter’s power frequency response. The user is free to choose the
order of the prediction error filter. See the documentation of the PPE command for further details.

The principal advantage of this method is the very high resolution that it can achieve with a relatively
small amount of data. Its disadvantage is that less can be said about it theoretically than about the
conventional method.

Documentation for this method can be found in the review paper on linear prediction by John Makhoul
in "Modern Spectrum Analysis." The formal name of the actual method implemented is the Yule-
Walker method.

ERROR MESSAGES

∙ 5003 No correlation function calculated.

SEE COMMANDS

COR, WRITESPE, PLOTSPE
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MLM

SUMMARY

Calculates the spectral estimate using the Maximum Likelihood Method.

SYNTAX

MLM {[O]RDER n}, {[N]UMBER n}

INPUT

ORDER n: Set the number of parameters in the estimate in lags to v.
NUMBER n: Set the number of points to be used in the spectral estimate.

DEFAULT VALUES

MEM ORDER 25

DESCRIPTION

This command implements the Maximum Likelihood Method estimator for the power density spec-
trum. This estimator generates a spectral estimate which represents the power outputs of a bank
of narrow band-pass filters which have been optimized to reject out-of-band power. The result is a
smoothed, parametric estimate of the power density spectrum. The parameters are the coefficients
of the (finite impulse response) narrowband filters. The user can choose the number of parameters.
The filters are not actually computed by the algorithm, which accounts for the speed of the method.

The method is desirable because it generally has better resolution than the conventional method, and
much better sidelobe reduction. The order of the algorithm is limited to 100, since it requires the
inversion of a matrix with dimension equal to the order. A fast method exists for the inversion, but
numerical noise can be a problem for large order estimates.

Documentation for this method can be found in the paper by Richard Lacoss in the IEEE book
"Modern Spectrum Analysis" by Donald Childers.

ERROR MESSAGES

∙ 5003 No correlation functioncalculated.

SEE COMMANDS

COR, PLOTSPE, WRITESPE
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PDS

SUMMARY

Calculates the spectral estimate using the Power Density Spectra Method.

SYNTAX

PDS {[S]ECONDS v|[L]AGS n}, {[N]UMBER n}, {[T]YPE type}

where type is one of the following:

[HAM]MING | [HAN]NING | [C]OSINE | [R]ECTANGLE | [T]RIANGLE

INPUT

SECONDS v: Set the window length in seconds to v.
LAGS n: Set the window length in lags to n.
NUMBER n: Set the number of points to be used in the spectral estimate.
TYPE type: Set type of window to be used. The advantages of each type is discussed in

the writeup of the COR command.

DEFAULT VALUES

PDS TYPE HAMMING

DESCRIPTION

This command implements the "conventional" spectral estimator. It is the simplest the sample corre-
lation function is first windowed with a correlation window, and the resulting function is transformed
with an FFT to obtain the spectral estimate. As mentioned in the documentation on the COR com-
mand, there is a tradeoff between the bias of the estimate, primarily expressed in loss of resolution,
and the variance of the estimate. As the window is made longer, the bias is reduced, since frequency-
domain resolution is increased. However, the variance of the spectral estimate is increased, since the
variance of the sample correlation function values is larger at larger lags. This occurs because fewer
data points are used to estimate the values at larger lags.

The choice of correlation window type has a different effect than that of the choice of data window
described in the COR documentation. It is a choice between two types of bias.

The spectral estimate approaches the convolution of the true spectrum with the Fourier transform
of the correlation window. The window transform is characterized by a central lobe, which controls
resolution, and sidelobes, which cause out-of-band power leakage. Typically one wants a narrow main
lobe and small sidelobes. Large sidelobes tend to put an artificial, high regular "floor" on the spectral
estimate, that can mask the rolloff of a spectrum with high dynamic range. The choice of window
type trades off main lobe resolution against power-leakage through the sidelobes.

The rectangular window has the narrowest main lobe, and, therefore, the best resolution. However,
it has the largest sidelobes. The cosine taper window reduces the sidelobes slightly without affecting
the main lobe width much. These two windows were primarily included for estimating the spectra
of transients, which requires little time-domain distortion. The Hamming and Hanning windows are
popular windows which have small sidelobes and rather wide main lobes. They are useful when the
user has a lot of data, and can control resolution by increasing the window size. Both are raised
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cosine windows, but the Hamming window is optimized to minimize the size of the largest sidelobe.
It is generally to be prefered, and is the default window in this command. The triangular window also
has rather good sidelobe structure, but has the especially desirable property that it guarantees that
the spectral estimate will always be positive or zero.

Generally, PDS is to be prefered over the two parametric methods, MLM and MEM, when the user
has a large data set available. This is because resolution is not constrained in that situation, and
much more is known about this estimator than is known about the others. For example, the theory
is available which allows us to estimate confidence limits, and the resolution of the method. Both
of these diagnostics are included in SPE. The parametric methods generally exhibit better resolution
than PDS, especially when estimating line spectra, and are more useful when a limited amount of
data is available.

ERROR MESSAGES

∙ 5003: No correlatin function calculated.

SEE COMMANDS

COR, WRITESPE, PLOTSPE
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PLOTCOR

SUMMARY

Plots the correlation function.

SYNTAX

[P]LOT[COR] {[X]LIM v|ON|OFF} {PRINT {pname} }

INPUT

XLIM v: Turn partial x limits option on and set upper limit to v seconds. The lower limit
is always 0.

XLIM {ON}: Turn partial x limits option on and use previous upper limit.
XLIM off: Turn partial x limits option off. All of the correlation function is plotted.
PRINT {pname}: Print the resultant plot. If a printer name is specified, print to that

printer, else use default printer.

DEFAULT VALUES

PLOTCOR XLIM_ OFF

ERROR MESSAGES

∙ 5003: No correlation function calculated.

SEE COMMANDS

COR
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PLOTPE

SUMMARY

Plots the RMS prediction error function.

SYNTAX

[P]LOT[PE]

DESCRIPTION

This command produces a diagnostic plot which may be used to select the order of the MEM spectral
estimate. The plot is of the normalized prediction error function, displayed as a function of the order
of the estimator. Typically, the prediction error is large for small orders, but decreases rapidly as
the order is increased. The prediction error is the "residual power" left after the prediction filter is
applied to the data. When this quantity is small, so the theory goes, most of the structure in the
spectrum has been captured in the power frequency response of the filter. The residual data is white
noise. Consequently, one may examine the prediction error function for "knees" in the curve, where
the function drops dramatically to some value that is not reduced much further by further increases
in order. The order of the predictor at the "knee" is often used as the order of the MEM spectral
estimator.

ERROR MESSAGES

∙ 5003: No correlation function calculated.
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PLOTSPE

SUMMARY

Plots the spectral estimate.

SYNTAX

[P]LOT[SPE] {[P]OWER|[L]OG|[A]MPLITUDE} {[C]ONFIDENCE {ON|OFF}}

INPUT

POWER: Plot the power response using linear interpolation.
LOG: Plot the power response using logarithmic interpolation.
AMPLITUDE: Plot the amplitude response.
CONFIDENCE {ON}: Include confidence limits on the plot.
CONFIDENCE OFF: Do not include confidence limits.

DEFAULT VALUES

PLOTSP POWER CONFIDENCE OFF

DESCRIPTION

The plot includes a legend describing the parameters used to calculate the correlation function and
the spectral estimate.

ERROR MESSAGES

∙ 5004 No spectral estimate claculated.
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QUITSUB

SUMMARY

Terminates a SAC subprocess.

SYNTAX

[Q]UIT[S]UB

DESCRIPTION

SAC has several subprocesses which act like separate programs. Use this command to exit one of
these subprocesses and return to the main SAC program.
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READCOR

SUMMARY

Reads data from a SAC data file into memory.

SYNTAX

READCOR file

INPUT

file: A legal filename.

DESCRIPTION

This command works just like the READ command in the main SAC program with two exceptions.

First, only ONE file may be read in while in SPE. Second, executing this command deletes any
correlation function or spectral estimate that may already have been computed. Parameters within
SPE, such as the number of prewhitening coefficients or the window type and length, are not changed
when this command is executed.

To reinitialize all SPE parameters, terminate the subprocess using the QUITSUB command and then
start it over again.

SEE COMMANDS

QUITSUB
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WRITECOR

SUMMARY

Writes a SAC file containing the correlation function.

SYNTAX

[W]RITE[COR] {file}

INPUT

file: The name of the SAC file to write.

DEFAULT VALUES

WRITECOR COR

DESCRIPTION

The structure of the correlation function written out by this command is determined by the algorithm
used to compute it. Since the data is partitioned into windows, and sample correlation functions
are calculated from each window, then averaged, the length of the correlation function is determined
by the data window size. It contains exactly one less sample than twice the number of samples in
the data window. However, since FFT’s are used to calculate the sample correlation functions, the
number of points in the file is a power of two. It is, in fact, the first power of two larger than the data
window size (in samples). The additional samples are zero. The correlation function is also circularly
rotated within the file, due to the pecularities of computing correlations with the FFT algorithm. This
means that the zero-lag sample is the first sample in the file, and the negative-lag samples follow the
positive-lag samples.

ERROR MESSAGES

∙ 5003: No correlation function calculated.
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WRITESPE

SUMMARY

Writes a SAC file containing the spectral estimate.

SYNTAX

[W]RITE[SPE] {file}

INPUT

file: The name of the SAC file to write.

DEFAULT VALUES

WRITESPE SPE_

DESCRIPTION

The spectral estimate file contains the spectral estimate from zero up to the folding frequency. The
spectral estimate is calculated with an FFT. The number of points in this file is half the length of the
FFT used plus one.

This format was chosen so that multiple spectra computed with SPE could be compared using the
P2 plotting function, without any need to cut the files prior to plotting.

ERROR MESSAGES

∙ 5004: No spectral estimate calculated.
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