
Chapter 4

The Normalization Lemma

Even if it is known as Normalization “Lemma”, this is a deep theorem in algebra, with

many applications, not merely a lemma to prove the Nullstellensatz. Later we will see how

it is used to study the dimension of K-algebras (Chapter 8) and its interesting geometric

interpretation (Theorem 17.1.3).

It takes its name from Emmy Noether, who in 1926 proved it under the hypothesis that

K is infinite. The case where K is a finite field was proved by Oscar Zariski in 1943. To

prove the Normalization Lemma, we will first see a couple of results about integral elements

over a ring. Then we will see a proof over an infinite field, rather similar to the original

one. It is less technical than any proof of the general case. For other proofs see [AM] or [L].

Let A ✓ B be rings, where A is a subring of B. In this case we also say that B is an

A-algebra. Note that B has a natural structure of A-module. If B is finitely generated

as A-module, then B is called a finite A-algebra. This means that there exist elements

b1, . . . , br 2 B such that B = b1A + b2A + . . . + brA, i.e. any element of B is a linear

combination with coe�cients in A of the generators b1, . . . , br: if b 2 B, then there is an

expression b = a1b1 + · · ·+ arbr, with a1, . . . , ar 2 A.

If B is finitely generated as a ring containing A, then B is called a finitely generated

A-algebra. In this case there exists a finite number of elements of B, b1, . . . , br, such that

B = A[b1, . . . , br], i.e., B is the minimal ring containing A and the elements b1, . . . , br. For

any element of B there is an expression as polynomial with coe�cients in A in the elements

b1, . . . , br. Another way to express that B is a finitely generated A-algebra is saying that B is

(isomorphic to) a quotient of a polynomial ring in a finite number of variables with coe�cients

in A. Indeed, if B = A[b1, . . . , br], we can define a surjective ring homomorphism ' mapping

any polynomial f(x1, . . . , xr) 2 A[x1, . . . , xr] to f(b1, . . . , br). So, by the homomorphism
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theorem, B ' A[x1, . . . , xr]/ ker'.

Theorem 4.0.1. Let b 2 B, let A[b] ✓ B be the A-algebra generated by b: A ✓ A[b] ✓ B.

The following are equivalent:

1. b is integral over A;

2. A[b] is a finite A-algebra;

3. there exists a subring C of B, with A[b] ✓ C ✓ B, such that C is a finite A-algebra.

Proof. 1) ) 2) A[b] is generated by all the powers of b as A-module; we will prove that it

is generated by finitely many powers of b. By assumption there is a relation bn + a1bn�1 +

· · ·+ an = 0, with a1, . . . , an 2 A. Therefore, for any r � 0, bn+r = �(a1bn+r�1 + · · ·+ anbr).

By induction on r it follows that all positive powers of b belong to the A-module generated

by 1, b, . . . , bn�1.

2) ) 3) It is enough to take C = A[b].

3) ) 1) Let c1, . . . , cr be generators of C as A-module: C = c1A + · · · + crA. Then,

for any i = 1, . . . , r, bci is a linear combination of c1, . . . , cr with coe�cients in A. So there

exists an r ⇥ r matrix M = (mij)i,j=1...,r with entries in A such that

bci =
rX

j=1

mijcj, (4.1)

i.e. (bEr �M)c = 0, where c = t(c1 . . . cr) and Er is the identity matrix. Multiplying both

members of equation (4.1) at the left by the adjoint matrix ad(bEr �M), we get det(bEr �

M)ci = 0 for any i. Since c1, . . . , cr generate C, there is an expression 1 = c1↵1 + · · ·+ cr↵r.

Therefore det(bEr�M) = det(bEr�M)·1 = det(bEr�M)c1↵1+· · ·+det(bEr�M)cr↵r = 0.

The expansion of det(bEr �M) gives a relation of integral dependence of b over A. ⇤

Corollary 4.0.2. If b 2 B is integral over A, then A[b] is integral extension of A.

Proof. If y 2 A[b], then A[y] ⇢ A[b] ⇢ B, where A[b] is a finite A-algebra by 2. of Theorem

4.0.1. The conclusion follows from the characterization 3. of integral elements of the same

Theorem. ⇤

Remark 5. Equation (4.1) says that b is an eigenvalue of the matrix M . The conclusion is

that b is a root of the characteristic polynomial of M . But, since we work over a ring not over

a field, we cannot jump straight to the conclusion. In fact we have to use the assumption

that c1, . . . , cr generate C as A-module.
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Remark 6. We will need also the following easy property, known as “Transitivity of

finiteness”. Let A ✓ B. Suppose that N is a finitely generated B-module. Then N is also

an A-module, by restriction of the scalars. Assume also that B is finitely generated as an

A-module. Then N is finitely generated as an A-module. Indeed if y1, . . . , yn generate N

over B and x1, . . . , xm generate B as A-module, then the mn products xiyj generate N over

A.

Corollary 4.0.3. Let A ✓ B.

1. Let b1, . . . , bn 2 B be integral over A. Then A[b1, . . . , bn] is a finite A-module.

2. Transitivity of integral dependence. Let A ⇢ B ⇢ C be rings. If B is integral

extension of A and C is integral extension of B, then C is integral extension of A.

Proof. 1. By induction on n. The case n = 1 is part of Theorem 4.0.1. Assume n > 1,

let Ar = A[b1, . . . , br]; then by inductive hypothesis An�1 is a finitely generated A-module.

An = An�1[bn] is a finitely generated An�1-module by the case n = 1, since bn is integral

over A and hence also over An�1. Then the thesis follows by the transitivity of finiteness

(Remark 6).

2. Let c 2 C, then we have an equation cn + b1cn�1 + · · · + bn = 0, with bi 2 B for any

index i. The ring B0 = A[b1, . . . , bn] is a finitely generated A-module by part 1., and B0[c] is

a finitely generated B0-module, since c is integral over B0. Hence B0[c] is a finite A-module,

by transitivity of finiteness (Remark 6), and therefore c is integral over A by Theorem 4.0.1

3). ⇤

We are now ready to prove

Theorem 4.0.4. Normalization Lemma. Let A = K[y1, . . . , yn] be a finitely generated

K–algebra and an integral domain. Let r := tr.d. Q(A)/K = tr.d. K(y1, . . . , yn)/K. Then

there exist elements z1, . . . , zr 2 A, algebraically independent over K, such that A is integral

over the K-algebra B = K[z1, . . . , zr].

Proof. We give a proof by induction on n, assuming that K is infinite.

If n = 1, then A = K[y]. There are two possibilities, either r = 1 or r = 0; r = 1 if and

only if y is transcendental over K, in this case A = B; r = 0, if and only if y is algebraic

over K, in which case A is an algebraic extension of finite degree of K and B = K.

Let n � 2 and assume the theorem is true for K-algebras with n � 1 generators. Let

' : K[x1, . . . , xn] ! A be the surjective homomorphism mapping a polynomial f(x1, . . . , xn)

to f(y1, . . . , yn). If ' is an isomorphism, then r = n and B = A. So we assume that
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ker ' 6= (0) and r < n: there exists a non-zero polynomial f such that f(y1, . . . , yn) = 0.

Possibly renaming the variables, we can assume that xn appears explicitly in f .

If f is monic of degree d with respect to xn, then A = K[y1, . . . , yn] is a finite module

over K[y1, . . . , yn�1], generated by 1, yn, . . . , yd�1
n

. By Theorem 4.0.1, every element of A is

integral over K[y1, . . . , yn�1]. By inductive assumption, there exists B = K[z1, . . . , zr] with

z1, . . . , zr algebraically independent over K, such that K[y1, . . . , yn�1] is integral over B. By

Transitivity of integral dependence (Corollary 4.0.3 2.), also A is integral over B.

It remains the case where in the kernel of ' there is no monic polynomial in xn. We

claim that we can “ change coordinates” linearly in K[x1, . . . , xn] in such a way that the

polynomial f becomes monic. This means that there is another surjectionK[x1, . . . , xn] ! A

such that some element of the kernel is monic in xn.

We consider the linear change of coordinates xi ! xi + aixn, for 1  i  n � 1 and

xn ! xn, where the ai’s are suitable elements of K we are going to choose. Write f as sum

of its homogeneous components f = fd + lower degree terms, where d = deg f . Under this

transformation, f ! f(x1 + a1xn, . . . , xn�1 + an�1xn, xn). We claim it is possible to choose

the coe�cients ai so that in this new polynomial the coe�cient of xd

n
is non-zero. Just

replacing we get f(x1+a1xn, . . . , xn�1+an�1xn, xn) = fd(x1+a1xn, . . . , xn�1+an�1xn, xn)+

lower degree terms. Then we expand the top degree term and we get fd(x1+a1xn, . . . , xn�1+

an�1xn, xn) = fd(a1, . . . , an�1, 1)xd

n
+ lower degree terms in xn. Adding gives

f(x1 + a1xn, . . . , xn�1 + an�1xn, xn) = fd(a1, . . . , an�1, 1)x
d

n
+ lower degree terms in xn.

Thus we just have to choose the ai’s so that fd(a1, . . . , an�1, 1) 6= 0. Since fd is a non-

zero homogeneous polynomial of degree d � 1, fd(x1, . . . , xn�1, 1) is a non-zero polynomial

of degree less than or equal to d in x1, . . . , xn�1. Since the field K is infinite, we are done

thanks to Exercise 1 in Chapter 2. ⇤

Remarks. This proof has been adapted from MathOverflow, a “ question and answer

site for professional mathematicians”: https://mathoverflow.net/questions/92354/noether-

normalization

The same proof can be found in the book [R]. The original article of Emmy Noether is

unfortunately in German [N].

A nice article on Normalization Lemma, by Judith Sally, can be found in the book ”Emmy

Noether in Bryn Mawr”, published in the occasion of her 100th birthday ([jS]).

Emmy Noether (1882-1935) is the founder of modern algebra; her story is very interesting

and in some aspects symbolic of the di�culties encountered by women mathematicians. As

quoted in Wikipedia “ In a letter to The New York Times, Albert Einstein wrote:
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In the judgment of the most competent living mathematicians, Fräulein Noether was the

most significant creative mathematical genius thus far produced since the higher education of

women began. In the realm of algebra, in which the most gifted mathematicians have been

busy for centuries, she discovered methods which have proved of enormous importance in the

development of the present-day younger generation of mathematicians.

On 2 January 1935, a few months before her death, mathematician Norbert Wiener wrote

“Miss Noether is ... the greatest woman mathematician who has ever lived; and the greatest

woman scientist of any sort now living, and a scholar at least on the plane of Madame Curie.

”

See also http://www.enciclopediadelledonne.it/biografie/emmy-noether/
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Chapter 5

The projective closure

5.1 Projective closure and its ideal

In this chapter we will identify the a�ne space An with the open subet U0 ⇢ Pn. As

we have seen in Section 2.6, this is possible via the homeomorphisms, inverse each other,

'0 : U0 ! An and j0 : An
! U0. Similar considerations hold for any index i = 0, . . . , n.

Given an a�ne variety X ⇢ An = U0 ⇢ Pn, in this way it becomes a subet of Pn and it

makes sense to consider its closure in the Zariski topology of the projective space.

Definition 5.1.1. The projective closure of X, X, is the closure of X in the Zariski

topology of Pn.

Since the map '0 is a homeomorphism, we have: X \An = X because X is closed in An.

The points of X \H0, where H0 is the hyperplane at infinity VP (x0), are called the “ points

at infinity” of X in the fixed embedding.

Remark 7. Note that, if K is an infinite field, then the projective closure of An is Pn, i.e.

the a�ne space is dense in the projective space.

Indeed, let F be a homogeneous polynomial of degree d vanishing along An = U0. We

can write F = F0xd

0 + F1x
d�1
0 + · · · + Fd, where Fi is a homogeneous polynomial of degree

i in x1, . . . , xn for any i. By assumption, for every P (a1, . . . , an) 2 An, P 2 VP (F ), i.e.

F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). So aF 2 I(An). We claim that I(An) = (0): if n = 1,

this follows from the principle of identity of polynomials, because K is infinite. If n � 2,

assume that F (a1, ..., an) = 0 for all (a1, ..., an) 2 Kn and consider F (a1, ..., an�1, x): either

it has positive degree in x for some choice of (a1, ..., an), but then it has finitely many zeros

against the assumption; or it is constant in x for any choice of (a1, . . . , an), so F belongs to
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K[x1, ..., xn�1] and we can conclude by induction. So the claim is proved. We get therefore

that F0 = F1 = . . . = Fd = 0 and F = 0.

We want to find the relation between the equations of X ⇢ An and those of its projective

closure X ⇢ Pn.

Proposition 5.1.2. Let X ⇢ An
be an a�ne variety, X be its projective closure. Then

Ih(X) = hI(X) := h
hF |F 2 I(X)i.

Proof. Let F 2 Ih(X) be a homogeneous polynomial. If P (a1, . . . , an) 2 X, then [1, a1, . . . , an] 2

X, so F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). Hence aF 2 I(X). There exists k � 0 such that

F = (xk

0)
h(aF ) (see proof of Proposition 2.6.1), so F 2

hI(X). Hence Ih(X) ⇢ hI(X).

Conversely, ifG 2 I(X) and P (a1, . . . , an) 2 X, thenG(a1, . . . , an) = 0 = hG(1, a1, . . . , an),

so hG 2 Ih(X) (here X is seen as a subset of Pn). So hI(X) ⇢ Ih(X). Since Ih(X) = Ih(X)

(see Exercise 1), we have the claim. ⇤

In particular, if X is a hypersurface and I(X) = hF i, then Ih(X) = h
hF i.

Next example, that will occupy the rest of this Chapter, will show that, in general,

from I(X) = hF1, . . . , Fri, it does not follow hI(X) = h
hF1, . . . , hFri. Only in the last

thirty years, thanks to the development of symbolic algebra and in particular of the theory

of Gröbner bases, the problem of characterizing the systems of generators of I(X), whose

homogeneization generates hI(X), has been solved.

5.2 An extended example: the skew cubic

The example of the skew cubic is of fundamental importance in algebraic geometry, because

of the many geometrical phenomena that appear, and are developed in di↵erent classes of

varieties of which the skew cubic is the first case.

Example 5.2.1 (The skew cubic). In this example we assume that K is infinite. The

a�ne skew cubic is the following closed subset X of A3: X = V (y � x2, z � x3) (we use

variables x, y, z). X is the image of the map ' : A1
! A3 such that '(t) = (t, t2, t3). Note

that ' : A1
! X is a homeomorphism (see Exercise 3, Chapter 1). Let ↵ be the ideal

hy � x2, z � x3
i. Note that X = V (↵). We claim that ↵ = I(X) = {F 2 K[x, y, z] |

F (x, x2, x3) = 0 for any x 2 K}. Proceeding as in Chapter 3, Example 3.1.2, we consider

the development of any polynomial G 2 K[x, y, z] in Taylor series around (x, x2, x3), and
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we get the claim. We observe also that ↵ is a prime ideal; to see this, we consider the ring

homomorphism K[x, y, z] ! K[x] such that F (x, y, z) ! F (x, x2, x3): it is surjective and

its kernel is ↵, therefore the quotient ring K[x, y, z]/↵ is isomorphic to K[x], which is an

integral domain. Therefore ↵ is prime.

Let X be the projective closure of X in P3. First we will study X geometrically, then we

will determine its homogeneous ideal. We claim that it is the image of the map  : P1
! P3

such that  ([�, µ]) = [�3,�2µ,�µ2, µ3]. We identify A1 with the open subset of P1 defined

by � 6= 0 i.e. U0, and A3 with the open subset of P3 defined by x0 6= 0 (U0 again). Note that

 |A1 = ', because  ([1, t]) = [1, t, t2, t3] = via the identification of A3 with U0 = (t, t2, t3) =

'(t). Moreover  ([0, 1]) = [0, 0, 0, 1]. So  (P1) = X [ {[0, 0, 0, 1]}.

Let G be a homogeneous polynomial of K[x0, x1, x2, x3] such that X ⇢ VP (G). Then

G(1, t, t2, t3) = 0 8t 2 K, so G(�3,�2µ,�µ2, µ3) = 0 8µ 2 K, 8� 2 K⇤. Since K is

infinite, then G(�3,�2µ,�µ2, µ3) is the zero polynomial in � and µ, so G(0, 0, 0, 1) = 0 and

VP (G) �  (P1), therefore X �  (P1).

Conversely, we prove that  (P1) is Zariski closed, more precisely

 (P1) = VP (F0, F1, F2) where F0 := x1x3 � x2
2 , F1 := x1x2 � x0x3, F2 := x0x2 � x2

1 .

One inclusion is clear: every point of P3 of coordinates [�3,�2µ,�µ2, µ3] satisfies the three

quadratic equations F0 = F1 = F2 = 0. Conversely, let Fi(y0, . . . , y3) = 0 8i = 1, . . . , 3, i.e.

y1y3 = y22, y1y2 = y0y3, y0y2 = y21. We observe that either y0 6= 0 or y3 6= 0, otherwise also

y1 = y2 = 0.

Assume y0 6= 0, then, using the three equations, we get

[y0, y1, y2, y3] = [y30, y
2
0y1, y

2
0y2, y

2
0y3] = [y30, y

2
0y1, y0y

2
1, y0y1y2] = [y30, y

2
0y1, y0y

2
1, y

3
1] =  ([y0, y1]).

Similarly, if y3 6= 0, [y0, y1, y2, y3] =  ([y2, y3]). So  (P1) = X.

The three polynomials F0, F1, F2 are the 2⇥ 2 minors of the matrix

M =

 
x0 x1 x2

x1 x2 x3

!

with entries in K[x0, x1, x2, x3]. Let F = y � x2, G = z � x3 be the two generators of I(X);
hF = x0x2 � x2

1 ,
hG = x2

0x3 � x3
1 , hence VP (hF, hG) = VP (x0x2 � x2

1 , x
2
0x3 � x3

1) 6= X, because

VP (hF, hG) contains the whole line “ at infinity” VP (x0, x1), which is not contained in X.

We have seen that the projective closure of the a�ne skew cubic X is X = VP (F0, F1, F2);

we shall prove now the non-trivial fact:
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Proposition 5.2.2. Ih(X) = hF0, F1, F2i.

Proof. For any integer number d � 0, let Ih(X)d := Ih(X)\K[x0, x1, x2, x3]d: it is aK-vector

space of dimension 
�
d+3
3

�
. We define a K-linear map ⇢d having Ih(X)d as kernel:

⇢d : K[x0, x1, x2, x3]d ! K[�, µ]3d

such that ⇢d(F ) = F (�3,�2µ,�µ2, µ3). Since ⇢d is clearly surjective, we compute

dim Ih(X)d =

✓
d+ 3

3

◆
� (3d+ 1) = (d3 + 6d2 � 7d)/6.

For d � 2, we define now a second K-linear map

'd : K[x0, x1, x2, x3]
�3
d�2 ! Ih(X)d

such that 'd(G0, G1, G2) = G0F0+G1F1+G2F2. Our aim is to prove that 'd is surjective. The

elements of its kernel are called the syzygies of degree d among the polynomials F0, F1, F2.

Two obvious syzygies of degree 3 are constructed by developing, according to the Laplace

rule, the determinant of the matrix obtained repeating one of the rows of M , for example
0

B@
x0 x1 x2

x0 x1 x2

x1 x2 x3

1

CA .

It gives x0F0 + x1F1 + x2F2 = 0, so (x0, x1, x2) is a syzygy of degree 3. Similarly (x1, x2, x3).

We put H1 = (x0, x1, x2) and H2 = (x1, x2, x3), they both belong to ker'3. Note that H1

and H2 give rise to syzygies of all degrees � 3, in fact we can construct a third linear map

 d : K[x0, x1, x2, x3]
�2
d�3 ! ker'd

putting  d(A,B) = H1A+H2B = (x0, x1, x2)A+(x1, x2, x3)B = (x0A+x1B, x1A+x2B, x2A+

x3B).

Claim.  d is an isomorphism.

Assuming the claim, we are able to compute dim ker'd = 2
�
d

3

�
, therefore

dim Im 'd = 3

✓
d+ 1

3

◆
� 2

✓
d

3

◆

which coincides with the dimension of Ih(X)d previously computed. This proves that 'd is

surjective for all d and concludes the proof of the Proposition.
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Proof of the Claim. Let (G0, G1, G2) belong to ker'd. This means that the following

matrix N with entries in K[x0, x1, x2, x3] is non-invertible:

N :=

0

B@
G0 G1 G2

x0 x1 x2

x1 x2 x3

1

CA .

Therefore, the rows of N are linearly dependent over the quotient field of the polynomial ring

K(x0, . . . , x3). Since the last two rows are linearly independent, there exist reduced rational

functions a1
a0
, b1
b0

2 K(x0, x1, x2, x3), such that

G0 =
a1
a0

x0 +
b1
b0
x1 =

a1b0x0 + a0b1x1

a0b0

and similarly

G1 =
a1b0x1 + a0b1x2

a0b0
, G2 =

a1b0x2 + a0b1x3

a0b0
The Gi’s are polynomials, therefore the denominator a0b0 divides the numerator in each of

the three expressions on the right hand side. Moreover, if p is a prime factor of a0, then p

divides the three products b0x0, b0x1, b0x2, hence p divides b0. We can repeat the reasoning

for a prime divisor of b0, so obtaining that a0 = b0 (up to invertible constants). We get:

G0 =
a1x0 + b1x1

b0
, G1 =

a1x1 + b1x2

b0
, G2 =

a1x2 + b1x3

b0
,

therefore b0 divides the numerators

c0 := a1x0 + b1x1, c1 := a1x1 + b1x2, c2 := a1x2 + b1x3.

Hence b0 divides also x1c0�x0c1 = b1(x2
1�x0x1) = �b1F2, and similarly x2c0�x0c2 = b1F1,

x2c1 � x1c2 = �b1F0. But F0, F1, F2 are irreducible and coprime, so we conclude that b0 | b1.

But b0 and b1 are coprime, so finally we get b0 = a0 = 1. ⇤

As an important by-product of the proof of Proposition 5.2.2 we have the minimal free

resolution of the R-module Ih(X), where R = K[x0, x1, x2, x3]:

0 ! R�2  

�! R�3 '

�! Ih(X) ! 0

where  is represented by the transposed of the matrix M and ' by the triple of polynomials

(F0, F1, F2).
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Exercises 5.2.3. 1. Let X ⇢ An be a closed subset, X be its projective closure in Pn.

Prove that Ih(X) = Ih(X).

2. Find a system of generators of the ideal of the a�ne skew cubic X, such that, if you

homogeneize them, you get a system of generators for Ih(X).
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Chapter 6

Irreducible components

6.1 Irreducible topological spaces

The aim of this chapter is to introduce the irreducible components of the a�ne varieties, the

“ building blocks” of the algebraic varieties. The idea is that the irreducible varieties are a

generalization in any dimensions of the irreducible hypersurfaces: any hypersurface is a finite

union of irreducible hypersurfaces, similarly any algebraic variety (a�ne or projective) is a

finite unione of irreducible varieties. The notion of irreducible topological space is typical

of algebraic geometry and is interesting in this context, although it is not so for Hausdor↵

topological spaces.

Definition 6.1.1. Let X be a topological space. X is irreducible if it is not empty and

the following condition holds: if X = X1 [X2 with X1, X2 closed subsets of X, then either

X = X1 or X = X2.

Equivalently, passing to the complementar sets, X is irreducible if it is non empty and,

for all pair of non–empty open subsets U , V , we have U \ V 6= ;.

Note that, by definition, ; is not irreducible.

Proposition 6.1.2. X is irreducible if and only if any non–empty open subset U of X is

dense in X.

Proof. Let X be irreducible, let P be a point of X and let IP be an open neighbourhood of

P in X. IP and U are non–empty and open, so IP \ U 6= ;, therefore P 2 U . This proves

that U = X.
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Conversely, assume that all open subsets are dense. Let U , V 6= ; be open subsets. Let

P 2 U be a point. By assumption P 2 V = X, so V \ U 6= ; (U is an open neighbourhood

of P ). ⇤

Example 6.1.3. 1. If X = {P} is a unique point, then X is irreducible.

2. Let K be an infinite field. Then A1
is irreducible, because proper closed subsets are

finite sets. The same holds for P1
.

3. Let f : X ! Y be a continuous map of topological spaces. If X is irreducible and f is

surjective, then Y is irreducible.

4. Let Y ⇢ X, Y 6= ;, be a subset endowed with the induced topology. Then Y is

irreducible if and only if the following holds: if Y ⇢ Z1 [ Z2, with Z1 and Z2 closed in X,

then either Y ⇢ Z1 or Y ⇢ Z2; equivalently: if Y \ U 6= ;, Y \ V 6= ;, with U , V open

subsets of X, then Y \ U \ V 6= ;.

Proposition 6.1.4. Let X be a topological space, Y a subset of X. Y is irreducible if and

only if Y is irreducible.

Proof. Note first that if U ⇢ X is open and U \ Y = ; then U \ Y = ;. Otherwise, if

P 2 U \ Y , let A be an open neighbourhood of P : then A \ Y 6= ;. In particular, U is an

open neighbourhood of P so U \ Y 6= ;.

Let Y be irreducible. If U and V are open subsets of X such that U \Y 6= ;, V \Y 6= ;,

then U \ Y 6= ; and V \ Y 6= ; so Y \ U \ V 6= ; by the irreducibility of Y . Hence

Y \ (U \ V ) 6= ;. So Y is irreducible. If Y is irreducible, we get the irreducibility of Y in a

completely analogous way. ⇤

Corollary 6.1.5. Let X be an irreducible topological space and let U be a non–empty open

subset of X. Then U is irreducible.

Proof. By Proposition 6.1.2 U = X, which is irreducible. By Proposition 6.1.4 U is irre-

ducible. ⇤

6.2 Irreducible algebraic varieties

For algebraic sets (both a�ne and projective) irreducibility can be expressed in a purely

algebraic way.

Proposition 6.2.1. Let X ⇢ An
( resp. Pn

) be an algebraic variety equipped with the Zariski

topology, i.e. the induced topology by the Zariski topology of the a�ne (or projective) space.

X is irreducible if and only if I(X) (resp. Ih(X)) is prime.
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Proof. Assume first that X is irreducible, X ⇢ An. Let F,G be polynomials in K[x1, . . . , xn]

such that FG 2 I(X): then

V (F ) [ V (G) = V (FG) � V (I(X)) = X,

hence either X ⇢ V (F ) or X ⇢ V (G). In the former case, if P 2 X then F (P ) = 0, so

F 2 I(X), in the second case G 2 I(X); hence I(X) is prime.

Assume now that I(X) is prime. Let X = X1 [X2 be the union of two closed subsets.

Then I(X) = I(X1) \ I(X2) (see Lesson 4). Assume that X1 6= X, then I(X1) strictly

contains I(X), otherwise, if I(X) = I(X1), it would follow X1 = V (I(X1)) = V (I(X)) = X

because both are closed. So there exists F 2 I(X1) such that F 62 I(X). But for every

G 2 I(X2), FG 2 I(X1) \ I(X2) = I(X), which is prime: since F 62 I(X), then G 2 I(X).

So I(X2) ⇢ I(X), and we conclude that I(X2) = I(X), so X2 = X.

If X ⇢ Pn, the proof is similar, taking into account the following Lemma.

Lemma 6.2.2. Let P ⇢ K[x0, x1, . . . , xn] be a homogeneous ideal. Then P is prime if and

only if, for every pair of homogeneous polynomials F,G such that FG 2 P, either F 2 P or

G 2 P.

Proof of the Lemma. Let H,K be any polynomials such that HK 2 P . Let H = H0 +

H1 + · · · +Hd, K = K0 +K1 + · · · +Ke (with Hd 6= 0 6= Ke) be their expressions as sums

of homogeneous polynomials. Then HK = H0K0 + (H0K1 + H1K0) + · · · + HdKe: the

last product is the homogeneous component of degree d+ e of HK. P being homogeneous,

HdKe 2 P ; by assumption either Hd 2 P or Ke 2 P . In the former case, HK � HdK =

(H �Hd)K belongs to P while in the second one H(K �Ke) 2 P . So in both cases we can

proceed by induction. ⇤

We list now some consequences of Proposition 6.2.1.

1. Let K be an infinite field. Then An and Pn are irreducible, because I(An) = Ih(Pn) =

(0).

2. Let Y ⇢ Pn be closed. Y is irreducible if and only if its a�ne cone C(Y ) is irreducible.

3. Let Y = V (F ) ⇢ An, be a hypersurface over an algebraically closed field K. If F is

irreducible, then Y is irreducible.

4. LetK be algebraically closed. There is a bijection between prime ideals ofK[x1, . . . , xn]

and irreducible algebraic subsets of An. In particular, the maximal ideals correspond to the
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points. Similarly, there is a bijection between homogeneous non–irrelevant prime ideals of

K[x0, x1, . . . , xn] and irreducible algebraic subsets of Pn.

6.3 Irreducible components

Our next task is to prove that any algebraic variety can be written as a finite union of

irreducible varieties.

Definition 6.3.1. A topological space X is called noetherian if it satisfies the following

equivalent conditions:

(i) the ascending chain condition for open subsets;

(ii) the descending chain condition for closed subsets;

(iii) any non–empty set of open subsets of X has maximal elements;

(iv) any non–empty set of closed subsets of X has minimal elements.

The proof of the equivalence is standard (compare with the properties defining noetherian

rings).

Example 6.3.2. An
is noetherian: if the following is a descending chain of closed subsets

of An

Y1 � Y2 � · · · � Yk � . . . ,

then

I(Y1) ⇢ I(Y2) ⇢ · · · ⇢ I(Yk) ⇢ . . .

is an ascending chain of ideals of K[x1, . . . , xn], hence it is stationary from a suitable m on;

therefore V (I(Ym)) = Ym = V (I(Ym+1)) = Ym+1 = . . . .

Similarly Pn
is noetherian.

Proposition 6.3.3. Let X be a noetherian topological space and Y be a non–empty closed

subset of X. Then Y can be written as a finite union Y = Y1 [ · · · [ Yr of irreducible closed

subsets. The maximal Yi’s in the union are uniquely determined by Y and are called the

“ irreducible components” of Y . They are the maximal irreducible subsets of Y .

Proof. By contradiction. Let S be the set of the non–empty closed subsets of X which are

not a finite union of irreducible closed subsets: assume S 6= ;. By noetherianity S has

minimal elements, fix one of them Z. Z is not irreducible, so Z = Z1 [ Z2, Zi 6= Z for

i = 1, 2. So Z1, Z2 62 S, hence Z1, Z2 are both finite unions of irreducible closed subsets, so

such is Z: a contradiction.
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Now assume that Y = Y1 [ · · · [ Yr, with Yi 6✓ Yj if i 6= j and Yi irreducible closed

for all i. If there is another similar expression Y = Y 0

1 [ · · · [ Y 0

s
, Y 0

i
6✓ Y 0

j
for i 6= j, then

Y 0

1 ⇢ Y1 [ . . . Yr, so Y 0

1 =
S

r

i=1(Y
0

1 \ Yi), hence Y 0

1 ⇢ Yi for some i, and we can assume

i = 1. Similarly, Y1 ⇢ Y 0

j
, for some j, so Y 0

1 ⇢ Y1 ⇢ Y 0

j
, so j = 1 and Y1 = Y 0

1 . Now let

Z = Y � Y1 = Y2 [ · · · [ Yr = Y 0

2 [ · · · [ Y 0

s
and proceed by induction. ⇤

Corollary 6.3.4. Any algebraic variety in An
(resp. in Pn

) can be written in a unique way

as the finite union of its irreducible components.

Note that the irreducible components of X are its maximal irreducible algebraic subsets.

They correspond to the minimal prime ideals over I(X). Since I(X) is radical, these minimal

prime ideals coincide with the primary ideals appearing in the primary decomposition of

I(X).

6.4 Quasi–projective varieties

Often the irreducible closed subsets of An are called a�ne varieties, i.e., the term variety is

reserved to the irreducible ones. Similarly for the irreducible closed subsets of Pn.

Definition 6.4.1. A locally closed subset in Pn is the intersection of an open and a closed

subset. An irreducible locally closed subset of Pn is called a quasi–projective variety: it is

open in an irreducible closed subset Z of Pn, therefore it is dense in Z.

We conclude this chapter with the (non-trivial) proof of the irreducibility of the product

of irreducible a�ne varieties.

Proposition 6.4.2. Let X ⇢ An
and Y ⇢ Am

be irreducible a�ne varieties. Then X ⇥ Y

is an irreducible subvariety of An+m
.

Proof. Let X ⇥ Y = W1 [W2, with W1,W2 closed. For any P 2 X, the map {P}⇥ Y ! Y

which takes (P,Q) to Q is a homeomorphism, so {P} ⇥ Y is irreducible. {P} ⇥ Y =

(W1 \ ({P} ⇥ Y )) [ (W2 \ ({P} ⇥ Y )), so 9i 2 {1, 2} such that {P} ⇥ Y ⇢ Wi. Let

Xi = {P 2 X | {P}⇥ Y ⇢ Wi}, i = 1, 2. Note that X = X1 [X2.

Claim. Xi is closed in X.

Let X i(Q) = {P 2 X | (P,Q) 2 Wi}, Q 2 Y . We have: (X ⇥ {Q}) \Wi = X i(Q)⇥ {Q} '

X i(Q); X⇥{Q} and Wi are closed in X⇥Y , so X i(Q)⇥{Q} is closed in X⇥Y and also in

X ⇥ {Q}, so X i(Q) is closed in X. Note that Xi =
T

Q2Y
X i(Q), hence Xi is closed, which

proves the Claim.
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Since X is irreducible, X = X1 [ X2 implies that either X = X1 or X = X2, so either

X ⇥ Y = W1 or X ⇥ Y = W2. ⇤

Exercises 6.4.3. 1. Let X 6= ; be a topological space. Prove that X is irreducible if and

only if all non–empty open subsets of X are connected.

2. Prove that the cuspidal cubic Y ⇢ A2
C of equation x3

� y2 = 0 is irreducible. (Hint:

express Y as image of A1 in a continuous map...)

3. Give an example of two irreducible subvarieties of P3 whose intersection is reducible.

4. Find the irreducible components of the following algebraic sets over the complex field:

a) V (y4 � x2, y4 � x2y2 + xy2 � x3) ⇢ A2;

b) V (y2 � xz, z2 � y3) ⇢ A3.

5. Let Z be a topological space and let {U↵}↵2I be an open covering of Z such that

U↵ \ U� 6= ; for ↵ 6= � and that all U↵’s are irreducible. Prove that Z is irreducible.
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Chapter 7

Dimension

7.1 Topological dimension

There are a few equivalent ways to give the definition of dimension for algebraic varieties.

In this section we will first see a topological definition, then an algebraic characterization.

In a later lesson, we will see a more geometrical interpretation.

Let X be a topological space.

Definition 7.1.1. The topological dimension of X is the supremum of the lengths of the

chains of distinct irreducible closed subsets of X, where by definiton the following chain has

length n:

X0 ⇢ X1 ⇢ X2 ⇢ · · · ⇢ Xn.

The topological dimension of X is denoted by dimX. It is also called combinatorial or

Krull dimension.

Example 7.1.2. 1. dimA1 = 1: the maximal length chains of irreducible closed subsets

all have the form {P} ⇢ A1.

2. dimAn: a chain of length n is

{0} = V (x1, . . . , xn) ⇢ V (x1, . . . , xn�1) ⇢ · · · ⇢ V (x1) ⇢ An.

Note that V (x1, . . . , xi) is irreducible for any i  n, because the ideal hx1, . . . , xii is

prime. IndeedK[x1, . . . , xn]/hx1, . . . , xii ' K[xi+1, . . . , xn], which is an integral domain.

Therefore we get that dimAn
� n. We will see shortly that proving equality is non

trivial. We note also that, from every chain of irreducible closed subsets of An, passing

to their ideals, we get a chain of the same length of prime ideals in K[x1, . . . , xn].
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3. Let X be irreducible. Then dimX = 0 if and only if X is the closure of every point of

it.

We prove now some useful relations between the dimensions of X and of its subspaces.

Proposition 7.1.3. 1. If Y ⇢ X is a subspace of the topological space X with the induced

topology, then dimY  dimX. In particular, if dimX is finite, then also dimY is

finite. In this case, the number dimX � dimY is called the codimension of Y in X.

2. If X =
S

i2I
Ui is an open covering, then dimX = sup

i
{dimUi}.

3. If X is noetherian and X1, . . . , Xs are its irreducible components, then dimX =

sup
i
dimXi.

4. If Y ⇢ X is closed, X is irreducible, dimX is finite and dimX = dimY , then Y = X.

Proof. 1. Let Y0 ⇢ Y1 ⇢ · · · ⇢ Yn be a chain of irreducible closed subsets of Y . Then taking

closures we get the following chain of irreducible closed subsets of X: Y0 ✓ Y1 ✓ · · · ✓ Yn.

Note that, for any index i, Yi \ Y = Yi, because Yi is closed into Y , so if Yi = Yi+1,

then Yi = Yi+1. Therefore the two chains have the same length and we can conclude that

dimY  dimX.

2. Let X0 ⇢ X1 ⇢ · · · ⇢ Xn be a chain of irreducible closed subsets of X. Let P 2 X0

be a point: there exists an index i 2 I such that P 2 Ui. So 8k = 0, . . . , n Xk \ Ui 6= ;:

it is an irreducible closed subset of Ui, irreducible because open in Xk which is irreducible.

Consider

X0 \ Ui ⇢ X1 \ Ui ⇢ · · · ⇢ Xn \ Ui;

it is a chain of length n, because Xk \ Ui = Xk: in fact Xk \ Ui is open in Xk hence dense.

Therefore, for any chain of irreducible closed subsets of X, there exists a chain of the same

length of irreducible closed subsets of some Ui. So dimX  sup dimUi. By 1., equality

holds.

3. Any chain of irreducible closed subsets of X is completely contained in an irreducible

component of X. The conclusion follows as in 2.

4. If Y0 ⇢ Y1 ⇢ · · · ⇢ Yn is a chain of irreducible closed subsets of Y of maximal length,

then it is also a maximal length chain in X, because dimX = dimY . Hence X = Yn, because

X is irreducible, and we conclude that X ⇢ Y . ⇤

Corollary 7.1.4. dimPn = dimAn
.

53



Proof. The equality follows from Pn = U0 [ · · ·[Un, and the homeomorphism of Ui with An

for all i. ⇤

If X is noetherian and all its irreducible components have the same dimension r, then

X is said to have pure dimension r. Note that the topological dimension is invariant by

homeomorphism. By definition, a curve is an algebraic set of pure dimension 1; a surface is

an algebraic set of pure dimension 2.

7.2 Dimension of algebraic varieties

We want to study the dimensions of a�ne algebraic sets. The following definition results to

be very important.

Definition 7.2.1. Let X ⇢ An be an algebraic set. The coordinate ring of X is

K[X] := K[x1, . . . , xn]/I(X).

It is a finitely generated reducedK–algebra, i.e. there are no non–zero nilpotents, because

I(X) is radical (see Exercise 3, Chapter 3).

There is the canonical epimorphism K[x1, . . . , xn] ! K[X] such that F ! [F ]. The

elements of K[X] can be interpreted as polynomial functions on X: to a polynomial F , we

can associate the function f : X ! K such that P (a1, . . . , an) ! F (a1, . . . , an).

Two polynomials F , G define the same function on X if, and only if, F (P ) = G(P ) for

every point P 2 X, i.e. if F �G 2 I(X), which means exactly that F and G have the same

image in K[X].

K[X] is generated as K–algebra by [x1], . . . , [xn]: they can be interpreted as coordinate

functions on X. We will denote them by t1, . . . , tn. In fact ti : X ! K is the function which

associates to P (a1, . . . , an) the coordinate ai. Note that the function f can be interpreted as

F (t1, . . . , tn): the polynomial F evaluated at the n– tuple of the coordinate functions.

In the projective space we can do an analogous construction. If Y ⇢ Pn is closed, then

by definition the homogeneous coordinate ring of Y is

S(Y ) := K[x0, x1, . . . , xn]/Ih(Y ).

Also S(Y ) is a finitely generated reduced K–algebra, but its elements cannot be interpreted

as functions on Y . They are functions on the cone C(Y ).

We note that, from the fact that Ih(Y ) is homogeneous it follows that also S(Y ) is a

graded ring, with the graduation induced by the polynomial ring. Indeed, if F �G 2 Ih(Y ),
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and F = F0 + . . . + Fd, G = G0 + . . . + Ge are their decompositions in homogeneous

components then it follows that F0 � G0 2 Ih(Y ), F1 � G1 2 Ih(Y ), and so on. Therefore

S(Y ) = �d�0S(Y )d, where S(Y )d is the subgroup of the classes of homogeneous polynomials

of degree d.

Definition 7.2.2. Let R be a ring. The Krull dimension of R is the supremum of the lengths

of the chains of prime ideals of R

P0 ⇢ P1 ⇢ · · · ⇢ Pr.

Similarly, the heigth of a prime ideal P is the sup of the lengths of the chains of prime ideals

contained in P : it is denoted htP .

Proposition 7.2.3. Let K be an algebraically closed field. Let X be an a�ne algebraic set

contained in An
. Then dimX = dimK[X]. In particular dimAn = dimK[x1, . . . , xn].

Proof. By the Nullstellensatz and its Corollary 3.2.9 the chains of irreducible closed subsets

ofX correspond bijectively to the chains of prime ideals ofK[x1, . . . , xn] containing I(X), and

therefore also to the chains of prime ideals of the quotient ring K[X] = K[x1, . . . , xn]/I(X).

⇤

The dimension theory for commutative rings contains some important theorems about

the dimension of K–algebras. The following theorem states the basic properties in the case

of integral domains and the algebraic characterization of dimension for a�ne varieties.

Theorem 7.2.4. Let K be any field. Let A be a finitely generated K–algebra and an integral

domain.

1. dimA = tr.d.Q(A)/K, where Q(A) is the quotient field of A. In particular dimA is

finite.

2. Let P ⇢ A be any prime ideal. Then dimA = htP + dimA/P.

Proof. We postpone the proof to next chapter. It relies on the Normalization Lemma and on

the Cohen-Seidenberg theorems about the structure of prime ideals for integral extensions

of K-algebras. ⇤

Corollary 7.2.5. Let K be an algebraically closed field.

1. dimAn = dimPn = n.

2. If X is an irreducible a�ne variety, then dimX = tr.d.K(X)/K, where K(X) denotes

the quotient field of K[X].
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3. If X ⇢ An
is an irreducible a�ne variety, then dimX = n� htI(X).

Proof. 1. dimK[x1, . . . , xn] = tr.d.K(x1, . . . , xn)/K = n.

2. follows immediately from Theorem 7.2.4, 1.

3. is Theorem 7.2.4, 2, applied to the case A = K[x1, . . . , xn] and P = I(X). ⇤

Note that the homogeneous coordinate ring of Pn is K[x0, . . . , xn], whose dimension is

n + 1, strictly bigger than the dimension of Pn. Similarly, if Y is a projective algebraic

variety, then dimS(Y ) = dimC(Y ), the a�ne cone over Y .

Corollary 7.2.5 tells us how to compute the dimension of an a�ne irreducible variety over

an algebraically closed field K. If X is a reducible a�ne variety, and X = X1 [ · · · [Xr is

its decomposition as union of irreducible components, then dimX is the maximum of the

dimensions dimXi.

The following is the characterization of the algebraic varieties of codimension 1 in An.

Proposition 7.2.6. Let X ⇢ An
be an a�ne variety over an algebraically closed field. Then

X is a hypersurface if and only if X is of pure dimension n� 1.

Proof. Let X ⇢ An be a hypersurface, with I(X) = (F ) = (F1 . . . Fs), where F1, . . . , Fs

are the (distinct) irreducible factors of F all of multiplicity one. Then X = V (F1 . . . Fs) =

V (F1)[ . . .[ V (Fs); therefore V (F1),. . ., V (Fs) are the irreducible components of X, whose

ideals are (F1), . . ., (Fs). So it is enough to prove that ht(Fi) = 1, for i = 1, . . . , s.

If P ⇢ (Fi) is a prime ideal, then either P = (0) or there exists G 2 P , G 6= 0. In

the second case, let A be an irreducible factor of G belonging to P : A 2 (Fi) so A = HFi.

Since A is irreducible, either H or Fi is invertible; Fi is irreducible, so H is invertible, hence

(A) = (Fi) ⇢ P . Therefore either P = (0) or P = (Fi), and ht(Fi) = 1.

Conversely, assume that X is irreducible of dimension n � 1. Since X 6= An, there

exists F 2 I(X), F 6= 0, with irreducible factorization F = F1 . . . Fs. Hence X ⇢ V (F ) =

V (F1)[ . . .[V (Fs). By the irreducibility of X, X ⇢ V (Fi), which is irreducible of dimension

n� 1, by the first part. So X = V (Fi) (by Proposition 7.1.3, 4). ⇤

This proposition does not generalise to higher codimension. There exist codimension 2

algebraic subsets of An whose ideal is not generated by two polynomials. An example in A3

is the curve X parametrised by (t3, t4, t5). It is possible to show that a system of generators

of I(X) is formed by the three polynomials x3
� yz, y2 � xz, z2 � x2y. One can easily show

that I(X) cannot be generated by two polynomials. For a proof and a discussion of this

example, and more generally of the ideals of the curves admitting a parametrization of the

form x = tn1 , y = tn2 , z = tn3 , see [K], Chapter V.
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Proposition 7.2.7. Let X ⇢ An

K
, Y ⇢ Am

K
be irreducible closed subsets, over an algebraically

closed field K. Then dimX ⇥ Y = dimX + dimY .

Proof. Let r = dimX, s = dimY ; let t1, . . . , tn (resp. u1, . . . , um) be coordinate functions

on An (resp. Am). We can assume that t1, . . . , tr is a transcendence basis of Q(K[X]) and

u1, . . . , us a transcendence basis of Q(K[Y ]). By definition, K[X ⇥ Y ] is generated as K–

algebra by t1, . . . , tn, u1, . . . , um: we want to show that t1, . . . , tr, u1, . . . , us is a transcendence

basis of Q(K[X ⇥ Y ]) over K. Assume that F (x1, . . . , xr, y1, . . . , ys) is a polynomial which

vanishes on t1, . . . , tr, u1, . . . , us, i.e. F defines the zero function on X ⇥ Y . Then, 8 P 2 X,

F (P ; y1, . . . , ys) is zero on Y , i.e. F (P ; u1, . . . , us) = 0. Since u1, . . . , us are algebraically inde-

pendent, every coe�cient ai(P ) of F (P ; y1, . . . , ys) is zero, 8 P 2 X. Since t1, . . . , tr are alge-

braically independent, the polynomials ai(x1, . . . , xr) are zero, so F (x1, . . . , xr, y1, . . . , ys) = 0.

So t1, . . . , tr, u1, . . . , us are algebraically independent. Since this is certainly a maximal alge-

braically free set, it is a transcendence basis. ⇤

Exercises 7.2.8. 1. Prove that a proper closed subset of an irreducible curve is a finite

set. Deduce that any bijection between irreducible curves is a homeomorphism.

2. Let X ⇢ A2 be the cuspidal cubic of equation: x3
� y2 = 0, let K[X] be its coordinate

ring. Prove that all elements of K[X] can be written in a unique way in the form

f(x) + yg(x), where f, g are polynomials in the variable x. Deduce that K[X] is not

isomorphic to a polynomial ring.
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