Batch Separation

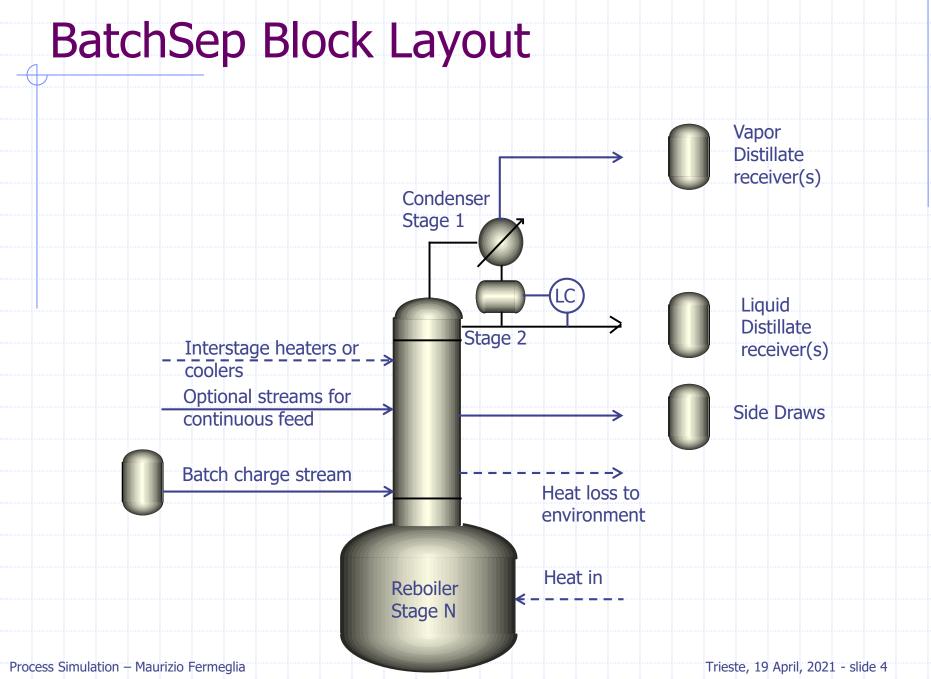
Maurizio Fermeglia <u>Maurizio.fermeglia@units.it</u> Department of Engineering & Architecture University of Trieste

Agenda

Batch block layout

- Setup forms
- Heat transfer form
- Initial conditions
- Column setup form

Operating steps


- Charge
- Distil

Results and profiles

Objectives

- Learn how to setup basic specifications for batch distillation and reactor
- Recognize how to interpret and review result for a batch distillation simulation
- Setup a simulation of a batch procedure

Capabilities

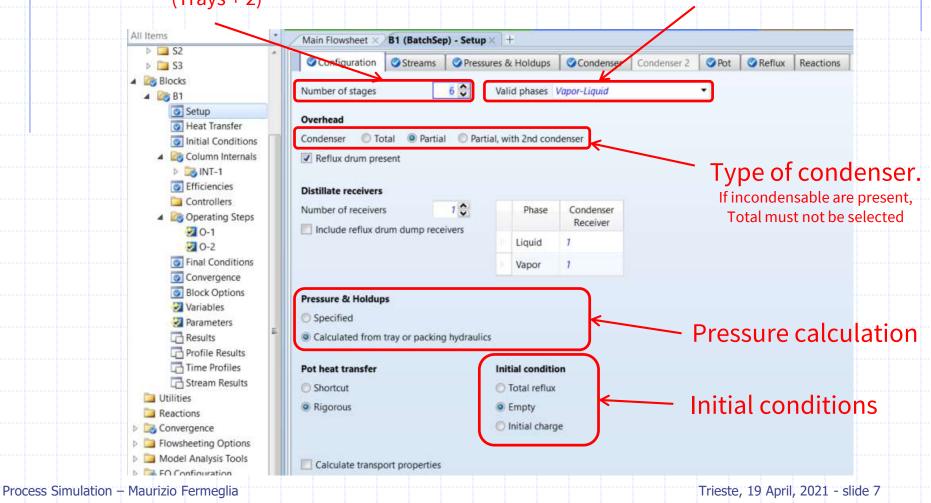
- Startup from total reflux, empty column or initial charge
- 2- or 3-phase calculation anywhere in the column
- Feeds to the column at any time, any stage including the pot and reflux drum
- Switch distillate or side draws to one of any number of receivers at any time during simulation
- Simulate multiple batches with recycle of material to the next batch
- Reactive distillation using rate based or equilibrium reactions
- Various modes for holdups and pressure profile
- Methods for estimating pressure drop and holdup for trays or packing
- Realistic modeling of heat transfer in pot and condenser
- Interstage heaters and coolers
- Heat loss to environment
- Dynamic effect of the heat capacity of the column materials
- Ability to include and configure controllers to manipulate operating conditions

Demo BatchSep

Batch separation of a mixture benzene/toluene

Components: Benzene	Reflux Drum 1.0472 cum	Reflux Ratio: 5
Toluene Nitrogen		
Charge		Column
100 kmol		Design:
Mole Frac:		4 Trays with
Benzene 0.5		spacing 0.5 m
Toluene 0.5		
	CHARGE	Heat Transfer:
Pot		Jacket Heating Medium
Geometry:		Temperature 200 °C
Diameter 3m Height 2m		

Operate until benzene mole fraction in pot becomes less than 0.1% mol


Process Simulation – Maurizio Fermeglia

Trieste, 19 April, 2021 - slide 6

Setup form

Configuration tab enables the user to specify:

Number of Stages (Trays + 2)

Number of phases

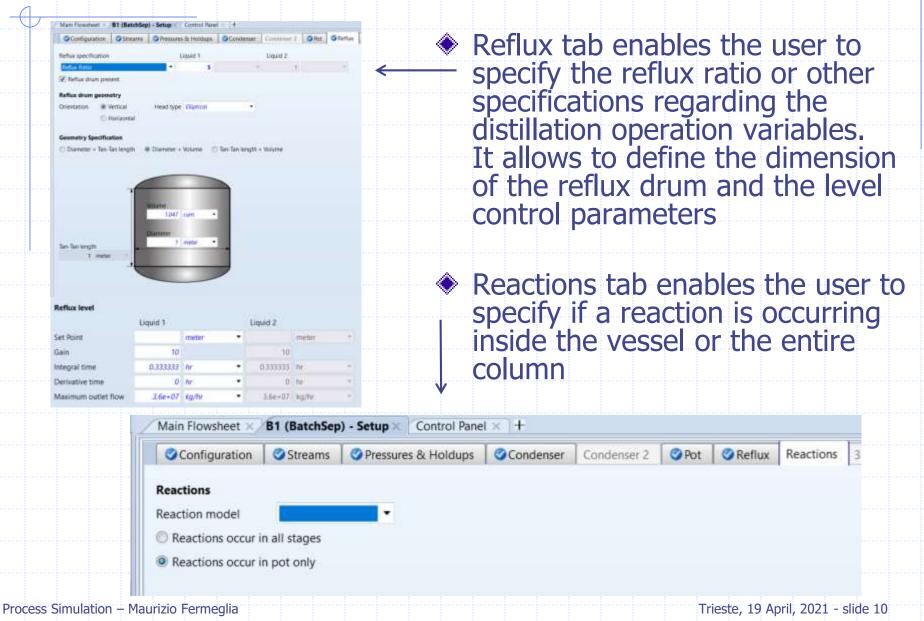
Setup form

Main Flowsheet ×	B1 (BatchSep) - Setup ×	Control Par	nel	
Configuration	Streams	O Pressure	es & Holdups	T	
Pot charge				<	_
Stream CHARGE	 Flow rate 	te basis	Mole •		
Continuous Feeds					
No continuous feeds	present				
Distillate Receivers					
Number of receivers	1 🗘				
Receiver	Product Stream	m			
1	DIST				
ide Draw Receiver	s				
Pressu	ire &	Hold	luns t	ab	
enables			-		
pressur			4		
	Specifie				
				specified	
				nser and	
			teristic	s must	
be s	pecifie	d			

Streams tab enables the user to specify the inlet and outlet streams of the column. Remember to specify the correct receiver

Configuration (Streams	Pressures 8	Holdups	Conder
Pressure & Holdups (Calculation (Option		
Specified				
Calculated from tra	y or packing	hydraulics		
Overhead				
Condenser pressure		1.01325	bar	- E
Second condenser pre-	ssure	1.01325	bar	2
Specify stage 2 pre	ssure	1.02325	bar	
Condenser inlet diame	ter	0.1	meter	
Pressure drop				
Pressure drop specifica	ation	Column Pressu	ire drop	3
Holdups				
Holdup basis			Mole	
Reflux drum liquid hole	dup		kmol	2
Start stage	End sta	ige Stage	Holdup	
a contra a contra da				

Trieste, 19 April, 2021 - slide 8

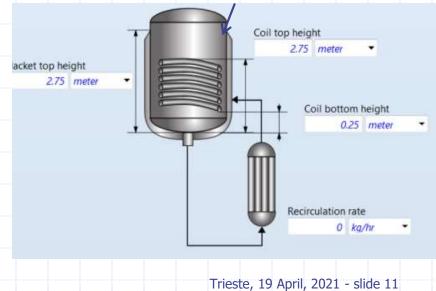

ndenser type Total Partial Partial	Partial, with 2nd cond		
ndenser specification	Partial, with 2nd cond		
		enser	
Temperature		50 C	19
Distillate vapor fraction		0	
Coolant			
Coolant inlet temperature		10 C	-
Coolant mass flow		10000 kg/hr	•
Coolant heat capacity		98376 cal/gm-	
Condensing coefficient	85	9.845 kcal/hr-	sqm-K 💌
Heat transfer area		10 sqm	•
bcooling specification			
None			
Degrees subcooled		0 C	*
Subcooled temperature		50 C	· · · · ·
Pot tab en efine the			
sing comr			
brary or s	necifvind	1 the	sne
imension			

 Condenser tab enables the user to specify information regarding the condenser and the condensation specifications

Configuration	Streams	Pressures & Holdups	Condenser	Conden	iser 2 ØPot	⊘ Re
Load vessel	from library	Vessel ID				
Save vesse	I to library	Vessel description				
Geometry Specific	ation		Тор		Botto	m
Pot orientation	Vertical	Pot head type	Elliptical	•	Elliptical	
	Horizon	tal				
Diameter + Tan-	Tan length 💿 [Diameter + Volume) Tan-Tan length	+ Volume		
Diameter + Tan-	Volun	ne 21.21 cum) Tan-Tan length	+ Volume		
Diameter + Tan- Tan-Tan Length	-	ne 21.21 cum) Tan-Tan length	+ Volume		
	Volun	ne 21.21 cum) Tan-Tan length	+ Volume		
Tan-Tan Length	Volun	ne 21.21 cum) Tan-Tan length	+ Volume		

Volume

Setup form



	<u> </u>				C _	_		_
lea		1 rz	h	C	Γρ	Т	٦r	m
IUU		110		J			Л	

Configuration	Jacket Heating	Side Duty	Process Side	Heat Tr	ansfer Coeff.			US
Heat Transfer Mod	lel Specific	ation						to
Shortcut	Duty	14		1	Gcal/hr	14		
Rigorous								•
Model heat le	oss to the environme	nt						
Model vessel	heat capacities							
Jacket								
Heating	Jacket covers b	ottom						
Cooling								
Coils								
Heating	Heat transfer area		1 sqm		-			
Cooling								
External								
Exchanger			a barren					
Heating Cooling	Heat transfer area		1 sqm		2		acket t	
Cooling								2.75
	1							
Jacket top height								
2.75 meter	•							
		2						
	-							
	laurizio Fermeg							

Configuration tab enables the user to specify the approach to heat transfer calculation:

- Shortcut: Duty must be specified. Eventually, any side duties require further specification regarding their stage location
 - Rigorous: it allows to specify the existent heating device (Jacket, Coils, External Exchanger) and its purpose.

Heat Transfer form

Main Flowsheet ×	B1 (BatchSep) - He	at Transfer	Control	Panel × +	
Configuration	Jacket Heating	Side Duty	Process S	ide Heat Transfer Co	oeff.
Heating option		specifie	ed medium	temperature	•
Medium temperatur	e		200	C	•
Heat transfer coeff	icient				
Use overall heat t	transfer coefficient		429.923	kcal/hr-sqm-K	•
Compute using p	rocess side and servi	ice side film h	eat transfe	r coefficients	

specified medium temperature LMTD Mass Boilup rate Mole boilup rate Specified duty specified medium temperature Steam heating

Jacket Heating, Coils Heating, External Exchanger Heating tabs enables the user to specify the working condition of the heating/cooling device:

- LMTD: Logarithmic mean temperature difference
- Mass/mole boilup rate: mass/molar flow of boilup from pot to column
- Specified Duty: Net duty given/removed from the pot depending on the purpose of the device
- Specified medium temperature: temperature of the utility adopted for the heat transfer
- Steam heating: condition (T or P, mass flowrate) of the steam adopted for heating up the pot

Initial Condition form

- Main tab enables the user to specify the initial condition among:
 - Total reflux: the column is charged and heated up using total reflux until steady state is reached. Temperature and pressure must be "calculated"
 - Empty: The column contains Pad Gas only (usually Nitrogen or Air) and the user must specify initial temperature and pressure.
 - Initial charge: The column already contains some reactants and pad gas.

Distillate Receivers
tab enables the
user to specify the
composition of
mixture inside
distillate containers,
if present.

Main	Oistillate Receivers	Side Draw R	a a a la caraci	
Widin	Olistiliate Receivers	Side Draw K	eceivers	
nitial Con	dition			
🔘 Total re	flux 🧕 Empty 🔘	Initial charge		
nitial temp	perature	20	C.	•
nitial pres	sure	1.01325	bar	•
nitial drun	Iliquid volume fraction	0.5		
Pad gas		N2		
Charge				
O Specify	charge time	1	hr	(7
Specify	total charge			
Charge	basis	Mole		1
Total ini	tial charge		kmol	· · · · · · · · · · · · · · · · · · ·

Process Simulation

Composition basis Mole-Frac Receiver I 1	•
Receiver 🖉 1 🔻	-
Total initial charge 0 kmol	•
BENZENE 0	
TOLUENE 0	
N2 0	
Constant Con	

Column Internals form

Sections and Geometry tab enables the user to specify internal details for specific sections of the separation column

- Trayed: the user can define specific geometric parameters for sieve trays
- Packed: the user can define specific parameters for packing internals

Add New Section Start End Internal Tray Spacing/Stage Diameter Details Number Stage Stage Type Packed Height Diameter Details	Norre 1 Distribuye 2 Ent range 3 Status Active Section type (I) Topent (I) Rocked
	1 mi *
1 2 5 Trayed 0.5 meter 1 meter View	
	Pactoral active aven 0.17 National folie area 0.17 Olarbarge coefficient 0.0 Wer result 1 mater +

Operating Steps form

- It allows the user to specify the operating steps inside the equipment. Since batch distillation is a dynamic process, different operations need to be specified.
- Change operationg conditions such as charges, reflux ratio, heating, cooling, switch receiver, ...
- All changes start at the same time
- A duration time (ramp) can be specified to reach and maintain the specified value
- In our demo, we need to charge the vessel first and then start the distillation operation.

💍 Blocks					
E E1	Add Neve Duplicate				
Fieat Transfer	10 M	Description	Active	Details	Delete
a Initial Conditions	Step	Description		and the second se	
 Column Internals 	CHARGE		95	View	×
4 13 INT-1	DISTIL		92	View	×
a 25 Sections					
a 201					
Geoma					
Efficiencies					
Controllers					
a 🛄 Operating Steps					
CHARGE					
CRSTR.					
Final Conditions					
Convergence					
Flock Options					
Variables					
Parameters					
Pesults					
Profile Results					
Time Profiles					
TITLE FTOHTES-					

Charge Operation

We need to charge the pot with the continuous stream "CHARGE" until we reach 100 kmol of solution inside the vessel.

How long do we need to let the operation last?

	Process Variable bein	ng changed	N	ew Value	Units	Ramp Time
Location	ID	Name	Mode/Recei	ver Value		
Continuous feed	CHARGE	Mole flow rate		100	kmol/hr	0 hr
Jacket heating		Medium temperatur	• 1	25	c	0, N
seation	1 hr					
Suration	1 hr Receiver/Stage	Process Variable	Component	Trigger Value	Approach From	
Puration hocess variable			Component	Trigger Value		
Puration hocess variable			Component	Trigger Value		
		Process Variable	Component	Trigger Value		

CHARGE

Distil Operation

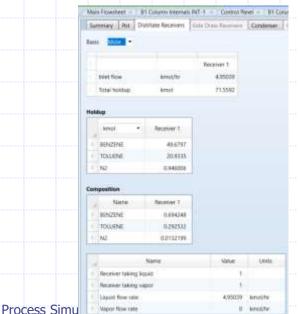
We need to stop charging the vessel!

Since we defined just the coolant conditions, we need to specify the flow of this utility involved in the cooling operation

Now we want to heat up the vessel! What should we modify?
 How can we define the duration of this operation?

Process Variable being changed				New Value		Unit	S	Ramp Time		
Location	ID	Nan	e Mode/R	eceiver Valu	lue					
Continuous feed	CHARG	E Mole flow rate			0 kmc	ol/hr		0 hr	2	
Condenser		Coolant mass fi	ow		30000 kg/ł	hr		0 hr	2	
Jacket heating		Medium tempe	ature		200 C			0 hr	2	
• Criteria	hr	Ŧ								
uration	hr Receiver/Stage	Process Variable	Component	Trigger	Value	Approa				
ouration rocess variable	Receiver/Stage	Process Variable			Value					CHARGE

Final Conditions


- Define what to do with the material in the column at the end of the batch:
 - Leave in place
 - Dump to Distillate receiver
 - Leave in place and recycle

Option	Description
Leave in place	At the end of the batch show the material where it is, but the material will not be recycled to the next batch in case of multiple batches
Leave in place and recycle	When simulating multiple batches and using Total reflux as the initial condition. At the end of the batch show the material where it is, then recycles it to the initial charge of the next batch
Dump to distillate receiver	Useful when simulating multiple batches with recycle and using Empty as the initial condition. Material left in pot, reflux drum, trays/packing is discarded before next batch starts. If any of it must be recycled, specify on the Initial Conditions form how this material will be used in the next batch

Results

Results form: contains the steady state information, not related to column profile or time. This information will be sent to the rest of the flowsheet...

Current time	7.4984	hr	•				
Cumulative pot duty	3.20563e+09	cal					
Operating steps							
		dheed in a loop	13822	1914/01/11/2215 1945	Lucia -	100 A 100	Units
Step	1	Step End Time	Units	Value at Step End	Units	Threshold	Units
CHARGE		- ()/L-	Units	Value at Step End	Units	Intesnoio	Units
		1.00001		Value at Step End	Units	Intesholo	Units

Main Flowsh	eet =	B1 Column Internals	INT-1	Control Pan	et is	Bt Col	umn Intern
Summary	Pot	Distillate Receivers	Side Draw	Receivers	Con	denser	Condemier

4	Name	Value	Units
	Duty	-0.336306	Gcal/hr
ł.	inlet temperature	111.619	c
	Outlet temperature	22.2639	¢
,	Outlet pressure	1.01325	bar
	Outlet vapor fraction	0	
1	Outlet liquid fraction	1	
	Outlet liquid flow rate	29.687	kmol/fir
1	Outlet vapor flow rate	0	kmol/hr

Composition

13	is Mole •			
		BENZENE	TOLUENE	N2
	Iniet composition	0.0490512	0.950949	.0
	Liquid composition	0.0490512	0.950949	0
	Vapor composition			

Sammary Pot Distitute Reservers Suite Draw Recovers Condenses Condenses 2 Reflae

Name	Value	UNITS
Liquid level	0.622185	mater
Turtal mole holdup	22,9608	Arrest.
Tetal mass holdup	2115.29	*0
Upplid volume	2.84506	-com
Mole boilup rate	40.0973	white:
Mass bolup rate	3993.26	kg/hr
Temperature	113,297	C
Duty for heat transfer with environment	0	Grail/W
Net duty	0.318461	Gcal/tw

Banis More *

Nene	Units	Total	Vapor	10000
Total holdup	kmol	22,9608	0.626932	22.3339

Heidup

	1000	Tati	6	Vepo	et	Davi	e
	Name	kmct :		kmot.	•	kmol	
0	RENZENE	0.0	237938	0.00	545794	0.0	223359
	TOWENS		22,917	0	625474		22,3116
	102		U		0		0

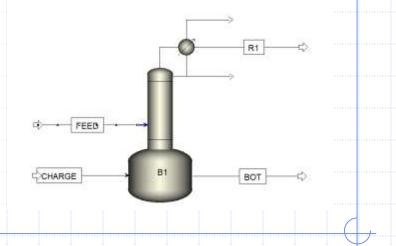
... and so on

Trieste, 19 April, 2021 - slide 19

Profile Resuts

Proc

 Profile Results form: contains information related to column profile for composition, temperature, pressure, holdup, duty, etc...


	Composition H	oldup Reactions	Properties Flooding						Stage	Temperature (C)
	files at end of operat								1	22.2639
5	Mole		12035540	10000000000					2	111.619
	Stage	Temperature	Pressure •	Heat Duty Gcal/hr +	Liquid flow (Mole) kmol/hr	Vapor flow (Mole) kmol/hr			2	111.01.
	leflux drum	22.9318	1.01325	0	24.7519	0		Image: A set of the	3	112.42
	Condenser	22.2639	1.01325	-0.336306	29.687	0			4	112.83
	2	111.619	1.0284	0	35.114	29.687	_	-	4	112.83
	3	112.421	1,03326	D	35.1463	40.0444		Þ	5	113.09
	4	112.834	1,03811	0	35.1651	40.0728				440.00
	5	113.095	1.04296	0	35.178	40.0879		P	6	113.29
P	ot	113.297	1.04781	0.318461	0	40.0973				
			Mole Fractions (Li	quid) Profile		a,moke(BENZENE) (haction)				
								aı	nd so on	
	-		•							
	7	2	3 Ste	4	5	6	Ę			

Time Results

Time Results form: contains information related to dynamic behavior of the column for composition, temperature, pressure, holdup, duty, etc...

Socition	action Pro							taution			0	
Fairt	More							Balls	Noie	•		
	Time	Temperature	Pressure	Heat Duty	Liquid flow	Vapor flow		C. Lawrence	Time	Liquid (Mole)	Vapor (Mole)	
			ber •			wmol/tw +		w		knol -	enoi •	
	0	20	1.01325	0		0		a.,	3.9	30.959	0.396811	
14	825e-00	20	1.01325	9.15389e-07		0.000450896		P	ů.	22,3686	0.598793	
	3.625e-05	11.4000	D.9888251	1.10416e-00		0			6.08727	29.8621	0.600515	
100	7.5e-05	6.97288	0.982161	0.000762825		0		5	6.1	29.7865	0.600766	
	3-00280287	6.45412	1.00054	0.00753275		0.00415046		÷	6.2	292142	0.602736	
100	-0.1	24,2358	1.01325	0.00180345		6.407624			63	28,0400	0.004894	
1	0.2	24,7706	1.01325	0.00073697	0	0.339196			6.4	28.0005	0.6055.79	
	0.3	24 9006	1.01025	0.000182579		0.329575			65	27.5325	0.602568	
171	0.360524	24,9248	1.01525	0.00027289	0	0.125439			1.6	26.9851	0.610483	
10	8.4	24,9495	1.01325	0.000222358	0	0.325631			6.7	25.4437	0.612383	
	85	243724	3.01225	8.960117044		0.324537		· •	6.0	25 9085	0.614265	
	0.0	245845	1.01325	8.36059e-05		0.324049		+	6.0	25.3795	0.616133	
1	8.7	24,9914	101124	523193e-05		0.323807		14 C	1	24,2562	0.617981	
	6.8	24,9956	1.01325	234662e-05	0	8.323675		1	7.1	243389	0.619812	
1	0.8	24,9982	1.01.525	1.32344e-05	0	0.321599		1	7.2	23,8273	0.621626	
	+	24,9998	1.01325	1,29162e-00	0	0.129553			2.2	23.2215	0.623422	
6.11	1,00001	24,9999	1.01325	8-45888e-07	0	0.329591		1	7.4	22,6206	0.6252	
	1.1	61.6503	1.01336	1.10995		1.60634		1	7.4984	22,3339	0.628812	
	12	68.1791	1.01801	0.91464		16.4025					Section State	
1- 0.8- 0.6-					Pot Mole Fractio	ons (Liquid)			mole(8ENZE) mole(7DUJE)			and so
100	and and an and an	\sim			Tax Tex						• • •	anu su
0		., .,	2			4	1 1	6				
					Time	e (bu)				intal Time: 7.4064 te		

Hands-on: batch simulation of benzene - toluene

