Intrinsic dimension and density profile of neural representations

Diego Doimo and Aldo Glielmo

International School for Advanced Studies (SISSA), Trieste

UniTS, 27 April 2021

What can we do with deep learning models?

Image classification

Modeling physical systems

 σ

050

080

 250 000

00 $D28$ \mathcal{O}

 004

Semantic segmentation

Translation, test generation, sentiment analysis, ...

Solving constrained optimization

Generative models

What do we learn with deep learning models?

Image classification

What do we learn with deep learning models?

Image classification

Convolutional neural networks

What do we learn with deep learning models?

Image classification

Convolutional neural networks

The importance of representations in neural networks

Representations arise automatically

Need to understand their meaning

• To make NN more interpretable

Q1: When / How do interpretable representations arise ?

- To transfer efficiently the learned concepts Q2: Which information is encoded in a given representation?
- To improve the architecture design What is the depth required to achieve a given performance?

1) **Intrinsic dimension** [Ansuini et al., NeurIPS 2019]

2) **Probability density** [Doimo et al., NeurIPS 2020]

Colab:

https://colab.research.google.com/drive/1fTxE0GWb5BobZhL3j6G6Ra5hBj__c9X-#scrollTo=VrIL_J3FLQab

Input channels

Intrinsic dimension of a data representation:

minimum number of coordinates to describe the data without significant information loss

Linear case: Principal Component Analysis (PCA)

Intrinsic dimension of a data representation:

minimum number of coordinates to describe the data without significant information loss

Linear case: Principal Component Analysis (PCA)

The general (non linear) case: TwoNN (Facco et al, 2017)

2D embedding space

The general (non linear) case: TwoNN (Facco et al, 2017)

2D embedding space

1) For each data point *i* compute the distance to its first and second neighbors (r_{i1} and r_{i2})

The general (non linear) case: TwoNN (Facco et al, 2017)

2D embedding space

1) For each data point *i* compute the distance to its first and second neighbors (r_i ₁ and r_i ₂)

2) For each *i* compute $\mu_i =$

 $\overline{r_{i,2}}$ $r_{i,1}$

The general (non linear) case: TwoNN (Facco et al, 2017)

2D embedding space

1) For each data point *i* compute the distance to its first and second neighbors (r_i ₁ and r_i ₂)

2) For each *i* compute
$$
\mu_i
$$
 =

$$
u_i = \frac{r_{i,2}}{r_{i,1}}
$$

The probability distribution of μ is

$$
p(\mu|d) = \frac{d}{\mu^{d+1}}
$$

where *d* is the ID.

The general (non linear) case: TwoNN (Facco et al, 2017)

2D embedding space

1) For each data point *i* compute the distance to its first and second neighbors (r_i ₁ and r_i ₂)

2) For each *i* compute

$$
\mu_i = \frac{r_{i,2}}{r_{i,1}}
$$

The probability distribution of μ is

$$
p(\mu|d) = \frac{d}{\mu^{d+1}}
$$

where *d* is the ID.

 3) Infer *d* e.g via maximum likelihood $L(\mu_i|d) = \log \prod$ *N* $p(\mu_i|d)$ $\partial_d L(\mu_i|d) = 0 \rightarrow \hat{d} = \frac{N}{\sum_i p_i}$ \sum $\log \mu_i$

Enlarge the neighborhood range to find the actual 'soft directions' of the data

2D embedding space

1) For each data point *i* compute the distance to its **nth** and **2*nth** neighbors (*ri,ⁿ* and *ri,2n*)

When the data are noisy TwoNN can overestimate the ID due to its **local** nature

1) For each data point *i* compute the distance to its **nth** and **2*nth** neighbors (*ri,ⁿ* and *ri,2n*)

2) For each *i* compute

$$
\mu_{n,i} = \frac{r_{i,2n}}{r_{i,n}}
$$

When the data are noisy TwoNN can overestimate the ID due to its **local** nature

1) For each data point *i* compute the distance to its **nth** and **2*nth** neighbors (*ri,ⁿ* and *ri,2n*)

2) For each *i* compute

$$
\mu_{n,i} = \frac{r_{i,2n}}{r_{i,n}}
$$

The probability distribution of $\mu_{n}^{}$ is $p(\mu_n|d)$ ∝ $d(\mu^d-1)^{n-1}$ μ (2 *n*−1) *d*+1

where *d* is the ID.

When the data are noisy TwoNN can overestimate the ID due to its **local** nature

1) For each data point *i* compute the distance to its **nth** and **2*nth** neighbors (*ri,ⁿ* and *ri,2n*)

2) For each *i* compute

$$
\mu_{n,i} = \frac{r_{i,2n}}{r_{i,n}}
$$

The probability distribution of $\mu_{n}^{}$ is $p(\mu_n|d)$ ∝ $d(\mu^d-1)^{n-1}$ μ (2 *n*−1) *d*+1

where *d* is the ID.

3) Infer *d* via maximum likelihood

Expansion and compression of the ID

The ID is always much smaller than the embedding dimension

Expansion and compression of the ID

.

 -1.83

The ID is always much smaller than the embedding dimension

Expansion and compression of the ID

. -1.83 -2.02 **.** -2.03 -2.07 0.01 **.** 6.00 **.** -1.77 er 1 -1.91 **= .** ີ
ລົ -1.88 L -1.88 8.17 **.** 0.00 -1.56 **.** -1.70 **.** $\vert_{1.70}$ **.** -1.75 **.** X_1 ∈IR $^{800\,000}$

The ID is always much smaller than the embedding dimension

ID evolution across layer has a hunchback shape

Discarding useless features

Discarding useless features

In a trained network, the initial ID expansion reflects the pruning of low-level visual features that carry no information about the correct labeling