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What can we do with deep learning models?

Semantic segmentation

Translation, test generation, 
sentiment analysis, ...

Solving 
constrained 
optimization

Modeling physical systems

Generative models

Image classification



Image classification

What do we learn with deep learning models?
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Representations arise automatically

● To  make NN more interpretable

 Q1:  When / How do interpretable representations arise ?

● To improve the architecture design 
What is the depth required to achieve a given performance?

● To transfer efficiently the learned concepts   
Q2:  Which information is encoded in a given representation?

Need to understand their meaning

The importance of representations in neural networks
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Pool2

Output

2) Probability density  [Doimo et al., NeurIPS 2020]

1) Intrinsic dimension  [Ansuini et al., NeurIPS 2019] 

Colab:
https://colab.research.google.com/drive/1fTxE0GWb5BobZhL3j6G6Ra5hBj__c9X-#scrollTo=VrIL_J3FLQab
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What is a representation in a convolutional neural network?



Input channels 

What is a representation in a convolutional neural network?



Input channels First layer weights

What is a representation in a convolutional neural network?



Con
vo

lut
ion

 1
 

Input channels First layer weights First layer channels / First layer representation 

What is a representation in a convolutional neural network?



Con
vo

lut
ion

 1
 

Input channels First layer weights First layer channels / First layer representation 

What is a representation in a convolutional neural network?



Con
vo

lut
ion

 1
 

Input channels First layer weights First layer channels / First layer representation 

What is a representation in a convolutional neural network?



Con
vo

lut
ion

 1
 

Input channels First layer weights First layer channels / First layer representation 

What is a representation in a convolutional neural network?



Con
vo

lut
ion

 1
 

Relu 1 

Input channels First layer weights First layer channels / First layer representation 

What is a representation in a convolutional neural network?



Con
vo

lut
ion

 1
 

Relu 1 Maxpool 

Input channels First layer weights First layer channels / First layer representation 

What is a representation in a convolutional neural network?



Con
vo

lut
ion

 1
 

Relu 1 Maxpool 

Input channels First layer weights First layer channels / First layer representation 

What is a representation in a convolutional neural network?

First 
convolutional 
layer
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The embedding dimension of the representation is huge.
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What is a representation in a convolutional neural network?

The embedding dimension of the representation is huge.

a) Any density-based analysis seems hopeless when D > 100 
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What is a representation in a convolutional neural network?

The embedding dimension of the representation is huge.

a) Any density-based analysis seems hopeless when D > 100 

b) Neural networks take advantage of the low dimensional  structure of the data. 
This is not true for other classification approaches (kernels,… )
Chizat & Bach, Implicit bias of gradient descent… Conference on Learning Theory (2020)

Ghorbani et al, When do neural networks outperform kernel methods? NeurIPS (2020) 



Intrinsic dimension of a data representation: 
minimum number of coordinates to describe the data without significant information loss

Linear case: Principal Component Analysis (PCA)
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Intrinsic dimension of a data representation: 
minimum number of coordinates to describe the data without significant information loss

Linear case: Principal Component Analysis (PCA)

Intrinsic dimension estimation

2D embedding space

1D linear subspace
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1D manifold

ri,2

2D embedding space

ri,1 point i
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The general (non linear) case: TwoNN (Facco et al, 2017)
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2) For each i compute μi=
ri , 2
ri , 1

p(μ∣d )= d

μ
d+1

The general (non linear) case: TwoNN (Facco et al, 2017)

μ

  3) Infer d e.g via maximum likelihood

L(μ i∣d )=log∏
N

p(μi∣d)

∂d L(μi∣d )=0→d̂=
N

∑ logμi
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2D embedding space

Intrinsic dimension estimation of a noisy manifold

Activation x1

A
ct

iv
at

io
n 

x 1

When the data are noisy TwoNN can overestimate the ID due to its local nature

On this scale the 
manifold looks 2D!
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2D embedding space
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When the data are noisy TwoNN can overestimate the ID due to its local nature

On this scale the 
manifold looks 2D!

On th
is 

it l
ooks

 1D

Enlarge the neighborhood range to find the actual ‘soft directions’ of the data
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Expansion and compression of the ID 

The ID is always much smaller than the embedding dimension

ID evolution across layer has a hunchback shape
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Discarding useless features 

MNIST (original)



Discarding useless features 

In a trained network, the initial ID expansion reflects the pruning of low-level visual features that 
carry no information about the correct labeling

MNIST* (luminance gradient)
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