Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2020

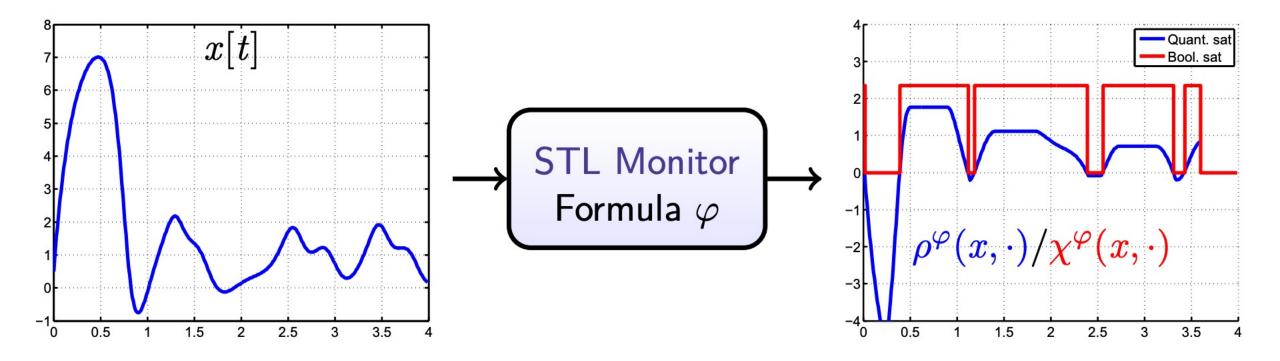
Lecture 14 (second part): STL applications: intro to falsification

[Many Slides due to J. Deshmukh, S. Silvetti]

Terminology

- **Syntax**: A set of syntactic rules that allow us to construct formulas from specific ground terms
- Semantics: A set of rules that assign meanings to well-formed formulas obtained by using above syntactic rules
- Model-checking/Verification: $M \models \phi \iff \forall \mathbf{x} \in trace(M) \ s(\varphi, \mathbf{x}, 0) = 1$
- Monitoring: computing s for a single trace $\mathbf{x} \in trace(M)$
- Statistical Model Checking: "doing statistics" on s(φ, x, 0) for a finitesubset of trace(M)

STL Monitor



An STL monitor is a transducer that transforms x into Boolean or a quantitative signal

The many uses of STL

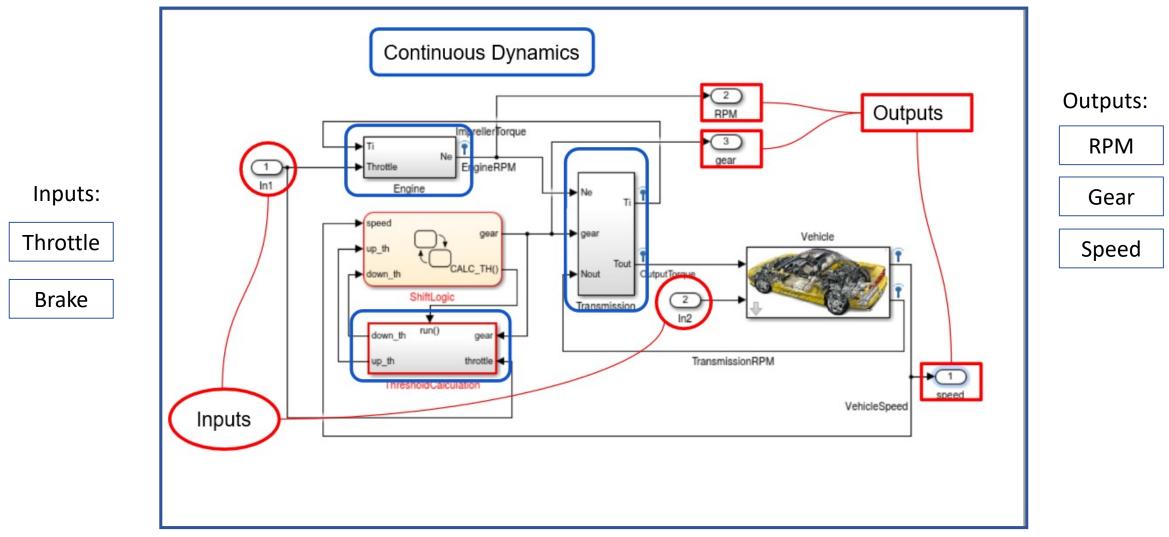
- Requirement-based testing for closed-loop control models
- Falsification Analysis
- Parameter Synthesis
- Mining Specifications/Requirements from Models
- Online Monitoring

. . .

Closed-loop Models

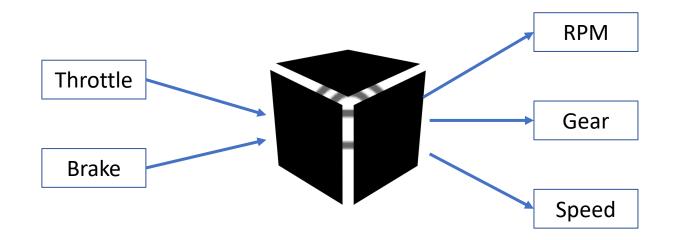
- Closed-loop Models contain:
 - Dynamics describing Physical Processes (Plant)
 - Code describing Embedded Control, Sensing, Actuation
 - Models of connection between plant and controller (hard-wired vs. wired network vs. wireless communication)

Example



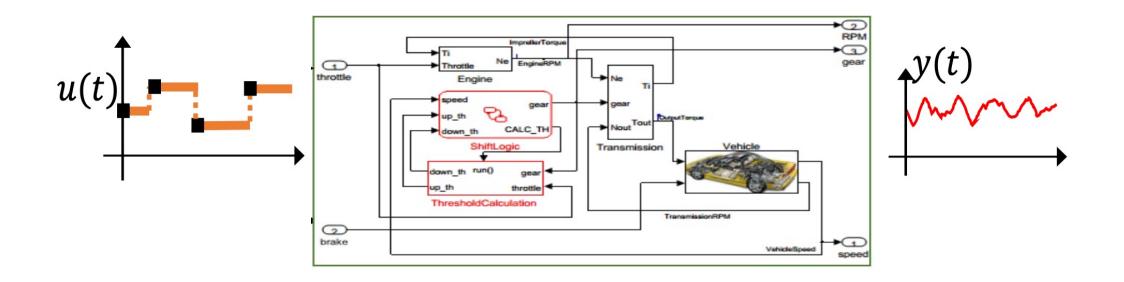
Simulink model of a Car Automatic Gear Transmission Systems

Black Box Assumption



Black Box Assumption

For simplicity, consider the composed plant model, controller and communication to be a model M that is excited by an input signal $\mathbf{u}(t)$ and produces some output signal $\mathbf{y}(t)$



Verification vs. Testing

- For simplicity, **u** is a function from \mathbb{T} to \mathbb{R}^m ; let the set of all possible functions representing input signals be U
- Verification Problem:

Prove the following: $\forall \mathbf{u} \in U: (\mathbf{y} = M(\mathbf{u})) \vDash \varphi(\mathbf{u}, \mathbf{y})$

Falsification/Testing Problem:

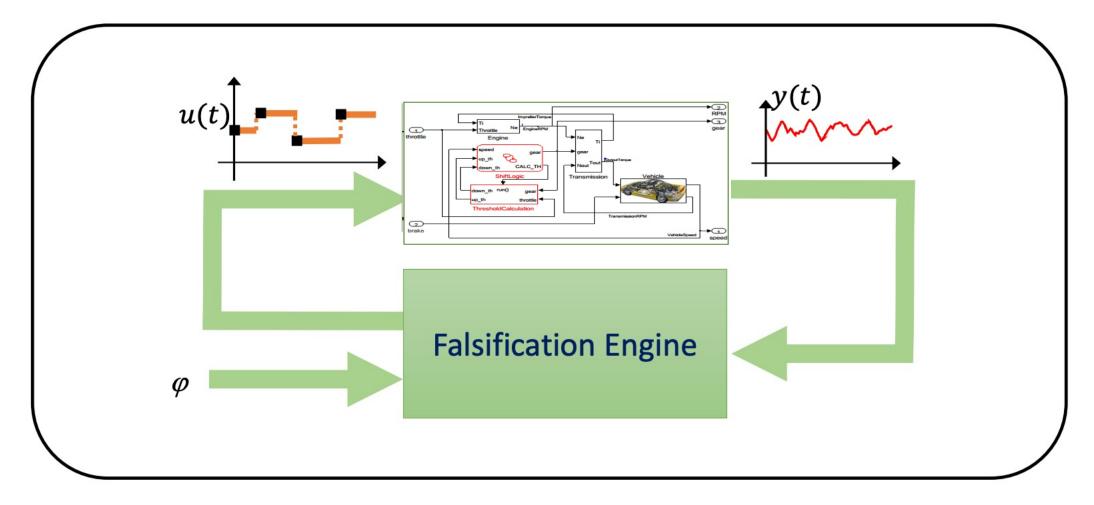
Find a witness to the query: $\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \not\models \varphi(\mathbf{u}, \mathbf{y})$

These formulations are quite general, as we can include the following "model uncertainties" as input signals: Initial states, tunable parameters in both plant and controller, time-varying parameter values, noise, etc.,

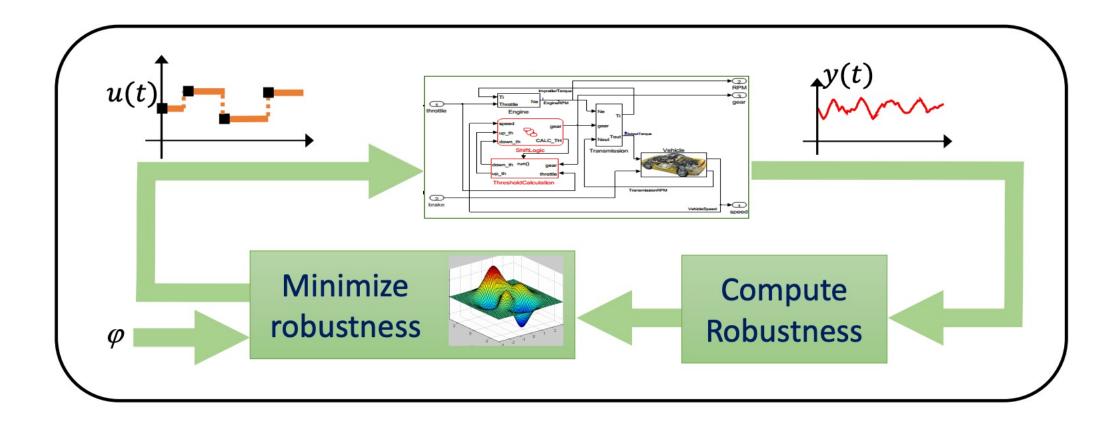
Challenges with real-world systems

- If plant model, software and communication is simple (e.g. linear models), then we can do formal analysis
- Most real-world examples have very complex plants, controllers and communication!
- Verification problem, in the most general case is *undecidable* it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer to the problem

Falsification/Testing



Falsification by optimization



Use robustness as a cost function to minimize with Black-box/Global Optimizers

Falsification/Testing

- Falsification or testing attempts to find one or more **u** signals such that $\neg \varphi(\mathbf{u}, M(\mathbf{u}))$ is true.
- In verification, the set \mathbb{T} (the time domain) could be unbounded, in falsification or testing, the time domain is necessarily bounded, i.e. $\mathbb{T} \subseteq [0, T]$, where T is some finite numeric constant
- In verification the co-domain of \mathbf{u} , could be an unbounded subset of \mathbb{R}^m , in falsification, we typically consider some compact subset of \mathbb{R}^m
- For the i^{th} input signal component, let D_i denote its compact co-domain. Then the input signal $\mathbf{u} : \mathbb{T} \rightarrow D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0,T]$ In simple words: input signals range over bounded intervals and over a bounded time horizon

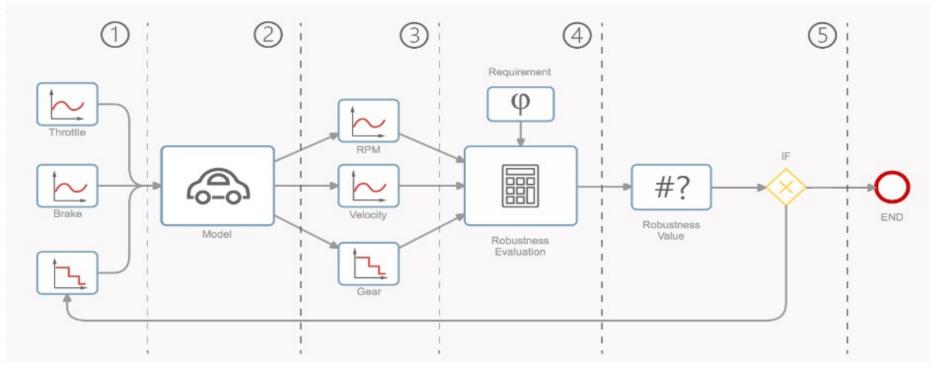
Falsification re-framed

Given:

- Set of all such input signals : U
- ▶ Input signal $\mathbf{u} : \mathbb{T} \to D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0, T]$
- Model M that maps u to some signal y with the same domain as u, and codomain some subset of Rⁿ
- Property φ that can be evaluated to true/false over given **u** and **y**

Check: $\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \vDash \neg \varphi(\mathbf{u}, \mathbf{y})$

Falsification CPS



<u>Goal</u>:

Find the inputs (1) which falsify the requirements (4)

Problems:

- Falsify with a low number of simulations
- Functional Input Space

Active Learning Adaptive Parameterization