% Differential drive robot: forward kinematics % ========================================================================= % In this exercise we can see how a simple differential drive robot behaves % based on the speed of its wheels. clc % cla clear % Parameters % ------------------------------------------------------------------------- v_R = -1.0; v_L = 1.0; wr = 0.1; % Wheel radius d = 0.3; % Initial conditions % ------------------------------------------------------------------------- % < x , y > defines the position of the robot in the global inertial frame % of reference < X_I , Y_I >. % The orientation of the robot is defined by the angle theta with respect % to the x axis of the global inertial frame of reference. x = 0; y = 0; theta = pi/3; % In this case the robot is initially placed at an angle of pi/3. % Setup time integration % ------------------------------------------------------------------------- % Here are defined the parameters which concern the time-integrated % simulation, namely the initial time t, the timestep dt and the end time % t_end. t = 0; dt = 0.05; t_end = 4; % Create figure % ------------------------------------------------------------------------- hold on xlabel('$X_I [m]$','Interpreter','latex') ylabel('$Y_I [m]$','Interpreter','latex') set(gcf,'WindowStyle','docked') % Simulate % ------------------------------------------------------------------------- ii = 0; while t <= t_end % v_L = v_L + 0.05 % Forward kinematics model d_xi_R = [v_R/2 + v_L/2 ; ... 0 ; ... v_R/(d) - v_L/(d) ]; R_inv = [cos(theta) -sin(theta) 0 ; ... sin(theta) cos(theta) 0 ; ... 0 0 1 ]; d_xi_I = R_inv * d_xi_R; % Integration of speed and position x = x + d_xi_I(1)*dt; y = y + d_xi_I(2)*dt; theta = theta + d_xi_I(3)*dt; ii = ii + 1; xi_array(ii,:) = [x, y, theta]'; % Coordinates of wheels (display purposes only) x1l = x - d/2 * cos(theta+pi/2) + wr * cos(theta); y1l = y - d/2 * sin(theta+pi/2) + wr * sin(theta); x2l = x - d/2 * cos(theta+pi/2) - wr * cos(theta); y2l = y - d/2 * sin(theta+pi/2) - wr * sin(theta); x1r = x + d/2 * cos(theta+pi/2) + wr * cos(theta); y1r = y + d/2 * sin(theta+pi/2) + wr * sin(theta); x2r = x + d/2 * cos(theta+pi/2) - wr * cos(theta); y2r = y + d/2 * sin(theta+pi/2) - wr * sin(theta); % Plot clf plot([x x+0.2*cos(theta)],[y y+0.2*sin(theta)],'b') hold on plot(x,y,'bo') plot([x1l x2l],[y1l y2l], 'lineWidth', 2,'color','k'); % Right wheel plot([x1r x2r],[y1r y2r], 'lineWidth', 2,'color','r'); % Left wheel % xlim([-2.5 2.5]) % ylim([-0.5 4.0]) xlim([-1 1]); ylim([-0.5 1]); daspect([1 1 1]) drawnow pause(.01) % Increment time t = t + dt; end % figure plot(xi_array(:,1),xi_array(:,2));