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Given:
u Set of all such input signals : 𝑈
u Input signal 𝐮 :𝕋 → 𝐷!×⋯×𝐷" , where 𝕋 ⊆ 0, 𝑇 , 𝐷# ⊂ ℝ compact set
u Model 𝑀 s.t. 𝑀 𝐮 = 𝐲, 𝐲: 𝕋 → ℝ$
𝑀 maps 𝐮 to some signal 𝐲 with the same domain as 𝐮, and co-domain 
some subset of ℝ$

u Property 𝜑 that can be evaluated to true/false over given 𝐮 and 𝐲

Check: ∃𝐮 ∈ 𝑈 ∶ 𝐲 = 𝑀 𝐮 ⊨ ¬𝜑 𝐮, 𝐲

Falsification re-framed
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u Properties/Specifications/Requirements are rarely monolithic formulas 
𝜑(𝐮, 𝐲)

u Typically specified as a pair: a pre-condition 𝜑% on the inputs, and a post-
condition 𝜑& on the outputs

u Verification problem then stated as:
Prove that: ∀𝐮 ∈ 𝑈: 𝐮 ⊨ 𝜑% ∧ 𝐲 = 𝑀 𝐮 ⇒ 𝐲 ⊨ 𝜑&

u Testing problem stated as:
Find 𝑢 such that 𝐮 ⊨ 𝜑% ∧ 𝐲 = 𝑀 𝐮 ∧ 𝐲 ⊭ 𝜑&

Input/Output Properties for Closed-loop Models
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u Common practice in control theory to excite closed-loop models with input 
signals of certain special shapes

u Motivation comes from theory of linear systems, where a step-response or 
impulse-response are enough to characterize all behaviors of the system

u Such special shapes do not provide comprehensive information for 
nonlinear closed-loop systems, yet, it is still common to excite these systems 
with a few common patterns

u Frequently, input signal patterns come from engineering insights or 
application-specific domain expertise

Input Properties/Pre-conditions
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Common input patterns used for testing

5

𝑢

𝑡

𝑢

𝑡

𝑢

𝑡

Step

Ramp

Impulse

𝑢

𝑡

Pulse Train

𝑢

𝑡

Multiple Steps

𝑢

𝑡

Sinusoid



u Each time-point in a signal is an independent dimension, i.e. the signal can 
change arbitrarily at each time-point in the signal

u Number of independent domains is infinite (e.g. consider a signal defined 
over rational time-points)

u Typical testing approach is to find a test-suite: This is a finite number of test 
input signals (satisfying 𝜑%) and then obtain output behaviors using these 
signals as test inputs. 

u If each corresponding output signal satisfies the output property 𝜑', then 
testing concludes, indicating that the model is correct for the given test-suite 
(i.e. no output in the test-suite satisfies 𝜑').

Testing in practice
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u Find a signal generator for the property 𝜑%
�Function that uses random-ness to generate an input signal that satisfies 
𝜑% (hopefully, an input signal different from previously generated ones!)

u Signal generation usually relies on defining a finite parameterization for the 
input signal
�For the chosen class of signals, find parameters that define the shape
�Define acceptable ranges for the parameters
�Define a generation function that takes the parameter values as inputs and 

generates an input signal

Signal Generation

7



Finite Parameterization
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N Control points

N variable



Finite parameterization using control points
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = $
𝑝! if t! ≤ 𝑡 < 𝑡"
𝑝" if t" ≤ 𝑡 < 𝑡#
𝑝# if t# ≤ 𝑡 < 𝑡$ Control points

Acceptable ranges on 
parameters (control points)
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𝑝#

𝑡" 𝑡# 𝑡$𝑡!

𝑢

We can view this as values of 𝑢
are picked for (fixed) time 
points (determined a priori), 
and then 𝑢(𝑡) is generated 
using constant interpolation
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Finite parameterization using control points
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Finite Parameterization of 𝑢 𝑡 :
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Finite parameterization using linear interpolation
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 =

𝑝! + (𝑡 − 𝑡!) ⋅
𝑝" − 𝑝!
𝑡" − 𝑡!

if t! ≤ 𝑡 < 𝑡"

𝑝" + 𝑡 − 𝑡" ⋅
𝑝# − 𝑝"
𝑡# − 𝑡"

if t" ≤ 𝑡 < 𝑡#

𝑝# + 𝑡 − 𝑡# ⋅
𝑝$ − 𝑝#
𝑡$ − 𝑡#

if t# ≤ 𝑡 < 𝑡$

We can view this as values of 𝑢 are 
picked for (fixed) time points (determined 
a priori), and then 𝑢(𝑡) is generated 
using linear interpolation

𝑃 = 𝑝!, 𝑝", 𝑝#, 𝑝$

𝑅𝑎𝑛𝑔𝑒 𝑃 ≔
ℓ, ℎ × ℓ, ℎ × ℓ, ℎ ×[ℓ, ℎ]

Control points
Acceptable ranges 
on parameters 
(control points)

𝑡

𝑝!

𝑝"

𝑝#

𝑡" 𝑡# 𝑡$𝑡!

𝑢

𝑝$
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Finite parameterization using interpolation
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λ = [20, 40, 10, 40, 10] t = [0, 5, 10, 15, 20]



Finite parameterization variable control point times
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Finite Parameterization of 𝑢 𝑡 :

𝑢 𝑡 = $
𝑝! if t! ≤ 𝑡 < 𝑡! + 𝑑𝑡!
𝑝" if t" ≤ 𝑡 < 𝑡" + 𝑑𝑡"
𝑝# if t# ≤ 𝑡 < 𝑇 Control points

Acceptable 
ranges on 
parameter 
values
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𝑢

We can view this as values of 𝑢
and time increments in 𝑢 are 
both picked, and then 𝑢(𝑡) is 
generated using constant 
interpolation
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ℓ, ℎ × ℓ, ℎ × ℓ, ℎ ×
𝜏ℓ, 𝜏& ×[𝜏ℓ, 𝜏&]

Acceptable 
ranges on time 
increments



Finite parameterization variable control point times
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both picked, and then 𝑢(𝑡) is 
generated using constant 
interpolation

ℎ

ℓ

𝑑𝑡! 𝑑𝑡"
𝑃 = 𝑝!, 𝑝", 𝑝#, 𝑑𝑡!, 𝑑𝑡"

𝑅𝑎𝑛𝑔𝑒 𝑃 ≔
ℓ, ℎ × ℓ, ℎ × ℓ, ℎ ×
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ranges on time 
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u Signal Generation controlled by the testing algorithm
� Parameter space could be sampled all at once
� Parameter space could be sampled in a sequential fashion, e.g. using a method such as Markov Chain 

Monte Carlo
� Sampling scheme could be application-specific: uniform random, quasi-random (more evenly spread 

out), truncated normal, grid-based sampling (points from a fixed grid), etc.

Signal Generator

15

Generate 
Signal

Sample 
Parameter 

Space
𝑅𝑎𝑛𝑔𝑒 𝑃 = ℓ% , ℎ% |'|

𝑡

𝑢



Black-box Optimization
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𝑀
Cost function 
𝐶(𝑢,𝑀(𝑢))

Black-box 
Optimizer

u Given:
� Function 𝑀:𝑈 → 𝑌 with unknown 

symbolic representation
� Ability to query the value of 𝑀 at any 

given u; query will return some 𝑦
� Cost function 𝐶: 𝑋×𝑌 → ℝ

u Objective of black-box optimizer
� Let  𝑥∗ = min

"∈$
𝐶(𝑥, 𝑓 𝑥 )

� Find ;𝑥 such that ‖;𝑥 − 𝑥∗‖ is small
u Let >𝑥% be the best answer found by 

optimizer in its 𝑖&' iteration

u Ideally, lim
%→)

>𝑥% − 𝑥∗ = 0



Falsification using Optimization
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𝜌 𝑦, 𝜑 < 0



u Given: a finite parameterization for input signals, a model that can be 
simulated and an STL property

u While the number of allowed iterations is not exhausted do:
�pick values for the signal parameters
�generate an input signal
�run simulation with generated input signal to get output signal
�compute robustness value of given property w.r.t. the input/output signals
� if robustness value is negative, HALT
�pick a new set of values for the signal parameters based on certain 

heuristics

Step-by-step of how falsification works
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u Pick random sampling as a (not very good) strategy!
u Basic method: locally approximate the gradient of the function 𝜌 locally, and chose the 

direction of steepest descent (greedy heuristic to take you quickly close to a local 
optimum)

u Challenge 1: cost surface may not be convex, thus you could have many local optima
u Challenge 2: cost surface may be highly nonlinear and even discontinuous, using just 

gradient-based methods may not work well
u Heuristics rely on:

� combining gradient-based methods with perturbing the search strategy (e.g. simulated 
annealing, stochastic local search with random restarts)

� evolutionary strategies: Covariance Matrix Adaptation Evolution Strategy (CMA-ES), 
genetic algorithms etc.

� probabilistic techniques: Ant Colony Optimization, Cross-Entropy optimization, Bayesian
optimization

Picking new parameter values to explore

19



Model
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Speed

RPM

Inputs:

Outputs:
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Black Box Assumption

Throttle

Brake

Gear

Speed

RPM

• Less information
• A more general Approach (interesting for industries)



Falsification of CPS

Goal:  
Find the inputs (1) which falsify the requirements (4)

Problems:
• Falsify with a low number of simulations                     Active Learning
• Functional Input Space                                                    Adaptive Parameterization



Gaussian Processes
Definition

where 𝑚 = (𝑚(𝑡"),𝑚(𝑡#), . . . , 𝑚(𝑡()) is the vector mean

𝐾 ∈ ℝ(×( is the covariance matrix, such that 𝐾%* = 𝑘(𝑓(𝑡%), 𝑓(𝑡*))

Prediction

𝑓 ∼ 𝐺𝑃(𝑚, 𝑘) ⇐⇒ (𝑓(𝑡1), 𝑓(𝑡2), … , 𝑓(𝑡𝑛)) ∼ 𝑁(𝑚,𝐾)



Gaussian Processes

GP

Training set

• Mean
• Variance
• .



Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding 𝒖 ∈ 𝐵

B= {𝒖 ∈ U | 𝜌 𝜙, 𝒖, 0 < 0} ⊆ 𝑈

Ø Training Set:  K= {𝒖L, }𝜌(𝜙, 𝒖M, 0)) MNO (the partial knowledge after n iterations)

Ø Gaussian Process: 𝜌P 𝒖 ~ 𝐺𝑃(𝑚P 𝒖 , 𝜎P(𝒖)) (the partial model)

𝑃 𝜌P 𝒖 < 0 = 𝐶𝐷𝐹(
0 −𝑚P(𝒖)
𝜎P(𝒖)

)

Idea: implementing an iterative sample strategy in order to increase the probability to 
sample a point in B, as the number of iterations increases. 



30



Domain Estimation Algorithm (DEA)

𝑢*

𝑢+

B= {𝒖 ∈ U | 𝜌 𝑀 𝒖 , 𝜙 }< 0



Domain Estimation Algorithm (DEA)

Training Set

𝑢*

𝑢+



Domain Estimation Algorithm (DEA)

Sample a new point 
accordingly to:

𝑢*

𝑢+

𝑃 𝜌+ 𝒖 < 0 = 𝐶𝐷𝐹(
0 − 𝑚+(𝒖)
𝜎+(𝒖)

)



Domain Estimation Algorithm (DEA)
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Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding 𝒖 ∈ 𝐵

B = {𝒖 ∈ U | 𝜌 𝜙, 𝒖, 0 }< 0 ⊆ 𝑈

We call B the counterexample set and its elements counterexamples

If B is empty then 𝜌 𝜙, 𝒖, 0 ≥ 0

Solving the domain estimation problem could be extremely difficult because of the infinite 
dimensionality of the input space, which is a space of functions



Finite Parameterization
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Domain Estimation Problem

Finding the trajectories  which falsify the requirements, finding �̂� ∈ >𝐵

>𝐵 = { �̂� ∈ 𝑈O+× · · · × 𝑈O , | 𝜌 𝜙, 𝑃𝒏 �̂� , 0 ) < 0 }

Where 𝑐] = {(𝑡^], 𝑢O]] ), . . . , (𝑡O
]
], 𝑢]O )} and 𝑃𝒏 = (𝑃O+ , … , 𝑃O _ )

Piecewise linear or polynomial functions are known to be dense in the space of 
continuous functions!

Then,  B has at least one element ⇐⇒ ∃𝑛 ∈ ω|_| , >𝐵 has at least one element. 



45



Adaptive Parameterization
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N Control points

2N variable



Adaptive Parameterization



Tests Case & Results
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Model

Throttle

Brake

Gear

Speed

RPM

Inputs:

Outputs:

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html

https://it.mathworks.com/help/simulink/slref/modeling-an-automatic-transmission-controller.html
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Falsification:

u Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. IFM 
2017. LNCS, vol 10510. Springer, Cham.

u Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo : 
https://sites.google.com/a/asu.edu/s-taliro/references

u Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems 
through Bayesian Optimization. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 170 (September 2017)

u Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In 
International Symposium on Automated Technology for Verification and Analysis, pp. 500-517. 
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