


If b → 0 (a crack), σmax tends to infinity at the crack tip, meaning that if one wants to

limit the stress value to a threshold, as when designing to remain in the elastic

regime, σ∞ needs to tend to 0. However Griffith and Irwin have shown that a sample

with a crack can still sustain a loading:

Picture I.50: Ellipsoidal void in an
infinite plate.
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Why do we need fracture mechanics?Why do we need fracture mechanics?

You might be wondering why is it necessary to develop a whole theory taking into
account a microscopic defect (the crack) to describe the behavior at the macroscopic
scale. There are two reasons for this:

It is impossible to produce a crack free structure and we have seen that
accounting for the existing defects is required to predict the life of the
structure.
If we apply classical continuum mechanics on a crack problem we are facing
problems of singularities as detailed here below.

Let us analyze the case of a hole in an infinite plate submitted to uniform
traction. Ingis modeled this case by solving the case of an ellipsoidal void (1913),
see Picture I.50.

The case of a crack can be recovered by taking . In that case  tends to
infinity at the crack tip, meaning that if one wants to limit the stress value to a
threshold, as when designing to remain in the elastic regime,  needs to tend to 0.
However Griffith and Irwin have shown that a sample with a crack can still sustain a
loading:

In order to solve the contradiction between the stress analysis and the experimental observations, fracture mechanics was
developed to answer to the following questions:

For a sample with an existing crack, knowing the crack size, what is the maximum loading leading to crack
propagation?
For a sample with an existing crack submitted to a cyclic loading, if the stress remains lower than the fracture stress,
what is the life of the structure?

In this overview we will first consider the case of linear elastic materials. Note that this assumption will not always hold, but
we will discuss this in details later on.

Linear Elastic Fracture Mechanics (LEFM)Linear Elastic Fracture Mechanics (LEFM)

Under this assumption, the laws of mechanics for elastic linear materials can directly be used. In order to solve the problem of
a sample with a crack, Irwin has studied three different loading modes. There are two modes loading the crack in its plane, the
Mode I also called opening mode as it tends to open the crack lips, see Picture I.51, and the Mode II also called sliding mode as it
tends to make the two crack lips slide on each other, see Picture I.52. The Mode III, also called shearing mode, loads the crack
out of its plane, see Picture I.53.

Asymptotic solutionAsymptotic solution

= (a, 0) = (1 + ) .σmax σyy σ∞
2a
b (1)

b → 0 σmax

σ∞

÷ .σTS a‾√ E (2 + )γs Wpl‾ ‾‾‾‾‾‾‾‾‾‾‾‾√ (2)

Picture I.21: Behaviors of brittle and
ductile materials.

Picture I.22: Tensile test specimen of
a nodular graphite cast iron. Typical
brittle fracture appearance. Picture

by Sigmund licensed under the
Creative Commons Attribution-Share

Alike 3.0 Unported license.

Picture I.23: Intra-granular failure
mode in brittle materials.

Picture I.24: Typical ductile fracture
appearance. Picture by BradleyGrillo

Picture I.25: Failure mode by voids
coalescence in ductile materials.

Fracture Mechanics Online ClassFracture Mechanics Online Class

OverviewOverview > Brittle and Ductile Materials > Brittle and Ductile Materials

In the previous section we have seen the effect of cracks on cleavage of brittle
materials. However other modes of failure exist.

Macroscopic behaviorMacroscopic behavior

By definition samples made of a brittle material do not exhibit plastic deformations prior to their macroscopic failure (red
curve on Picture I.21), contrarily to samples made of ductile materials (blue curve on Picture I.21). The shape of the fracture
surface is also different.

Brittle materialsBrittle materials

For a brittle fracture the fractured surface
remains planar on average as shown in
Picture I.22. When magnifying the fracture
surface it appears that the failure occurred
along the lattice planes by cleavage, i.e. by
separation of crystallographic planes see
Picture I.23. The cleavage happens within the
grains in the case od intra-granular failure
Note that under some circumstances like
during creep, corrosion, presence of trapped
H2.... the failure mode can become inter-

granular at it will be discussed in another chapter.

For brittle materials Griffith law is valid:

σTS√a ÷√E2γs

Ductile materialsDuctile materials

Contrarily to brittle materials, ductile
materials exhibit plastic deformations prior to
macroscopic failure. For a tensile test a
macroscopic sample will exhibit necking
before fracture, see Picture I.24. The fracture
surface has also a different aspect: instead of
being composed of crystallographic planes,
the surface is rougher and exhibits small
craters. This appearance can be explained by

Griffith Irwin

In order to solve the contradiction between the stress analysis and the
experimental observations, fracture mechanics was developed to answer to the
following questions:
• For a sample with an existing crack, knowing the crack size, what is the

maximum loading leading to crack propagation?
• For a sample with an existing crack submiFed to a cyclic loading, if the stress

remains lower than the fracture stress, what is the life of the structure?



Linear Elastic Fracture Mechanics (LEFM) 

Under this assumption, the laws of mechanics for elastic linear materials can directly

be used. In order to solve the problem of a sample with a crack, Irwin has studied

three different loading modes. There are two modes loading the crack in its plane,

the Mode I also called opening mode as it tends to open the crack lips, and the

Mode II also called sliding mode as it tends to make the two crack lips slide on each

other, see. TheMode III, also called shearing mode, loads the crack out of its plane.
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Stress Intensity Factor

2.4 Stress Intensity Factor K
Before proceeding to consider the stress analysis of cracked bodies, it is important to distinguish basic
"modes" of stressing. As shown in Fig.2.9, the three basic modes are: opening (mode I), in-plane shear
(mode II) and out-of-plane tearing (mode III). Mode I corresponds to normal separation of the crack faces
under the action of tensile stresses, which is by far the most widely encountered in practice. The
difference between Mode II and Mode III is that the shearing action in the former case is normal to the
crack front in the plane of the crack whereas the shearing action in Mode III is parallel to the crack front.
A cracked body in reality can be loaded in any one of these three, or a combination of these three modes.

Fig.2.9 Basic modes of crack extension; (a) opening mode, (b) sliding mode, and (c) tearing mode.

By means of various techniques, the stress, strain, and displacement fields associated with a crack
embedded in an elastic solid can be solved analytically. One of such method is due to Westergaard, who
introduced the following stress function,

where  is an analytical function of the complex variable . Here  and 
. The semi-inverse solution (mainly by trial-and-error) for a crack in an infinite plate

subjected to a remote stress  is

Note the origin of the coordinate is at the center of the crack. By transforming the origin to the right-
hand crack tip, i.e., , all the stress components can be derived. In the limit of small enough
values of , equation (2.24) can be expressed as

From differentiation of equation (2.24),

hence

For the configuration shown in Fig.2.10, the stresses can be expressed in a simple form, noting equation
(1.14),

and displacement

where the  terms are the stress-intensity factors which embody the loading and geometry conditions. A
complete list of the stress and displacement fields for three fracture modes is given in Table 2.1. The
corresponding formulae for polar coordinates are given in Table 2.2.

The relative displacement between crack faces at position  is given by

for plane stress condition. Clearly the maximum crack opening occurs at the centre of the crack, equal to 
. The stress distribution ahead of the crack tip, not necessarily near crack tip, is

Fig.2.10 A crack of length 2a in an infinite plate

Example 2.4 Estimate the relative size of the singularity dominated zone ahead of a through crack in an
infinite plate subjected to remote uniaxial tension.

Solution Equations (2.27) and (2.28) can be rewritten as

and

Clearly the actual stress normal to the crack plane a  is higher than that given by equation (2.25a).
Hence the singular solution is valid only near the crack tip; we define this as the singularity dominated
zone, as shown in Fig.2.11. The size of this zone can be estimated by considering the ratio of the actual
stress on the crack plane to the singularity limit. This is depicted in Fig.2.12. Note that the stress in the 
direction is close to the singularity limit for relatively large distances from the crack tip, but the  stress
diverges considerably from the near-tip limit. Let us arbitrarily define the singularity zone as the region
within which the deviation is less than 20% for the  stress; this represents a value of  = 0.02. In other
words, the term "singularity zone" is approximately one-fiftieth of the half crack size.

Fig.2.11 Distribution of the stress normal to the crack plane

Fig.2.12 Ratio of actual stresses on the crack plane to the singularity limit

Table 2.1 Stress and displacement fields ahead a crack tip for modes I, II, III

Mode I Mode II Mode III

0

0

0

0

0 0

0 0

0

0

 is the shear modulus,  for plane strain and  for plane stress

It is easy to show that the principal stresses for mode I are

Table 2.2 Stress fields ahead a crack tip in a polar coordinate system

Mode I Mode II Mode III

0

0

0

0 0

0 0

In general the stress intensity factor depends on the applied stress, crack size, and the geometry,

where  is called the geometry factor, signifying the geometry of a crack system in relation to the
applied load. Normally this geometry factor can be looked up in technical reference books. For a centre
crack in an infinite plate,  = 1.0. The geometry of the cracked body imposes an effect on the new crack
tip stress field, thus modifying the value of the stress intensity factor. In general, if the edge crack is
situated in a strip of finite width, , then the correction factor becomes a function of ( )

The simplest geometry factor is that for an edge crack of length, , at the edge of a semi-infinite half
space: the increased ability of the crack to open causes the stress intensity factor to increase by some
12%,

The determination of this geometry term is a problem of stress analysis. Any realistic geometry requires
recourse to numerical methods, as very few closed form solutions exist. The most popular and efficient
method is finite element analysis. Other techniques include experimental and semi-theoretical; more will
be said about this later. Table 2.3 lists stress intensity factors and the geometry factors for a number of
practical configurations. A more comprehensive list could be found in a two-volume handbook (Murakami,
1987).

Table 2.3 Stress intensity factors

Geometry Stress Intensity Factor

1. Crack in an infinite body

2. Centre crack in a strip of finite width

3. Edge crack in a semi-infinite body

4. Centre crack in a finite width strip

 = 1.0  = ∞

0 1.12 1.12

0.2 1.37 1.21

0.4 2.11 1.35

0.5 2.83 1.46

5. Edge crack in a beam of width  subjected to
bending

0.1 1.044

0.2 1.055

0.3 1.125

0.4 1.257

0.5 1.500

0.6 1.915

6. Thin-section (plane stress) double split beam

7. Circumferentially notched rod

8. Compact tension specimen (CST)

9. Single-edge notch bend (SENB), thickness 

10. Crack emanating from a hole in an infinite
body

1.01 0.3256

1.02 0.4514

1.04 0.6082

1.06 0.7104

1.08 0.7843

1.10 0.8400

1.20 0.9851

1.25 1.0168

1.30 1.0358

1.40 1.0536

1.80 1.0495

A few points of interest arise from these solutions. Firstly, the stress intensity factor defines the
amplitude of the crack tip singularity, and consequently the intensity of the local stress field. Local
stresses near the crack tip are proportional to , which uniquely defines the crack tip conditions. This
single-parameter description of crack tip conditions is probably the most important concept of fracture
mechanics. Secondly, it should be pointed that these solutions are valid only in the vicinity of the crack
tip; higher order terms need to be taken into account when far field information is required.

2.5 Superposition Method
Since the stresses and displacements are linearly proportional to the stress intensity factor, it follows that
the superposition principle also applies to crack problems. This provides a very important tool for
applying fracture mechanics to practical problems with the aid of handbooks. The underlying principle is
that stresses induced by various loads can be added together. It should be pointed that the superposition
method applies only to cases where a structure is subjected to various loads but of the same mode. For
example, the crack tip stresses for a cracked component under combined tension and bending are,

Because the angular function  is the same for the same fracture mode, the above equation can be
rewritten as

where

In general, the stress intensity factor for a combination of load systems , ,  can be obtained simply
by superposition

and similarly for modes II and III.

Example 2.5 Determine the stress intensity factor for a edge cracked plate subjected to a combined
tension and bending.

Fig.2.13 An edge cracked plate under tension and bending

Solution

From Table 2.3, the stress intensity factor caused by the bending (case 5) is

The stress intensity factor for the tension load (case 4) is

Thus the total stress intensity factor is

For a ratio  = 0.2, we have

Example 2.6 Consider a symmetric case of two very small cracks at a circular hole (See Fig.2.14(a)) along
the x-axis in a wide plate subjected to uniaxial tension  along the y-axis. Determine the stress intensity
factor.

Fig.2.14 Stress intensity factor correction factor for a crack emanating from a hole.

(a) Two symmetrical cracks emanating from a circular hole and (b) the stress intensity factor.

Solution Due to the stress concentration near the circular hole (  = 3) an element at the rim of the hole
is subjected to a tensile stress 3  along the y-axis. By the principal of superposition and for a small crack
length, we have

which is shown in Fig.2.14 together with the numerical solution obtained by Bowie (1956).

Clearly for very short cracks the above approximation is very close to the numerical solution. For long
cracks (crack length ), we may assume as an engineering approach that the combination behaves as
if the hole were part of the crack, hence . As shown in Fig.2.14, these two asymptotic
solutions provide two bounds to the actual solution.

2.6 Relationship Between G and K
We can now return to the Griffith's energy concept, with special reference to its relation to the stress
intensity factor. Proceeding as before, we may identify the mechanical energy release during the crack
extension with the work done by hypothetically imposed surface tractions. As illustrated in Fig. 2.15,
forces are applied to the crack edge, sufficient to close the crack over an infinitesimal distance. The work
done by this force is obviously equal to the amount of energy that needs to be consumed in order to make
the crack grow by this distance.

Fig.2.15 Calculation of strain energy release rate

Thus the strain-energy release for a crack growth of  may be expressed as

where the factor 2 arises because the crack has two opposing crack surfaces, and the factor ½ is because
of the assumed proportionality between tractions and the corresponding displacement. The thickness of
the plate is denoted as . After substituting the expressions for  and  (see Table 3.1), the integration
of equation (2.34) leads to

for plane stress. Similarly, for plane strain condition (see Chapter 1)

It can also be shown for mode II and mode III,

for plane strain condition.

The total energy release rate in combined mode cracking can be obtained by summing up the energies for
different modes:

However, it is important to note that the derivation of both the stress intensity factor and the strain
energy release rate is independent of the actual fracture process hence critical condition of materials. In
other words, these only represent the "driving" force for crack growth and bear no relations to the
materials' "resistance". This will be discussed in the next chapter.

Example 2.7 For double cantilever beam (DCB) shown in Example 2.2 determine the stress intensity factor
 using elementary beam theory for applied load  or applied displacement .

Solution

From the previous analysis, the energy release rate for the cracked system is

the stress intensity factor is, according to equation (2.40)

for plane strain condition. Obviously the "driving" force increases linearly with crack length for a constant
applied load. The stress intensity factor can also be expressed in terms of the displacement, ,

It should be observed that, under displacement control, the stress intensity factor decreases as the crack
extends. Therefore the system is a stable one, in the sense that the crack would stop growing after a
certain crack advance unless the displacement is further increased.

Example 2.8 Determine compliance of a centre cracked specimen of width  and crack length 2 . The
thickness and height of the specimen are  and , respectively. The stress intensity factor is given in
Table 2.3.

Fig.2.16 A finite centre cracked plate

Solution From Table 2.3 the stress intensity factor is

Since

for centre cracked plate and

we have

hence the compliance is

where constant  represents the compliance of the specimen without crack, that is

To facilitate the integration, we adopt the following approximation

For comparison, two ratio between the two functions are shown in Fig.2.17. It is seen that the error is
less than 10 percent up to a ratio  = 0.5.

Fig.2.17 Approximations to hyperbolic function x·sec(x) by tan(x)

Now the compliance can be expressed as

This is graphically shown below. Clearly the compliance of the specimen increases rapidly as the crack
length increases.

These two examples demonstrate that the relationship between the energy release rate and stress
intensity factor is not only useful in determining the stress intensity factor for a cracked component from
compliance measurement or calculation, but also useful in assessing the compliance of a cracked
component.

Fig.2.18 Compliance of a centre cracked plate.

This page provides the sections on the stress
intensity factor from Wang, C. H. "Introduction to
Fracture Mechanics," DSTO Aeronautical and
Maritime Research Laboratory, DSTO-GD-0103,
1996.

Other related chapters from "Introduction to
Fracture Mechanics" can be seen to the right.
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In 1939, Harold M. Westergaard developed a solution for the stress field

surrounding a crack that has two advantages over Inglis's solution.

First, Westergaard's solution applies directly to cracks, not to an ellipse

that approaches a crack in the limit.

Second, the solution is expressed in rectangular coordinates rather than

elliptical coordinates.

Westergaard chose to express the rectangular

coordinates as complex numbers, z = x + iy



Westergaard's Solution 

Westergaard found an Airy stress function of complex numbers that is the solution for

the stress field in an infinite plate containing a crack.

The integral of Z is represented by a bar Z, and the integral of Z is represented by two

bars Z. Finally, the derivative of Z is represented by Z’ . In summary,
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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where a is crack length



The expression for σxx is obtained by taking the derivatives of Φ with respect to y. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Westergaard's Solution for Cracks
  >  > stresses at cracks

Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Introduction
In 1939,  developed a solution for the stress field surrounding a crack  that has two advantages over Inglis's solution 

 First, Westergaard's solution applies directly to cracks, not to an ellipse that approaches a crack in the limit. Second, the solution is
expressed in rectangular coordinates rather than elliptical coordinates. Granted, Westergaard chose to express the rectangular coordinates as
complex numbers, . Nevertheless, the resulting expressions are much easier to interpret than Inglis's equations in elliptical
coordinates. A copy of Westergaard's paper is available  

The one caveat to note is that Westergaard's solution applies to an infinite plate in equibiaxial, not uniaxial, tension. Nevertheless, it does
provide much additional insight into the stress fields surrounding cracks. 

Prerequisites

There are two subjects that are essential to know in order to follow the discussion on this page. They are (i)  and the (ii)  Neither topic
is difficult; they are simply not well publicized by most engineering curriculums. 

There is little need to continue with this page if you are not familiar with these two subjects. This page will present a very high level summary of each. The following webpages go into
more detail: (i)  and (ii)  

Airy Stress Functions
The use of Airy Stress Functions is a powerful technique for solving 2-D equilibrium elasticity problems. The component equations of equilibrium for 2-D problems without body forces are 

The Airy stress function, , is related to the 2-D stress components by the following cleverly chosen relationships. 

Substituting these  relationships into the equilibrium equations gives the following remarkable result. 

The remarkable result is that the equilibrium equations are always satisfied regardless of the choice of . So any choice of  is the solution to a problem (well almost). Actually, the function must
satisfy the biharmonic equation, which is 

and is abbreviated . Any  function satisfying  is guaranteed to produce stress and strain fields that are in equilibrium for an isotropic solid not subjected to body forces. Also,
the strain fields are never so negative that they describe the material as folding back on itself, a physical impossibility. 

Complex Numbers
Westergaard chose a function of complex numbers, , as the Airy stress function for a crack in tension. This permits stress to be expressed as a function of  and , , but
more compactly by using complex numbers. And since stress is the second derivative of an Airy stress function (see above), we need to review the calculus of complex numbers, specifically the
Cauchy-Riemann Equations  in order to understand Westergaard's solution. 

The Cauchy-Riemann equations are relationships between the many different types of derivatives of complex functions. They are 

The equations lead to some interesting, if not intuitive, relationships among the derivatives. For example, just as any complex function, , can be separated into real and imaginary parts like 
, so can its derivative. This looks like 

But thanks to the Cauchy-Riemann equations, the derivative can also be expressed as 

Go to  for a detailed explanation and proof of the Cauchy-Riemann equations. 

Westergaard's Solution
Westergaard found an Airy stress function of complex numbers that is the solution for the stress field in an infinite plate containing a crack. But
before getting to the function, a little more notation is needed. Fortunately, it is simple: The integral of  is represented by a bar, , and the

integral of  is represented by two bars, . Finally, the derivative of  is represented by . In summary, 

The notation is useful because, as we will see, the Airy stress function, , will be in terms of , but the stresses are all functions of 2nd

derivatives of . So it is not necessary to know explicitly what  and  are; the notation is only needed to keep track of the integrals. 

Westergaard's choice for the Airy stress function, , was 

with 

where  is crack length. 

The first step following selection of an Airy stress function is to confirm that it satisfies . Trust me, this one does, but we'll skip the proof because of all the tedious steps required to show

it. Nevertheless, there is one fascinating fact to note regarding the proof. It is that the differential equation is satisfied by  regardless of the choice of . This made it
possible for Westergaard to select many different functions for , each being the solution to a different problem. The function for  listed above proved to be the solution for a crack in an
infinite plate. To see this, take the derivatives of  to get expressions for the stress components. 

Although it is not necessary to know what  is, it is nevetheless easy to integrate  to obtain 

On the other hand, it's a good thing that  is not needed because it is indeed a bear to determine. 

The expression for  is obtained by taking the derivatives of  with respect to . The first derivative is 

Note that the product rule of differentiation was used here, and will be used again to find the 2nd derivative. 

The 2nd derivative gives . 

In a similar manner, the expression for  is obtained by taking the derivatives of  with respect to . 

And taking the 2nd derivative gives . 

The result for  is 

The complete set of equations for the stress field is 

And recall that 

where  is the crack length and . 

Analysis of the Solution
Westergaard's solution containing complex numbers is amazingly compact compared to Inglis's result involving elliptical coordinates. The only
challenge is the necessity of partitioning the square-root function into real and imaginary components. The process requires a Taylor series
expansion. 

Fortunately, a series expansion can be avoided along the plane of the crack where , and this permits easy insight into the stress field.
When , the equations reduce to 

And the square root function simplifies because  when . 

At this point, it becomes clear that the solution is indeed that of a cracked plate in tension. Recall that , and  is real only when . In contrast, when , then  is
imaginary (because the argument of the square-root function is negative) and therefore has no real part. So . This is the stress state in the crack plane ( ): zero stress on the crack's
face, infinite stress at the crack tip, and then decreasing back to  with increasing . 

The  and  stresses along  and  are 

A plot is shown below. It shows the stress value quickly dropping from infinity at the crack tip, , to the far-field value of . Keep in mind that this is along the crack plane, . As
reflected by the equation, the entire stress field is proportional to . 

The equation and its graph are the key results of Westergaard's solution that are shared by most authors, and with good reason. Computing the stress at any other position near the crack tip
requires a Taylor series expansion in order to partition the function into its real and imaginary parts... a great deal of work. 

Two decades later, Irwin showed that the solution could be simplified in the area immediately surrounding the crack tip, and invented the
 in the process. We will cover this next. 
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Two decades later, Irwin showed that the solution could be simplified in the area
immediately surrounding the crack tip, and invented the stress intensity factor

Stress Intensity Factor

2.4 Stress Intensity Factor K
Before proceeding to consider the stress analysis of cracked bodies, it is important to distinguish basic
"modes" of stressing. As shown in Fig.2.9, the three basic modes are: opening (mode I), in-plane shear
(mode II) and out-of-plane tearing (mode III). Mode I corresponds to normal separation of the crack faces
under the action of tensile stresses, which is by far the most widely encountered in practice. The
difference between Mode II and Mode III is that the shearing action in the former case is normal to the
crack front in the plane of the crack whereas the shearing action in Mode III is parallel to the crack front.
A cracked body in reality can be loaded in any one of these three, or a combination of these three modes.

Fig.2.9 Basic modes of crack extension; (a) opening mode, (b) sliding mode, and (c) tearing mode.

By means of various techniques, the stress, strain, and displacement fields associated with a crack
embedded in an elastic solid can be solved analytically. One of such method is due to Westergaard, who
introduced the following stress function,

where  is an analytical function of the complex variable . Here  and 
. The semi-inverse solution (mainly by trial-and-error) for a crack in an infinite plate

subjected to a remote stress  is

Note the origin of the coordinate is at the center of the crack. By transforming the origin to the right-
hand crack tip, i.e., , all the stress components can be derived. In the limit of small enough
values of , equation (2.24) can be expressed as

From differentiation of equation (2.24),

hence

For the configuration shown in Fig.2.10, the stresses can be expressed in a simple form, noting equation
(1.14),

and displacement

where the  terms are the stress-intensity factors which embody the loading and geometry conditions. A
complete list of the stress and displacement fields for three fracture modes is given in Table 2.1. The
corresponding formulae for polar coordinates are given in Table 2.2.

The relative displacement between crack faces at position  is given by

for plane stress condition. Clearly the maximum crack opening occurs at the centre of the crack, equal to 
. The stress distribution ahead of the crack tip, not necessarily near crack tip, is

Fig.2.10 A crack of length 2a in an infinite plate

Example 2.4 Estimate the relative size of the singularity dominated zone ahead of a through crack in an
infinite plate subjected to remote uniaxial tension.

Solution Equations (2.27) and (2.28) can be rewritten as

and

Clearly the actual stress normal to the crack plane a  is higher than that given by equation (2.25a).
Hence the singular solution is valid only near the crack tip; we define this as the singularity dominated
zone, as shown in Fig.2.11. The size of this zone can be estimated by considering the ratio of the actual
stress on the crack plane to the singularity limit. This is depicted in Fig.2.12. Note that the stress in the 
direction is close to the singularity limit for relatively large distances from the crack tip, but the  stress
diverges considerably from the near-tip limit. Let us arbitrarily define the singularity zone as the region
within which the deviation is less than 20% for the  stress; this represents a value of  = 0.02. In other
words, the term "singularity zone" is approximately one-fiftieth of the half crack size.

Fig.2.11 Distribution of the stress normal to the crack plane

Fig.2.12 Ratio of actual stresses on the crack plane to the singularity limit

Table 2.1 Stress and displacement fields ahead a crack tip for modes I, II, III

Mode I Mode II Mode III

0

0

0

0

0 0

0 0

0

0

 is the shear modulus,  for plane strain and  for plane stress

It is easy to show that the principal stresses for mode I are

Table 2.2 Stress fields ahead a crack tip in a polar coordinate system

Mode I Mode II Mode III

0

0

0

0 0

0 0

In general the stress intensity factor depends on the applied stress, crack size, and the geometry,

where  is called the geometry factor, signifying the geometry of a crack system in relation to the
applied load. Normally this geometry factor can be looked up in technical reference books. For a centre
crack in an infinite plate,  = 1.0. The geometry of the cracked body imposes an effect on the new crack
tip stress field, thus modifying the value of the stress intensity factor. In general, if the edge crack is
situated in a strip of finite width, , then the correction factor becomes a function of ( )

The simplest geometry factor is that for an edge crack of length, , at the edge of a semi-infinite half
space: the increased ability of the crack to open causes the stress intensity factor to increase by some
12%,

The determination of this geometry term is a problem of stress analysis. Any realistic geometry requires
recourse to numerical methods, as very few closed form solutions exist. The most popular and efficient
method is finite element analysis. Other techniques include experimental and semi-theoretical; more will
be said about this later. Table 2.3 lists stress intensity factors and the geometry factors for a number of
practical configurations. A more comprehensive list could be found in a two-volume handbook (Murakami,
1987).

Table 2.3 Stress intensity factors

Geometry Stress Intensity Factor

1. Crack in an infinite body

2. Centre crack in a strip of finite width

3. Edge crack in a semi-infinite body

4. Centre crack in a finite width strip

 = 1.0  = ∞

0 1.12 1.12

0.2 1.37 1.21

0.4 2.11 1.35

0.5 2.83 1.46

5. Edge crack in a beam of width  subjected to
bending

0.1 1.044

0.2 1.055

0.3 1.125

0.4 1.257

0.5 1.500

0.6 1.915

6. Thin-section (plane stress) double split beam

7. Circumferentially notched rod

8. Compact tension specimen (CST)

9. Single-edge notch bend (SENB), thickness 

10. Crack emanating from a hole in an infinite
body

1.01 0.3256

1.02 0.4514

1.04 0.6082

1.06 0.7104

1.08 0.7843

1.10 0.8400

1.20 0.9851

1.25 1.0168

1.30 1.0358

1.40 1.0536

1.80 1.0495

A few points of interest arise from these solutions. Firstly, the stress intensity factor defines the
amplitude of the crack tip singularity, and consequently the intensity of the local stress field. Local
stresses near the crack tip are proportional to , which uniquely defines the crack tip conditions. This
single-parameter description of crack tip conditions is probably the most important concept of fracture
mechanics. Secondly, it should be pointed that these solutions are valid only in the vicinity of the crack
tip; higher order terms need to be taken into account when far field information is required.

2.5 Superposition Method
Since the stresses and displacements are linearly proportional to the stress intensity factor, it follows that
the superposition principle also applies to crack problems. This provides a very important tool for
applying fracture mechanics to practical problems with the aid of handbooks. The underlying principle is
that stresses induced by various loads can be added together. It should be pointed that the superposition
method applies only to cases where a structure is subjected to various loads but of the same mode. For
example, the crack tip stresses for a cracked component under combined tension and bending are,

Because the angular function  is the same for the same fracture mode, the above equation can be
rewritten as

where

In general, the stress intensity factor for a combination of load systems , ,  can be obtained simply
by superposition

and similarly for modes II and III.

Example 2.5 Determine the stress intensity factor for a edge cracked plate subjected to a combined
tension and bending.

Fig.2.13 An edge cracked plate under tension and bending

Solution

From Table 2.3, the stress intensity factor caused by the bending (case 5) is

The stress intensity factor for the tension load (case 4) is

Thus the total stress intensity factor is

For a ratio  = 0.2, we have

Example 2.6 Consider a symmetric case of two very small cracks at a circular hole (See Fig.2.14(a)) along
the x-axis in a wide plate subjected to uniaxial tension  along the y-axis. Determine the stress intensity
factor.

Fig.2.14 Stress intensity factor correction factor for a crack emanating from a hole.

(a) Two symmetrical cracks emanating from a circular hole and (b) the stress intensity factor.

Solution Due to the stress concentration near the circular hole (  = 3) an element at the rim of the hole
is subjected to a tensile stress 3  along the y-axis. By the principal of superposition and for a small crack
length, we have

which is shown in Fig.2.14 together with the numerical solution obtained by Bowie (1956).

Clearly for very short cracks the above approximation is very close to the numerical solution. For long
cracks (crack length ), we may assume as an engineering approach that the combination behaves as
if the hole were part of the crack, hence . As shown in Fig.2.14, these two asymptotic
solutions provide two bounds to the actual solution.

2.6 Relationship Between G and K
We can now return to the Griffith's energy concept, with special reference to its relation to the stress
intensity factor. Proceeding as before, we may identify the mechanical energy release during the crack
extension with the work done by hypothetically imposed surface tractions. As illustrated in Fig. 2.15,
forces are applied to the crack edge, sufficient to close the crack over an infinitesimal distance. The work
done by this force is obviously equal to the amount of energy that needs to be consumed in order to make
the crack grow by this distance.

Fig.2.15 Calculation of strain energy release rate

Thus the strain-energy release for a crack growth of  may be expressed as

where the factor 2 arises because the crack has two opposing crack surfaces, and the factor ½ is because
of the assumed proportionality between tractions and the corresponding displacement. The thickness of
the plate is denoted as . After substituting the expressions for  and  (see Table 3.1), the integration
of equation (2.34) leads to

for plane stress. Similarly, for plane strain condition (see Chapter 1)

It can also be shown for mode II and mode III,

for plane strain condition.

The total energy release rate in combined mode cracking can be obtained by summing up the energies for
different modes:

However, it is important to note that the derivation of both the stress intensity factor and the strain
energy release rate is independent of the actual fracture process hence critical condition of materials. In
other words, these only represent the "driving" force for crack growth and bear no relations to the
materials' "resistance". This will be discussed in the next chapter.

Example 2.7 For double cantilever beam (DCB) shown in Example 2.2 determine the stress intensity factor
 using elementary beam theory for applied load  or applied displacement .

Solution

From the previous analysis, the energy release rate for the cracked system is

the stress intensity factor is, according to equation (2.40)

for plane strain condition. Obviously the "driving" force increases linearly with crack length for a constant
applied load. The stress intensity factor can also be expressed in terms of the displacement, ,

It should be observed that, under displacement control, the stress intensity factor decreases as the crack
extends. Therefore the system is a stable one, in the sense that the crack would stop growing after a
certain crack advance unless the displacement is further increased.

Example 2.8 Determine compliance of a centre cracked specimen of width  and crack length 2 . The
thickness and height of the specimen are  and , respectively. The stress intensity factor is given in
Table 2.3.

Fig.2.16 A finite centre cracked plate

Solution From Table 2.3 the stress intensity factor is

Since

for centre cracked plate and

we have

hence the compliance is

where constant  represents the compliance of the specimen without crack, that is

To facilitate the integration, we adopt the following approximation

For comparison, two ratio between the two functions are shown in Fig.2.17. It is seen that the error is
less than 10 percent up to a ratio  = 0.5.

Fig.2.17 Approximations to hyperbolic function x·sec(x) by tan(x)

Now the compliance can be expressed as

This is graphically shown below. Clearly the compliance of the specimen increases rapidly as the crack
length increases.

These two examples demonstrate that the relationship between the energy release rate and stress
intensity factor is not only useful in determining the stress intensity factor for a cracked component from
compliance measurement or calculation, but also useful in assessing the compliance of a cracked
component.

Fig.2.18 Compliance of a centre cracked plate.
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Stress Intensity Factor

2.4 Stress Intensity Factor K
Before proceeding to consider the stress analysis of cracked bodies, it is important to distinguish basic
"modes" of stressing. As shown in Fig.2.9, the three basic modes are: opening (mode I), in-plane shear
(mode II) and out-of-plane tearing (mode III). Mode I corresponds to normal separation of the crack faces
under the action of tensile stresses, which is by far the most widely encountered in practice. The
difference between Mode II and Mode III is that the shearing action in the former case is normal to the
crack front in the plane of the crack whereas the shearing action in Mode III is parallel to the crack front.
A cracked body in reality can be loaded in any one of these three, or a combination of these three modes.

Fig.2.9 Basic modes of crack extension; (a) opening mode, (b) sliding mode, and (c) tearing mode.

By means of various techniques, the stress, strain, and displacement fields associated with a crack
embedded in an elastic solid can be solved analytically. One of such method is due to Westergaard, who
introduced the following stress function,

where  is an analytical function of the complex variable . Here  and 
. The semi-inverse solution (mainly by trial-and-error) for a crack in an infinite plate

subjected to a remote stress  is

Note the origin of the coordinate is at the center of the crack. By transforming the origin to the right-
hand crack tip, i.e., , all the stress components can be derived. In the limit of small enough
values of , equation (2.24) can be expressed as

From differentiation of equation (2.24),

hence

For the configuration shown in Fig.2.10, the stresses can be expressed in a simple form, noting equation
(1.14),

and displacement

where the  terms are the stress-intensity factors which embody the loading and geometry conditions. A
complete list of the stress and displacement fields for three fracture modes is given in Table 2.1. The
corresponding formulae for polar coordinates are given in Table 2.2.

The relative displacement between crack faces at position  is given by

for plane stress condition. Clearly the maximum crack opening occurs at the centre of the crack, equal to 
. The stress distribution ahead of the crack tip, not necessarily near crack tip, is

Fig.2.10 A crack of length 2a in an infinite plate

Example 2.4 Estimate the relative size of the singularity dominated zone ahead of a through crack in an
infinite plate subjected to remote uniaxial tension.

Solution Equations (2.27) and (2.28) can be rewritten as

and

Clearly the actual stress normal to the crack plane a  is higher than that given by equation (2.25a).
Hence the singular solution is valid only near the crack tip; we define this as the singularity dominated
zone, as shown in Fig.2.11. The size of this zone can be estimated by considering the ratio of the actual
stress on the crack plane to the singularity limit. This is depicted in Fig.2.12. Note that the stress in the 
direction is close to the singularity limit for relatively large distances from the crack tip, but the  stress
diverges considerably from the near-tip limit. Let us arbitrarily define the singularity zone as the region
within which the deviation is less than 20% for the  stress; this represents a value of  = 0.02. In other
words, the term "singularity zone" is approximately one-fiftieth of the half crack size.

Fig.2.11 Distribution of the stress normal to the crack plane

Fig.2.12 Ratio of actual stresses on the crack plane to the singularity limit

Table 2.1 Stress and displacement fields ahead a crack tip for modes I, II, III

Mode I Mode II Mode III

0

0

0

0

0 0

0 0

0

0

 is the shear modulus,  for plane strain and  for plane stress

It is easy to show that the principal stresses for mode I are

Table 2.2 Stress fields ahead a crack tip in a polar coordinate system

Mode I Mode II Mode III

0

0

0

0 0

0 0

In general the stress intensity factor depends on the applied stress, crack size, and the geometry,

where  is called the geometry factor, signifying the geometry of a crack system in relation to the
applied load. Normally this geometry factor can be looked up in technical reference books. For a centre
crack in an infinite plate,  = 1.0. The geometry of the cracked body imposes an effect on the new crack
tip stress field, thus modifying the value of the stress intensity factor. In general, if the edge crack is
situated in a strip of finite width, , then the correction factor becomes a function of ( )

The simplest geometry factor is that for an edge crack of length, , at the edge of a semi-infinite half
space: the increased ability of the crack to open causes the stress intensity factor to increase by some
12%,

The determination of this geometry term is a problem of stress analysis. Any realistic geometry requires
recourse to numerical methods, as very few closed form solutions exist. The most popular and efficient
method is finite element analysis. Other techniques include experimental and semi-theoretical; more will
be said about this later. Table 2.3 lists stress intensity factors and the geometry factors for a number of
practical configurations. A more comprehensive list could be found in a two-volume handbook (Murakami,
1987).

Table 2.3 Stress intensity factors

Geometry Stress Intensity Factor

1. Crack in an infinite body

2. Centre crack in a strip of finite width

3. Edge crack in a semi-infinite body

4. Centre crack in a finite width strip

 = 1.0  = ∞

0 1.12 1.12

0.2 1.37 1.21

0.4 2.11 1.35

0.5 2.83 1.46

5. Edge crack in a beam of width  subjected to
bending

0.1 1.044

0.2 1.055

0.3 1.125

0.4 1.257

0.5 1.500

0.6 1.915

6. Thin-section (plane stress) double split beam

7. Circumferentially notched rod

8. Compact tension specimen (CST)

9. Single-edge notch bend (SENB), thickness 

10. Crack emanating from a hole in an infinite
body

1.01 0.3256

1.02 0.4514

1.04 0.6082

1.06 0.7104

1.08 0.7843

1.10 0.8400

1.20 0.9851

1.25 1.0168

1.30 1.0358

1.40 1.0536

1.80 1.0495

A few points of interest arise from these solutions. Firstly, the stress intensity factor defines the
amplitude of the crack tip singularity, and consequently the intensity of the local stress field. Local
stresses near the crack tip are proportional to , which uniquely defines the crack tip conditions. This
single-parameter description of crack tip conditions is probably the most important concept of fracture
mechanics. Secondly, it should be pointed that these solutions are valid only in the vicinity of the crack
tip; higher order terms need to be taken into account when far field information is required.

2.5 Superposition Method
Since the stresses and displacements are linearly proportional to the stress intensity factor, it follows that
the superposition principle also applies to crack problems. This provides a very important tool for
applying fracture mechanics to practical problems with the aid of handbooks. The underlying principle is
that stresses induced by various loads can be added together. It should be pointed that the superposition
method applies only to cases where a structure is subjected to various loads but of the same mode. For
example, the crack tip stresses for a cracked component under combined tension and bending are,

Because the angular function  is the same for the same fracture mode, the above equation can be
rewritten as

where

In general, the stress intensity factor for a combination of load systems , ,  can be obtained simply
by superposition

and similarly for modes II and III.

Example 2.5 Determine the stress intensity factor for a edge cracked plate subjected to a combined
tension and bending.

Fig.2.13 An edge cracked plate under tension and bending

Solution

From Table 2.3, the stress intensity factor caused by the bending (case 5) is

The stress intensity factor for the tension load (case 4) is

Thus the total stress intensity factor is

For a ratio  = 0.2, we have

Example 2.6 Consider a symmetric case of two very small cracks at a circular hole (See Fig.2.14(a)) along
the x-axis in a wide plate subjected to uniaxial tension  along the y-axis. Determine the stress intensity
factor.

Fig.2.14 Stress intensity factor correction factor for a crack emanating from a hole.

(a) Two symmetrical cracks emanating from a circular hole and (b) the stress intensity factor.

Solution Due to the stress concentration near the circular hole (  = 3) an element at the rim of the hole
is subjected to a tensile stress 3  along the y-axis. By the principal of superposition and for a small crack
length, we have

which is shown in Fig.2.14 together with the numerical solution obtained by Bowie (1956).

Clearly for very short cracks the above approximation is very close to the numerical solution. For long
cracks (crack length ), we may assume as an engineering approach that the combination behaves as
if the hole were part of the crack, hence . As shown in Fig.2.14, these two asymptotic
solutions provide two bounds to the actual solution.

2.6 Relationship Between G and K
We can now return to the Griffith's energy concept, with special reference to its relation to the stress
intensity factor. Proceeding as before, we may identify the mechanical energy release during the crack
extension with the work done by hypothetically imposed surface tractions. As illustrated in Fig. 2.15,
forces are applied to the crack edge, sufficient to close the crack over an infinitesimal distance. The work
done by this force is obviously equal to the amount of energy that needs to be consumed in order to make
the crack grow by this distance.

Fig.2.15 Calculation of strain energy release rate

Thus the strain-energy release for a crack growth of  may be expressed as

where the factor 2 arises because the crack has two opposing crack surfaces, and the factor ½ is because
of the assumed proportionality between tractions and the corresponding displacement. The thickness of
the plate is denoted as . After substituting the expressions for  and  (see Table 3.1), the integration
of equation (2.34) leads to

for plane stress. Similarly, for plane strain condition (see Chapter 1)

It can also be shown for mode II and mode III,

for plane strain condition.

The total energy release rate in combined mode cracking can be obtained by summing up the energies for
different modes:

However, it is important to note that the derivation of both the stress intensity factor and the strain
energy release rate is independent of the actual fracture process hence critical condition of materials. In
other words, these only represent the "driving" force for crack growth and bear no relations to the
materials' "resistance". This will be discussed in the next chapter.

Example 2.7 For double cantilever beam (DCB) shown in Example 2.2 determine the stress intensity factor
 using elementary beam theory for applied load  or applied displacement .

Solution

From the previous analysis, the energy release rate for the cracked system is

the stress intensity factor is, according to equation (2.40)

for plane strain condition. Obviously the "driving" force increases linearly with crack length for a constant
applied load. The stress intensity factor can also be expressed in terms of the displacement, ,

It should be observed that, under displacement control, the stress intensity factor decreases as the crack
extends. Therefore the system is a stable one, in the sense that the crack would stop growing after a
certain crack advance unless the displacement is further increased.

Example 2.8 Determine compliance of a centre cracked specimen of width  and crack length 2 . The
thickness and height of the specimen are  and , respectively. The stress intensity factor is given in
Table 2.3.

Fig.2.16 A finite centre cracked plate

Solution From Table 2.3 the stress intensity factor is

Since

for centre cracked plate and

we have

hence the compliance is

where constant  represents the compliance of the specimen without crack, that is

To facilitate the integration, we adopt the following approximation

For comparison, two ratio between the two functions are shown in Fig.2.17. It is seen that the error is
less than 10 percent up to a ratio  = 0.5.

Fig.2.17 Approximations to hyperbolic function x·sec(x) by tan(x)

Now the compliance can be expressed as

This is graphically shown below. Clearly the compliance of the specimen increases rapidly as the crack
length increases.

These two examples demonstrate that the relationship between the energy release rate and stress
intensity factor is not only useful in determining the stress intensity factor for a cracked component from
compliance measurement or calculation, but also useful in assessing the compliance of a cracked
component.

Fig.2.18 Compliance of a centre cracked plate.
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In general the stress intensity factor K, depends on the applied stress, crack size, 
and the geometry

Stress Intensity Factor

2.4 Stress Intensity Factor K
Before proceeding to consider the stress analysis of cracked bodies, it is important to distinguish basic
"modes" of stressing. As shown in Fig.2.9, the three basic modes are: opening (mode I), in-plane shear
(mode II) and out-of-plane tearing (mode III). Mode I corresponds to normal separation of the crack faces
under the action of tensile stresses, which is by far the most widely encountered in practice. The
difference between Mode II and Mode III is that the shearing action in the former case is normal to the
crack front in the plane of the crack whereas the shearing action in Mode III is parallel to the crack front.
A cracked body in reality can be loaded in any one of these three, or a combination of these three modes.

Fig.2.9 Basic modes of crack extension; (a) opening mode, (b) sliding mode, and (c) tearing mode.

By means of various techniques, the stress, strain, and displacement fields associated with a crack
embedded in an elastic solid can be solved analytically. One of such method is due to Westergaard, who
introduced the following stress function,

where  is an analytical function of the complex variable . Here  and 
. The semi-inverse solution (mainly by trial-and-error) for a crack in an infinite plate

subjected to a remote stress  is

Note the origin of the coordinate is at the center of the crack. By transforming the origin to the right-
hand crack tip, i.e., , all the stress components can be derived. In the limit of small enough
values of , equation (2.24) can be expressed as

From differentiation of equation (2.24),

hence

For the configuration shown in Fig.2.10, the stresses can be expressed in a simple form, noting equation
(1.14),

and displacement

where the  terms are the stress-intensity factors which embody the loading and geometry conditions. A
complete list of the stress and displacement fields for three fracture modes is given in Table 2.1. The
corresponding formulae for polar coordinates are given in Table 2.2.

The relative displacement between crack faces at position  is given by

for plane stress condition. Clearly the maximum crack opening occurs at the centre of the crack, equal to 
. The stress distribution ahead of the crack tip, not necessarily near crack tip, is

Fig.2.10 A crack of length 2a in an infinite plate

Example 2.4 Estimate the relative size of the singularity dominated zone ahead of a through crack in an
infinite plate subjected to remote uniaxial tension.

Solution Equations (2.27) and (2.28) can be rewritten as

and

Clearly the actual stress normal to the crack plane a  is higher than that given by equation (2.25a).
Hence the singular solution is valid only near the crack tip; we define this as the singularity dominated
zone, as shown in Fig.2.11. The size of this zone can be estimated by considering the ratio of the actual
stress on the crack plane to the singularity limit. This is depicted in Fig.2.12. Note that the stress in the 
direction is close to the singularity limit for relatively large distances from the crack tip, but the  stress
diverges considerably from the near-tip limit. Let us arbitrarily define the singularity zone as the region
within which the deviation is less than 20% for the  stress; this represents a value of  = 0.02. In other
words, the term "singularity zone" is approximately one-fiftieth of the half crack size.

Fig.2.11 Distribution of the stress normal to the crack plane

Fig.2.12 Ratio of actual stresses on the crack plane to the singularity limit

Table 2.1 Stress and displacement fields ahead a crack tip for modes I, II, III

Mode I Mode II Mode III

0

0

0

0

0 0

0 0

0

0

 is the shear modulus,  for plane strain and  for plane stress

It is easy to show that the principal stresses for mode I are

Table 2.2 Stress fields ahead a crack tip in a polar coordinate system

Mode I Mode II Mode III

0

0

0

0 0

0 0

In general the stress intensity factor depends on the applied stress, crack size, and the geometry,

where  is called the geometry factor, signifying the geometry of a crack system in relation to the
applied load. Normally this geometry factor can be looked up in technical reference books. For a centre
crack in an infinite plate,  = 1.0. The geometry of the cracked body imposes an effect on the new crack
tip stress field, thus modifying the value of the stress intensity factor. In general, if the edge crack is
situated in a strip of finite width, , then the correction factor becomes a function of ( )

The simplest geometry factor is that for an edge crack of length, , at the edge of a semi-infinite half
space: the increased ability of the crack to open causes the stress intensity factor to increase by some
12%,

The determination of this geometry term is a problem of stress analysis. Any realistic geometry requires
recourse to numerical methods, as very few closed form solutions exist. The most popular and efficient
method is finite element analysis. Other techniques include experimental and semi-theoretical; more will
be said about this later. Table 2.3 lists stress intensity factors and the geometry factors for a number of
practical configurations. A more comprehensive list could be found in a two-volume handbook (Murakami,
1987).

Table 2.3 Stress intensity factors

Geometry Stress Intensity Factor

1. Crack in an infinite body

2. Centre crack in a strip of finite width

3. Edge crack in a semi-infinite body

4. Centre crack in a finite width strip

 = 1.0  = ∞

0 1.12 1.12

0.2 1.37 1.21

0.4 2.11 1.35

0.5 2.83 1.46

5. Edge crack in a beam of width  subjected to
bending

0.1 1.044

0.2 1.055

0.3 1.125

0.4 1.257

0.5 1.500

0.6 1.915

6. Thin-section (plane stress) double split beam

7. Circumferentially notched rod

8. Compact tension specimen (CST)

9. Single-edge notch bend (SENB), thickness 

10. Crack emanating from a hole in an infinite
body

1.01 0.3256

1.02 0.4514

1.04 0.6082

1.06 0.7104

1.08 0.7843

1.10 0.8400

1.20 0.9851

1.25 1.0168

1.30 1.0358

1.40 1.0536

1.80 1.0495

A few points of interest arise from these solutions. Firstly, the stress intensity factor defines the
amplitude of the crack tip singularity, and consequently the intensity of the local stress field. Local
stresses near the crack tip are proportional to , which uniquely defines the crack tip conditions. This
single-parameter description of crack tip conditions is probably the most important concept of fracture
mechanics. Secondly, it should be pointed that these solutions are valid only in the vicinity of the crack
tip; higher order terms need to be taken into account when far field information is required.

2.5 Superposition Method
Since the stresses and displacements are linearly proportional to the stress intensity factor, it follows that
the superposition principle also applies to crack problems. This provides a very important tool for
applying fracture mechanics to practical problems with the aid of handbooks. The underlying principle is
that stresses induced by various loads can be added together. It should be pointed that the superposition
method applies only to cases where a structure is subjected to various loads but of the same mode. For
example, the crack tip stresses for a cracked component under combined tension and bending are,

Because the angular function  is the same for the same fracture mode, the above equation can be
rewritten as

where

In general, the stress intensity factor for a combination of load systems , ,  can be obtained simply
by superposition

and similarly for modes II and III.

Example 2.5 Determine the stress intensity factor for a edge cracked plate subjected to a combined
tension and bending.

Fig.2.13 An edge cracked plate under tension and bending

Solution

From Table 2.3, the stress intensity factor caused by the bending (case 5) is

The stress intensity factor for the tension load (case 4) is

Thus the total stress intensity factor is

For a ratio  = 0.2, we have

Example 2.6 Consider a symmetric case of two very small cracks at a circular hole (See Fig.2.14(a)) along
the x-axis in a wide plate subjected to uniaxial tension  along the y-axis. Determine the stress intensity
factor.

Fig.2.14 Stress intensity factor correction factor for a crack emanating from a hole.

(a) Two symmetrical cracks emanating from a circular hole and (b) the stress intensity factor.

Solution Due to the stress concentration near the circular hole (  = 3) an element at the rim of the hole
is subjected to a tensile stress 3  along the y-axis. By the principal of superposition and for a small crack
length, we have

which is shown in Fig.2.14 together with the numerical solution obtained by Bowie (1956).

Clearly for very short cracks the above approximation is very close to the numerical solution. For long
cracks (crack length ), we may assume as an engineering approach that the combination behaves as
if the hole were part of the crack, hence . As shown in Fig.2.14, these two asymptotic
solutions provide two bounds to the actual solution.

2.6 Relationship Between G and K
We can now return to the Griffith's energy concept, with special reference to its relation to the stress
intensity factor. Proceeding as before, we may identify the mechanical energy release during the crack
extension with the work done by hypothetically imposed surface tractions. As illustrated in Fig. 2.15,
forces are applied to the crack edge, sufficient to close the crack over an infinitesimal distance. The work
done by this force is obviously equal to the amount of energy that needs to be consumed in order to make
the crack grow by this distance.

Fig.2.15 Calculation of strain energy release rate

Thus the strain-energy release for a crack growth of  may be expressed as

where the factor 2 arises because the crack has two opposing crack surfaces, and the factor ½ is because
of the assumed proportionality between tractions and the corresponding displacement. The thickness of
the plate is denoted as . After substituting the expressions for  and  (see Table 3.1), the integration
of equation (2.34) leads to

for plane stress. Similarly, for plane strain condition (see Chapter 1)

It can also be shown for mode II and mode III,

for plane strain condition.

The total energy release rate in combined mode cracking can be obtained by summing up the energies for
different modes:

However, it is important to note that the derivation of both the stress intensity factor and the strain
energy release rate is independent of the actual fracture process hence critical condition of materials. In
other words, these only represent the "driving" force for crack growth and bear no relations to the
materials' "resistance". This will be discussed in the next chapter.

Example 2.7 For double cantilever beam (DCB) shown in Example 2.2 determine the stress intensity factor
 using elementary beam theory for applied load  or applied displacement .

Solution

From the previous analysis, the energy release rate for the cracked system is

the stress intensity factor is, according to equation (2.40)

for plane strain condition. Obviously the "driving" force increases linearly with crack length for a constant
applied load. The stress intensity factor can also be expressed in terms of the displacement, ,

It should be observed that, under displacement control, the stress intensity factor decreases as the crack
extends. Therefore the system is a stable one, in the sense that the crack would stop growing after a
certain crack advance unless the displacement is further increased.

Example 2.8 Determine compliance of a centre cracked specimen of width  and crack length 2 . The
thickness and height of the specimen are  and , respectively. The stress intensity factor is given in
Table 2.3.

Fig.2.16 A finite centre cracked plate

Solution From Table 2.3 the stress intensity factor is

Since

for centre cracked plate and

we have

hence the compliance is

where constant  represents the compliance of the specimen without crack, that is

To facilitate the integration, we adopt the following approximation

For comparison, two ratio between the two functions are shown in Fig.2.17. It is seen that the error is
less than 10 percent up to a ratio  = 0.5.

Fig.2.17 Approximations to hyperbolic function x·sec(x) by tan(x)

Now the compliance can be expressed as

This is graphically shown below. Clearly the compliance of the specimen increases rapidly as the crack
length increases.

These two examples demonstrate that the relationship between the energy release rate and stress
intensity factor is not only useful in determining the stress intensity factor for a cracked component from
compliance measurement or calculation, but also useful in assessing the compliance of a cracked
component.

Fig.2.18 Compliance of a centre cracked plate.
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Stress Intensity Factor

2.4 Stress Intensity Factor K
Before proceeding to consider the stress analysis of cracked bodies, it is important to distinguish basic
"modes" of stressing. As shown in Fig.2.9, the three basic modes are: opening (mode I), in-plane shear
(mode II) and out-of-plane tearing (mode III). Mode I corresponds to normal separation of the crack faces
under the action of tensile stresses, which is by far the most widely encountered in practice. The
difference between Mode II and Mode III is that the shearing action in the former case is normal to the
crack front in the plane of the crack whereas the shearing action in Mode III is parallel to the crack front.
A cracked body in reality can be loaded in any one of these three, or a combination of these three modes.

Fig.2.9 Basic modes of crack extension; (a) opening mode, (b) sliding mode, and (c) tearing mode.

By means of various techniques, the stress, strain, and displacement fields associated with a crack
embedded in an elastic solid can be solved analytically. One of such method is due to Westergaard, who
introduced the following stress function,

where  is an analytical function of the complex variable . Here  and 
. The semi-inverse solution (mainly by trial-and-error) for a crack in an infinite plate

subjected to a remote stress  is

Note the origin of the coordinate is at the center of the crack. By transforming the origin to the right-
hand crack tip, i.e., , all the stress components can be derived. In the limit of small enough
values of , equation (2.24) can be expressed as

From differentiation of equation (2.24),

hence

For the configuration shown in Fig.2.10, the stresses can be expressed in a simple form, noting equation
(1.14),

and displacement

where the  terms are the stress-intensity factors which embody the loading and geometry conditions. A
complete list of the stress and displacement fields for three fracture modes is given in Table 2.1. The
corresponding formulae for polar coordinates are given in Table 2.2.

The relative displacement between crack faces at position  is given by

for plane stress condition. Clearly the maximum crack opening occurs at the centre of the crack, equal to 
. The stress distribution ahead of the crack tip, not necessarily near crack tip, is

Fig.2.10 A crack of length 2a in an infinite plate

Example 2.4 Estimate the relative size of the singularity dominated zone ahead of a through crack in an
infinite plate subjected to remote uniaxial tension.

Solution Equations (2.27) and (2.28) can be rewritten as

and

Clearly the actual stress normal to the crack plane a  is higher than that given by equation (2.25a).
Hence the singular solution is valid only near the crack tip; we define this as the singularity dominated
zone, as shown in Fig.2.11. The size of this zone can be estimated by considering the ratio of the actual
stress on the crack plane to the singularity limit. This is depicted in Fig.2.12. Note that the stress in the 
direction is close to the singularity limit for relatively large distances from the crack tip, but the  stress
diverges considerably from the near-tip limit. Let us arbitrarily define the singularity zone as the region
within which the deviation is less than 20% for the  stress; this represents a value of  = 0.02. In other
words, the term "singularity zone" is approximately one-fiftieth of the half crack size.

Fig.2.11 Distribution of the stress normal to the crack plane

Fig.2.12 Ratio of actual stresses on the crack plane to the singularity limit

Table 2.1 Stress and displacement fields ahead a crack tip for modes I, II, III

Mode I Mode II Mode III

0

0

0

0

0 0

0 0

0

0

 is the shear modulus,  for plane strain and  for plane stress

It is easy to show that the principal stresses for mode I are

Table 2.2 Stress fields ahead a crack tip in a polar coordinate system

Mode I Mode II Mode III

0

0

0

0 0

0 0

In general the stress intensity factor depends on the applied stress, crack size, and the geometry,

where  is called the geometry factor, signifying the geometry of a crack system in relation to the
applied load. Normally this geometry factor can be looked up in technical reference books. For a centre
crack in an infinite plate,  = 1.0. The geometry of the cracked body imposes an effect on the new crack
tip stress field, thus modifying the value of the stress intensity factor. In general, if the edge crack is
situated in a strip of finite width, , then the correction factor becomes a function of ( )

The simplest geometry factor is that for an edge crack of length, , at the edge of a semi-infinite half
space: the increased ability of the crack to open causes the stress intensity factor to increase by some
12%,

The determination of this geometry term is a problem of stress analysis. Any realistic geometry requires
recourse to numerical methods, as very few closed form solutions exist. The most popular and efficient
method is finite element analysis. Other techniques include experimental and semi-theoretical; more will
be said about this later. Table 2.3 lists stress intensity factors and the geometry factors for a number of
practical configurations. A more comprehensive list could be found in a two-volume handbook (Murakami,
1987).

Table 2.3 Stress intensity factors

Geometry Stress Intensity Factor

1. Crack in an infinite body

2. Centre crack in a strip of finite width

3. Edge crack in a semi-infinite body

4. Centre crack in a finite width strip

 = 1.0  = ∞

0 1.12 1.12

0.2 1.37 1.21

0.4 2.11 1.35

0.5 2.83 1.46

5. Edge crack in a beam of width  subjected to
bending

0.1 1.044

0.2 1.055

0.3 1.125

0.4 1.257

0.5 1.500

0.6 1.915

6. Thin-section (plane stress) double split beam

7. Circumferentially notched rod

8. Compact tension specimen (CST)

9. Single-edge notch bend (SENB), thickness 

10. Crack emanating from a hole in an infinite
body

1.01 0.3256

1.02 0.4514

1.04 0.6082

1.06 0.7104

1.08 0.7843

1.10 0.8400

1.20 0.9851

1.25 1.0168

1.30 1.0358

1.40 1.0536

1.80 1.0495

A few points of interest arise from these solutions. Firstly, the stress intensity factor defines the
amplitude of the crack tip singularity, and consequently the intensity of the local stress field. Local
stresses near the crack tip are proportional to , which uniquely defines the crack tip conditions. This
single-parameter description of crack tip conditions is probably the most important concept of fracture
mechanics. Secondly, it should be pointed that these solutions are valid only in the vicinity of the crack
tip; higher order terms need to be taken into account when far field information is required.

2.5 Superposition Method
Since the stresses and displacements are linearly proportional to the stress intensity factor, it follows that
the superposition principle also applies to crack problems. This provides a very important tool for
applying fracture mechanics to practical problems with the aid of handbooks. The underlying principle is
that stresses induced by various loads can be added together. It should be pointed that the superposition
method applies only to cases where a structure is subjected to various loads but of the same mode. For
example, the crack tip stresses for a cracked component under combined tension and bending are,

Because the angular function  is the same for the same fracture mode, the above equation can be
rewritten as

where

In general, the stress intensity factor for a combination of load systems , ,  can be obtained simply
by superposition

and similarly for modes II and III.

Example 2.5 Determine the stress intensity factor for a edge cracked plate subjected to a combined
tension and bending.

Fig.2.13 An edge cracked plate under tension and bending

Solution

From Table 2.3, the stress intensity factor caused by the bending (case 5) is

The stress intensity factor for the tension load (case 4) is

Thus the total stress intensity factor is

For a ratio  = 0.2, we have

Example 2.6 Consider a symmetric case of two very small cracks at a circular hole (See Fig.2.14(a)) along
the x-axis in a wide plate subjected to uniaxial tension  along the y-axis. Determine the stress intensity
factor.

Fig.2.14 Stress intensity factor correction factor for a crack emanating from a hole.

(a) Two symmetrical cracks emanating from a circular hole and (b) the stress intensity factor.

Solution Due to the stress concentration near the circular hole (  = 3) an element at the rim of the hole
is subjected to a tensile stress 3  along the y-axis. By the principal of superposition and for a small crack
length, we have

which is shown in Fig.2.14 together with the numerical solution obtained by Bowie (1956).

Clearly for very short cracks the above approximation is very close to the numerical solution. For long
cracks (crack length ), we may assume as an engineering approach that the combination behaves as
if the hole were part of the crack, hence . As shown in Fig.2.14, these two asymptotic
solutions provide two bounds to the actual solution.

2.6 Relationship Between G and K
We can now return to the Griffith's energy concept, with special reference to its relation to the stress
intensity factor. Proceeding as before, we may identify the mechanical energy release during the crack
extension with the work done by hypothetically imposed surface tractions. As illustrated in Fig. 2.15,
forces are applied to the crack edge, sufficient to close the crack over an infinitesimal distance. The work
done by this force is obviously equal to the amount of energy that needs to be consumed in order to make
the crack grow by this distance.

Fig.2.15 Calculation of strain energy release rate

Thus the strain-energy release for a crack growth of  may be expressed as

where the factor 2 arises because the crack has two opposing crack surfaces, and the factor ½ is because
of the assumed proportionality between tractions and the corresponding displacement. The thickness of
the plate is denoted as . After substituting the expressions for  and  (see Table 3.1), the integration
of equation (2.34) leads to

for plane stress. Similarly, for plane strain condition (see Chapter 1)

It can also be shown for mode II and mode III,

for plane strain condition.

The total energy release rate in combined mode cracking can be obtained by summing up the energies for
different modes:

However, it is important to note that the derivation of both the stress intensity factor and the strain
energy release rate is independent of the actual fracture process hence critical condition of materials. In
other words, these only represent the "driving" force for crack growth and bear no relations to the
materials' "resistance". This will be discussed in the next chapter.

Example 2.7 For double cantilever beam (DCB) shown in Example 2.2 determine the stress intensity factor
 using elementary beam theory for applied load  or applied displacement .

Solution

From the previous analysis, the energy release rate for the cracked system is

the stress intensity factor is, according to equation (2.40)

for plane strain condition. Obviously the "driving" force increases linearly with crack length for a constant
applied load. The stress intensity factor can also be expressed in terms of the displacement, ,

It should be observed that, under displacement control, the stress intensity factor decreases as the crack
extends. Therefore the system is a stable one, in the sense that the crack would stop growing after a
certain crack advance unless the displacement is further increased.

Example 2.8 Determine compliance of a centre cracked specimen of width  and crack length 2 . The
thickness and height of the specimen are  and , respectively. The stress intensity factor is given in
Table 2.3.

Fig.2.16 A finite centre cracked plate

Solution From Table 2.3 the stress intensity factor is

Since

for centre cracked plate and

we have

hence the compliance is

where constant  represents the compliance of the specimen without crack, that is

To facilitate the integration, we adopt the following approximation

For comparison, two ratio between the two functions are shown in Fig.2.17. It is seen that the error is
less than 10 percent up to a ratio  = 0.5.

Fig.2.17 Approximations to hyperbolic function x·sec(x) by tan(x)

Now the compliance can be expressed as

This is graphically shown below. Clearly the compliance of the specimen increases rapidly as the crack
length increases.

These two examples demonstrate that the relationship between the energy release rate and stress
intensity factor is not only useful in determining the stress intensity factor for a cracked component from
compliance measurement or calculation, but also useful in assessing the compliance of a cracked
component.

Fig.2.18 Compliance of a centre cracked plate.
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