
Stress Intensity Factor

2.4 Stress Intensity Factor K
Before proceeding to consider the stress analysis of cracked bodies, it is important to distinguish basic
"modes" of stressing. As shown in Fig.2.9, the three basic modes are: opening (mode I), in-plane shear
(mode II) and out-of-plane tearing (mode III). Mode I corresponds to normal separation of the crack faces
under the action of tensile stresses, which is by far the most widely encountered in practice. The
difference between Mode II and Mode III is that the shearing action in the former case is normal to the
crack front in the plane of the crack whereas the shearing action in Mode III is parallel to the crack front.
A cracked body in reality can be loaded in any one of these three, or a combination of these three modes.

Fig.2.9 Basic modes of crack extension; (a) opening mode, (b) sliding mode, and (c) tearing mode.

By means of various techniques, the stress, strain, and displacement fields associated with a crack
embedded in an elastic solid can be solved analytically. One of such method is due to Westergaard, who
introduced the following stress function,

where  is an analytical function of the complex variable . Here  and 
. The semi-inverse solution (mainly by trial-and-error) for a crack in an infinite plate

subjected to a remote stress  is

Note the origin of the coordinate is at the center of the crack. By transforming the origin to the right-
hand crack tip, i.e., , all the stress components can be derived. In the limit of small enough
values of , equation (2.24) can be expressed as

From differentiation of equation (2.24),

hence

For the configuration shown in Fig.2.10, the stresses can be expressed in a simple form, noting equation
(1.14),

and displacement

where the  terms are the stress-intensity factors which embody the loading and geometry conditions. A
complete list of the stress and displacement fields for three fracture modes is given in Table 2.1. The
corresponding formulae for polar coordinates are given in Table 2.2.

The relative displacement between crack faces at position  is given by

for plane stress condition. Clearly the maximum crack opening occurs at the centre of the crack, equal to 
. The stress distribution ahead of the crack tip, not necessarily near crack tip, is

Fig.2.10 A crack of length 2a in an infinite plate

Example 2.4 Estimate the relative size of the singularity dominated zone ahead of a through crack in an
infinite plate subjected to remote uniaxial tension.

Solution Equations (2.27) and (2.28) can be rewritten as

and

Clearly the actual stress normal to the crack plane a  is higher than that given by equation (2.25a).
Hence the singular solution is valid only near the crack tip; we define this as the singularity dominated
zone, as shown in Fig.2.11. The size of this zone can be estimated by considering the ratio of the actual
stress on the crack plane to the singularity limit. This is depicted in Fig.2.12. Note that the stress in the 
direction is close to the singularity limit for relatively large distances from the crack tip, but the  stress
diverges considerably from the near-tip limit. Let us arbitrarily define the singularity zone as the region
within which the deviation is less than 20% for the  stress; this represents a value of  = 0.02. In other
words, the term "singularity zone" is approximately one-fiftieth of the half crack size.

Fig.2.11 Distribution of the stress normal to the crack plane

Fig.2.12 Ratio of actual stresses on the crack plane to the singularity limit

Table 2.1 Stress and displacement fields ahead a crack tip for modes I, II, III

Mode I Mode II Mode III

0

0

0

0

0 0

0 0

0

0

 is the shear modulus,  for plane strain and  for plane stress

It is easy to show that the principal stresses for mode I are

Table 2.2 Stress fields ahead a crack tip in a polar coordinate system

Mode I Mode II Mode III

0

0

0

0 0

0 0

In general the stress intensity factor depends on the applied stress, crack size, and the geometry,

where  is called the geometry factor, signifying the geometry of a crack system in relation to the
applied load. Normally this geometry factor can be looked up in technical reference books. For a centre
crack in an infinite plate,  = 1.0. The geometry of the cracked body imposes an effect on the new crack
tip stress field, thus modifying the value of the stress intensity factor. In general, if the edge crack is
situated in a strip of finite width, , then the correction factor becomes a function of ( )

The simplest geometry factor is that for an edge crack of length, , at the edge of a semi-infinite half
space: the increased ability of the crack to open causes the stress intensity factor to increase by some
12%,

The determination of this geometry term is a problem of stress analysis. Any realistic geometry requires
recourse to numerical methods, as very few closed form solutions exist. The most popular and efficient
method is finite element analysis. Other techniques include experimental and semi-theoretical; more will
be said about this later. Table 2.3 lists stress intensity factors and the geometry factors for a number of
practical configurations. A more comprehensive list could be found in a two-volume handbook (Murakami,
1987).

Table 2.3 Stress intensity factors

Geometry Stress Intensity Factor

1. Crack in an infinite body

2. Centre crack in a strip of finite width

3. Edge crack in a semi-infinite body

4. Centre crack in a finite width strip

 = 1.0  = ∞

0 1.12 1.12

0.2 1.37 1.21

0.4 2.11 1.35

0.5 2.83 1.46

5. Edge crack in a beam of width  subjected to
bending

0.1 1.044

0.2 1.055

0.3 1.125

0.4 1.257

0.5 1.500

0.6 1.915

6. Thin-section (plane stress) double split beam

7. Circumferentially notched rod

8. Compact tension specimen (CST)

9. Single-edge notch bend (SENB), thickness 

10. Crack emanating from a hole in an infinite
body

1.01 0.3256

1.02 0.4514

1.04 0.6082

1.06 0.7104

1.08 0.7843

1.10 0.8400

1.20 0.9851

1.25 1.0168

1.30 1.0358

1.40 1.0536

1.80 1.0495

A few points of interest arise from these solutions. Firstly, the stress intensity factor defines the
amplitude of the crack tip singularity, and consequently the intensity of the local stress field. Local
stresses near the crack tip are proportional to , which uniquely defines the crack tip conditions. This
single-parameter description of crack tip conditions is probably the most important concept of fracture
mechanics. Secondly, it should be pointed that these solutions are valid only in the vicinity of the crack
tip; higher order terms need to be taken into account when far field information is required.

2.5 Superposition Method
Since the stresses and displacements are linearly proportional to the stress intensity factor, it follows that
the superposition principle also applies to crack problems. This provides a very important tool for
applying fracture mechanics to practical problems with the aid of handbooks. The underlying principle is
that stresses induced by various loads can be added together. It should be pointed that the superposition
method applies only to cases where a structure is subjected to various loads but of the same mode. For
example, the crack tip stresses for a cracked component under combined tension and bending are,

Because the angular function  is the same for the same fracture mode, the above equation can be
rewritten as

where

In general, the stress intensity factor for a combination of load systems , ,  can be obtained simply
by superposition

and similarly for modes II and III.

Example 2.5 Determine the stress intensity factor for a edge cracked plate subjected to a combined
tension and bending.

Fig.2.13 An edge cracked plate under tension and bending

Solution

From Table 2.3, the stress intensity factor caused by the bending (case 5) is

The stress intensity factor for the tension load (case 4) is

Thus the total stress intensity factor is

For a ratio  = 0.2, we have

Example 2.6 Consider a symmetric case of two very small cracks at a circular hole (See Fig.2.14(a)) along
the x-axis in a wide plate subjected to uniaxial tension  along the y-axis. Determine the stress intensity
factor.

Fig.2.14 Stress intensity factor correction factor for a crack emanating from a hole.

(a) Two symmetrical cracks emanating from a circular hole and (b) the stress intensity factor.

Solution Due to the stress concentration near the circular hole (  = 3) an element at the rim of the hole
is subjected to a tensile stress 3  along the y-axis. By the principal of superposition and for a small crack
length, we have

which is shown in Fig.2.14 together with the numerical solution obtained by Bowie (1956).

Clearly for very short cracks the above approximation is very close to the numerical solution. For long
cracks (crack length ), we may assume as an engineering approach that the combination behaves as
if the hole were part of the crack, hence . As shown in Fig.2.14, these two asymptotic
solutions provide two bounds to the actual solution.

2.6 Relationship Between G and K
We can now return to the Griffith's energy concept, with special reference to its relation to the stress
intensity factor. Proceeding as before, we may identify the mechanical energy release during the crack
extension with the work done by hypothetically imposed surface tractions. As illustrated in Fig. 2.15,
forces are applied to the crack edge, sufficient to close the crack over an infinitesimal distance. The work
done by this force is obviously equal to the amount of energy that needs to be consumed in order to make
the crack grow by this distance.

Fig.2.15 Calculation of strain energy release rate

Thus the strain-energy release for a crack growth of  may be expressed as

where the factor 2 arises because the crack has two opposing crack surfaces, and the factor ½ is because
of the assumed proportionality between tractions and the corresponding displacement. The thickness of
the plate is denoted as . After substituting the expressions for  and  (see Table 3.1), the integration
of equation (2.34) leads to

for plane stress. Similarly, for plane strain condition (see Chapter 1)

It can also be shown for mode II and mode III,

for plane strain condition.

The total energy release rate in combined mode cracking can be obtained by summing up the energies for
different modes:

However, it is important to note that the derivation of both the stress intensity factor and the strain
energy release rate is independent of the actual fracture process hence critical condition of materials. In
other words, these only represent the "driving" force for crack growth and bear no relations to the
materials' "resistance". This will be discussed in the next chapter.

Example 2.7 For double cantilever beam (DCB) shown in Example 2.2 determine the stress intensity factor
 using elementary beam theory for applied load  or applied displacement .

Solution

From the previous analysis, the energy release rate for the cracked system is

the stress intensity factor is, according to equation (2.40)

for plane strain condition. Obviously the "driving" force increases linearly with crack length for a constant
applied load. The stress intensity factor can also be expressed in terms of the displacement, ,

It should be observed that, under displacement control, the stress intensity factor decreases as the crack
extends. Therefore the system is a stable one, in the sense that the crack would stop growing after a
certain crack advance unless the displacement is further increased.

Example 2.8 Determine compliance of a centre cracked specimen of width  and crack length 2 . The
thickness and height of the specimen are  and , respectively. The stress intensity factor is given in
Table 2.3.

Fig.2.16 A finite centre cracked plate

Solution From Table 2.3 the stress intensity factor is

Since

for centre cracked plate and

we have

hence the compliance is

where constant  represents the compliance of the specimen without crack, that is

To facilitate the integration, we adopt the following approximation

For comparison, two ratio between the two functions are shown in Fig.2.17. It is seen that the error is
less than 10 percent up to a ratio  = 0.5.

Fig.2.17 Approximations to hyperbolic function x·sec(x) by tan(x)

Now the compliance can be expressed as

This is graphically shown below. Clearly the compliance of the specimen increases rapidly as the crack
length increases.

These two examples demonstrate that the relationship between the energy release rate and stress
intensity factor is not only useful in determining the stress intensity factor for a cracked component from
compliance measurement or calculation, but also useful in assessing the compliance of a cracked
component.

Fig.2.18 Compliance of a centre cracked plate.
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Stress Intensity Factor

2.4 Stress Intensity Factor K
Before proceeding to consider the stress analysis of cracked bodies, it is important to distinguish basic
"modes" of stressing. As shown in Fig.2.9, the three basic modes are: opening (mode I), in-plane shear
(mode II) and out-of-plane tearing (mode III). Mode I corresponds to normal separation of the crack faces
under the action of tensile stresses, which is by far the most widely encountered in practice. The
difference between Mode II and Mode III is that the shearing action in the former case is normal to the
crack front in the plane of the crack whereas the shearing action in Mode III is parallel to the crack front.
A cracked body in reality can be loaded in any one of these three, or a combination of these three modes.

Fig.2.9 Basic modes of crack extension; (a) opening mode, (b) sliding mode, and (c) tearing mode.

By means of various techniques, the stress, strain, and displacement fields associated with a crack
embedded in an elastic solid can be solved analytically. One of such method is due to Westergaard, who
introduced the following stress function,

where  is an analytical function of the complex variable . Here  and 
. The semi-inverse solution (mainly by trial-and-error) for a crack in an infinite plate

subjected to a remote stress  is

Note the origin of the coordinate is at the center of the crack. By transforming the origin to the right-
hand crack tip, i.e., , all the stress components can be derived. In the limit of small enough
values of , equation (2.24) can be expressed as

From differentiation of equation (2.24),

hence

For the configuration shown in Fig.2.10, the stresses can be expressed in a simple form, noting equation
(1.14),

and displacement

where the  terms are the stress-intensity factors which embody the loading and geometry conditions. A
complete list of the stress and displacement fields for three fracture modes is given in Table 2.1. The
corresponding formulae for polar coordinates are given in Table 2.2.

The relative displacement between crack faces at position  is given by

for plane stress condition. Clearly the maximum crack opening occurs at the centre of the crack, equal to 
. The stress distribution ahead of the crack tip, not necessarily near crack tip, is

Fig.2.10 A crack of length 2a in an infinite plate

Example 2.4 Estimate the relative size of the singularity dominated zone ahead of a through crack in an
infinite plate subjected to remote uniaxial tension.

Solution Equations (2.27) and (2.28) can be rewritten as

and

Clearly the actual stress normal to the crack plane a  is higher than that given by equation (2.25a).
Hence the singular solution is valid only near the crack tip; we define this as the singularity dominated
zone, as shown in Fig.2.11. The size of this zone can be estimated by considering the ratio of the actual
stress on the crack plane to the singularity limit. This is depicted in Fig.2.12. Note that the stress in the 
direction is close to the singularity limit for relatively large distances from the crack tip, but the  stress
diverges considerably from the near-tip limit. Let us arbitrarily define the singularity zone as the region
within which the deviation is less than 20% for the  stress; this represents a value of  = 0.02. In other
words, the term "singularity zone" is approximately one-fiftieth of the half crack size.

Fig.2.11 Distribution of the stress normal to the crack plane

Fig.2.12 Ratio of actual stresses on the crack plane to the singularity limit

Table 2.1 Stress and displacement fields ahead a crack tip for modes I, II, III

Mode I Mode II Mode III

0

0

0

0

0 0

0 0

0

0

 is the shear modulus,  for plane strain and  for plane stress

It is easy to show that the principal stresses for mode I are

Table 2.2 Stress fields ahead a crack tip in a polar coordinate system

Mode I Mode II Mode III

0

0

0

0 0

0 0

In general the stress intensity factor depends on the applied stress, crack size, and the geometry,

where  is called the geometry factor, signifying the geometry of a crack system in relation to the
applied load. Normally this geometry factor can be looked up in technical reference books. For a centre
crack in an infinite plate,  = 1.0. The geometry of the cracked body imposes an effect on the new crack
tip stress field, thus modifying the value of the stress intensity factor. In general, if the edge crack is
situated in a strip of finite width, , then the correction factor becomes a function of ( )

The simplest geometry factor is that for an edge crack of length, , at the edge of a semi-infinite half
space: the increased ability of the crack to open causes the stress intensity factor to increase by some
12%,

The determination of this geometry term is a problem of stress analysis. Any realistic geometry requires
recourse to numerical methods, as very few closed form solutions exist. The most popular and efficient
method is finite element analysis. Other techniques include experimental and semi-theoretical; more will
be said about this later. Table 2.3 lists stress intensity factors and the geometry factors for a number of
practical configurations. A more comprehensive list could be found in a two-volume handbook (Murakami,
1987).

Table 2.3 Stress intensity factors

Geometry Stress Intensity Factor

1. Crack in an infinite body

2. Centre crack in a strip of finite width

3. Edge crack in a semi-infinite body

4. Centre crack in a finite width strip

 = 1.0  = ∞

0 1.12 1.12

0.2 1.37 1.21

0.4 2.11 1.35

0.5 2.83 1.46

5. Edge crack in a beam of width  subjected to
bending

0.1 1.044

0.2 1.055

0.3 1.125

0.4 1.257

0.5 1.500

0.6 1.915

6. Thin-section (plane stress) double split beam

7. Circumferentially notched rod

8. Compact tension specimen (CST)

9. Single-edge notch bend (SENB), thickness 

10. Crack emanating from a hole in an infinite
body

1.01 0.3256

1.02 0.4514

1.04 0.6082

1.06 0.7104

1.08 0.7843

1.10 0.8400

1.20 0.9851

1.25 1.0168

1.30 1.0358

1.40 1.0536

1.80 1.0495

A few points of interest arise from these solutions. Firstly, the stress intensity factor defines the
amplitude of the crack tip singularity, and consequently the intensity of the local stress field. Local
stresses near the crack tip are proportional to , which uniquely defines the crack tip conditions. This
single-parameter description of crack tip conditions is probably the most important concept of fracture
mechanics. Secondly, it should be pointed that these solutions are valid only in the vicinity of the crack
tip; higher order terms need to be taken into account when far field information is required.

2.5 Superposition Method
Since the stresses and displacements are linearly proportional to the stress intensity factor, it follows that
the superposition principle also applies to crack problems. This provides a very important tool for
applying fracture mechanics to practical problems with the aid of handbooks. The underlying principle is
that stresses induced by various loads can be added together. It should be pointed that the superposition
method applies only to cases where a structure is subjected to various loads but of the same mode. For
example, the crack tip stresses for a cracked component under combined tension and bending are,

Because the angular function  is the same for the same fracture mode, the above equation can be
rewritten as

where

In general, the stress intensity factor for a combination of load systems , ,  can be obtained simply
by superposition

and similarly for modes II and III.

Example 2.5 Determine the stress intensity factor for a edge cracked plate subjected to a combined
tension and bending.

Fig.2.13 An edge cracked plate under tension and bending

Solution

From Table 2.3, the stress intensity factor caused by the bending (case 5) is

The stress intensity factor for the tension load (case 4) is

Thus the total stress intensity factor is

For a ratio  = 0.2, we have

Example 2.6 Consider a symmetric case of two very small cracks at a circular hole (See Fig.2.14(a)) along
the x-axis in a wide plate subjected to uniaxial tension  along the y-axis. Determine the stress intensity
factor.

Fig.2.14 Stress intensity factor correction factor for a crack emanating from a hole.

(a) Two symmetrical cracks emanating from a circular hole and (b) the stress intensity factor.

Solution Due to the stress concentration near the circular hole (  = 3) an element at the rim of the hole
is subjected to a tensile stress 3  along the y-axis. By the principal of superposition and for a small crack
length, we have

which is shown in Fig.2.14 together with the numerical solution obtained by Bowie (1956).

Clearly for very short cracks the above approximation is very close to the numerical solution. For long
cracks (crack length ), we may assume as an engineering approach that the combination behaves as
if the hole were part of the crack, hence . As shown in Fig.2.14, these two asymptotic
solutions provide two bounds to the actual solution.

2.6 Relationship Between G and K
We can now return to the Griffith's energy concept, with special reference to its relation to the stress
intensity factor. Proceeding as before, we may identify the mechanical energy release during the crack
extension with the work done by hypothetically imposed surface tractions. As illustrated in Fig. 2.15,
forces are applied to the crack edge, sufficient to close the crack over an infinitesimal distance. The work
done by this force is obviously equal to the amount of energy that needs to be consumed in order to make
the crack grow by this distance.

Fig.2.15 Calculation of strain energy release rate

Thus the strain-energy release for a crack growth of  may be expressed as

where the factor 2 arises because the crack has two opposing crack surfaces, and the factor ½ is because
of the assumed proportionality between tractions and the corresponding displacement. The thickness of
the plate is denoted as . After substituting the expressions for  and  (see Table 3.1), the integration
of equation (2.34) leads to

for plane stress. Similarly, for plane strain condition (see Chapter 1)

It can also be shown for mode II and mode III,

for plane strain condition.

The total energy release rate in combined mode cracking can be obtained by summing up the energies for
different modes:

However, it is important to note that the derivation of both the stress intensity factor and the strain
energy release rate is independent of the actual fracture process hence critical condition of materials. In
other words, these only represent the "driving" force for crack growth and bear no relations to the
materials' "resistance". This will be discussed in the next chapter.

Example 2.7 For double cantilever beam (DCB) shown in Example 2.2 determine the stress intensity factor
 using elementary beam theory for applied load  or applied displacement .

Solution

From the previous analysis, the energy release rate for the cracked system is

the stress intensity factor is, according to equation (2.40)

for plane strain condition. Obviously the "driving" force increases linearly with crack length for a constant
applied load. The stress intensity factor can also be expressed in terms of the displacement, ,

It should be observed that, under displacement control, the stress intensity factor decreases as the crack
extends. Therefore the system is a stable one, in the sense that the crack would stop growing after a
certain crack advance unless the displacement is further increased.

Example 2.8 Determine compliance of a centre cracked specimen of width  and crack length 2 . The
thickness and height of the specimen are  and , respectively. The stress intensity factor is given in
Table 2.3.

Fig.2.16 A finite centre cracked plate

Solution From Table 2.3 the stress intensity factor is

Since

for centre cracked plate and

we have

hence the compliance is

where constant  represents the compliance of the specimen without crack, that is

To facilitate the integration, we adopt the following approximation

For comparison, two ratio between the two functions are shown in Fig.2.17. It is seen that the error is
less than 10 percent up to a ratio  = 0.5.

Fig.2.17 Approximations to hyperbolic function x·sec(x) by tan(x)

Now the compliance can be expressed as

This is graphically shown below. Clearly the compliance of the specimen increases rapidly as the crack
length increases.

These two examples demonstrate that the relationship between the energy release rate and stress
intensity factor is not only useful in determining the stress intensity factor for a cracked component from
compliance measurement or calculation, but also useful in assessing the compliance of a cracked
component.

Fig.2.18 Compliance of a centre cracked plate.
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Picture I.51: Mode I,
opening.

Picture I.52: Mode II,
sliding.

Picture I.53: Mode III,
shearing.

Picture I54: Polar
coordinates linked to the
crack tip. The crack is in

red.

Classical solid mechanics can be applied on each of these modes in order to compute the stress
and strain field. To do so the polar coordinates linked to the crack tip will be used, see Picture
I.54. The only things that differentiate the three modes are the boundary conditions of the
problem, which can directly be written in terms of the polar coordinates as ( - ). Once the
boundary conditions are known, it is possible to solve the problem. The calculations will be
presented in details in the next lecture, but we can already discuss the results. The solution is
obtained as series in , where  is the distance to the crack tip, see Picture I.54, and reads for
Mode I:

where  is an expression of the Poisson ratio  and is equal to  for the plane stress state and to  for the plane strain
state. For Mode II one can find a similar solution:

Finally, for Mode III the solution reads:
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The only things that differentiate the three modes are the boundary

conditions. The solution is obtained in √r, where r is the distance to

the crack tip, and for Mode I:

where κ is an expression of the Poisson

ratio ν and is equal to ((3- ν)/(1+ ν)) for 

the plane stress state and to (3 - 4 ν) for 

the plane strain state.

Clearly the dominant term near the crack tip is in C/√r meaning there is a
singularity at the crack tip. Thus the value of the stress cannot be used to determine
whether the crack will propagate or not. The idea of Irwin was thus to consider "how
fast the stress tends to infinity" near the crack tip. To do so he has defined the stress
intensity factor (SIF) to circumvent the singularity of the solution



Picture I.55: Typical values of the
toughness and yield stress for

different materials (ranges provided
for illustration purpose only).

Picture I.56: Evolution of the
toughness in function of the

temperature for steel (ranges
provided for illustration purpose

only).

Let us first consider a mode I loading and let us analyze the dominant term of  ( ), which is the stress field characterizing
the stress concentration of a plate under tension, see Picture I.50. Clearly the dominant term near the crack tip is in ,

meaning there is a singularity at the crack tip. Thus the value of the stress cannot be used to determine whether the crack will
propagate or not. The idea of Irwin was thus to consider "how fast the stress tends to infinity" near the crack tip. To do so he
has defined the stress intensity factor (SIF) to circumvent the singularity of the solution:

In this equation we have also treated the two other fracture modes by considering the dominant stress terms of mode II ( ) and
of mode III ( ). For a given loading mode, this SIF, expressed in , characterizes the stress evolution near the crack tip:

where  and  are functions defined for each mode but independent of the loading and geometry (as long as we consider the
asymptotic value). The loading and geometry effects are thus fully reported to the value of the SIF. Irwin has thus the idea to
consider the value of the SIF to detect the crack propagation. Indeed experiments have shown that for a given material, which
obeys to the LEFM assumption, the crack propagates if the SIF reaches a threshold  called the toughness of the material.

Crack propagation criterion and toughnessCrack propagation criterion and toughness

From the previous section, one can write the crack propagation criterion in mode I as:

where  is the mode I toughness. Remember, under the LEFM assumption:

 depends on the geometry and loading conditions only,
 depends on the material only.

Orders of magnitude for the toughness are for example for concrete 0.2-1.4 
and typical values for other materials are reported in Picture I.55. Materials for which
the toughness is lower than 30 to 40  are considered as brittle materials.
Ductile materials have a higher toughness, but as we will discuss it in length later they
usually do not satisfy to the LEFM assumption as their behavior is no longer elastic. As
discussed before, some materials have a brittle behavior at low temperature and a
ductile behavior at high temperature. For such materials the toughness depends on the
temperature and there exists a transition region as shown in Picture I.56. Note that at
high stress rate these materials also loose ductility.

Evaluation of the SIFsEvaluation of the SIFs

The next question which arises is "How do we can determine this SIF" that has to be compared to the material toughness. As
said, this SIF depends on the geometry and on the loading condition. In practice, there exist 5 different methods.
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Picture I.55: Typical values of the
toughness and yield stress for

different materials (ranges provided
for illustration purpose only).

Picture I.56: Evolution of the
toughness in function of the

temperature for steel (ranges
provided for illustration purpose

only).

Let us first consider a mode I loading and let us analyze the dominant term of  ( ), which is the stress field characterizing
the stress concentration of a plate under tension, see Picture I.50. Clearly the dominant term near the crack tip is in ,

meaning there is a singularity at the crack tip. Thus the value of the stress cannot be used to determine whether the crack will
propagate or not. The idea of Irwin was thus to consider "how fast the stress tends to infinity" near the crack tip. To do so he
has defined the stress intensity factor (SIF) to circumvent the singularity of the solution:

In this equation we have also treated the two other fracture modes by considering the dominant stress terms of mode II ( ) and
of mode III ( ). For a given loading mode, this SIF, expressed in , characterizes the stress evolution near the crack tip:

where  and  are functions defined for each mode but independent of the loading and geometry (as long as we consider the
asymptotic value). The loading and geometry effects are thus fully reported to the value of the SIF. Irwin has thus the idea to
consider the value of the SIF to detect the crack propagation. Indeed experiments have shown that for a given material, which
obeys to the LEFM assumption, the crack propagates if the SIF reaches a threshold  called the toughness of the material.

Crack propagation criterion and toughnessCrack propagation criterion and toughness

From the previous section, one can write the crack propagation criterion in mode I as:

where  is the mode I toughness. Remember, under the LEFM assumption:

 depends on the geometry and loading conditions only,
 depends on the material only.

Orders of magnitude for the toughness are for example for concrete 0.2-1.4 
and typical values for other materials are reported in Picture I.55. Materials for which
the toughness is lower than 30 to 40  are considered as brittle materials.
Ductile materials have a higher toughness, but as we will discuss it in length later they
usually do not satisfy to the LEFM assumption as their behavior is no longer elastic. As
discussed before, some materials have a brittle behavior at low temperature and a
ductile behavior at high temperature. For such materials the toughness depends on the
temperature and there exists a transition region as shown in Picture I.56. Note that at
high stress rate these materials also loose ductility.

Evaluation of the SIFsEvaluation of the SIFs

The next question which arises is "How do we can determine this SIF" that has to be compared to the material toughness. As
said, this SIF depends on the geometry and on the loading condition. In practice, there exist 5 different methods.
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where f and g are functions defined for each mode but independent of the loading
and geometry (as long as we consider the asymptotic value). The loading and
geometry effects are thus fully reported to the value of the SIF. Irwin has thus the
idea to consider the value of the SIF to detect the crack propagation. Indeed
experiments have shown that for a given material, which obeys to the LEFM
assumption, the crack propagates if the SIF reaches a threshold KC called the
toughness of the material.

For a given loading mode, this SIF,
expressed in MPa √m, characterizes the
stress evolution near the crack tip:



Therefore, one can write the crack propagation

criterion in mode I as:

KI < KIC→ the crack does not propagate,

KI > KIC→ the crack does propagate,

where KIC is the mode I toughness.
Remember, under the LEFM assumption: KI
depends on the geometry and loading conditions
only, KIC depends on the material only.

Materials for which the toughness is lower than 30 to 40 MPa √m
are considered bri9le materials.
Ductile materials have a higher toughness, but usually do not
satisfy to the LEFM assumption as their behavior is no longer
elastic. Some materials have a bri9le behavior at low
temperature and a ductile behavior at high temperature. For
such materials the toughness depends on the temperature and
there exists a transition region



Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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Energy Release Rate G and Compliance
The energy release rate G provides a powerful tool for studying fracture
problems of cracked bodies from a global view.
Let us consider the load displacement curve for a cracked specimen made
of linear elasticmedia as shown
When the crack has length a , the specimen is less compliant than when
the crack has length a + δa.
The compliance C of the specimen is the displacement per unit load, i.e
the reciprocal of stiffness.
In general we may write
C=u/P
which is a geometry constant,
dependent on crack length and dimensions of the body
The displacement u refers to the relative displacement
measured between the loading points.



A cracked body may be subjected to loads or displacement, or a

combination of both. Let’s consider two extreme cases: constant load

and constant displacement or "fixed grip" condition, separately.

Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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Ẇ U̇E U̇P
K̇ Γ̇
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Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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Constant Load Conditions
The potential energy in the specimen is the area above the load-displacement curve
(the area below the load versus displacement curve is the strain energy stored in the
specimen while the area of the rectangle is the work done by external force).

The potential energy change δΠ is the difference between the external work done
and the stored but recoverable elastic strain energy. The energy stored in the
specimen for a crack of length a + δa is greater than in the situation when the crack
was length a , the increase being

Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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However, to aNain this stored energy the load has moved a
distance u2 − u1 and so the work done by the external applied
load is

The amount of the energy that appears to have "vanished" is equal
to 

Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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equal to the
energy spent in
increasing
crack surfaces.



Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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Constant Displacement Condition
Under fixed grip condition, an increase in crack length causes a decrease in stored
elastic strain energy given by 

Constant load requires a potential energy release rate of 1⁄2 P δu .
Fixed-grip condition requires a potential energy release of 1⁄2 u δP .

The compliance of C is the same for both cases, which is the same as stating that

the difference between the two shaded areas tends to zero. In other words,

δu = C δP , and the release of energy for crack extension in both cases is given by

Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.

This page provides the sections on energy balance
and energy release rate during crack growth from
Wang, C. H. "Introduction to Fracture Mechanics,"
DSTO Aeronautical and Maritime Research
Laboratory, DSTO-GD-0103, 1996.

Other related chapters from "Introduction to
Fracture Mechanics" can be seen to the right.

Introduction to Fracture Mechanics

1. Introduction to Fracture Mechanics
2. Fracture Mechanics Fundamentals
3. Energy Concepts for Crack Growth
4. Stress Intensity Factor
5. Plastic Yielding at Crack Tip
6. Fracture Criteria
7. Fatigue Crack Growth

Γ 2a
S
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Therefore the strain (or potential) energy release rate
(with respect to crack length) for small crack
extension δA can be found experimentally in a plate
of uniform thickness B as



Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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For a double cantilever beam (DCB) with a ≫ 2h and l ≫ 2h, determine the strain energy release 
rate G 

Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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= + + +Ẇ U̇E U̇P K̇ Γ̇ (2.1)

K K̇

= =∂
∂t

∂
∂A

∂A
∂t Ȧ ∂
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Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.

This page provides the sections on energy balance
and energy release rate during crack growth from
Wang, C. H. "Introduction to Fracture Mechanics,"
DSTO Aeronautical and Maritime Research
Laboratory, DSTO-GD-0103, 1996.

Other related chapters from "Introduction to
Fracture Mechanics" can be seen to the right.

Introduction to Fracture Mechanics

1. Introduction to Fracture Mechanics
2. Fracture Mechanics Fundamentals
3. Energy Concepts for Crack Growth
4. Stress Intensity Factor
5. Plastic Yielding at Crack Tip
6. Fracture Criteria
7. Fatigue Crack Growth

Γ 2a
S
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Energy Concepts for Crack Growth

2.1 Energy Balance During Crack Growth
The obvious difference between a cracked body and an uncracked body is the additional surface
associated with a crack. It is a well known fact that creating new (crack) surfaces consumes energies,
because surfaces carry higher energy than the body. It then follows that whether or not a stressed cracked
body remains stable or becomes unstable is dependent on whether the cracked body contains sufficient
energy to afford to creating additional surface while still maintains equilibrium. This is the basic concept
that Griffith proposed in the 1920's to formulate a linear elastic theory of crack propagation. To illustrate
this point, let us consider an elastic body  containing an internal crack of length , which is subjected
to loads applied at the outer boundary ; see Fig.2.1.

Fig.2.1 Equilibrium and energy balance of a cracked system

According to the law of conservation of energy the work performed per unit time by the applied loads (
) must be equal to the rates of change of the internal elastic energy ( ), plastic energy ( ), kinetic

energy ( ) of the body, and the energy per unit time ( ) spent in increasing the crack area. In other
words,

where a dot over the letter refers to differentiation with respect to time.

If the crack grows slowly the kinematic energy  (or  = 0) is negligible and can be omitted from the
energy balance equation. Since all changes with respect to time are caused by changes in crack size, we
have

where  represents the crack area, and is equal to  for the system shown in Fig.2.1. Here  is the
thickness of the plate containing the crack and  denotes the crack surface area growth rate per unit
time. Note that the total crack surface area is twice the area of one crack surface. Therefore equation
(2.1) can be rewritten as

where

is the potential energy of the system. Equation (2.3) indicates that the reduction of potential energy is
equal to the energy dissipated in plastic work and surface creation.

2.2 Griffith Theory
For an ideally brittle material, the energy dissipated in plastic deformation is negligible and can be
ignored, i.e. . Since the energy spent in increasing the crack area is independent of the crack size,
equation (2.3) can be rewritten as

where  represents the energy required to form unit new material surface area. The factor 2 in the above
equation refers to the two new material surfaces formed during crack growth. Simply, the above
equilibrium equation means that sufficient potential energy must be available in the system to overcome
the surface energy of the material. In general, for an elastic body containing a crack, we can define a
crack-extension force, ,

per unit width of crack front. Note that  when there is only one crack tip (e.g. edge cracked
component) and  for centre cracked system. It is important to note the distinction between
crack area and surface area. Since a crack includes two matching surfaces, the crack surface area is twice
that of the projected crack area, and is equal to  in the present case.

We can also define the total energy of the system, which contains three parts: (1) the amount of work
done by the applied loads, (2) the elastic energy, and (3) the energy required to form the crack surface.
The total energy is

According to linear elasticity theory, a body under constant applied loads obeys

which is sometimes called Clapeyron's theorem of linear elastostatics; a simple proof of which will be
shown later. In this case equation (2.6) can be expressed as

The total energy of the system is

Griffith used the stress solutions by Inglis (1939) to show that the increase in strain energy due to the
elliptic cavity (zero radius) in an infinite plane is given by

where  is the plate thickness, and

where  is the free surface energy per unit area, which is clearly a material constant. Thus, the total
system energy becomes, for the case of a thin plate,

A schematic drawing of the above equation is shown in Fig 2.2, which exhibits a maximum at the following
crack length,

Clearly the critical crack length below which the crack would remain stable decreases quickly with stress
level. Alternatively, the critical stress level that a cracked body can sustain is

for constant load under plane stress condition.

Fig.2.2 Energetics of Griffith crack in uniform tension: linear elastic.

There are two important implications of equation (2.15). Firstly, the critical stress level for a given crack
length varies with materials, viz some materials (with high surface energy) are tougher than others.
Secondly, the critical stress level decreases with crack length, i.e. the larger the crack, the easier it may
become unstable.

The physical meaning of the energy release rate  is that it characterises the amount of energy that
would be released if the crack advances a unit length. When this value is greater than the surface energy
of the material, then crack growth would occur, otherwise, no crack propagation would be possible. It
should be pointed out that equation (2.9) is correct only when the cracked body behaves linearly; if the
object is nonlinear elastic or considerable plasticity occurs, equation (2.8) is no longer valid and hence
the original equation (2.6) should be used instead. A graphical illustration is shown in Fig. 2.3. For linear
elastic problem, the potential energy  is equal to the area of the triangle (but opposite in
sign), incidentally it is also equal to the strain energy in this instance. If the elastic body is nonlinear, like
rubber,  is equal to the upper hatched area, while  is actually equal to the area below the load-
deflection curve.

Fig.2.3 Potential energy for (a) linear and (b) nonlinear elasticity.

2.3 Energy Release Rate G and Compliance
The energy release rate  defined in equation (2.9) provides a powerful tool for studying fracture
problems of cracked bodies from a global view. The energy release rate is sometimes referred to as the
rate of strain energy flux flowing toward a crack tip as the crack extends.

Let us consider the load displacement curve for a cracked specimen made of linear elastic media as
shown in Fig.2.4. When the crack has length , the specimen is less compliant than when the crack has
length . The compliance  of the specimen is the displacement per unit load, i.e the reciprocal of
stiffness. In general we may write

which is a geometry constant, dependent on crack length and dimensions of the body. Here the
displacement  refers to the relative displacement measured between the loading points; see Fig.2.4. A
cracked body may be subjected to loads or displacement, or a combination of both. In the following we
will consider two extreme cases: constant load (Fig.2.5a) and constant displacement or "fixed grip"
condition (Fig.2.5b), separately.

Fig.2.4 Geometry of an edge cracked plate under tension

Fig.2.5 Load displacement characteristics for cracked bodies: (a) constant load crack extension, (b) crack

extension under constant displacement.

2.3.1 Constant Load Conditions
As discussed previously, the potential energy in the specimen is the area above the load-displacement
curve (the area below the load versus displacement curve is the strain energy stored in the specimen
while the area of the rectangle is the work done by external force). The potential energy change  is
the difference between the external work done and the stored but recoverable elastic strain energy. The
energy stored in the specimen for a crack of length  is greater than in the situation when the crack
was length , the increase being

However, to attain this stored energy the load has moved a distance  and so the work done by the
external applied load is

Clearly the elastic energy stored in the system which could be released back to the environment after
crack extension is less than the work done by the applied loads. The amount of the energy that appears to
have "vanished" is equal to

which is the hatched area in Fig.2.5(a), equal to the energy spent in increasing crack surfaces. In this
case, the energy required for crack extension is not supplied by the existing strain energy stored in the
system, but the work performed by the external loads; the elastic energy of the solid is actually
increased. Thus the term "strain energy release rate" in this case is physically inappropriate. A better
name should be "potential energy release rate".

2.3.2 Constant Displacement Condition
Similarly, under fixed grip condition, an increase in crack length causes a decrease in stored elastic strain
energy given by

which is the hatched area in Fig.2.5(b). Since no external work is done, the above energy is that spent in
increasing crack surfaces.

2.3.3 Determination Of Energy Release Rate From Compliance
To summarise the above results for constant load and constant displacement,

the constant load condition requires a potential energy release rate of .
the fixed-grip condition requires a potential energy release of .

In mathematical terms as  tends to zero we can say that the compliance of  is the same for both
cases, which is the same as stating that the difference between the two shaded areas of Fig.2.5 tends to
zero. In other words, , and the release of energy for crack extension in both cases is given by

Therefore the strain (or potential) energy release rate (with respect to crack length) for small crack
extension  can, therefore, be found experimentally in a plate of uniform thickness  as

Thus by taking measurements of the compliance of a specimen with different crack lengths, it is possible
to determine  for a given crack length and so determine . Note  when there is only one
crack tip (e.g. edge cracked component) and  for centre cracked system. However, it is
important to note that the strain energy release rate is identical for constant load and constant
displacement conditions. As indicated by equation (2.22), the strain energy release for a given applied
load is proportional to the differentiative of the compliance with respect to crack length, independent of
loading condition.

Example 2.1 For a double cantilever beam (DCB) with  and , as shown in Fig.2.6, determine
the strain energy release rate .

Fig.2.6 Double cantilever beam

Solution

The two arms of the DCB may be considered to a first approximation as cantilevers.

Method 1: The displacement at the loading point is

where

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate  is

Method 2: The strain energy stored in the cantilever beam specimen can be easily obtained by
integration,

according to equation (2.9) the energy release rate is

Example 2.2 Determine the energy release rate for a end notched flexure (ENF) component, shown in
Fig.2.7, which is adhesively bonded.

Fig.2.7 End notched flexure specimen and bending moment diagram.

Solution Similar to the previous example, the strain energy stored in the component is

where  is the Young's modulus of the plate and

so

hence the energy release rate is

Example 2.3 Determine the energy release rate for a cracked lap shear (CLS) specimen (see Fig.2.8).

Fig.2.8 Adhesively bonded cracked lap shear specimen

Solution Assuming the bending deflection of the overhang region does not contribute to the strain energy,
the strain energy stored in the system is

thus the energy release rate is

It is interesting to note that, unlike the previous example, the energy release rate for a cracked lap shear
specimen is independent of crack length. This feature offers a convenient method in determining the
critical energy release rate, as the precise location of the crack tip is not important.

It should be pointed that the above method applies only when the entire system, including adhesive, is
elastic. When the adhesive yields, a rather more complicated analysis using elasto-plastic fracture
mechanics is required. Furthermore, the local bending effect due to load eccentricity is ignored in the
present analysis. In reality, when the overhang length, , is sufficiently long, geometrically nonlinear
deformation would occur, which will induce a local peel stress at the crack tip, hence a mode I fracture
component.
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The two arms of the DCB may be considered to a first approximation
as cantilevers. 

Method 1: The displacement at the loading point is

hence the relative displacement of the two points of load application is

thus the compliance of the specimen is

It follows that the energy release rate G is


