4. Centre crack in a finite width strip u
o Ki=f <—) o+/ma
Tttt v
d a/W fla/W)
s H bW =1.0 | VYW =«
—2a —
0 1.12 1.12
0.2 1.37 1.21
I
o 0.4 2.11 1.35
0.5 2.83 1.46
5. Edge crack in a beam of width B subjected to
bending K =f <i> c\/ma where ¢ = oM
VT w BW?
w
a/W fla/W)
M M 0.1 1.044
0.2 1.055
0.3 1.125
0.4 1.257
0.5 1.500
0.6 1.915
6. Thin-section (plane stress) double split beam p
a
K] = 2\/§ m
—
a =|] 2c




7. Circumferentially notched rod
_0.932PvV/D

D
for 1.2 < — <2.1
! Vrd? d

P
D
EI
P

8. Compact tension specimen (CST)

——1.25W —»

9. Single-edge notch bend (SENB), thickness B

g B=Wn
. a o yARVE
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10. Crack emanating from a hole in an infinite

body Ki=f (%) ma
a/R f(a/R)
1.01 0.3256
1.02 0.4514
1.04 0.6082
1.06 0.7104
1.08 0.7843
1.10 0.8400
1.20 0.9851
1.25 1.0168
1.30 1.0358
1.40 1.0536

1.80 1.0495



X
where K is an expression of the Poisson

ratio v and 1s equal to ((3- v)/(1+v)) for
the plane stress state and to (3 - 4 v) for

the plane strain state.

% tlle crack tip, and for Mode I:

v 4 The only things that differentiate the three modes are the boundary

conditions. The solution is obtained in Vr, where r is the distance to

raxx = Wcos— [1—s1nﬁs1n ]+(9( )
Oyy = %cosg [1 +sin? sin g] + O (r°)
Oy = %cos 2 cos 2 sin & + O (r°)
u, = C(I;”’) \/T COS (%) [K‘— 1 +23in2(§)] + O (r)
u, = C(lg’“) \/?sin(g) K+ 1 - 2C082(§>] + O (7)

Clearly the dominant term near the crack tip is in C/Nr meaning there is a
singularity at the crack tip. Thus the value of the stress cannot be used to determine
whether the crack will propagate or not. The idea of Irwin was thus to consider "how
fast the stress tends to infinity" near the crack tip. To do so he has defined the stress
intensity factor (SIF) to circumvent the singularity of the solution



stress intensity factor (SIF) (g, = 1im,_, (VIaromoel|,y) = CyIx
K = lim_o (V2aredd|,_y) = C\2z .
Ki = lim,_o (V27zrozede|,_) = CV2x

AN

For a given loading mode, this SIF, gmodel — \/2 fmodet (g

. . nr
expressed in MPa Ym, characterizes the e i
stress evolution near the crack tip: u = Ki\ [ 58 (0)

where f and g are functions defined for each mode but independent of the loading
and geometry (as long as we consider the asymptotic value). The loading and
geometry effects are thus fully reported to the value of the SIF. Irwin has thus the
idea to consider the value of the SIF to detect the crack propagation. Indeed
experiments have shown that for a given material, which obeys to the LEFM
assumption, the crack propagates if the SIF reaches a threshold K. called the

toughness of the material.




Toughness K.« [MPay/] Therefore, one can write the crack propagation

U pen I criterion in mode I as:

1404 @ Wild Low steel steels .
steel
I
100- T K; < K;c — the crack does not propagate,
60 — Composites
Q alloys K;> K;c — the crack does propagate,
20- Al alloys Yield 6% [MPa] h o th d h
0 , , , = where K| is the mode I toughness.
0 500 1000 1500 2000

Remember, under the LEFM assumption: K;
depends on the geometry and loading conditions

p Tougness fio (MPavm only, K;- depends on the material only.
200+ Aisi403 12 cr
160 - 4 Materials for which the toughness is lower than 30 to 40 MPa Vm
120 t;rsgilt?é:mtime are considered brittle materials.

Ductile materials have a higher toughness, but usually do not
50~ satisty to the LEFM assumption as their behavior is no longer
40_@ > elastic. Some materials: have a brittle.z behavior at low
. | | Teflnperaturelf [Cl temperature and a ductile behavior at high temperature. For

200  -100 0 100 200 such materials the toughness depends on the temperature and

there exists a transition region



Energy Release Rate G and Compliance
The energy release rate G provides a powerful tool for studying fracture
problems of cracked bodies from a global view.

Let us consider the load displacement curve for a cracked specimen made
of linear elastic media as shown

When the crack has length a, the specimen is less compliant than when
the crack has length a + da.

The compliance C of the specimen is the displacement per unit load, i.e
the reciprocal of stiffness.

In general we may write — g)
C=u/P i
which is a geometry constant, L L e

dependent on crack length and dimensions of the body| @ L 4.|
The displacement u refers to the relative displacement + 7| o
measured between the loading points. Pl




A cracked body may be subjected to loads or displacement, or a
combination of both. Let's consider two extreme cases: constant load

and constant displacement or "fixed grip" condition, separately.

»
Load P 4 Load P

P,




Constant Load Conditions
The potential energy in the specimen is the area above the load-displacement curve

(the area below the load versus displacement curve is the strain energy stored in the
specimen while the area of the rectangle is the work done by external force).

The potential energy change Il is the difference between the external work done
and the stored but recoverable elastic strain energy. The energy stored in the
specimen for a crack of length a + 0a is greater than in the situation when the crack

was length a , the increase being SUp = —Piur — —Pyu; Cadp 1 .
2 2
P’ .....................
However, to attain this stored energy the load has moved a ) ;a*dag
distance u, — u; and so the work done by the external applied G
u, u;

loadis sw = Pi(up —uy)

equal to the
energy spent in
increasing
crack surfaces.

The amount of the energy that appears to have "vanished" is equal

to 1 1

—0Ill = 6W — 6Ug = P1(upy — uy) — EPI(MZ —up) = §P1(u2 —up)




Constant Displacement Condition

Under fixed grip condition, an increase in crack len
elastic strain energy given by

oth causes a decrease in stored

Constant load requires a potential energy release rate of 12 P du .

1
oUg = E(Pl — Po)uy

Fixed-grip condition requires a potential energy release of 12 u oP . "

The compliance of C is the same for both cases, which is the same as stating that
the difference between the two shaded areas tends to zero. In other words,

Ou = C OP, and the release of energy for crack extension in both cases is given by

1 Therefore the strain (or potential) energy release rate o)
—_CPSP (with respect to crack length) for small crack G = P ou _ P~ oC

exten§ion OA can be found experimentally in a plate 284 2 SA
of uniform thickness B as




For a double cantilever beam (DCB) with a > 2h and 1 > 2h, determine the strain energy release

rate G ,

The two arms of the DCB may be considered to a first approximation . T =
as cantilevers. sz

— 2h

Method 1: The displacement at the loading point is

Pa’ Bh?
- where ] = —
3EI 12

hence the relative displacement of the two points of load application is
8Pa’> Fig.2.6 Double cantilever beam

EBh?
v 8a’

thus the compliance of the specimen is C=—=
P P P EBK3

_ P?oC  12P%*a*
- 2B da  EB2i3

u

—

w TF T

v =2u=

It follows that the energy release rate G is G




