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Plastic Yielding at Crack Tip

3. Plastic Yielding at Crack Tip
In real materials, the theoretically very high elastic stresses in the vicinity of a crack tip exceed the yield
strength of the materials. Consequently local plastic yielding will occur. Plastic yielding and the
subsequent local elastic-plastic deformation at the tip of a crack plays an extremely important role in the
fracture process of materials.

3.1 Irwin's Model
To determine the plastic zone at the crack tip, Irwin presented a simple model assuming the material is
elastic-perfectly plastic. Consider the distribution of tensile stress , acting across a line extending
ahead of and in the same direction as the crack. The local y-stress near the crack tip is,

where  is the distance from the crack tip. As a first approximation, we can assume that the boundary
between elastic and plastic behaviour occurs when the stress given by the above equation satisfies a yield
criterion. For plane stress conditions, yielding occurs when , the uniaxial yield strength of the
material. Then the distance ahead of the crack tip over which this happens is

Fig.3.1 First-order and second-order estimates of plastic zone size

However, when yielding occurs, stresses must redistribute in order to satisfy equilibrium. Since when the
elastic stress distribution within the plastic zone is replaced by a constant yield stress, the equilibrium
condition along the  direction is violated. The cross-hatched region in Fig. 3.1 represents force that
would be present in an elastic material but cannot be carried in the elastic-plastic material because the
stress cannot exceed yield. The plastic zone must increase in size in order to accommodate these forces.
A simple force balance leads to a second order estimation, assuming the force carried by the elastic stress
distribution is the same before and after plastic yielding,

hence

Alternatively, the above result can also be obtained by considering a fictitious crack extending to the
centre of the plastic zone, its tip centring at , where  is the size of the plastic zone yet to be
determined. Stress distribution directly ahead of the crack is thus

Now we assume that the boundary between elastic and plastic regions is given by  at ,
hence,

which is the same as equation (3.4). These results need to be modified for plane strain condition; see
below.

Example 3.9 Determine the value of  where the plane strain plastic zone engulfs the singularity
dominated zone.

From Example 2.4 the size of the singularity zone is estimated to be equal to . According to equation
(3.4) we have

or

Therefore for a centre cracked plate, the applied stress has to be less than approximately 14.1% of the
yield stress of the material; otherwise the stress intensity factor  would no longer provide a unique
characterising parameter. Under plane strain condition, however, the applied stress can be higher, up to
35%. This will be discussed later.

3.2 The Strip Yield Model
A different approach to finding the extent of the plastic zone was proposed by Dugdale and Barenblatt,
who considered a long, slender plastic zone at the crack tip in a non-hardening material in plane stress.
The strip yield plastic zone is modelled by assuming a crack of length  where  is the length of the
plastic zone, with a closure stress equal to  applied at each crack tip, see Fig.3.2. The size of  is
chosen such that the stress singularity vanishes at the end of the effective crack:

Fig.3.2 The strip yield approach.

The stress intensity due to the closure stress can be estimated by considering a normal force  applied to
the crack at a distance  from the centre line of the crack; the resultant stress intensity factors at the
two crack tips are,

Here the closure force at a point within the strip yield zone is

thus the total stress intensity at each crack tip resulting from the closure stresses is obtained by replacing
 with  and so

The stress intensity from the remote tensile stress, , thereafter, equation (3.7) leads to

i.e.

Neglecting the higher order terms in the series development of the cosine,  is found

which is of the same order as equation (3.4) (the difference is about 23% ).

3.3 Plane Stress versus Plane Strain
From Chapter 2, the triaxial stress state directly ahead of a crack tip is, ,  for plane
stress and  for plane strain. According to the Von Mises yield criterion, in terms of principal
stresses,

where  is the uniaxial yield stress. It can be easily shown that

For  = 1/3 we have effective yield stress . for plane strain. This means the plastic zone size
under plane strain condition is approximately one ninth that under plane stress condition. In general, the
effective yield stress can be expressed as,

where  is termed the plasticity constraint factor. From previous analysis,  = 1 for plane stress and  = 3
for plane strain. For a finite thickness plate, an empirical value often used is  = √3, that is,

Therefore the size of the plastic zone under plane strain condition is smaller than under plane stress
condition by a factor of 1.732. In this case, the maximum applied stress level above which LEFM would
become invalid is approximately three times higher, up to 35%.

Example 3.10 Determine the plastic zone length at fracture for a mild steel with  = 70 MPa√m and 
 = 450 MPa for (a) plane stress and (b) finite thickness condition.

Solution Under plane stress condition,

and for finite thickness condition (taking  = √3),

3.4 Shapes of Plastic Zone
As the stress state ahead of a crack tip is three-dimensional, the shape of the plastic zone is not
necessarily a circle, but needs to be determined using an appropriate yield criterion. Either the Tresca
criterion or the Von Mises criterion is usually applied. Adopt the von Mises criterion given by equation
(3.12), noting the crack tip stress distributions given by equations (2.29) and (2.30), the boundary of the
plastic zone as a function of  can be derived for plane stress condition and plane strain condition [

( )], respectively,

These two equations are plotted in Fig.3.3. Note that these are the first order estimates. Nevertheless, it
indicates significant differences in the sizes and shapes of the mode I plastic zones for plane stress and
plane strain conditions. The latter condition suppresses yielding, resulting in a smaller plastic zone for a
given stress intensity factor. Similar equations can also be obtained for Mode II and Mode III.

Fig.3.3 Crack tip plastic zone shapes under mode I loading

A modification similar to that outlined in section 3.1 can also be carried out to improve the above
estimate; the second order estimate is just twice that given in equations (3.18) and (3.19), i.e.

The three dimensional slip planes of a mode I crack are shown in Fig.3.4 for plane stress and plane strain.
For a finite plate, due the free surface effect, the plastic zone looks like a "dog-bone", as depicted in
Fig.3.4. Due to this thickness effect, the plastic constraint factor normally lies between 1 and 3, for
example  = 1.7. It is important to point out that although the plastic zone at the middle of the plate is
smaller than that near the surface, the high triaxial stress that exists at the middle of the plate (this is
sometimes called plastic constraint) causes crack growth to occur there first, under both static and
fatigue conditions.

Fig.3.4 Slip-planes aruund a mode I crack for (a) plane stress and (b) plane strain

Fig.3.5 Schematic representation of the three-dimensional nature of the plastic zone around a crack tip
in finite plate

3.5 Crack Tip Opening Displacement
Due to plastic deformation at crack tip, the originally point sharp crack tip would become blunt
(otherwise stress singularity will exist), resulting in a finite radius at the tip of the initial crack. This
phenomenon is normally called crack tip opening, as if the tip of the crack opens up. One simple way of
estimating this radius is through the fictitious crack method discussed in section 3.1. Since the fictitious
crack tip is at a distance /2 ahead of the initial crack tip, a finite gap now exists between the faces of
the fictitious crack at the tip of the initial crack, as depicted in Fig.3.6, which is equal to

where  and  are the effective Young's modulus and yield stress, respectively, which are defined by
equations (1.8) and (3.16) for plane stress and plane strain. This is shown in Fig.3.7.

Fig.3.6 Crack tip opening displacement.

A similar estimate can be obtained from the strip yield model, although the calculations are slightly more
involved. Here only the final result is given,

which is about 27 per cent lower than the Irwin model prediction Again  and  for plane strain
condition are as defined previously. The fact that the crack tip would attain a finite radius due to plastic
deformation makes the distinction between notch and crack even more blurry. But it is important to note
that the crack tip opening displacement is stress dependent, unlike notch root radius.

Fig.3.7 Opening profile of a fictitious crack

However, the definition of crack tip opening displacement in general is not so straightforward, as the
relative displacement between the upper and lower crack faces at the very tip of the crack is
mathematically zero. A more general, alternative definition is given by Rice (1968): crack tip opening
displacement is defined as the opening where 45° lines emanating back from the crack tip intercept the
crack faces, as depicted in Fig.3.8. Often the crack opening profile behind the crack tip is plotted versus
the distance from the crack tip, and then the height at the intersection between the crack opening curve
and line  is defined as the crack tip opening displacement.

Fig.3.8 Definition of CTOD and possible Finite Element Method procedure
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Failure will occur when K = Kc , the residual strength of a cracked component is
therefore

The size of the crack at this stress is called the "critical crack size".
It should be pointed that this equation is valid only when linear fracture mechanics is
applicable, that is the net stress level is far below the material's yield stress.
Otherwise the component will fail in a different mode: plastic collapse.

Consider a centre cracked panel with a finite width W , the absolute highest load
carrying capability is bounded by the plastic collapse strength: the stress level over
the entire section exceeds the yield or ultimate tensile strength of the material. It is
easy to show that the nominal stress at collapse is

When this happens, fracture will occur, regardless of the fracture toughness.

Residual Strength and Critical Crack Size

Fracture Criteria

4. Fracture Criteria

4.1 K as a Failure Criterion
From previous analysis, it is clear that when stresses at the crack tip exceed yield (which always happens
for engineering materials), plasticity results. However, if the redistribution of stress has a minimal effect
on the crack tip elastic stress field, then the  approach to defining the stress field is still of sufficient
accuracy for engineering applications. Thus, if plasticity is minimal, then a LEFM approach is justified.

Of importance to practical applications is the critical stress and strain state at the crack tip zone, which,
when attained, causes the crack to propagate in a brittle, catastrophic manner. The most dangerous
situation occurs when a crack is in a high-energy but constrained field that permits only slight plastic
deformation at the crack tip. Expressed another way, the amount of energy absorbed in plastic
deformation is reduced to a minimum extent and much more energy is thus available for fracture, i.e.
crack propagation. This critical state can be described by a critical stress intensity factor ,

which may imply either a low stress acting on long crack or a small crack suffering a high stress. It is
important to note the different meaning of the two sides of the above equation. The left hand side
represents the driving force of the crack, which depends on the applied loads and the geometry of the
components. The right hand side of equation (4.1) signifies the materials' resistance to fracture, which is
an environment and load rate dependent material property.

Laboratory testing indicates that the fracture toughness value depends on the thickness  of the
specimen tested. The plane strain fracture toughness of the materials is a material property (denoted as 

, where subscript I denotes mode I loading). Under plane strain condition, since the crack tip plastic
zone is small in relation to the component thickness, plastic contraction in the through thickness direction
is suppressed by the surrounding elastic material. Tensile stresses are set up in the thickness direction of
the plastic zone so that the stress state is triaxial, giving rise to constrained plastic deformation. Table
4.1 lists some typical values of plane strain fracture toughness. As before, the suffix I refers to the tensile
opening mode of crack extension, whilst II and III symbolise shear and anti-plane tear modes, respectively.

When the plastic zone is large compared with the component's thickness, the triaxiality may be relaxed
and the through thickness stresses normal to the plane of the component will be negligible. In this case,
the fracture toughness may vary with the specimen thickness, . The form of variation of  with
specimen thickness is schematically shown in Fig. 4.1. Beyond a certain thickness, a state of plane strain
prevails (see Chapter 3) and the toughness reaches asymptotic value. If the thickness of the specimen is
reduced, more energy will be dissipated as a result of plastic deformation near the specimen surface
which is under plane stress condition. There seems to exist an optimum thickness where the toughness
reaches its highest level, see Fig.4.1.

Fig.4.1 Effect of thickness on fracture toughness

In order to achieve plane strain conditions at the elastic-plastic interface, the plastic zone must be small
compared to the specimen thickness, crack length, and width of ligament

According to the ASTM standard, the following requirements must be satisfied

which is equivalent to setting the plasticity constraint factor to be √3.

4.2 Residual Strength and Critical Crack Size
Since the severity of a cracked component is characterised by stress intensity factor, , and failure will
occur when , the residual strength of a cracked component is,

where  is a geometry correction factor. Note that the stress  is the gross stress on the section on which
the function  is defined, where residual strength implies a net section condition. In the case of plane
strain . It is conservative to assume that  if the detailed stress state is not known. The
size of the crack at this stress is called the "critical crack size". This is normally difficult to solve in closed
form as  is normally a complicated function of crack length and component geometry. Nevertheless,
it can be solved numerically through iteration or, if the value of  varies slowly with crack size, e.g. for a
relatively small crack in a wide panel, an approximate value may be used. The critical crack size that a
component can tolerate for a given load is

The above two equations provide the basis for fracture mechanics based design methodologies.

It should be pointed that equation (4.4) is valid only when linear fracture mechanics is applicable, that is
the net section stress level is far below the material's yield stress. Otherwise the component will fail in a
different mode: plastic collapse. Consider a centre cracked panel with a finite width , the absolute
highest load carrying capability is bounded by the plastic collapse strength: the stress level over the
entire section exceeds the yield or ultimate tensile strength of the material. It is easy to show that the
nominal stress at collapse is

When this happens, the plastic deformation becomes unbounded and fracture will occur, regardless of the
fracture toughness.

Therefore there are two possible failure modes: brittle fracture and plastic collapse. Should the fracture
stress  be higher than the stress causing failure by collapse, then collapse will prevail. As a result, the
actual residual strength is the lowest of  and . Considering a centre cracked panel, there are three
situations in which a plastic collapse failure would prevail: (1) the toughness is very high; (2) the crack is
very small; and (3) the width  is very small. A sketch is shown in Fig.4.2. The intersection of the two
curves is given by

In the short crack regime, the exact transition from one mechanism to the other is not clear, but a
plausible engineering approximation is the "tangent" rule: drawing a tangent line passing through the
ultimate tensile strength point. More accurate prediction can be achieved by using elasto-plastic fracture
mechanics methods.

Fig.4.2 Competition between fracture and collapse

Example 4.11 Estimate the failure load under uniaxial tension for a centre-cracked panel of aluminium
alloy of width 500 mm, and thickness 4 mm, for the following values of crack length  20 mm
and  100 mm. Yield stress 350 MPa and fracture toughness 70 MPa√m.

Solution There are two possible failure modes: plastic collapse and brittle fracture. We will assess the
load level required for each mode to prevail.

(i)  20 mm.

Plastic collapse load 672 kN

Fracture load  where  394.6 MPa

thus 790 kN.

The actual failure load is the smaller of the above results, 672 kN.

(ii)  100 mm.

Plastic collapse load 560 kN

Fracture load  where  172.2 MPa

thus 334.57 kN.

The actual failure load is the smaller of the above results, 334.6 kN.

4.3 R-curve
Crack extension occurs when the stress intensity factor or the strain energy release rate attains a critical
value. In a truly brittle material like glass or ice, the energy for crack growth is the surface energy to
form the new surface, i.e

where the factor "2" is included to represent the two crack surfaces being created. It should be noted that
the energy required for a crack to grow in an engineering material is much larger than the surface energy.
This is because plastic deformation will inevitably occur near the crack tip region and during crack
extension energy is consumed in deforming the material plastically. In general the fracture criterion can
be written as

Where  refers the plastic work per unit area of surface created, and is typically much larger than .

Normally it is convenient to replace  with , the material resistance to crack extension. A plot of 
versus crack extension is called a resistance curve or R curve, whereas the plot of  versus crack
extension is the driving force curve. It is important to note that the driving force curve is entirely
dependent on the structure geometry and loading condition, whilst the R curve is a material property
dependent on temperature, environment, and loading rate etc. Most brittle materials exhibit a constant
resistance sometimes called "no R-curve" effect, as shown in Fig.4.3(a). Many ductile materials, such as
low strength steels, possess a rising R curve: a plastic zone at the tip of crack increases with crack length,
hence the energy that would dissipate to overcome plastic deformation would increase. This is illustrated
in Fig.4.3(b). The exact shape of the R curve depends on the material and, to a lesser extent, on the
configuration of the cracked structure.

Fig.4.3 Schematic driving force and R curve diagrams

If a component, containing a crack or crack-like defect, and experiencing some plasticity in the vicinity of
the crack, is loaded by increments the crack will extend and stop after each increase in load. This
condition is defined as slow-stable crack growth. In this condition the value of the material resistance 
is equal to the applied value  at any given applied stress. Consequently the fracture toughness ( ) may
be obtained by the use of crack growth resistance curves (commonly called R-curves). These curves are a
continuous record of toughness development in terms of crack growth resistance, denoted , plotted
against crack extension under continuously increasing values of stress intensity factor, . The R-curves
characterise the resistance to fracture of materials during incremental slow-stable crack extension as a
result of the growth of the plastic zone as the crack extends.

Consider a plate with a through crack of initial length . At a fixed remote stress, , the energy release
rate varies linearly with crack size. If the material has a flat R-curve, as shown in Fig 4.3(a), one can
define a critical value of energy release rate, , unambiguously. The crack will grow if the applied 
reaches this value. For materials with a rising R curve, such as a crack plate reinforced with a composite
patch, however, one cannot uniquely characterise a single value toughness value. In this case, normally
we define that crack growth will occur when

This corresponds to when the driving force curve is tangent with the R curve, as depicted in Fig.4.3(b).
This can be interpreted as the critical condition when the energy available in the component for crack
growth exceeds the maximum amount that the material can dissipate. This point of tangency depends on
the shape of the driving force, which itself depends on the shape of the configuration of the structure.
For example, the driving force curve for a through crack configuration is linear, but  in the double
cantilever beam specimen varies with 2; these two configurations would have different  values for a
given R curve.

Example 4.12 The following data were obtained from a series of tests conducted on pre-cracked
specimens of thickness 10 mm,

Crack length
 (mm)

Critical load
 (kN)

Critical displacement
 (mm)

30 4 0.4

40 3.5 0.5

50.5 3.12 0.63

61.6 2.8 0.78

71.7 2.67 0.94

79 2.56 1.09

where  and  are the critical load and displacement at each crack growth. The load displacement record
for all crack lengths is linear up to a critical point. Determine the critical value of the strain energy
release rate  from (a) the load displacement records and (b) the compliance-crack length curve.

Solution The load-deflection curve can be constructed from the tabulated data, as shown in Fig.4.4(a).
The area for a triangle depicted in Fig.4.4(b) is,

 

and so the energy released during each crack growth can be calculated

The results for the five crack increments are: 30.0, 30.7, 30.2, 29.1, 30.8. (The unit is kJ/m2). Clearly
this material exhibits little R-curve behaviour.

Fig.4.4 Load-deflection curve

4.4 Mixed Mode Loading: Fracture and Crack Path
Most structures and components are subjected to more than one loading. When two or more modes of
loading are present, equation (2.20) indicates that energy release rate contributions from each mode are
additive. This equation assumes self-similar crack growth, however. If we consider an angled crack
problem as depicted in Fig.4.5, coplanar growth means that the crack would grow at an angle 90°
degrees from the applied stress. In practice, the crack tends to propagate in a direction orthogonal to the
applied normal stress; i.e. the mixed-mode crack becomes a mode I crack. This is because a propagating
crack seeks the path of least resistance (or the path of maximum driving force, or the path that the
maximum amount of energy can be released) and need not be confined to its initial plane. A number of
criteria have been proposed to account for such effects. Among them, the most widely used are (i) crack
growth will take place in the direction of maximum energy release rate; (ii) crack growth occurs in a
direction perpendicular to the maximum principal stress; (iii) crack growth occurs where the strain energy
density is the minimum. It can be shown that criteria (i) and (ii) are identical and the differences
between these criteria are generally small.

Fig.4.5 Through crack in an infinite plate under mixed mode loading

If a crack is loaded in combined mode I and II, the stresses  and  at the crack tip can be derived from
the expressions in Table.2.2, by adding the stresses due to the separate mode I and mode II. The result is
as follows:

Suppose that the crack in question forms an infinitesimal kink at an angle  from the plane of crack, as
shown in Fig.4.6. The local stress intensity factors at the tip of this kink differ from the nominal  values
of the main crack. If we define a local  coordinate system at the tip of the kink, we can define the
local mode I and mode II stress intensity factors,

Fig.4.6 Kink at the tip of a crack inclined at an angle to the applied load

The energy release rate for the kinked crack is

According to the energy release rate criterion, crack propagation would occur in a direction along which
the above energy release rate attains a maximum value. This is shown in Fig. 4.7, where the energy
release rate  is normalised by .

Fig.4.7 Local energy release rate at the tip of a kinked crack

Since

the maximum of the strain energy release rate  is equivalent to  or ,
thus the peak in  at each  corresponds to the point where  exhibits a maximum and 

. In other words, the energy release rate criterion is identical to maximum hoop stress
criterion. Figs.4.8 show the hoop stress distributions for three mixed mode ratios:  (mode I), 

,  (mode II).

Fig.4.8 Distributions of hoop stress for various mixed mode ratios

The arrows in the figures mark the direction of crack propagation, which is given by the following
equation

so

which yields,

The critical value of  or  at which crack propagation occurs can be determined from the following
equation,

Example 4.13 Determine the propagation angle for an inclined crack subjected to uniaxial tension.

Solution: Assume the crack is inclined at an angle  to the applied load, as depicted in Fig.4.5. The mode
I and mode II stress intensity factors can be determined as,

consequently the mode I to mode II ratio is equal to (1/ ), hence the kink angle is equal to ,

which is depicted in Fig.4.9, together with some experimental data.

Fig.4.9 Variation of crack extension angle versus the crack inclination angle β
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Table 4.1 Typical values of fracture toughness

Material Young's
modulus 

(GPa)

Yield stress 
 (MPa)

Toughness 
 (MPa√m)

Thickness requirement
2.5( )2 (mm)

Steels 210

medium carbon 260 54 108

pressure vessel 470 208 489.6

high strength alloy 1460 98 11

AFC 77 stainless 1530 83 7.4

Aluminum alloys 72

2024 T8 420 27 10.4

7075 T6 540 30 7.9

7178 T6 560 23 4.2

Titanium alloys 108

Ti-6Al-4V 1060 73 12.6

(high yield) 1100 38 3.1

Comparative data

Concrete 45 80 0.2-1.4

Ice 9.1 85 0.2*

Epoxy 2-3 30-60 0.5-3

Boron fibre 441 3000

Carbon fibre 250-390 2200-2700

Boron/epoxy composite 220-340 725-1730 46

CFRP 70-200 300-1400 32-45

GFRP 38 100-300 20-60

* not at room temperature!
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Fracture Criteria

4. Fracture Criteria

4.1 K as a Failure Criterion
From previous analysis, it is clear that when stresses at the crack tip exceed yield (which always happens
for engineering materials), plasticity results. However, if the redistribution of stress has a minimal effect
on the crack tip elastic stress field, then the  approach to defining the stress field is still of sufficient
accuracy for engineering applications. Thus, if plasticity is minimal, then a LEFM approach is justified.

Of importance to practical applications is the critical stress and strain state at the crack tip zone, which,
when attained, causes the crack to propagate in a brittle, catastrophic manner. The most dangerous
situation occurs when a crack is in a high-energy but constrained field that permits only slight plastic
deformation at the crack tip. Expressed another way, the amount of energy absorbed in plastic
deformation is reduced to a minimum extent and much more energy is thus available for fracture, i.e.
crack propagation. This critical state can be described by a critical stress intensity factor ,

which may imply either a low stress acting on long crack or a small crack suffering a high stress. It is
important to note the different meaning of the two sides of the above equation. The left hand side
represents the driving force of the crack, which depends on the applied loads and the geometry of the
components. The right hand side of equation (4.1) signifies the materials' resistance to fracture, which is
an environment and load rate dependent material property.

Laboratory testing indicates that the fracture toughness value depends on the thickness  of the
specimen tested. The plane strain fracture toughness of the materials is a material property (denoted as 

, where subscript I denotes mode I loading). Under plane strain condition, since the crack tip plastic
zone is small in relation to the component thickness, plastic contraction in the through thickness direction
is suppressed by the surrounding elastic material. Tensile stresses are set up in the thickness direction of
the plastic zone so that the stress state is triaxial, giving rise to constrained plastic deformation. Table
4.1 lists some typical values of plane strain fracture toughness. As before, the suffix I refers to the tensile
opening mode of crack extension, whilst II and III symbolise shear and anti-plane tear modes, respectively.

When the plastic zone is large compared with the component's thickness, the triaxiality may be relaxed
and the through thickness stresses normal to the plane of the component will be negligible. In this case,
the fracture toughness may vary with the specimen thickness, . The form of variation of  with
specimen thickness is schematically shown in Fig. 4.1. Beyond a certain thickness, a state of plane strain
prevails (see Chapter 3) and the toughness reaches asymptotic value. If the thickness of the specimen is
reduced, more energy will be dissipated as a result of plastic deformation near the specimen surface
which is under plane stress condition. There seems to exist an optimum thickness where the toughness
reaches its highest level, see Fig.4.1.

Fig.4.1 Effect of thickness on fracture toughness

In order to achieve plane strain conditions at the elastic-plastic interface, the plastic zone must be small
compared to the specimen thickness, crack length, and width of ligament

According to the ASTM standard, the following requirements must be satisfied

which is equivalent to setting the plasticity constraint factor to be √3.

4.2 Residual Strength and Critical Crack Size
Since the severity of a cracked component is characterised by stress intensity factor, , and failure will
occur when , the residual strength of a cracked component is,

where  is a geometry correction factor. Note that the stress  is the gross stress on the section on which
the function  is defined, where residual strength implies a net section condition. In the case of plane
strain . It is conservative to assume that  if the detailed stress state is not known. The
size of the crack at this stress is called the "critical crack size". This is normally difficult to solve in closed
form as  is normally a complicated function of crack length and component geometry. Nevertheless,
it can be solved numerically through iteration or, if the value of  varies slowly with crack size, e.g. for a
relatively small crack in a wide panel, an approximate value may be used. The critical crack size that a
component can tolerate for a given load is

The above two equations provide the basis for fracture mechanics based design methodologies.

It should be pointed that equation (4.4) is valid only when linear fracture mechanics is applicable, that is
the net section stress level is far below the material's yield stress. Otherwise the component will fail in a
different mode: plastic collapse. Consider a centre cracked panel with a finite width , the absolute
highest load carrying capability is bounded by the plastic collapse strength: the stress level over the
entire section exceeds the yield or ultimate tensile strength of the material. It is easy to show that the
nominal stress at collapse is

When this happens, the plastic deformation becomes unbounded and fracture will occur, regardless of the
fracture toughness.

Therefore there are two possible failure modes: brittle fracture and plastic collapse. Should the fracture
stress  be higher than the stress causing failure by collapse, then collapse will prevail. As a result, the
actual residual strength is the lowest of  and . Considering a centre cracked panel, there are three
situations in which a plastic collapse failure would prevail: (1) the toughness is very high; (2) the crack is
very small; and (3) the width  is very small. A sketch is shown in Fig.4.2. The intersection of the two
curves is given by

In the short crack regime, the exact transition from one mechanism to the other is not clear, but a
plausible engineering approximation is the "tangent" rule: drawing a tangent line passing through the
ultimate tensile strength point. More accurate prediction can be achieved by using elasto-plastic fracture
mechanics methods.

Fig.4.2 Competition between fracture and collapse

Example 4.11 Estimate the failure load under uniaxial tension for a centre-cracked panel of aluminium
alloy of width 500 mm, and thickness 4 mm, for the following values of crack length  20 mm
and  100 mm. Yield stress 350 MPa and fracture toughness 70 MPa√m.

Solution There are two possible failure modes: plastic collapse and brittle fracture. We will assess the
load level required for each mode to prevail.

(i)  20 mm.

Plastic collapse load 672 kN

Fracture load  where  394.6 MPa

thus 790 kN.

The actual failure load is the smaller of the above results, 672 kN.

(ii)  100 mm.

Plastic collapse load 560 kN

Fracture load  where  172.2 MPa

thus 334.57 kN.

The actual failure load is the smaller of the above results, 334.6 kN.

4.3 R-curve
Crack extension occurs when the stress intensity factor or the strain energy release rate attains a critical
value. In a truly brittle material like glass or ice, the energy for crack growth is the surface energy to
form the new surface, i.e

where the factor "2" is included to represent the two crack surfaces being created. It should be noted that
the energy required for a crack to grow in an engineering material is much larger than the surface energy.
This is because plastic deformation will inevitably occur near the crack tip region and during crack
extension energy is consumed in deforming the material plastically. In general the fracture criterion can
be written as

Where  refers the plastic work per unit area of surface created, and is typically much larger than .

Normally it is convenient to replace  with , the material resistance to crack extension. A plot of 
versus crack extension is called a resistance curve or R curve, whereas the plot of  versus crack
extension is the driving force curve. It is important to note that the driving force curve is entirely
dependent on the structure geometry and loading condition, whilst the R curve is a material property
dependent on temperature, environment, and loading rate etc. Most brittle materials exhibit a constant
resistance sometimes called "no R-curve" effect, as shown in Fig.4.3(a). Many ductile materials, such as
low strength steels, possess a rising R curve: a plastic zone at the tip of crack increases with crack length,
hence the energy that would dissipate to overcome plastic deformation would increase. This is illustrated
in Fig.4.3(b). The exact shape of the R curve depends on the material and, to a lesser extent, on the
configuration of the cracked structure.

Fig.4.3 Schematic driving force and R curve diagrams

If a component, containing a crack or crack-like defect, and experiencing some plasticity in the vicinity of
the crack, is loaded by increments the crack will extend and stop after each increase in load. This
condition is defined as slow-stable crack growth. In this condition the value of the material resistance 
is equal to the applied value  at any given applied stress. Consequently the fracture toughness ( ) may
be obtained by the use of crack growth resistance curves (commonly called R-curves). These curves are a
continuous record of toughness development in terms of crack growth resistance, denoted , plotted
against crack extension under continuously increasing values of stress intensity factor, . The R-curves
characterise the resistance to fracture of materials during incremental slow-stable crack extension as a
result of the growth of the plastic zone as the crack extends.

Consider a plate with a through crack of initial length . At a fixed remote stress, , the energy release
rate varies linearly with crack size. If the material has a flat R-curve, as shown in Fig 4.3(a), one can
define a critical value of energy release rate, , unambiguously. The crack will grow if the applied 
reaches this value. For materials with a rising R curve, such as a crack plate reinforced with a composite
patch, however, one cannot uniquely characterise a single value toughness value. In this case, normally
we define that crack growth will occur when

This corresponds to when the driving force curve is tangent with the R curve, as depicted in Fig.4.3(b).
This can be interpreted as the critical condition when the energy available in the component for crack
growth exceeds the maximum amount that the material can dissipate. This point of tangency depends on
the shape of the driving force, which itself depends on the shape of the configuration of the structure.
For example, the driving force curve for a through crack configuration is linear, but  in the double
cantilever beam specimen varies with 2; these two configurations would have different  values for a
given R curve.

Example 4.12 The following data were obtained from a series of tests conducted on pre-cracked
specimens of thickness 10 mm,

Crack length
 (mm)

Critical load
 (kN)

Critical displacement
 (mm)

30 4 0.4

40 3.5 0.5

50.5 3.12 0.63

61.6 2.8 0.78

71.7 2.67 0.94

79 2.56 1.09

where  and  are the critical load and displacement at each crack growth. The load displacement record
for all crack lengths is linear up to a critical point. Determine the critical value of the strain energy
release rate  from (a) the load displacement records and (b) the compliance-crack length curve.

Solution The load-deflection curve can be constructed from the tabulated data, as shown in Fig.4.4(a).
The area for a triangle depicted in Fig.4.4(b) is,

 

and so the energy released during each crack growth can be calculated

The results for the five crack increments are: 30.0, 30.7, 30.2, 29.1, 30.8. (The unit is kJ/m2). Clearly
this material exhibits little R-curve behaviour.

Fig.4.4 Load-deflection curve

4.4 Mixed Mode Loading: Fracture and Crack Path
Most structures and components are subjected to more than one loading. When two or more modes of
loading are present, equation (2.20) indicates that energy release rate contributions from each mode are
additive. This equation assumes self-similar crack growth, however. If we consider an angled crack
problem as depicted in Fig.4.5, coplanar growth means that the crack would grow at an angle 90°
degrees from the applied stress. In practice, the crack tends to propagate in a direction orthogonal to the
applied normal stress; i.e. the mixed-mode crack becomes a mode I crack. This is because a propagating
crack seeks the path of least resistance (or the path of maximum driving force, or the path that the
maximum amount of energy can be released) and need not be confined to its initial plane. A number of
criteria have been proposed to account for such effects. Among them, the most widely used are (i) crack
growth will take place in the direction of maximum energy release rate; (ii) crack growth occurs in a
direction perpendicular to the maximum principal stress; (iii) crack growth occurs where the strain energy
density is the minimum. It can be shown that criteria (i) and (ii) are identical and the differences
between these criteria are generally small.

Fig.4.5 Through crack in an infinite plate under mixed mode loading

If a crack is loaded in combined mode I and II, the stresses  and  at the crack tip can be derived from
the expressions in Table.2.2, by adding the stresses due to the separate mode I and mode II. The result is
as follows:

Suppose that the crack in question forms an infinitesimal kink at an angle  from the plane of crack, as
shown in Fig.4.6. The local stress intensity factors at the tip of this kink differ from the nominal  values
of the main crack. If we define a local  coordinate system at the tip of the kink, we can define the
local mode I and mode II stress intensity factors,

Fig.4.6 Kink at the tip of a crack inclined at an angle to the applied load

The energy release rate for the kinked crack is

According to the energy release rate criterion, crack propagation would occur in a direction along which
the above energy release rate attains a maximum value. This is shown in Fig. 4.7, where the energy
release rate  is normalised by .

Fig.4.7 Local energy release rate at the tip of a kinked crack

Since

the maximum of the strain energy release rate  is equivalent to  or ,
thus the peak in  at each  corresponds to the point where  exhibits a maximum and 

. In other words, the energy release rate criterion is identical to maximum hoop stress
criterion. Figs.4.8 show the hoop stress distributions for three mixed mode ratios:  (mode I), 

,  (mode II).

Fig.4.8 Distributions of hoop stress for various mixed mode ratios

The arrows in the figures mark the direction of crack propagation, which is given by the following
equation

so

which yields,

The critical value of  or  at which crack propagation occurs can be determined from the following
equation,

Example 4.13 Determine the propagation angle for an inclined crack subjected to uniaxial tension.

Solution: Assume the crack is inclined at an angle  to the applied load, as depicted in Fig.4.5. The mode
I and mode II stress intensity factors can be determined as,

consequently the mode I to mode II ratio is equal to (1/ ), hence the kink angle is equal to ,

which is depicted in Fig.4.9, together with some experimental data.

Fig.4.9 Variation of crack extension angle versus the crack inclination angle β
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Table 4.1 Typical values of fracture toughness

Material Young's
modulus 

(GPa)

Yield stress 
 (MPa)

Toughness 
 (MPa√m)

Thickness requirement
2.5( )2 (mm)

Steels 210

medium carbon 260 54 108

pressure vessel 470 208 489.6

high strength alloy 1460 98 11

AFC 77 stainless 1530 83 7.4

Aluminum alloys 72

2024 T8 420 27 10.4

7075 T6 540 30 7.9

7178 T6 560 23 4.2

Titanium alloys 108

Ti-6Al-4V 1060 73 12.6

(high yield) 1100 38 3.1

Comparative data

Concrete 45 80 0.2-1.4

Ice 9.1 85 0.2*

Epoxy 2-3 30-60 0.5-3

Boron fibre 441 3000

Carbon fibre 250-390 2200-2700

Boron/epoxy composite 220-340 725-1730 46

CFRP 70-200 300-1400 32-45

GFRP 38 100-300 20-60

* not at room temperature!

E σys KIC KIC/σys

Looking for Fracture Calculators?

Here are a few to choose from:

Fracture Mechanics Calculator
Fatigue Crack Growth Calculator
Fracture Materials Database

K
K = Kc

=σc
Kc

Y πa‾‾‾√
(4.4)

Y σ
a

Kc = KIC Kc = KIC

Y(a)
Y

=ac
1
π ( )Kc

Y( /W)σac

2
(4.5)

W

=σpc
W − 2a

W σys (4.6)

σc
σc σpc

W

>W − 2a
W σys

Kc

πa‾‾‾√ sec(πa/W)‾ ‾‾‾‾‾‾‾‾‾√
(4.7)

W = B = 2a =
2a = σy = KIC =

2a =

Fpc = σys·(W - 2a)·B =

Fc = σc·W·B = =σc
KIC

πa sec(πa/W)√

Fc =

2a =

Fpc = σys·(W - 2a)·B =

Fc = σc·W·B = =σc
KIC

πa sec(πa/W)√

Fc =

Looking for Fracture Calculators?

Here are a few to choose from:

Fracture Mechanics Calculator
Fatigue Crack Growth Calculator
Fracture Materials Database

G = 2γf (4.8)

G = 2 = 2( + )Wf γf γp (4.9)

γp γf
2Wf R R

G

KR
K Kc

KR
K

2a0 σ

Gc G

>   and  G ≥ RdG
da

dR
da

(4.10)

G
a Gc

a P u

P u

Gc = R

Area = P1u2 − ½P1u1 − ½P2u2 − ½(P1 − P2)(u2 − u1) = ½(P1u2 − P2u1)

G = R = =Area
2Δa ⋅ B

( − )1
2 Piuj Pjui

2B( − )aj ai

Looking for Fracture Calculators?

Here are a few to choose from:

Fracture Mechanics Calculator
Fatigue Crack Growth Calculator
Fracture Materials Database

− β

σθ τrθ

= ( ) [ cos − 3 sin ]σθ
1
2πr‾ ‾‾‾√

cos2 θ
2 KI

θ
2 KII

θ
2 (4.11)

= cos [ sin cos + (1 − 3 )]τrθ
1
2πr‾ ‾‾‾√

θ
2 KI

θ
2

θ
2 KII sin2 θ

2 (4.12)

α
K

x'-y'

(α) = = [ cos − 3 sin ]KI lim
r→0

σθ 2πr‾ ‾‾‾√ cos2 α
2 KI

α
2 KII

α
2 (4.13)

(α) = = cos [ sin cos + (1 − 3 )]KII lim
r→0

τrθ 2πr‾ ‾‾‾√
α
2 KI

α
2

α
2 KII sin2 α

2 (4.14)

G(α) =
(α) + (α)K 2

I K 2
II

E
(4.15)

G(α) G(α = 0)

= − sin − cos (1 − 3 ) = −dKI
dα

3
2 KI cos2 α

2
α
2

3
2 KII

α
2 sin2 α

2
3
2 KII

dG(α)/dα = 0 KII(α) = 0 dKI/dα = 0
G(α) α0 KI(α)

KII(α0) = 0
KII/KI = 0

KII/KI = 1 KII/KI = ∞

( ) = 0KII α0 (4.16)

sin cos + (1 − 3 ) = 0KI
α0
2

α0
2 KII sin2 α0

2 (4.17)

= ±(tan )α0
2 1,2

1
4

KI
KII

+( )KI
4KII

2 1
2

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾
√ (4.18)

KI KII

(α) =    i.e.   − 3 sin =KI KIC KI cos3 α0
2 KII cos2 α0

2
α0
2 KIC (4.19)

β

= σ β    and    = σ cos β sin βKI πa‾‾‾√ cos2 KII πa‾‾‾√

tanβ β + α0

β + = β + 2 ( − )α0 tan−1 1
4 tan β +( )1

4 tan β

2 1
2

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
√

⟸ Previous Page Next Page ⟹

© 2020 EngineeringLibrary.org Terms & Conditions

DSTO, "Introduction to
Fracture Mechanics"

1. Introduction to Fracture
Mechanics

2. Fracture Mechanics
Fundamentals

3. Energy Concepts for
Crack Growth

4. Stress Intensity Factor
5. Plastic Yielding at

Crack Tip
6. Fracture Criteria
7. Fatigue Crack Growth

Other Fracture
References

1. Brittle Fracture (DOE)

Fracture Mechanics Calculator

Need a fracture mechanics
calculator? Try this one:

PDH Classroom

Affordable PDH credits
for your PE license

View Courses

Engineering Library ! Reference " Calculators # Contact Us$ Partner Websites



Considering a centre cracked panel, there are three situations in which a plastic
collapse failure would prevail:
(1) the toughness is very high;
(2) the crack is very small;
(3) the width W is very small.

The intersection of the two curves is given by

Fracture Criteria

4. Fracture Criteria

4.1 K as a Failure Criterion
From previous analysis, it is clear that when stresses at the crack tip exceed yield (which always happens
for engineering materials), plasticity results. However, if the redistribution of stress has a minimal effect
on the crack tip elastic stress field, then the  approach to defining the stress field is still of sufficient
accuracy for engineering applications. Thus, if plasticity is minimal, then a LEFM approach is justified.

Of importance to practical applications is the critical stress and strain state at the crack tip zone, which,
when attained, causes the crack to propagate in a brittle, catastrophic manner. The most dangerous
situation occurs when a crack is in a high-energy but constrained field that permits only slight plastic
deformation at the crack tip. Expressed another way, the amount of energy absorbed in plastic
deformation is reduced to a minimum extent and much more energy is thus available for fracture, i.e.
crack propagation. This critical state can be described by a critical stress intensity factor ,

which may imply either a low stress acting on long crack or a small crack suffering a high stress. It is
important to note the different meaning of the two sides of the above equation. The left hand side
represents the driving force of the crack, which depends on the applied loads and the geometry of the
components. The right hand side of equation (4.1) signifies the materials' resistance to fracture, which is
an environment and load rate dependent material property.

Laboratory testing indicates that the fracture toughness value depends on the thickness  of the
specimen tested. The plane strain fracture toughness of the materials is a material property (denoted as 

, where subscript I denotes mode I loading). Under plane strain condition, since the crack tip plastic
zone is small in relation to the component thickness, plastic contraction in the through thickness direction
is suppressed by the surrounding elastic material. Tensile stresses are set up in the thickness direction of
the plastic zone so that the stress state is triaxial, giving rise to constrained plastic deformation. Table
4.1 lists some typical values of plane strain fracture toughness. As before, the suffix I refers to the tensile
opening mode of crack extension, whilst II and III symbolise shear and anti-plane tear modes, respectively.

When the plastic zone is large compared with the component's thickness, the triaxiality may be relaxed
and the through thickness stresses normal to the plane of the component will be negligible. In this case,
the fracture toughness may vary with the specimen thickness, . The form of variation of  with
specimen thickness is schematically shown in Fig. 4.1. Beyond a certain thickness, a state of plane strain
prevails (see Chapter 3) and the toughness reaches asymptotic value. If the thickness of the specimen is
reduced, more energy will be dissipated as a result of plastic deformation near the specimen surface
which is under plane stress condition. There seems to exist an optimum thickness where the toughness
reaches its highest level, see Fig.4.1.

Fig.4.1 Effect of thickness on fracture toughness

In order to achieve plane strain conditions at the elastic-plastic interface, the plastic zone must be small
compared to the specimen thickness, crack length, and width of ligament

According to the ASTM standard, the following requirements must be satisfied

which is equivalent to setting the plasticity constraint factor to be √3.

4.2 Residual Strength and Critical Crack Size
Since the severity of a cracked component is characterised by stress intensity factor, , and failure will
occur when , the residual strength of a cracked component is,

where  is a geometry correction factor. Note that the stress  is the gross stress on the section on which
the function  is defined, where residual strength implies a net section condition. In the case of plane
strain . It is conservative to assume that  if the detailed stress state is not known. The
size of the crack at this stress is called the "critical crack size". This is normally difficult to solve in closed
form as  is normally a complicated function of crack length and component geometry. Nevertheless,
it can be solved numerically through iteration or, if the value of  varies slowly with crack size, e.g. for a
relatively small crack in a wide panel, an approximate value may be used. The critical crack size that a
component can tolerate for a given load is

The above two equations provide the basis for fracture mechanics based design methodologies.

It should be pointed that equation (4.4) is valid only when linear fracture mechanics is applicable, that is
the net section stress level is far below the material's yield stress. Otherwise the component will fail in a
different mode: plastic collapse. Consider a centre cracked panel with a finite width , the absolute
highest load carrying capability is bounded by the plastic collapse strength: the stress level over the
entire section exceeds the yield or ultimate tensile strength of the material. It is easy to show that the
nominal stress at collapse is

When this happens, the plastic deformation becomes unbounded and fracture will occur, regardless of the
fracture toughness.

Therefore there are two possible failure modes: brittle fracture and plastic collapse. Should the fracture
stress  be higher than the stress causing failure by collapse, then collapse will prevail. As a result, the
actual residual strength is the lowest of  and . Considering a centre cracked panel, there are three
situations in which a plastic collapse failure would prevail: (1) the toughness is very high; (2) the crack is
very small; and (3) the width  is very small. A sketch is shown in Fig.4.2. The intersection of the two
curves is given by

In the short crack regime, the exact transition from one mechanism to the other is not clear, but a
plausible engineering approximation is the "tangent" rule: drawing a tangent line passing through the
ultimate tensile strength point. More accurate prediction can be achieved by using elasto-plastic fracture
mechanics methods.

Fig.4.2 Competition between fracture and collapse

Example 4.11 Estimate the failure load under uniaxial tension for a centre-cracked panel of aluminium
alloy of width 500 mm, and thickness 4 mm, for the following values of crack length  20 mm
and  100 mm. Yield stress 350 MPa and fracture toughness 70 MPa√m.

Solution There are two possible failure modes: plastic collapse and brittle fracture. We will assess the
load level required for each mode to prevail.

(i)  20 mm.

Plastic collapse load 672 kN

Fracture load  where  394.6 MPa

thus 790 kN.

The actual failure load is the smaller of the above results, 672 kN.

(ii)  100 mm.

Plastic collapse load 560 kN

Fracture load  where  172.2 MPa

thus 334.57 kN.

The actual failure load is the smaller of the above results, 334.6 kN.

4.3 R-curve
Crack extension occurs when the stress intensity factor or the strain energy release rate attains a critical
value. In a truly brittle material like glass or ice, the energy for crack growth is the surface energy to
form the new surface, i.e

where the factor "2" is included to represent the two crack surfaces being created. It should be noted that
the energy required for a crack to grow in an engineering material is much larger than the surface energy.
This is because plastic deformation will inevitably occur near the crack tip region and during crack
extension energy is consumed in deforming the material plastically. In general the fracture criterion can
be written as

Where  refers the plastic work per unit area of surface created, and is typically much larger than .

Normally it is convenient to replace  with , the material resistance to crack extension. A plot of 
versus crack extension is called a resistance curve or R curve, whereas the plot of  versus crack
extension is the driving force curve. It is important to note that the driving force curve is entirely
dependent on the structure geometry and loading condition, whilst the R curve is a material property
dependent on temperature, environment, and loading rate etc. Most brittle materials exhibit a constant
resistance sometimes called "no R-curve" effect, as shown in Fig.4.3(a). Many ductile materials, such as
low strength steels, possess a rising R curve: a plastic zone at the tip of crack increases with crack length,
hence the energy that would dissipate to overcome plastic deformation would increase. This is illustrated
in Fig.4.3(b). The exact shape of the R curve depends on the material and, to a lesser extent, on the
configuration of the cracked structure.

Fig.4.3 Schematic driving force and R curve diagrams

If a component, containing a crack or crack-like defect, and experiencing some plasticity in the vicinity of
the crack, is loaded by increments the crack will extend and stop after each increase in load. This
condition is defined as slow-stable crack growth. In this condition the value of the material resistance 
is equal to the applied value  at any given applied stress. Consequently the fracture toughness ( ) may
be obtained by the use of crack growth resistance curves (commonly called R-curves). These curves are a
continuous record of toughness development in terms of crack growth resistance, denoted , plotted
against crack extension under continuously increasing values of stress intensity factor, . The R-curves
characterise the resistance to fracture of materials during incremental slow-stable crack extension as a
result of the growth of the plastic zone as the crack extends.

Consider a plate with a through crack of initial length . At a fixed remote stress, , the energy release
rate varies linearly with crack size. If the material has a flat R-curve, as shown in Fig 4.3(a), one can
define a critical value of energy release rate, , unambiguously. The crack will grow if the applied 
reaches this value. For materials with a rising R curve, such as a crack plate reinforced with a composite
patch, however, one cannot uniquely characterise a single value toughness value. In this case, normally
we define that crack growth will occur when

This corresponds to when the driving force curve is tangent with the R curve, as depicted in Fig.4.3(b).
This can be interpreted as the critical condition when the energy available in the component for crack
growth exceeds the maximum amount that the material can dissipate. This point of tangency depends on
the shape of the driving force, which itself depends on the shape of the configuration of the structure.
For example, the driving force curve for a through crack configuration is linear, but  in the double
cantilever beam specimen varies with 2; these two configurations would have different  values for a
given R curve.

Example 4.12 The following data were obtained from a series of tests conducted on pre-cracked
specimens of thickness 10 mm,

Crack length
 (mm)

Critical load
 (kN)

Critical displacement
 (mm)

30 4 0.4

40 3.5 0.5

50.5 3.12 0.63

61.6 2.8 0.78

71.7 2.67 0.94

79 2.56 1.09

where  and  are the critical load and displacement at each crack growth. The load displacement record
for all crack lengths is linear up to a critical point. Determine the critical value of the strain energy
release rate  from (a) the load displacement records and (b) the compliance-crack length curve.

Solution The load-deflection curve can be constructed from the tabulated data, as shown in Fig.4.4(a).
The area for a triangle depicted in Fig.4.4(b) is,

 

and so the energy released during each crack growth can be calculated

The results for the five crack increments are: 30.0, 30.7, 30.2, 29.1, 30.8. (The unit is kJ/m2). Clearly
this material exhibits little R-curve behaviour.

Fig.4.4 Load-deflection curve

4.4 Mixed Mode Loading: Fracture and Crack Path
Most structures and components are subjected to more than one loading. When two or more modes of
loading are present, equation (2.20) indicates that energy release rate contributions from each mode are
additive. This equation assumes self-similar crack growth, however. If we consider an angled crack
problem as depicted in Fig.4.5, coplanar growth means that the crack would grow at an angle 90°
degrees from the applied stress. In practice, the crack tends to propagate in a direction orthogonal to the
applied normal stress; i.e. the mixed-mode crack becomes a mode I crack. This is because a propagating
crack seeks the path of least resistance (or the path of maximum driving force, or the path that the
maximum amount of energy can be released) and need not be confined to its initial plane. A number of
criteria have been proposed to account for such effects. Among them, the most widely used are (i) crack
growth will take place in the direction of maximum energy release rate; (ii) crack growth occurs in a
direction perpendicular to the maximum principal stress; (iii) crack growth occurs where the strain energy
density is the minimum. It can be shown that criteria (i) and (ii) are identical and the differences
between these criteria are generally small.

Fig.4.5 Through crack in an infinite plate under mixed mode loading

If a crack is loaded in combined mode I and II, the stresses  and  at the crack tip can be derived from
the expressions in Table.2.2, by adding the stresses due to the separate mode I and mode II. The result is
as follows:

Suppose that the crack in question forms an infinitesimal kink at an angle  from the plane of crack, as
shown in Fig.4.6. The local stress intensity factors at the tip of this kink differ from the nominal  values
of the main crack. If we define a local  coordinate system at the tip of the kink, we can define the
local mode I and mode II stress intensity factors,

Fig.4.6 Kink at the tip of a crack inclined at an angle to the applied load

The energy release rate for the kinked crack is

According to the energy release rate criterion, crack propagation would occur in a direction along which
the above energy release rate attains a maximum value. This is shown in Fig. 4.7, where the energy
release rate  is normalised by .

Fig.4.7 Local energy release rate at the tip of a kinked crack

Since

the maximum of the strain energy release rate  is equivalent to  or ,
thus the peak in  at each  corresponds to the point where  exhibits a maximum and 

. In other words, the energy release rate criterion is identical to maximum hoop stress
criterion. Figs.4.8 show the hoop stress distributions for three mixed mode ratios:  (mode I), 

,  (mode II).

Fig.4.8 Distributions of hoop stress for various mixed mode ratios

The arrows in the figures mark the direction of crack propagation, which is given by the following
equation

so

which yields,

The critical value of  or  at which crack propagation occurs can be determined from the following
equation,

Example 4.13 Determine the propagation angle for an inclined crack subjected to uniaxial tension.

Solution: Assume the crack is inclined at an angle  to the applied load, as depicted in Fig.4.5. The mode
I and mode II stress intensity factors can be determined as,

consequently the mode I to mode II ratio is equal to (1/ ), hence the kink angle is equal to ,

which is depicted in Fig.4.9, together with some experimental data.

Fig.4.9 Variation of crack extension angle versus the crack inclination angle β
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Table 4.1 Typical values of fracture toughness

Material Young's
modulus 

(GPa)

Yield stress 
 (MPa)

Toughness 
 (MPa√m)

Thickness requirement
2.5( )2 (mm)

Steels 210

medium carbon 260 54 108

pressure vessel 470 208 489.6

high strength alloy 1460 98 11

AFC 77 stainless 1530 83 7.4

Aluminum alloys 72

2024 T8 420 27 10.4

7075 T6 540 30 7.9

7178 T6 560 23 4.2

Titanium alloys 108

Ti-6Al-4V 1060 73 12.6

(high yield) 1100 38 3.1

Comparative data

Concrete 45 80 0.2-1.4

Ice 9.1 85 0.2*

Epoxy 2-3 30-60 0.5-3

Boron fibre 441 3000

Carbon fibre 250-390 2200-2700

Boron/epoxy composite 220-340 725-1730 46

CFRP 70-200 300-1400 32-45

GFRP 38 100-300 20-60

* not at room temperature!
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Fracture Criteria

4. Fracture Criteria

4.1 K as a Failure Criterion
From previous analysis, it is clear that when stresses at the crack tip exceed yield (which always happens
for engineering materials), plasticity results. However, if the redistribution of stress has a minimal effect
on the crack tip elastic stress field, then the  approach to defining the stress field is still of sufficient
accuracy for engineering applications. Thus, if plasticity is minimal, then a LEFM approach is justified.

Of importance to practical applications is the critical stress and strain state at the crack tip zone, which,
when attained, causes the crack to propagate in a brittle, catastrophic manner. The most dangerous
situation occurs when a crack is in a high-energy but constrained field that permits only slight plastic
deformation at the crack tip. Expressed another way, the amount of energy absorbed in plastic
deformation is reduced to a minimum extent and much more energy is thus available for fracture, i.e.
crack propagation. This critical state can be described by a critical stress intensity factor ,

which may imply either a low stress acting on long crack or a small crack suffering a high stress. It is
important to note the different meaning of the two sides of the above equation. The left hand side
represents the driving force of the crack, which depends on the applied loads and the geometry of the
components. The right hand side of equation (4.1) signifies the materials' resistance to fracture, which is
an environment and load rate dependent material property.

Laboratory testing indicates that the fracture toughness value depends on the thickness  of the
specimen tested. The plane strain fracture toughness of the materials is a material property (denoted as 

, where subscript I denotes mode I loading). Under plane strain condition, since the crack tip plastic
zone is small in relation to the component thickness, plastic contraction in the through thickness direction
is suppressed by the surrounding elastic material. Tensile stresses are set up in the thickness direction of
the plastic zone so that the stress state is triaxial, giving rise to constrained plastic deformation. Table
4.1 lists some typical values of plane strain fracture toughness. As before, the suffix I refers to the tensile
opening mode of crack extension, whilst II and III symbolise shear and anti-plane tear modes, respectively.

When the plastic zone is large compared with the component's thickness, the triaxiality may be relaxed
and the through thickness stresses normal to the plane of the component will be negligible. In this case,
the fracture toughness may vary with the specimen thickness, . The form of variation of  with
specimen thickness is schematically shown in Fig. 4.1. Beyond a certain thickness, a state of plane strain
prevails (see Chapter 3) and the toughness reaches asymptotic value. If the thickness of the specimen is
reduced, more energy will be dissipated as a result of plastic deformation near the specimen surface
which is under plane stress condition. There seems to exist an optimum thickness where the toughness
reaches its highest level, see Fig.4.1.

Fig.4.1 Effect of thickness on fracture toughness

In order to achieve plane strain conditions at the elastic-plastic interface, the plastic zone must be small
compared to the specimen thickness, crack length, and width of ligament

According to the ASTM standard, the following requirements must be satisfied

which is equivalent to setting the plasticity constraint factor to be √3.

4.2 Residual Strength and Critical Crack Size
Since the severity of a cracked component is characterised by stress intensity factor, , and failure will
occur when , the residual strength of a cracked component is,

where  is a geometry correction factor. Note that the stress  is the gross stress on the section on which
the function  is defined, where residual strength implies a net section condition. In the case of plane
strain . It is conservative to assume that  if the detailed stress state is not known. The
size of the crack at this stress is called the "critical crack size". This is normally difficult to solve in closed
form as  is normally a complicated function of crack length and component geometry. Nevertheless,
it can be solved numerically through iteration or, if the value of  varies slowly with crack size, e.g. for a
relatively small crack in a wide panel, an approximate value may be used. The critical crack size that a
component can tolerate for a given load is

The above two equations provide the basis for fracture mechanics based design methodologies.

It should be pointed that equation (4.4) is valid only when linear fracture mechanics is applicable, that is
the net section stress level is far below the material's yield stress. Otherwise the component will fail in a
different mode: plastic collapse. Consider a centre cracked panel with a finite width , the absolute
highest load carrying capability is bounded by the plastic collapse strength: the stress level over the
entire section exceeds the yield or ultimate tensile strength of the material. It is easy to show that the
nominal stress at collapse is

When this happens, the plastic deformation becomes unbounded and fracture will occur, regardless of the
fracture toughness.

Therefore there are two possible failure modes: brittle fracture and plastic collapse. Should the fracture
stress  be higher than the stress causing failure by collapse, then collapse will prevail. As a result, the
actual residual strength is the lowest of  and . Considering a centre cracked panel, there are three
situations in which a plastic collapse failure would prevail: (1) the toughness is very high; (2) the crack is
very small; and (3) the width  is very small. A sketch is shown in Fig.4.2. The intersection of the two
curves is given by

In the short crack regime, the exact transition from one mechanism to the other is not clear, but a
plausible engineering approximation is the "tangent" rule: drawing a tangent line passing through the
ultimate tensile strength point. More accurate prediction can be achieved by using elasto-plastic fracture
mechanics methods.

Fig.4.2 Competition between fracture and collapse

Example 4.11 Estimate the failure load under uniaxial tension for a centre-cracked panel of aluminium
alloy of width 500 mm, and thickness 4 mm, for the following values of crack length  20 mm
and  100 mm. Yield stress 350 MPa and fracture toughness 70 MPa√m.

Solution There are two possible failure modes: plastic collapse and brittle fracture. We will assess the
load level required for each mode to prevail.

(i)  20 mm.

Plastic collapse load 672 kN

Fracture load  where  394.6 MPa

thus 790 kN.

The actual failure load is the smaller of the above results, 672 kN.

(ii)  100 mm.

Plastic collapse load 560 kN

Fracture load  where  172.2 MPa

thus 334.57 kN.

The actual failure load is the smaller of the above results, 334.6 kN.

4.3 R-curve
Crack extension occurs when the stress intensity factor or the strain energy release rate attains a critical
value. In a truly brittle material like glass or ice, the energy for crack growth is the surface energy to
form the new surface, i.e

where the factor "2" is included to represent the two crack surfaces being created. It should be noted that
the energy required for a crack to grow in an engineering material is much larger than the surface energy.
This is because plastic deformation will inevitably occur near the crack tip region and during crack
extension energy is consumed in deforming the material plastically. In general the fracture criterion can
be written as

Where  refers the plastic work per unit area of surface created, and is typically much larger than .

Normally it is convenient to replace  with , the material resistance to crack extension. A plot of 
versus crack extension is called a resistance curve or R curve, whereas the plot of  versus crack
extension is the driving force curve. It is important to note that the driving force curve is entirely
dependent on the structure geometry and loading condition, whilst the R curve is a material property
dependent on temperature, environment, and loading rate etc. Most brittle materials exhibit a constant
resistance sometimes called "no R-curve" effect, as shown in Fig.4.3(a). Many ductile materials, such as
low strength steels, possess a rising R curve: a plastic zone at the tip of crack increases with crack length,
hence the energy that would dissipate to overcome plastic deformation would increase. This is illustrated
in Fig.4.3(b). The exact shape of the R curve depends on the material and, to a lesser extent, on the
configuration of the cracked structure.

Fig.4.3 Schematic driving force and R curve diagrams

If a component, containing a crack or crack-like defect, and experiencing some plasticity in the vicinity of
the crack, is loaded by increments the crack will extend and stop after each increase in load. This
condition is defined as slow-stable crack growth. In this condition the value of the material resistance 
is equal to the applied value  at any given applied stress. Consequently the fracture toughness ( ) may
be obtained by the use of crack growth resistance curves (commonly called R-curves). These curves are a
continuous record of toughness development in terms of crack growth resistance, denoted , plotted
against crack extension under continuously increasing values of stress intensity factor, . The R-curves
characterise the resistance to fracture of materials during incremental slow-stable crack extension as a
result of the growth of the plastic zone as the crack extends.

Consider a plate with a through crack of initial length . At a fixed remote stress, , the energy release
rate varies linearly with crack size. If the material has a flat R-curve, as shown in Fig 4.3(a), one can
define a critical value of energy release rate, , unambiguously. The crack will grow if the applied 
reaches this value. For materials with a rising R curve, such as a crack plate reinforced with a composite
patch, however, one cannot uniquely characterise a single value toughness value. In this case, normally
we define that crack growth will occur when

This corresponds to when the driving force curve is tangent with the R curve, as depicted in Fig.4.3(b).
This can be interpreted as the critical condition when the energy available in the component for crack
growth exceeds the maximum amount that the material can dissipate. This point of tangency depends on
the shape of the driving force, which itself depends on the shape of the configuration of the structure.
For example, the driving force curve for a through crack configuration is linear, but  in the double
cantilever beam specimen varies with 2; these two configurations would have different  values for a
given R curve.

Example 4.12 The following data were obtained from a series of tests conducted on pre-cracked
specimens of thickness 10 mm,

Crack length
 (mm)

Critical load
 (kN)

Critical displacement
 (mm)

30 4 0.4

40 3.5 0.5

50.5 3.12 0.63

61.6 2.8 0.78

71.7 2.67 0.94

79 2.56 1.09

where  and  are the critical load and displacement at each crack growth. The load displacement record
for all crack lengths is linear up to a critical point. Determine the critical value of the strain energy
release rate  from (a) the load displacement records and (b) the compliance-crack length curve.

Solution The load-deflection curve can be constructed from the tabulated data, as shown in Fig.4.4(a).
The area for a triangle depicted in Fig.4.4(b) is,

 

and so the energy released during each crack growth can be calculated

The results for the five crack increments are: 30.0, 30.7, 30.2, 29.1, 30.8. (The unit is kJ/m2). Clearly
this material exhibits little R-curve behaviour.

Fig.4.4 Load-deflection curve

4.4 Mixed Mode Loading: Fracture and Crack Path
Most structures and components are subjected to more than one loading. When two or more modes of
loading are present, equation (2.20) indicates that energy release rate contributions from each mode are
additive. This equation assumes self-similar crack growth, however. If we consider an angled crack
problem as depicted in Fig.4.5, coplanar growth means that the crack would grow at an angle 90°
degrees from the applied stress. In practice, the crack tends to propagate in a direction orthogonal to the
applied normal stress; i.e. the mixed-mode crack becomes a mode I crack. This is because a propagating
crack seeks the path of least resistance (or the path of maximum driving force, or the path that the
maximum amount of energy can be released) and need not be confined to its initial plane. A number of
criteria have been proposed to account for such effects. Among them, the most widely used are (i) crack
growth will take place in the direction of maximum energy release rate; (ii) crack growth occurs in a
direction perpendicular to the maximum principal stress; (iii) crack growth occurs where the strain energy
density is the minimum. It can be shown that criteria (i) and (ii) are identical and the differences
between these criteria are generally small.

Fig.4.5 Through crack in an infinite plate under mixed mode loading

If a crack is loaded in combined mode I and II, the stresses  and  at the crack tip can be derived from
the expressions in Table.2.2, by adding the stresses due to the separate mode I and mode II. The result is
as follows:

Suppose that the crack in question forms an infinitesimal kink at an angle  from the plane of crack, as
shown in Fig.4.6. The local stress intensity factors at the tip of this kink differ from the nominal  values
of the main crack. If we define a local  coordinate system at the tip of the kink, we can define the
local mode I and mode II stress intensity factors,

Fig.4.6 Kink at the tip of a crack inclined at an angle to the applied load

The energy release rate for the kinked crack is

According to the energy release rate criterion, crack propagation would occur in a direction along which
the above energy release rate attains a maximum value. This is shown in Fig. 4.7, where the energy
release rate  is normalised by .

Fig.4.7 Local energy release rate at the tip of a kinked crack

Since

the maximum of the strain energy release rate  is equivalent to  or ,
thus the peak in  at each  corresponds to the point where  exhibits a maximum and 

. In other words, the energy release rate criterion is identical to maximum hoop stress
criterion. Figs.4.8 show the hoop stress distributions for three mixed mode ratios:  (mode I), 

,  (mode II).

Fig.4.8 Distributions of hoop stress for various mixed mode ratios

The arrows in the figures mark the direction of crack propagation, which is given by the following
equation

so

which yields,

The critical value of  or  at which crack propagation occurs can be determined from the following
equation,

Example 4.13 Determine the propagation angle for an inclined crack subjected to uniaxial tension.

Solution: Assume the crack is inclined at an angle  to the applied load, as depicted in Fig.4.5. The mode
I and mode II stress intensity factors can be determined as,

consequently the mode I to mode II ratio is equal to (1/ ), hence the kink angle is equal to ,

which is depicted in Fig.4.9, together with some experimental data.

Fig.4.9 Variation of crack extension angle versus the crack inclination angle β
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Table 4.1 Typical values of fracture toughness

Material Young's
modulus 

(GPa)

Yield stress 
 (MPa)

Toughness 
 (MPa√m)

Thickness requirement
2.5( )2 (mm)

Steels 210

medium carbon 260 54 108

pressure vessel 470 208 489.6

high strength alloy 1460 98 11

AFC 77 stainless 1530 83 7.4

Aluminum alloys 72

2024 T8 420 27 10.4

7075 T6 540 30 7.9

7178 T6 560 23 4.2

Titanium alloys 108

Ti-6Al-4V 1060 73 12.6

(high yield) 1100 38 3.1

Comparative data

Concrete 45 80 0.2-1.4

Ice 9.1 85 0.2*

Epoxy 2-3 30-60 0.5-3

Boron fibre 441 3000

Carbon fibre 250-390 2200-2700

Boron/epoxy composite 220-340 725-1730 46

CFRP 70-200 300-1400 32-45

GFRP 38 100-300 20-60

* not at room temperature!
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Estimate the failure load under uniaxial tension for a centre-cracked panel of

aluminium alloy of width W = 500 mm, and thickness B = 4 mm, for the following

values of crack length 2a = 20 mm and 2a = 100 mm.

Yield stress σy = 350 MPa and fracture toughness KIC = 70 MPa√m.

Solution

There are two possible failure modes: plastic collapse and bri7le fracture. We will

assess the load level required for each mode to prevail.

(i) 2a = 20 mm.
Plastic collapse load Fpc = σys·(W - 2a)·B = 672 kN
Fracture load Fc = σc·W·B where σc = KIC / √πa sec(πa/W) = 394.6 MPa
thus Fc = 790 kN. 

The actual failure load is the smaller of the above results, 672 kN.



2a = 100 mm 

Plastic collapse load Fpc = σys·(W - 2a)·B = 560 kN

Fracture load Fc = σc·W·B where σc = KIC /√πa sec(πa/W) = 172.2 MPa
thus Fc = 334.57 kN

The actual failure load is the smaller of the above results, 334.57 kN. 



� Flawed cylinder
± A piston is used to increase inner pressure

� From 0 to 55 MPa
± Cylinder made of

� Peaked-aged aluminum alloy
± 7075-T651

� Yield Vp
0 = 550 Mpa

� Toughness KIC = 30 MPa m1/2

± Malfunction
� Cylinder burst
� Post failure analyses

± Initial elliptical flaw at inner wall
» 4.5 mm long
» 1.45 mm deep
» Normal to hoop stress

± Origin of burst?

Exercise 1

L=
 20 cm

t = 1 cm

Din = 9 cm

2c = 4.5 mm

a = 1.45 mm

VTT

VTT
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� Stress field
± Consider thick cylinder with

• rin = 0.045 m & rout = 0.055 m
� Inner pressure p

Exercise 1: Solution

L=
 20 cm

t = 1 cm

Din = 9 cm

2c = 4.5 mm

a = 1.45 mm

VTT

VTT

2016-2017 Fracture Mechanics ± LEFM ± SIF  42



� SIF
± The wall is not perforated

� Use SIF for semi-elliptical crack in large plate
� See SIF handbook
� Geometrical effect

� Plasticity correction  
± SSY criterion:                                           

± Not fully satisfied          plasticity correction

� SIF with

± Rupture:
� For r = rin, p would be 100 MPa, this is the critical value

Exercise 1: Solution

2c = 4.5 mm

a = 1.45 mm

VTT

VTT
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� Rupture mode
± For r = rin, p would be 100 Mpa, this is the critical value

± This is out of the range of the piston activity
� So rupture should come from fatigue

� Cyclic loading
– p from 0 to 55 Mpa

� Hoop stress from 0 to

± SIF
� Assuming a/c remains constant during crack propagation

Exercise 1: Solution

2016-2017 Fracture Mechanics ± LEFM ± SIF  44



� Cyclic loading
– p from 0 to 55 Mpa

&

± Due to initial flaw

� Assuming curves are valid for R=0 

� We are in Paris regime

crack propagation

± Rupture will happen for

� Number of cycles?

Exercise 1: Solution

2016-2017 Fracture Mechanics ± LEFM ± SIF  45



� Cyclic loading (2)

± As

� Assuming curves are valid for R=0 

� We are in Paris regime

� !!!Life strongly depends on the maximum pressure reached during accidents

Exercise 1: Solution

2016-2017 Fracture Mechanics ± LEFM ± SIF  46



Fatigue failure 

• Experimental results 
± Parameters in Paris law 

Material  DKth [MPa · m½] m [-] C [m (MPa . m1/2)-m] 

Mild steel 3.2-6.6 3.3 0.24 . 10-11 

Structural steel 2.0-5.0 3.85-4.2 0.07-0.11 . 10-11 

Structural steel is sea water 1.0-1.5 3.3 1.6 . 10-11 

Aluminum 1.0-2.0 2.9 4.56 . 10-11 

Aluminum alloy 1.0-2.0 2.6-2.9 3-19 . 10-11 

Copper 1.8-2.8 3.9 0.34 . 10-11 

Titanium alloy (6Al-4V, R=0.1) 2.0-3.0 3.22 1 . 10-11 
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• Edge notch specimen under cyclic loading 
± Assume titanium alloy 6%Al - 4%V 

• See figures below 
± Assume a remains << W and << h  
± Initial crack size a = 1.5 cm   
± Cyclic loading between  

• Minimum value: 8 MPA  
• Maximum value: 80 MPa 

± What is the life of the structure? 
 

   

Exercise 2 
y 

x 

V 

V 

W 
h 

a 
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• Edge notch specimen under cyclic loading 
± Material properties at room temperature 

• Yield: 830 MPa 
• Toughness: 55 MPa · m½    

± SIF if a remains < 2% of W  
• KI = 1.122 V (S a)1/2  

± Plane strain & elastic fracture? 
• Yes if specimen thick enough 

 
 
 

•  Crack is large enough 
 
 

 

• Moreover the applied stress << the yield stress 

Exercise 2: Solution 

y 

x 

V 

V 

W 
h 

a 
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• Edge notch specimen under cyclic loading (2) 
± Is the crack critical? 

 
 
• The crack will not lead to static failure 

± Fatigue? 
 
• As we are above the threshold there will be fatigue 
• R = 0.1, so crack experiences closing effect 

± What is the critical crack length leading to static failure? 

Exercise 2: Solution 
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• Edge notch specimen under cyclic loading (3) 
± Parameters in Paris¶ law 

• There is a phase transition around 
 DK=17 MPa . m1/2 but we are above 
• Paris¶ coefficients:  

– C=10-11 m (MPa . m1/2)-m  
– m=3.22 

Exercise 2: Solution 
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• Edge notch specimen under cyclic loading (4) 
± Paris¶ law 

 
• Can be integrated explicitly, and, for mำ2, it yields 

 
 

• So the number of cycles in terms of the crack size is 
 
 

± Critical size is reached after  
 1.74 105 cycles, but this value cannot 
 be used as 

• Paris¶ law is not valid is zone III  
• After 1.5 105 cycles the crack is  
 growing too quickly for allowing 
 inspections 
• 1.1 105 is a conservative time life 

Exercise 2: Solution 
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• Edge notch specimen under cyclic loading (5) 
± Some remarks 

 
• If there is an error of 10% in the estimation 
 of the initial crack length size 

± Life of the structure is 
 reduced by 15% 
± Using a 1.5 105-cycle life prediction 
 would actually lead to a crack 
 size located in zone III 

• We have assumed a < 0.02 W, which 
 corresponds to a  six-meter wide  
 specimen. In practice 

± Crack size cannot be considered 
 infinitely small  
± SIF must then be evaluated using 

» Either FEM simulations 
» Or SIF handbooks 

± Paris¶ law  
» Cannot be integrated in a closed form  
» Integration has to be performed numerically 

Exercise 2: Solution 
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Fatigue Crack Growth
When a constant range of cyclic stress, Δσ (= σmax - σmin), is applied to a cracked

structure, stable fatigue crack growth can occur at stress levels well below the yield

stress. In fact, the range of the stress intensity factor ΔK , where ΔK = Kmax − Kmin in a

cycle may also be well below the materials fracture toughness KIC . The reason for this

is simple: the material near the crack tip is under severe plastic deformation.

Since the stress-strain field near a crack tip is uniquely

determined by the stress intensity factor, fatigue crack growth

rates can be correlated to ΔK and the figure shows a typical

plot which can be divided into three zones; threshold, stable

crack growth and instability.



Let us consider a specimen under cyclic loading. The value of P ranges
from Pmin to Pmax so that ΔP = Pmax − Pmin. Due to the cyclic loading a
crack nucleates at the stress concentration and propagates until failure
of the specimen, although at the beginning the SIF remains lower than
KIC

Crack nucleation
The crack nucleates in a stress concentration area.
During the loading of the sample, dislocations move
along slip planes until reaching a free surface (or a
bulk defect). During the unloading phase,
dislocations can move in the opposite direction
but usually it happens on other slip planes. After a
few cycles one can observe the formation of
Persistent Slip Bands (PSBs). These PSBs are the
locations from which the crack can nucleate.



Fatigue crack growth: Stage I

Once the crack has nucleated, under the cyclic loading condition, it starts to growth

along a slip plane of the crystal. The crack thus growths in a direction allowed by

the crystallographic orientation.

Fatigue crack growth: Stage II
During the second stage in each grain the crack has to follow their crystallographic

orientations. However when the crack size is larger than the size of a few grains, the

crack appears as propagating at the macroscopic level in a direction governed by the

maximum stress (straight for pure mode I).

This crack propagation stage is thus a macroscopic propagation stage.



Fatigue crack growth: Stage III

As the crack propagates under the cyclic loading its size increases. While at the

beginning of the cyclic loading the SIF remains small compared the material

toughness, as a increases the SIF also increases and, at maximum loading Pmax,

becomes close to the toughness KIC. A fatigue fracture surface thus exhibits two

surfaces: striation by fatigue in Stage II and brihle (or ductile) fracture in Stage III



Prediction of the structural life 
As the crack loading remains small during fatigue
problems, the SSY assumption usually holds during
some intervals of the crack growth or even until
failure, depending on the case.
As at the macro-scale the life of the structure with an
initial crack size a is observed to depend on the
loading ΔP and on PmaxPmin only, the SSY
assumption allows us to say that the conditioning
parameters are ΔK and R = KmaxKmin.

Indeed from the SIFs equations we observed a linearity in ΔP of ΔK. Therefore the
evolution of the crack size obeys to (da/dN) = f (ΔK, R)
With the knowledge of this curve it is possible to determine for the number of cycles
a structure can sustain before being replaced and to schedule the inspection
intervals.



Crack propagation in Stage I
Experimentally, it has been observed that if ΔK < ΔKth, such a crack is considered
as dormant. The value of ΔKth is the fatigue threshold and depends on the
material but also on the loading ratio R.
If ΔK > ΔKth, the crack will propagate until reaching the stage II.
For steel, ΔKth is between 2 and 5 MPa√m, but for steel in sea water, ΔKth is between
1 and 1.5 MPa√m. This means that the environmental conditions in which the
material is considered are very important.

Crack propagation in Stage II
This corresponds to the stage during which we can observe the striations. The
crack rate curve is linear with ΔK in a logarithmic scale.
This is the Paris-Erdogan (1963) law:

da/dN = C ΔKm



This law is characterized by two parameters C and m which depend on the

material and on the loading ratio R.

For steel, C ≈ 0.1×10−11 m⋅(MPa⋅√m)−m and m ≈ 4. For steel in sea water, these values

change a lot: C ≈ 1.6×10−11 m⋅(MPa⋅√m)−m and m ≈ 3.3. This means that the

environmental conditions in which the material is considered are very important.

Note that the units of C are cumbersome as they depend on the coefficient m.

When applying the Paris law, it is important to remember that K depends on the

crack size.

Crack propagation in Stage III 
In this zone the crack grows rapidly until failure of the structure. The failure is
reached as soon as the crack size reaches af such that K(Pmax, af) is equal to Kc.



Fatigue failure 

• Effect of R=Kmin/Kmax on crack growth rate (Zone II)  
± Due to crack closure life of structure is improved for low R  

• Example of 2024-T3 aluminum alloy* 
 
 
 
 
 
 
 
 
 
 
 

±  DKeff depends on many parameters (loading, environment, «) 
• Example: model of Elber & Schijve for Al. 2024-T3  

±  DKeff = (0.55 + 0.33 R + 0.12 R2)  DK  for -1<R<0.54 
• Models can be inaccurate in non-adequate circumstances 

*J.C. Newman Jr, E.P. Phillips, M.H. Swain, Fatigue-life prediction methodology using small-crack theory,  International Journal of Fatigue 21 (1999) 
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Typical material parameters for fatigue analyzesFatigue failure 

• Experimental results 
± Parameters in Paris law 

Material  DKth [MPa · m½] m [-] C [m (MPa . m1/2)-m] 

Mild steel 3.2-6.6 3.3 0.24 . 10-11 

Structural steel 2.0-5.0 3.85-4.2 0.07-0.11 . 10-11 

Structural steel is sea water 1.0-1.5 3.3 1.6 . 10-11 

Aluminum 1.0-2.0 2.9 4.56 . 10-11 

Aluminum alloy 1.0-2.0 2.6-2.9 3-19 . 10-11 

Copper 1.8-2.8 3.9 0.34 . 10-11 

Titanium alloy (6Al-4V, R=0.1) 2.0-3.0 3.22 1 . 10-11 
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Overload effect (PICC = Plasticity Induced Crack Closure)
During a structure operation, the loading is never as regular as depicted. What
happens if there is a few (or a moderate) number of overloads? 

Before the overload, the crack propagates with
its plastic wake; During the overloading, the
active plastic zone is higher than for the other
cycles; The plastic wake is temporarily increased
(Phase 1) for the coming cycles until the active
plastic zone at the crack tip passes the plastic
zone created by the overload (Phase 2);

During Phase 1, ΔKeff is reduced due to the PICC and
the crack propagates slower: there exists a retard effect
in the crack propagation rate. Once the crack tip has
passed the modified wake in Phase 2, ΔKeff is as
expected and the initial propagation rate is recovered.
However, too frequent overloads are damaging as they
actually correspond to increasing Kmax



Fatigue Crack Growth and Life Prediction

5. Fatigue and Life Prediction

5.1 Fatigue Crack Growth Equations
When a constant range of cyclic stress,  ( ), is applied to a cracked structure, stable
fatigue crack growth can occur at stress levels well below the yield stress of the material. In fact, the
range of the stress intensity factor , where  in a cycle may also be well below the
materials fracture toughness . The reason for this is simple: the material near the crack tip is under
severe plastic deformation (see Chapter 3). Since the stress-strain field near a crack tip is uniquely
determined by the stress intensity factor, fatigue crack growth rates can be correlated to  and Fig.5.1
shows a typical plot which can be divided into three zones; threshold, stable crack growth and instability.

Fig.5.1 A typical fatigue crack growth curve

In general the crack propagation rate of a given crack subjected to a constant amplitude loading depends
primarily on the range of stresses in the fatigue cycle ( ), and on the crack length. It is also
influenced by the stress ratio . In simple cases where the condition of similitude holds, the
stress intensity factor concept allows account to be taken of the two major terms by means of the stress
intensity factor range,

The concept of similitude is important for fatigue crack growth, as it provides the basis for applying
fracture mechanics to fatigue crack growth. Similitude implies that the crack tip conditions are uniquely
defined by a single loading parameter such as the stress intensity factor.

Now let us consider a growing crack under the action of a constant amplitude cyclic stress intensity. A
cyclic plastic zone forms at the tip of the crack, and the growing crack leaves behind a plastic wake. If
the plastic zone is sufficiently small that it is entirely embedded within an elastic singularity zone (see
Examples 2.7 and 3.1), the conditions at the crack tip are uniquely defined by the current , and the
crack growth rate is characterised by  and . If the crack is long and/or the stress is high, then
crack instability and rapid acceleration can occur since  is close to the fracture toughness of the
material . At lower value of  the linear portion of the curve in Fig.5.1 may be expressed as

where  and  are material, environment, stress state (stress ratio ) and temperature dependent. This
equation is sometimes referred to as the Paris law. Equation (5.2), especially in its integral form, is widely
used to evaluate the lifetime of cracked structures from a knowledge of the material. Usually the value of

 for many engineering materials is between 2 and 4. Finally at very low  values, a threshold is
reached, , below which long cracks do not grow.

Experimental fatigue crack growth data are usually obtained from tests on simple specimens and are
normally presented in terms of fatigue crack propagation rates ( ),  and variations in values of 
. In cases where  is compressive the crack may close during the fatigue cycle and no clear convention
for calculating  has peen established. Nevertheless, two popular approaches are:

1. the full range of the stress cycle will have been used, when calculating 
2. only the tensile part of the cycle will have been considered, that is .

To describe the crack growth rate over the complete range of variation, including threshold and fracture
instability, a number of empirical relationships have been proposed. One example is the Pridle equation,

The mechanisms responsible for the threshold phenomenon are rather complicated. The most popular
explanation is crack closure: due to the compressive stress induced by the plastic wake, the "true" stress
intensity factor at the tip of the crack is "shielded" so that no plastic deformation can occur, hence no
crack growth. Another possible explanation is that the crack tip plastic deformation cannot penetrate the
microstructural barriers, such as grain boundaries, etc.

When a structural component is subjected to fatigue loading, a dominant crack reaches a critical size
under the peak load during the last cycle leading to a catastrophic failure. As an example, consider a
plate with a crack of 2  subjected to a uniform stress  perpendicular to the plane of the crack. The
total number of cycles for the crack to reach 2  can be obtained by integrating the fatigue crack
propagation law given by equation (5.2),

Using equation (2.31) we obtain

Assuming that the function  is equal to its initial value  so that

thereafter

The critical crack length  at which unstable crack growth occurs can be determined from fracture
toughness (see Chapter 4). Usually, however, the geometry factor  varies with the crack length  and
the integration of equation (5.5) cannot be performed directly, but only through the use of numerical
methods.

Example 5.14 A large centre-cracked plate containing an initial crack of length 2  10 mm is subjected
to a constant amplitude cyclic tensile stress ranging between a minimum value of 100 MPa and a
maximum of 200 MPa. Assuming the fatigue crack growth rate is governed by the equation

1. Calculate the crack growth rate when the crack length has the following values 2  10 mm,
30 mm, 50 mm.

2. Assuming further that the relevant fracture toughness is 60 MPa√m, estimate the number of cycles
to failure.

Solution

(1) Determine the critical crack size, ,

This means the total crack length at fast fracture is 57.3 mm.

(2) Crack growth rates:

2  10 mm  = 12.53 MPa√m
 = 0.42×10-11 × (12.53)3 = 8.26×10-9 (m/cycle)

2  30 mm  = 21.7 MPa√m
 = 0.42×10-11 × (21.7)3 = 4.29×10-8 (m/cycle)

2  50 mm  = 28 MPa√m
 = 0.42×10-11 × (28)3 = 9.24×10-8 (m/cycle)

(3) Fatigue life:

5.2 Effect of Stress Ratio and Crack Closure
Let us now consider the crack tip plastic deformation in more detail, as it is the driving force for crack
growth. For a crack under cyclic loading, the plastic size is related to the stress intensity factor at the
maximum load,

where  is defined in Chapter 3 and  refers the material's uniaxial yield stress. When the applied load
is reversed, the local stress at the tip of the crack is also reversed, inducing reversed yielding. At the
minimum load, the size of the reversed plastic zone is, according to superposition principle,

It is clear that for a asymmetrical loading ( ), , the maximum (sometimes called
monotonic or forward) plastic zone is not equal to the reversed plastic zone, which is normally smaller
than the forward plastic zone. The main reason for this smaller plastic zone is due to the residual stress
induced by the maximum load. A graphical representation is shown in Fig. 5.2.

When the crack growth rates observed under different applied stress ratio  are compared, it is noted
that fatigue crack growth rate exhibits a dependence on the  ratio, particularly at both extremes of the
crack growth curve. While the  ratio effect on the upper end of the curve can be explained in terms of
the interaction between fatigue and ultimate failure at or near , the explanation for the effect near
threshold is slightly more complicated.

Fig.5.2 Reverse yielding at crack tip under cyclic loading

It was first reported by Elber (1971) that the elastic compliance of several fatigue specimens showed a bi-
linear relationship, as depicted in Fig. 5.3. At high loads, the compliance of the fatigue specimen agreed
with standard formulas for cracked specimens derived from fracture mechanics assuming monotonic
loading. But at low loads, the compliance was close to that of an uncracked specimen. It was believed
that this change in compliance was due to the contact between crack surfaces (crack closure) at loads
that were greater than zero. This surprising finding that fatigue cracks close at above zero load led to the
postulation that the crack closure decreased the effectiveness of the applied stress intensity factor range.
Crack faces (near crack tip) are in contact below , hence the stress intensity factor range over which
the crack is open is equal to , which is defined as the "effective stress intensity factor range",
denoted as . The main factor contributing to crack closure is the plasticity wake induced behind the
crack tip. As the crack grows, plastically deformed material remains in the region through which the crack
has propagated. When the component is unloaded, the large mass of elastically loaded material
compresses the small plastic region and causes regions of the crack surface to come into contact with one
another before zero nominal stress is reached.

Fig.5.3 Crack closure during fatigue crack growth

This concept of crack closure may be used to explain the effect of mean stress on crack propagation rates
and leads to the definition of an effective stress intensity factor range . At higher values of , less
crack closure tends to occur and  approaches  because  approaches . Now the fatigue
crack growth equations (5.2) should be modified accordingly by replacing  with .

The ratio between the effective and applied stress intensity factors is normally denoted as ,

For instance, the effective stress ratio  for 2023-T3 aluminium at various stress ratios was reported to
be independent of load levels and can be expressed as

Although some researchers have argued and experimentally demonstrated that  also depends on ,
it seems that there is a great deal of confusion and controversy about the  dependence of .
Nevertheless, the concept of crack closure has been widely acknowledged and demonstrated to be useful
in interpreting fatigue crack growth under variable amplitude loading.

5.3 Variable Amplitude Loading
As discussed earlier, fatigue life prediction for constant amplitude loading is reasonably straightforward,
provided the fatigue crack growth constants are known. However, the majority of engineering structures
are subjected to fluctuating loading, and the life prediction is generally much more complicated than that
outlined in the previous section. The factors that affect crack growth include variable amplitude
spectrum, crack retardation due to overload, and acceleration due to underload. A number of theories
and engineering methods have been proposed to reflect these effects.

Strictly speaking, for a fracture mechanics approach to be valid for fatigue crack growth under spectrum
loading, the similitude condition has to be satisfied. For a crack growing in a rising or falling  field,
similitude may be approximately satisfied if  is small. In the case of overload, due to change in
crack tip plastic deformation, similitude does not strictly hold. Simple fatigue crack growth laws that
assume similitude are usually conservative when applied to variable amplitude loading. For example, a
loading history can be cycle counted to identify reversals, using the rainflow or range pair method, then a
linear summation of the fatigue lives of the various constant amplitude loads in the loading history would
provide a first order approximation. However, such a method generally leads to conservative predictions
(shorter lifetime), as it ignores the crack retardation effect to be described below.

It was first recognised empirically in the early 1960s that the application of a tensile overload in a
constant amplitude cyclic load leads to temporary slower crack growth rate following the overload. Such
a phenomenon is called crack retardation. In other words, the crack growth rate becomes smaller than it
would have been under constant amplitude loading of the same magnitude. It was also recognised that a
tensile-compressive overload following a constant amplitude cyclic load has little crack retardation
effect. In fact, a compressive overload alone would accelerate crack growth. The effect of crack
retardation can be better appreciated if we consider the elastic-plastic deformation ahead of a growing
crack. Upon the application of a tensile overload, a large plastic zone is induced at the crack tip. After
the removal of the overload, the elastic material surrounding the plastic zone acts like a clamp on this
zone causing compressive residual stresses. As the crack propagates into the plastic zone, the residual
compressive stresses tend to close the crack, leading to a decreasing growth rate as the crack advances
into the compressive residual stress field. The effect of retardation will gradually diminish as the crack
grows out of this residual stress field. It is easy to envisage that the opposite will occur for an
compressive overload: the residual stress will be tensile, leading to faster crack growth.

The development in fatigue crack growth prediction can be roughly divided into three stages
chronologically.

1. The first generation of crack growth analysis was based on linear assumption of constant amplitude
data for  versus , viz the Palmgren-Miner linear rule, which results directly from the
integration of crack growth law (see next section). As the effect of loading sequence is totally
ignored in this approach, the accuracy of the resulting prediction is generally poor.

2. From experimental results, a number of interactions between different load cycles of different
magnitude have been observed, most notably retardation after overload and crack growth
acceleration after underload. Based on these experimental findings, several plastic yield zone
models, so called second generation, were proposed. The most widely used is the Wheeler model,
which needs to be experimentally calibrated for a given spectrum. The main disadvantage of this
type of the model is the sensitivity to loading spectrum thus rendering it impossible to be used for
"blind" predictions.

3. The third generation crack growth models, commonly called strip yield model, emerged after the
discovery of crack closure by Elber (1971). When plotted against the effective stress intensity factor,
which is the difference between the maximum stress intensity factor and the stress intensity factor
below which crack remains closed, the effects of loading sequence and stress ratio would virtually
disappear. Based on this simple fact, several models have been developed to calculate the effective
stress intensity factor. For example Newman (1992; 1995). The crack opening stress level is
analytically calculated using the Dugdale-Barenblatt strip yield model. After the crack has advanced
a distance, a plastic wake is left behind, which in general exerts a resistance to crack closing during
the downward half cycle, thus reducing the effective stress intensity which dictates crack growth
rate. This plastic wake can also be (partially) destroyed if a high underload is applied, resulting in a
temporary acceleration of crack growth. The essence of this method is to analytically determine the
stress level required to counter act the resistance exerted by the residual plastic deformation (or
the stress level above which the crack remains open), and the crack growth rate is given by the
effective stress intensity factor,

where constants  and  are empirically determined from experiments. Parameter  is the applied
stress, and  is the stress ratio ( ). Clearly the only unknown in the above equation is the
crack opening stress level . This approach has been successfully used to correlate and predict
large-crack growth rate behaviour under a wide variety of loading conditions. This is possible
because the crack tip plastic deformation process that drives the crack is uniquely determined by
the stress intensity factor. However, when the crack is small, the plastic strain distribution ahead
the crack tip is no longer solely controlled by the stress intensity induced by the crack, but also
depends on the macro-stress/strain state, which is geometry and loading dependent.

The first two methods are relatively easy to apply, while the strip yield models were more numerically
involved, although this type of analysis was reported to give better correlations to fatigue crack growth
under spectrum loading. In the following, some detailed discussion of these methods is presented.

5.3.1 First Generation Model and Palmgren-Miner Linear Rule

It is easy to demonstrate the Palmgren-Miner linear damage summation rule is a direct result of crack
growth rate being proportional to crack length ( 2 in the Paris law). Let an initial stress range  be
changed to a different stress range  when the crack has grown from  to  after  cycles. At the
second stress range the crack grows to  to cause failure after  cycles.

At the first stress range, from equation (5.7),

hence

For the second stress range level

hence

hence

Similarly one can prove that the same conclusion can be obtained for a more general crack growth
relationship,

This is left as an exercise for the reader. Therefore the Palmgren-Miner linear summation rule assumes
inexplicitly that (1) the crack growth rate is proportional to crack length and (2) the proportionality is
solely dependent on the instantaneous stress level and independent of loading history. As will be seen
later that assumption (2) is generally not true, owing to the crack closure effect, which is history
dependent.

5.3.2 Wheeler Model

If there had been no overload, the crack would have progressed with a plastic zone of size equal to

where 1 for plane stress and √3 for finite thickness, and  is the amplitude of applied stress
intensity factor. At the moment of the overload the plastic zone size is

Fig.5.4 The Wheeler model for crack retardation

Wheeler assumed that retardation effect persists as long as  is contained within , see Fig.5.4, but
the overload effects disappear when the current plastic zone touches the outer boundary of . At any
instant, the distance between the crack tip and the outer boundary of  is equal to , we can
define two parameters

which are plotted in Fig.5.5. A retardation factor can now be defined as

where  is a fitting parameter. The crack growth rate is reduced from the baseline value by :

An important point about the Wheeler model is that the exponent  depends on material properties and
loading spectrum. Therefore this parameter must be obtained empirically from an experiment with a
stress spectrum that has similar characteristics of that to be analysed. A variable amplitude loading
analysis must be performed to determine the  value that gives the best correlation of crack growth. The
model can then be applied to structural predictions for components subjected to the same spectrum but
of different magnitude. A re-calibration of the Wheeler model with new experiments must be carried out
if the structure is subjected to a different stress spectrum. The linear summation method can be
considered as a special case of Wheeler's model by setting 0 .

Fig.5.5 Choices of retardation parameter

5.4 Damage Tolerance Design Methodology
The term damage tolerance has a variety of meanings, but normally refers to a design methodology in
which fracture mechanics analysis is used to predict crack growth life and quantify inspection intervals.
This approach is usually applied to structures that are susceptible to time-dependent flaw growth. The
two objectives of damage tolerance analysis are to determine (1) the effect of cracks on the (residual)
strength and (2) crack growth behaviour as a function of time. Damage tolerance analysis consists of
several steps. A brief outline of the steps involved in damage tolerance calculations is given below.
Assuming the service loading spectrum and material properties (fracture toughness and fatigue crack
growth rate constants) are known:

1. Determine the size of initial defects, e.g. NDI inspection.
2. Calculate the critical crack size at which failure would occur (see Chapter 4)
3. Integrate fatigue propagation equations to determine the number of load cycles (or blocks) for the

crack to grow from its initial size to its critical size (see section 5.1)
4. Set inspection interval to half the life calculated in step 3.

A comparison between "safe-life" and "damage tolerance" design methodologies is given below.

Safe-life Damage tolerance

structure is assumed to be defect free initial defect is assumed to exist: equal to NDI limit

no crack formation at design service life inspection to detect crack

design life < service life with or without
repair

crack is assumed to grow to critical length in two
inspection intervals

life at 1.2 design loads equal to 1.5 design
life

safe life derived from S-N curves (local
strain approach)

crack growth determined from fracture mechanics

scatter factor of 3-4 applied to calculated
lives

scatter factor = 2 in fatigue crack growth

failure probability = 0.001 failure probability after 2 inspections = 0.001
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Fatigue Crack Growth and Life Prediction

5. Fatigue and Life Prediction

5.1 Fatigue Crack Growth Equations
When a constant range of cyclic stress,  ( ), is applied to a cracked structure, stable
fatigue crack growth can occur at stress levels well below the yield stress of the material. In fact, the
range of the stress intensity factor , where  in a cycle may also be well below the
materials fracture toughness . The reason for this is simple: the material near the crack tip is under
severe plastic deformation (see Chapter 3). Since the stress-strain field near a crack tip is uniquely
determined by the stress intensity factor, fatigue crack growth rates can be correlated to  and Fig.5.1
shows a typical plot which can be divided into three zones; threshold, stable crack growth and instability.

Fig.5.1 A typical fatigue crack growth curve

In general the crack propagation rate of a given crack subjected to a constant amplitude loading depends
primarily on the range of stresses in the fatigue cycle ( ), and on the crack length. It is also
influenced by the stress ratio . In simple cases where the condition of similitude holds, the
stress intensity factor concept allows account to be taken of the two major terms by means of the stress
intensity factor range,

The concept of similitude is important for fatigue crack growth, as it provides the basis for applying
fracture mechanics to fatigue crack growth. Similitude implies that the crack tip conditions are uniquely
defined by a single loading parameter such as the stress intensity factor.

Now let us consider a growing crack under the action of a constant amplitude cyclic stress intensity. A
cyclic plastic zone forms at the tip of the crack, and the growing crack leaves behind a plastic wake. If
the plastic zone is sufficiently small that it is entirely embedded within an elastic singularity zone (see
Examples 2.7 and 3.1), the conditions at the crack tip are uniquely defined by the current , and the
crack growth rate is characterised by  and . If the crack is long and/or the stress is high, then
crack instability and rapid acceleration can occur since  is close to the fracture toughness of the
material . At lower value of  the linear portion of the curve in Fig.5.1 may be expressed as

where  and  are material, environment, stress state (stress ratio ) and temperature dependent. This
equation is sometimes referred to as the Paris law. Equation (5.2), especially in its integral form, is widely
used to evaluate the lifetime of cracked structures from a knowledge of the material. Usually the value of

 for many engineering materials is between 2 and 4. Finally at very low  values, a threshold is
reached, , below which long cracks do not grow.

Experimental fatigue crack growth data are usually obtained from tests on simple specimens and are
normally presented in terms of fatigue crack propagation rates ( ),  and variations in values of 
. In cases where  is compressive the crack may close during the fatigue cycle and no clear convention
for calculating  has peen established. Nevertheless, two popular approaches are:

1. the full range of the stress cycle will have been used, when calculating 
2. only the tensile part of the cycle will have been considered, that is .

To describe the crack growth rate over the complete range of variation, including threshold and fracture
instability, a number of empirical relationships have been proposed. One example is the Pridle equation,

The mechanisms responsible for the threshold phenomenon are rather complicated. The most popular
explanation is crack closure: due to the compressive stress induced by the plastic wake, the "true" stress
intensity factor at the tip of the crack is "shielded" so that no plastic deformation can occur, hence no
crack growth. Another possible explanation is that the crack tip plastic deformation cannot penetrate the
microstructural barriers, such as grain boundaries, etc.

When a structural component is subjected to fatigue loading, a dominant crack reaches a critical size
under the peak load during the last cycle leading to a catastrophic failure. As an example, consider a
plate with a crack of 2  subjected to a uniform stress  perpendicular to the plane of the crack. The
total number of cycles for the crack to reach 2  can be obtained by integrating the fatigue crack
propagation law given by equation (5.2),

Using equation (2.31) we obtain

Assuming that the function  is equal to its initial value  so that

thereafter

The critical crack length  at which unstable crack growth occurs can be determined from fracture
toughness (see Chapter 4). Usually, however, the geometry factor  varies with the crack length  and
the integration of equation (5.5) cannot be performed directly, but only through the use of numerical
methods.

Example 5.14 A large centre-cracked plate containing an initial crack of length 2  10 mm is subjected
to a constant amplitude cyclic tensile stress ranging between a minimum value of 100 MPa and a
maximum of 200 MPa. Assuming the fatigue crack growth rate is governed by the equation

1. Calculate the crack growth rate when the crack length has the following values 2  10 mm,
30 mm, 50 mm.

2. Assuming further that the relevant fracture toughness is 60 MPa√m, estimate the number of cycles
to failure.

Solution

(1) Determine the critical crack size, ,

This means the total crack length at fast fracture is 57.3 mm.

(2) Crack growth rates:

2  10 mm  = 12.53 MPa√m
 = 0.42×10-11 × (12.53)3 = 8.26×10-9 (m/cycle)

2  30 mm  = 21.7 MPa√m
 = 0.42×10-11 × (21.7)3 = 4.29×10-8 (m/cycle)

2  50 mm  = 28 MPa√m
 = 0.42×10-11 × (28)3 = 9.24×10-8 (m/cycle)

(3) Fatigue life:

5.2 Effect of Stress Ratio and Crack Closure
Let us now consider the crack tip plastic deformation in more detail, as it is the driving force for crack
growth. For a crack under cyclic loading, the plastic size is related to the stress intensity factor at the
maximum load,

where  is defined in Chapter 3 and  refers the material's uniaxial yield stress. When the applied load
is reversed, the local stress at the tip of the crack is also reversed, inducing reversed yielding. At the
minimum load, the size of the reversed plastic zone is, according to superposition principle,

It is clear that for a asymmetrical loading ( ), , the maximum (sometimes called
monotonic or forward) plastic zone is not equal to the reversed plastic zone, which is normally smaller
than the forward plastic zone. The main reason for this smaller plastic zone is due to the residual stress
induced by the maximum load. A graphical representation is shown in Fig. 5.2.

When the crack growth rates observed under different applied stress ratio  are compared, it is noted
that fatigue crack growth rate exhibits a dependence on the  ratio, particularly at both extremes of the
crack growth curve. While the  ratio effect on the upper end of the curve can be explained in terms of
the interaction between fatigue and ultimate failure at or near , the explanation for the effect near
threshold is slightly more complicated.

Fig.5.2 Reverse yielding at crack tip under cyclic loading

It was first reported by Elber (1971) that the elastic compliance of several fatigue specimens showed a bi-
linear relationship, as depicted in Fig. 5.3. At high loads, the compliance of the fatigue specimen agreed
with standard formulas for cracked specimens derived from fracture mechanics assuming monotonic
loading. But at low loads, the compliance was close to that of an uncracked specimen. It was believed
that this change in compliance was due to the contact between crack surfaces (crack closure) at loads
that were greater than zero. This surprising finding that fatigue cracks close at above zero load led to the
postulation that the crack closure decreased the effectiveness of the applied stress intensity factor range.
Crack faces (near crack tip) are in contact below , hence the stress intensity factor range over which
the crack is open is equal to , which is defined as the "effective stress intensity factor range",
denoted as . The main factor contributing to crack closure is the plasticity wake induced behind the
crack tip. As the crack grows, plastically deformed material remains in the region through which the crack
has propagated. When the component is unloaded, the large mass of elastically loaded material
compresses the small plastic region and causes regions of the crack surface to come into contact with one
another before zero nominal stress is reached.

Fig.5.3 Crack closure during fatigue crack growth

This concept of crack closure may be used to explain the effect of mean stress on crack propagation rates
and leads to the definition of an effective stress intensity factor range . At higher values of , less
crack closure tends to occur and  approaches  because  approaches . Now the fatigue
crack growth equations (5.2) should be modified accordingly by replacing  with .

The ratio between the effective and applied stress intensity factors is normally denoted as ,

For instance, the effective stress ratio  for 2023-T3 aluminium at various stress ratios was reported to
be independent of load levels and can be expressed as

Although some researchers have argued and experimentally demonstrated that  also depends on ,
it seems that there is a great deal of confusion and controversy about the  dependence of .
Nevertheless, the concept of crack closure has been widely acknowledged and demonstrated to be useful
in interpreting fatigue crack growth under variable amplitude loading.

5.3 Variable Amplitude Loading
As discussed earlier, fatigue life prediction for constant amplitude loading is reasonably straightforward,
provided the fatigue crack growth constants are known. However, the majority of engineering structures
are subjected to fluctuating loading, and the life prediction is generally much more complicated than that
outlined in the previous section. The factors that affect crack growth include variable amplitude
spectrum, crack retardation due to overload, and acceleration due to underload. A number of theories
and engineering methods have been proposed to reflect these effects.

Strictly speaking, for a fracture mechanics approach to be valid for fatigue crack growth under spectrum
loading, the similitude condition has to be satisfied. For a crack growing in a rising or falling  field,
similitude may be approximately satisfied if  is small. In the case of overload, due to change in
crack tip plastic deformation, similitude does not strictly hold. Simple fatigue crack growth laws that
assume similitude are usually conservative when applied to variable amplitude loading. For example, a
loading history can be cycle counted to identify reversals, using the rainflow or range pair method, then a
linear summation of the fatigue lives of the various constant amplitude loads in the loading history would
provide a first order approximation. However, such a method generally leads to conservative predictions
(shorter lifetime), as it ignores the crack retardation effect to be described below.

It was first recognised empirically in the early 1960s that the application of a tensile overload in a
constant amplitude cyclic load leads to temporary slower crack growth rate following the overload. Such
a phenomenon is called crack retardation. In other words, the crack growth rate becomes smaller than it
would have been under constant amplitude loading of the same magnitude. It was also recognised that a
tensile-compressive overload following a constant amplitude cyclic load has little crack retardation
effect. In fact, a compressive overload alone would accelerate crack growth. The effect of crack
retardation can be better appreciated if we consider the elastic-plastic deformation ahead of a growing
crack. Upon the application of a tensile overload, a large plastic zone is induced at the crack tip. After
the removal of the overload, the elastic material surrounding the plastic zone acts like a clamp on this
zone causing compressive residual stresses. As the crack propagates into the plastic zone, the residual
compressive stresses tend to close the crack, leading to a decreasing growth rate as the crack advances
into the compressive residual stress field. The effect of retardation will gradually diminish as the crack
grows out of this residual stress field. It is easy to envisage that the opposite will occur for an
compressive overload: the residual stress will be tensile, leading to faster crack growth.

The development in fatigue crack growth prediction can be roughly divided into three stages
chronologically.

1. The first generation of crack growth analysis was based on linear assumption of constant amplitude
data for  versus , viz the Palmgren-Miner linear rule, which results directly from the
integration of crack growth law (see next section). As the effect of loading sequence is totally
ignored in this approach, the accuracy of the resulting prediction is generally poor.

2. From experimental results, a number of interactions between different load cycles of different
magnitude have been observed, most notably retardation after overload and crack growth
acceleration after underload. Based on these experimental findings, several plastic yield zone
models, so called second generation, were proposed. The most widely used is the Wheeler model,
which needs to be experimentally calibrated for a given spectrum. The main disadvantage of this
type of the model is the sensitivity to loading spectrum thus rendering it impossible to be used for
"blind" predictions.

3. The third generation crack growth models, commonly called strip yield model, emerged after the
discovery of crack closure by Elber (1971). When plotted against the effective stress intensity factor,
which is the difference between the maximum stress intensity factor and the stress intensity factor
below which crack remains closed, the effects of loading sequence and stress ratio would virtually
disappear. Based on this simple fact, several models have been developed to calculate the effective
stress intensity factor. For example Newman (1992; 1995). The crack opening stress level is
analytically calculated using the Dugdale-Barenblatt strip yield model. After the crack has advanced
a distance, a plastic wake is left behind, which in general exerts a resistance to crack closing during
the downward half cycle, thus reducing the effective stress intensity which dictates crack growth
rate. This plastic wake can also be (partially) destroyed if a high underload is applied, resulting in a
temporary acceleration of crack growth. The essence of this method is to analytically determine the
stress level required to counter act the resistance exerted by the residual plastic deformation (or
the stress level above which the crack remains open), and the crack growth rate is given by the
effective stress intensity factor,

where constants  and  are empirically determined from experiments. Parameter  is the applied
stress, and  is the stress ratio ( ). Clearly the only unknown in the above equation is the
crack opening stress level . This approach has been successfully used to correlate and predict
large-crack growth rate behaviour under a wide variety of loading conditions. This is possible
because the crack tip plastic deformation process that drives the crack is uniquely determined by
the stress intensity factor. However, when the crack is small, the plastic strain distribution ahead
the crack tip is no longer solely controlled by the stress intensity induced by the crack, but also
depends on the macro-stress/strain state, which is geometry and loading dependent.

The first two methods are relatively easy to apply, while the strip yield models were more numerically
involved, although this type of analysis was reported to give better correlations to fatigue crack growth
under spectrum loading. In the following, some detailed discussion of these methods is presented.

5.3.1 First Generation Model and Palmgren-Miner Linear Rule

It is easy to demonstrate the Palmgren-Miner linear damage summation rule is a direct result of crack
growth rate being proportional to crack length ( 2 in the Paris law). Let an initial stress range  be
changed to a different stress range  when the crack has grown from  to  after  cycles. At the
second stress range the crack grows to  to cause failure after  cycles.

At the first stress range, from equation (5.7),

hence

For the second stress range level

hence

hence

Similarly one can prove that the same conclusion can be obtained for a more general crack growth
relationship,

This is left as an exercise for the reader. Therefore the Palmgren-Miner linear summation rule assumes
inexplicitly that (1) the crack growth rate is proportional to crack length and (2) the proportionality is
solely dependent on the instantaneous stress level and independent of loading history. As will be seen
later that assumption (2) is generally not true, owing to the crack closure effect, which is history
dependent.

5.3.2 Wheeler Model

If there had been no overload, the crack would have progressed with a plastic zone of size equal to

where 1 for plane stress and √3 for finite thickness, and  is the amplitude of applied stress
intensity factor. At the moment of the overload the plastic zone size is

Fig.5.4 The Wheeler model for crack retardation

Wheeler assumed that retardation effect persists as long as  is contained within , see Fig.5.4, but
the overload effects disappear when the current plastic zone touches the outer boundary of . At any
instant, the distance between the crack tip and the outer boundary of  is equal to , we can
define two parameters

which are plotted in Fig.5.5. A retardation factor can now be defined as

where  is a fitting parameter. The crack growth rate is reduced from the baseline value by :

An important point about the Wheeler model is that the exponent  depends on material properties and
loading spectrum. Therefore this parameter must be obtained empirically from an experiment with a
stress spectrum that has similar characteristics of that to be analysed. A variable amplitude loading
analysis must be performed to determine the  value that gives the best correlation of crack growth. The
model can then be applied to structural predictions for components subjected to the same spectrum but
of different magnitude. A re-calibration of the Wheeler model with new experiments must be carried out
if the structure is subjected to a different stress spectrum. The linear summation method can be
considered as a special case of Wheeler's model by setting 0 .

Fig.5.5 Choices of retardation parameter

5.4 Damage Tolerance Design Methodology
The term damage tolerance has a variety of meanings, but normally refers to a design methodology in
which fracture mechanics analysis is used to predict crack growth life and quantify inspection intervals.
This approach is usually applied to structures that are susceptible to time-dependent flaw growth. The
two objectives of damage tolerance analysis are to determine (1) the effect of cracks on the (residual)
strength and (2) crack growth behaviour as a function of time. Damage tolerance analysis consists of
several steps. A brief outline of the steps involved in damage tolerance calculations is given below.
Assuming the service loading spectrum and material properties (fracture toughness and fatigue crack
growth rate constants) are known:

1. Determine the size of initial defects, e.g. NDI inspection.
2. Calculate the critical crack size at which failure would occur (see Chapter 4)
3. Integrate fatigue propagation equations to determine the number of load cycles (or blocks) for the

crack to grow from its initial size to its critical size (see section 5.1)
4. Set inspection interval to half the life calculated in step 3.

A comparison between "safe-life" and "damage tolerance" design methodologies is given below.

Safe-life Damage tolerance

structure is assumed to be defect free initial defect is assumed to exist: equal to NDI limit

no crack formation at design service life inspection to detect crack

design life < service life with or without
repair

crack is assumed to grow to critical length in two
inspection intervals

life at 1.2 design loads equal to 1.5 design
life

safe life derived from S-N curves (local
strain approach)

crack growth determined from fracture mechanics

scatter factor of 3-4 applied to calculated
lives

scatter factor = 2 in fatigue crack growth

failure probability = 0.001 failure probability after 2 inspections = 0.001

This page provides the chapter on fatigue crack
growth and life prediction from Wang, C. H.
"Introduction to Fracture Mechanics," DSTO
Aeronautical and Maritime Research Laboratory,
DSTO-GD-0103, 1996.

Other related chapters from "Introduction to
Fracture Mechanics" can be seen to the right.

Introduction to Fracture Mechanics

1. Introduction to Fracture Mechanics
2. Fracture Mechanics Fundamentals
3. Energy Concepts for Crack Growth
4. Stress Intensity Factor
5. Plastic Yielding at Crack Tip
6. Fracture Criteria
7. Fatigue Crack Growth

Δσ = σmax - σmin

ΔK ΔK = Kmax − Kmin
KIC

ΔK

σmax , σmin
R = σmin/σmax

ΔK = −Kmax Kmin (5.1)

K
Kmin Kmax

Kmax
KIC ΔK

= f (ΔK, R) = C(ΔKda
dN )m (5.2)

C m R

m ΔK
ΔKth

da/dN ΔK R
σmin
ΔK

ΔK
ΔK = Kmax

= f (ΔK, R, , ) = Cda
dN Kc Kth ( )ΔK − ΔKth

−Kc Kmax

m
(5.3)

a0 σ
af

=Nf ∫
af

a0

da
C(ΔK)m (5.4)

=Nf ∫
af

a0

da
C[Y(a)Δσ ]πa‾‾‾√

m (5.5)

Y(a) Y(a0)

ΔK = Δ   where  Δ = Y( )ΔσK0
a
a0
‾ ‾‾

√ K0 a0 πa0‾ ‾‾‾√ (5.6)

=Nf

⎧

⎩
⎨⎪⎪

[1 − ]2a0
(m−2)C(ΔK0)m ( )a0

af

m/2−1

lna0
C(ΔK0)2

af
a0

for m ≠ 2

for m = 2
(5.7)

af
Y(a) a

a0 =

= 0.42 × (ΔK  (m/cycle)da
dN 10−11 )3

a0 =

ac

= = 28.7 ×  (m)ac
1
π ( )KIC

σmax

2
10−3

a = ΔK = Δσ πa‾‾‾√
da
dN

a = ΔK = Δσ πa‾‾‾√
da
dN

a = ΔK = Δσ πa‾‾‾√
da
dN

Nf =

=

=

=

∫ dN = =∫
28.7

5

da
0.42 × (ΔK10−11 )3 ∫

28.7

5

da
7.39 × 10−10a3/2

1.35 × da109 ∫
28.7

5
a−3/2

1.35 × (−2)109 a−1/2∣
∣∣
28.7

5
6.76 ×  (cycles)108

Looking for Fracture Calculators?

Here are a few to choose from:

Fracture Mechanics Calculator
Fatigue Crack Growth Calculator
Fracture Materials Database

=rp
1
π

K 2
max

(α σys)2 (5.8)

α σys

=rpc
1
π

(ΔK)2

(2α σys)2 (5.9)

R ≠ -1 ΔK ≠ 2Kmax

R
R

R
Kc

Kop
Kmax − Kop

ΔKeff

ΔKeff R
ΔKeff ΔK Kop Kmin

ΔK ΔKeff

= f (Δ )da
dN Keff (5.10)

U

U = ΔKeff

ΔK
(5.11)

U

U = 0.5 + 0.4R         (−0.1 ≤ R ≤ 0.7) (5.12)

U Kmax
Kmax U

Looking for Fracture Calculators?

Here are a few to choose from:

Fracture Mechanics Calculator
Fatigue Crack Growth Calculator
Fracture Materials Database

K
dK/da

da/dN ΔK

= CΔ = C( − = C Δda
dN K m

eff Kmax Kop)m [ ]1 − /So Smax
1 − R

m
K m

C m S
R Smin/Smax

So

m = Δσ1
Δσ2 a0 a1 N1

af N2

= lnNf1
1

C(Δ πσ1)2
af

a0
(5.13)

= lnN1
1

C(Δ πσ1)2
a1
a0

(5.14)

=N1
Nf1

ln( / )a1 a0
ln( / )af a0

(5.15)

= lnNf2
1

C(Δ πσ2)2
af

a0

= lnN2
1

C(Δ πσ2)2
a1
a0

(5.16)

=N2
Nf2

ln( / )af a1
ln( / )af a0

(5.17)

∑ = + = = 1Ni
Nfi

N1
Nf1

N2
Nf2

ln( / ) + ln( / )a1 a0 af a1
ln( / )af a0

(5.18)

= AΔ ada
dN σn (5.19)

=rpc
1
π ( )Kmax

α σys

2
(5.20)

α = α = Kmax

=rpo
1
π ( )Ko

α σys

2
(5.21)

rpc rpo
rpo

rpo Δa + rpc

=    or   =λ1
Δa + rpc

rpo
λ2

rpc
− Δarpo

(5.22)

ϕ = λγ (5.23)

γ ϕ

= ϕ ( )da
dN R

da
dN (5.24)

γ

γ

γ =

Looking for Fracture Calculators?

Here are a few to choose from:

Fracture Mechanics Calculator
Fatigue Crack Growth Calculator
Fracture Materials Database

⟸ Previous Page Next Page ⟹

© 2020 EngineeringLibrary.org Terms & Conditions

DSTO, "Introduction to
Fracture Mechanics"

1. Introduction to Fracture
Mechanics

2. Fracture Mechanics
Fundamentals

3. Energy Concepts for
Crack Growth

4. Stress Intensity Factor
5. Plastic Yielding at

Crack Tip
6. Fracture Criteria
7. Fatigue Crack Growth

Other Fracture
References

1. Brittle Fracture (DOE)

Fatigue Crack Growth Calculator

Need a fatigue crack growth
calculator? Try this one:

PDH Classroom

Affordable PDH credits
for your PE license

View Courses

Engineering Library ! Reference " Calculators # Contact Us$ Partner Websites



Fatigue Crack Growth and Life Prediction

5. Fatigue and Life Prediction

5.1 Fatigue Crack Growth Equations
When a constant range of cyclic stress,  ( ), is applied to a cracked structure, stable
fatigue crack growth can occur at stress levels well below the yield stress of the material. In fact, the
range of the stress intensity factor , where  in a cycle may also be well below the
materials fracture toughness . The reason for this is simple: the material near the crack tip is under
severe plastic deformation (see Chapter 3). Since the stress-strain field near a crack tip is uniquely
determined by the stress intensity factor, fatigue crack growth rates can be correlated to  and Fig.5.1
shows a typical plot which can be divided into three zones; threshold, stable crack growth and instability.

Fig.5.1 A typical fatigue crack growth curve

In general the crack propagation rate of a given crack subjected to a constant amplitude loading depends
primarily on the range of stresses in the fatigue cycle ( ), and on the crack length. It is also
influenced by the stress ratio . In simple cases where the condition of similitude holds, the
stress intensity factor concept allows account to be taken of the two major terms by means of the stress
intensity factor range,

The concept of similitude is important for fatigue crack growth, as it provides the basis for applying
fracture mechanics to fatigue crack growth. Similitude implies that the crack tip conditions are uniquely
defined by a single loading parameter such as the stress intensity factor.

Now let us consider a growing crack under the action of a constant amplitude cyclic stress intensity. A
cyclic plastic zone forms at the tip of the crack, and the growing crack leaves behind a plastic wake. If
the plastic zone is sufficiently small that it is entirely embedded within an elastic singularity zone (see
Examples 2.7 and 3.1), the conditions at the crack tip are uniquely defined by the current , and the
crack growth rate is characterised by  and . If the crack is long and/or the stress is high, then
crack instability and rapid acceleration can occur since  is close to the fracture toughness of the
material . At lower value of  the linear portion of the curve in Fig.5.1 may be expressed as

where  and  are material, environment, stress state (stress ratio ) and temperature dependent. This
equation is sometimes referred to as the Paris law. Equation (5.2), especially in its integral form, is widely
used to evaluate the lifetime of cracked structures from a knowledge of the material. Usually the value of

 for many engineering materials is between 2 and 4. Finally at very low  values, a threshold is
reached, , below which long cracks do not grow.

Experimental fatigue crack growth data are usually obtained from tests on simple specimens and are
normally presented in terms of fatigue crack propagation rates ( ),  and variations in values of 
. In cases where  is compressive the crack may close during the fatigue cycle and no clear convention
for calculating  has peen established. Nevertheless, two popular approaches are:

1. the full range of the stress cycle will have been used, when calculating 
2. only the tensile part of the cycle will have been considered, that is .

To describe the crack growth rate over the complete range of variation, including threshold and fracture
instability, a number of empirical relationships have been proposed. One example is the Pridle equation,

The mechanisms responsible for the threshold phenomenon are rather complicated. The most popular
explanation is crack closure: due to the compressive stress induced by the plastic wake, the "true" stress
intensity factor at the tip of the crack is "shielded" so that no plastic deformation can occur, hence no
crack growth. Another possible explanation is that the crack tip plastic deformation cannot penetrate the
microstructural barriers, such as grain boundaries, etc.

When a structural component is subjected to fatigue loading, a dominant crack reaches a critical size
under the peak load during the last cycle leading to a catastrophic failure. As an example, consider a
plate with a crack of 2  subjected to a uniform stress  perpendicular to the plane of the crack. The
total number of cycles for the crack to reach 2  can be obtained by integrating the fatigue crack
propagation law given by equation (5.2),

Using equation (2.31) we obtain

Assuming that the function  is equal to its initial value  so that

thereafter

The critical crack length  at which unstable crack growth occurs can be determined from fracture
toughness (see Chapter 4). Usually, however, the geometry factor  varies with the crack length  and
the integration of equation (5.5) cannot be performed directly, but only through the use of numerical
methods.

Example 5.14 A large centre-cracked plate containing an initial crack of length 2  10 mm is subjected
to a constant amplitude cyclic tensile stress ranging between a minimum value of 100 MPa and a
maximum of 200 MPa. Assuming the fatigue crack growth rate is governed by the equation

1. Calculate the crack growth rate when the crack length has the following values 2  10 mm,
30 mm, 50 mm.

2. Assuming further that the relevant fracture toughness is 60 MPa√m, estimate the number of cycles
to failure.

Solution

(1) Determine the critical crack size, ,

This means the total crack length at fast fracture is 57.3 mm.

(2) Crack growth rates:

2  10 mm  = 12.53 MPa√m
 = 0.42×10-11 × (12.53)3 = 8.26×10-9 (m/cycle)

2  30 mm  = 21.7 MPa√m
 = 0.42×10-11 × (21.7)3 = 4.29×10-8 (m/cycle)

2  50 mm  = 28 MPa√m
 = 0.42×10-11 × (28)3 = 9.24×10-8 (m/cycle)

(3) Fatigue life:

5.2 Effect of Stress Ratio and Crack Closure
Let us now consider the crack tip plastic deformation in more detail, as it is the driving force for crack
growth. For a crack under cyclic loading, the plastic size is related to the stress intensity factor at the
maximum load,

where  is defined in Chapter 3 and  refers the material's uniaxial yield stress. When the applied load
is reversed, the local stress at the tip of the crack is also reversed, inducing reversed yielding. At the
minimum load, the size of the reversed plastic zone is, according to superposition principle,

It is clear that for a asymmetrical loading ( ), , the maximum (sometimes called
monotonic or forward) plastic zone is not equal to the reversed plastic zone, which is normally smaller
than the forward plastic zone. The main reason for this smaller plastic zone is due to the residual stress
induced by the maximum load. A graphical representation is shown in Fig. 5.2.

When the crack growth rates observed under different applied stress ratio  are compared, it is noted
that fatigue crack growth rate exhibits a dependence on the  ratio, particularly at both extremes of the
crack growth curve. While the  ratio effect on the upper end of the curve can be explained in terms of
the interaction between fatigue and ultimate failure at or near , the explanation for the effect near
threshold is slightly more complicated.

Fig.5.2 Reverse yielding at crack tip under cyclic loading

It was first reported by Elber (1971) that the elastic compliance of several fatigue specimens showed a bi-
linear relationship, as depicted in Fig. 5.3. At high loads, the compliance of the fatigue specimen agreed
with standard formulas for cracked specimens derived from fracture mechanics assuming monotonic
loading. But at low loads, the compliance was close to that of an uncracked specimen. It was believed
that this change in compliance was due to the contact between crack surfaces (crack closure) at loads
that were greater than zero. This surprising finding that fatigue cracks close at above zero load led to the
postulation that the crack closure decreased the effectiveness of the applied stress intensity factor range.
Crack faces (near crack tip) are in contact below , hence the stress intensity factor range over which
the crack is open is equal to , which is defined as the "effective stress intensity factor range",
denoted as . The main factor contributing to crack closure is the plasticity wake induced behind the
crack tip. As the crack grows, plastically deformed material remains in the region through which the crack
has propagated. When the component is unloaded, the large mass of elastically loaded material
compresses the small plastic region and causes regions of the crack surface to come into contact with one
another before zero nominal stress is reached.

Fig.5.3 Crack closure during fatigue crack growth

This concept of crack closure may be used to explain the effect of mean stress on crack propagation rates
and leads to the definition of an effective stress intensity factor range . At higher values of , less
crack closure tends to occur and  approaches  because  approaches . Now the fatigue
crack growth equations (5.2) should be modified accordingly by replacing  with .

The ratio between the effective and applied stress intensity factors is normally denoted as ,

For instance, the effective stress ratio  for 2023-T3 aluminium at various stress ratios was reported to
be independent of load levels and can be expressed as

Although some researchers have argued and experimentally demonstrated that  also depends on ,
it seems that there is a great deal of confusion and controversy about the  dependence of .
Nevertheless, the concept of crack closure has been widely acknowledged and demonstrated to be useful
in interpreting fatigue crack growth under variable amplitude loading.

5.3 Variable Amplitude Loading
As discussed earlier, fatigue life prediction for constant amplitude loading is reasonably straightforward,
provided the fatigue crack growth constants are known. However, the majority of engineering structures
are subjected to fluctuating loading, and the life prediction is generally much more complicated than that
outlined in the previous section. The factors that affect crack growth include variable amplitude
spectrum, crack retardation due to overload, and acceleration due to underload. A number of theories
and engineering methods have been proposed to reflect these effects.

Strictly speaking, for a fracture mechanics approach to be valid for fatigue crack growth under spectrum
loading, the similitude condition has to be satisfied. For a crack growing in a rising or falling  field,
similitude may be approximately satisfied if  is small. In the case of overload, due to change in
crack tip plastic deformation, similitude does not strictly hold. Simple fatigue crack growth laws that
assume similitude are usually conservative when applied to variable amplitude loading. For example, a
loading history can be cycle counted to identify reversals, using the rainflow or range pair method, then a
linear summation of the fatigue lives of the various constant amplitude loads in the loading history would
provide a first order approximation. However, such a method generally leads to conservative predictions
(shorter lifetime), as it ignores the crack retardation effect to be described below.

It was first recognised empirically in the early 1960s that the application of a tensile overload in a
constant amplitude cyclic load leads to temporary slower crack growth rate following the overload. Such
a phenomenon is called crack retardation. In other words, the crack growth rate becomes smaller than it
would have been under constant amplitude loading of the same magnitude. It was also recognised that a
tensile-compressive overload following a constant amplitude cyclic load has little crack retardation
effect. In fact, a compressive overload alone would accelerate crack growth. The effect of crack
retardation can be better appreciated if we consider the elastic-plastic deformation ahead of a growing
crack. Upon the application of a tensile overload, a large plastic zone is induced at the crack tip. After
the removal of the overload, the elastic material surrounding the plastic zone acts like a clamp on this
zone causing compressive residual stresses. As the crack propagates into the plastic zone, the residual
compressive stresses tend to close the crack, leading to a decreasing growth rate as the crack advances
into the compressive residual stress field. The effect of retardation will gradually diminish as the crack
grows out of this residual stress field. It is easy to envisage that the opposite will occur for an
compressive overload: the residual stress will be tensile, leading to faster crack growth.

The development in fatigue crack growth prediction can be roughly divided into three stages
chronologically.

1. The first generation of crack growth analysis was based on linear assumption of constant amplitude
data for  versus , viz the Palmgren-Miner linear rule, which results directly from the
integration of crack growth law (see next section). As the effect of loading sequence is totally
ignored in this approach, the accuracy of the resulting prediction is generally poor.

2. From experimental results, a number of interactions between different load cycles of different
magnitude have been observed, most notably retardation after overload and crack growth
acceleration after underload. Based on these experimental findings, several plastic yield zone
models, so called second generation, were proposed. The most widely used is the Wheeler model,
which needs to be experimentally calibrated for a given spectrum. The main disadvantage of this
type of the model is the sensitivity to loading spectrum thus rendering it impossible to be used for
"blind" predictions.

3. The third generation crack growth models, commonly called strip yield model, emerged after the
discovery of crack closure by Elber (1971). When plotted against the effective stress intensity factor,
which is the difference between the maximum stress intensity factor and the stress intensity factor
below which crack remains closed, the effects of loading sequence and stress ratio would virtually
disappear. Based on this simple fact, several models have been developed to calculate the effective
stress intensity factor. For example Newman (1992; 1995). The crack opening stress level is
analytically calculated using the Dugdale-Barenblatt strip yield model. After the crack has advanced
a distance, a plastic wake is left behind, which in general exerts a resistance to crack closing during
the downward half cycle, thus reducing the effective stress intensity which dictates crack growth
rate. This plastic wake can also be (partially) destroyed if a high underload is applied, resulting in a
temporary acceleration of crack growth. The essence of this method is to analytically determine the
stress level required to counter act the resistance exerted by the residual plastic deformation (or
the stress level above which the crack remains open), and the crack growth rate is given by the
effective stress intensity factor,

where constants  and  are empirically determined from experiments. Parameter  is the applied
stress, and  is the stress ratio ( ). Clearly the only unknown in the above equation is the
crack opening stress level . This approach has been successfully used to correlate and predict
large-crack growth rate behaviour under a wide variety of loading conditions. This is possible
because the crack tip plastic deformation process that drives the crack is uniquely determined by
the stress intensity factor. However, when the crack is small, the plastic strain distribution ahead
the crack tip is no longer solely controlled by the stress intensity induced by the crack, but also
depends on the macro-stress/strain state, which is geometry and loading dependent.

The first two methods are relatively easy to apply, while the strip yield models were more numerically
involved, although this type of analysis was reported to give better correlations to fatigue crack growth
under spectrum loading. In the following, some detailed discussion of these methods is presented.

5.3.1 First Generation Model and Palmgren-Miner Linear Rule

It is easy to demonstrate the Palmgren-Miner linear damage summation rule is a direct result of crack
growth rate being proportional to crack length ( 2 in the Paris law). Let an initial stress range  be
changed to a different stress range  when the crack has grown from  to  after  cycles. At the
second stress range the crack grows to  to cause failure after  cycles.

At the first stress range, from equation (5.7),

hence

For the second stress range level

hence

hence

Similarly one can prove that the same conclusion can be obtained for a more general crack growth
relationship,

This is left as an exercise for the reader. Therefore the Palmgren-Miner linear summation rule assumes
inexplicitly that (1) the crack growth rate is proportional to crack length and (2) the proportionality is
solely dependent on the instantaneous stress level and independent of loading history. As will be seen
later that assumption (2) is generally not true, owing to the crack closure effect, which is history
dependent.

5.3.2 Wheeler Model

If there had been no overload, the crack would have progressed with a plastic zone of size equal to

where 1 for plane stress and √3 for finite thickness, and  is the amplitude of applied stress
intensity factor. At the moment of the overload the plastic zone size is

Fig.5.4 The Wheeler model for crack retardation

Wheeler assumed that retardation effect persists as long as  is contained within , see Fig.5.4, but
the overload effects disappear when the current plastic zone touches the outer boundary of . At any
instant, the distance between the crack tip and the outer boundary of  is equal to , we can
define two parameters

which are plotted in Fig.5.5. A retardation factor can now be defined as

where  is a fitting parameter. The crack growth rate is reduced from the baseline value by :

An important point about the Wheeler model is that the exponent  depends on material properties and
loading spectrum. Therefore this parameter must be obtained empirically from an experiment with a
stress spectrum that has similar characteristics of that to be analysed. A variable amplitude loading
analysis must be performed to determine the  value that gives the best correlation of crack growth. The
model can then be applied to structural predictions for components subjected to the same spectrum but
of different magnitude. A re-calibration of the Wheeler model with new experiments must be carried out
if the structure is subjected to a different stress spectrum. The linear summation method can be
considered as a special case of Wheeler's model by setting 0 .

Fig.5.5 Choices of retardation parameter

5.4 Damage Tolerance Design Methodology
The term damage tolerance has a variety of meanings, but normally refers to a design methodology in
which fracture mechanics analysis is used to predict crack growth life and quantify inspection intervals.
This approach is usually applied to structures that are susceptible to time-dependent flaw growth. The
two objectives of damage tolerance analysis are to determine (1) the effect of cracks on the (residual)
strength and (2) crack growth behaviour as a function of time. Damage tolerance analysis consists of
several steps. A brief outline of the steps involved in damage tolerance calculations is given below.
Assuming the service loading spectrum and material properties (fracture toughness and fatigue crack
growth rate constants) are known:

1. Determine the size of initial defects, e.g. NDI inspection.
2. Calculate the critical crack size at which failure would occur (see Chapter 4)
3. Integrate fatigue propagation equations to determine the number of load cycles (or blocks) for the

crack to grow from its initial size to its critical size (see section 5.1)
4. Set inspection interval to half the life calculated in step 3.

A comparison between "safe-life" and "damage tolerance" design methodologies is given below.

Safe-life Damage tolerance

structure is assumed to be defect free initial defect is assumed to exist: equal to NDI limit

no crack formation at design service life inspection to detect crack

design life < service life with or without
repair

crack is assumed to grow to critical length in two
inspection intervals

life at 1.2 design loads equal to 1.5 design
life

safe life derived from S-N curves (local
strain approach)

crack growth determined from fracture mechanics

scatter factor of 3-4 applied to calculated
lives

scatter factor = 2 in fatigue crack growth

failure probability = 0.001 failure probability after 2 inspections = 0.001
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Aeronautical and Maritime Research Laboratory,
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Fatigue Crack Growth and Life Prediction

5. Fatigue and Life Prediction

5.1 Fatigue Crack Growth Equations
When a constant range of cyclic stress,  ( ), is applied to a cracked structure, stable
fatigue crack growth can occur at stress levels well below the yield stress of the material. In fact, the
range of the stress intensity factor , where  in a cycle may also be well below the
materials fracture toughness . The reason for this is simple: the material near the crack tip is under
severe plastic deformation (see Chapter 3). Since the stress-strain field near a crack tip is uniquely
determined by the stress intensity factor, fatigue crack growth rates can be correlated to  and Fig.5.1
shows a typical plot which can be divided into three zones; threshold, stable crack growth and instability.

Fig.5.1 A typical fatigue crack growth curve

In general the crack propagation rate of a given crack subjected to a constant amplitude loading depends
primarily on the range of stresses in the fatigue cycle ( ), and on the crack length. It is also
influenced by the stress ratio . In simple cases where the condition of similitude holds, the
stress intensity factor concept allows account to be taken of the two major terms by means of the stress
intensity factor range,

The concept of similitude is important for fatigue crack growth, as it provides the basis for applying
fracture mechanics to fatigue crack growth. Similitude implies that the crack tip conditions are uniquely
defined by a single loading parameter such as the stress intensity factor.

Now let us consider a growing crack under the action of a constant amplitude cyclic stress intensity. A
cyclic plastic zone forms at the tip of the crack, and the growing crack leaves behind a plastic wake. If
the plastic zone is sufficiently small that it is entirely embedded within an elastic singularity zone (see
Examples 2.7 and 3.1), the conditions at the crack tip are uniquely defined by the current , and the
crack growth rate is characterised by  and . If the crack is long and/or the stress is high, then
crack instability and rapid acceleration can occur since  is close to the fracture toughness of the
material . At lower value of  the linear portion of the curve in Fig.5.1 may be expressed as

where  and  are material, environment, stress state (stress ratio ) and temperature dependent. This
equation is sometimes referred to as the Paris law. Equation (5.2), especially in its integral form, is widely
used to evaluate the lifetime of cracked structures from a knowledge of the material. Usually the value of

 for many engineering materials is between 2 and 4. Finally at very low  values, a threshold is
reached, , below which long cracks do not grow.

Experimental fatigue crack growth data are usually obtained from tests on simple specimens and are
normally presented in terms of fatigue crack propagation rates ( ),  and variations in values of 
. In cases where  is compressive the crack may close during the fatigue cycle and no clear convention
for calculating  has peen established. Nevertheless, two popular approaches are:

1. the full range of the stress cycle will have been used, when calculating 
2. only the tensile part of the cycle will have been considered, that is .

To describe the crack growth rate over the complete range of variation, including threshold and fracture
instability, a number of empirical relationships have been proposed. One example is the Pridle equation,

The mechanisms responsible for the threshold phenomenon are rather complicated. The most popular
explanation is crack closure: due to the compressive stress induced by the plastic wake, the "true" stress
intensity factor at the tip of the crack is "shielded" so that no plastic deformation can occur, hence no
crack growth. Another possible explanation is that the crack tip plastic deformation cannot penetrate the
microstructural barriers, such as grain boundaries, etc.

When a structural component is subjected to fatigue loading, a dominant crack reaches a critical size
under the peak load during the last cycle leading to a catastrophic failure. As an example, consider a
plate with a crack of 2  subjected to a uniform stress  perpendicular to the plane of the crack. The
total number of cycles for the crack to reach 2  can be obtained by integrating the fatigue crack
propagation law given by equation (5.2),

Using equation (2.31) we obtain

Assuming that the function  is equal to its initial value  so that

thereafter

The critical crack length  at which unstable crack growth occurs can be determined from fracture
toughness (see Chapter 4). Usually, however, the geometry factor  varies with the crack length  and
the integration of equation (5.5) cannot be performed directly, but only through the use of numerical
methods.

Example 5.14 A large centre-cracked plate containing an initial crack of length 2  10 mm is subjected
to a constant amplitude cyclic tensile stress ranging between a minimum value of 100 MPa and a
maximum of 200 MPa. Assuming the fatigue crack growth rate is governed by the equation

1. Calculate the crack growth rate when the crack length has the following values 2  10 mm,
30 mm, 50 mm.

2. Assuming further that the relevant fracture toughness is 60 MPa√m, estimate the number of cycles
to failure.

Solution

(1) Determine the critical crack size, ,

This means the total crack length at fast fracture is 57.3 mm.

(2) Crack growth rates:

2  10 mm  = 12.53 MPa√m
 = 0.42×10-11 × (12.53)3 = 8.26×10-9 (m/cycle)

2  30 mm  = 21.7 MPa√m
 = 0.42×10-11 × (21.7)3 = 4.29×10-8 (m/cycle)

2  50 mm  = 28 MPa√m
 = 0.42×10-11 × (28)3 = 9.24×10-8 (m/cycle)

(3) Fatigue life:

5.2 Effect of Stress Ratio and Crack Closure
Let us now consider the crack tip plastic deformation in more detail, as it is the driving force for crack
growth. For a crack under cyclic loading, the plastic size is related to the stress intensity factor at the
maximum load,

where  is defined in Chapter 3 and  refers the material's uniaxial yield stress. When the applied load
is reversed, the local stress at the tip of the crack is also reversed, inducing reversed yielding. At the
minimum load, the size of the reversed plastic zone is, according to superposition principle,

It is clear that for a asymmetrical loading ( ), , the maximum (sometimes called
monotonic or forward) plastic zone is not equal to the reversed plastic zone, which is normally smaller
than the forward plastic zone. The main reason for this smaller plastic zone is due to the residual stress
induced by the maximum load. A graphical representation is shown in Fig. 5.2.

When the crack growth rates observed under different applied stress ratio  are compared, it is noted
that fatigue crack growth rate exhibits a dependence on the  ratio, particularly at both extremes of the
crack growth curve. While the  ratio effect on the upper end of the curve can be explained in terms of
the interaction between fatigue and ultimate failure at or near , the explanation for the effect near
threshold is slightly more complicated.

Fig.5.2 Reverse yielding at crack tip under cyclic loading

It was first reported by Elber (1971) that the elastic compliance of several fatigue specimens showed a bi-
linear relationship, as depicted in Fig. 5.3. At high loads, the compliance of the fatigue specimen agreed
with standard formulas for cracked specimens derived from fracture mechanics assuming monotonic
loading. But at low loads, the compliance was close to that of an uncracked specimen. It was believed
that this change in compliance was due to the contact between crack surfaces (crack closure) at loads
that were greater than zero. This surprising finding that fatigue cracks close at above zero load led to the
postulation that the crack closure decreased the effectiveness of the applied stress intensity factor range.
Crack faces (near crack tip) are in contact below , hence the stress intensity factor range over which
the crack is open is equal to , which is defined as the "effective stress intensity factor range",
denoted as . The main factor contributing to crack closure is the plasticity wake induced behind the
crack tip. As the crack grows, plastically deformed material remains in the region through which the crack
has propagated. When the component is unloaded, the large mass of elastically loaded material
compresses the small plastic region and causes regions of the crack surface to come into contact with one
another before zero nominal stress is reached.

Fig.5.3 Crack closure during fatigue crack growth

This concept of crack closure may be used to explain the effect of mean stress on crack propagation rates
and leads to the definition of an effective stress intensity factor range . At higher values of , less
crack closure tends to occur and  approaches  because  approaches . Now the fatigue
crack growth equations (5.2) should be modified accordingly by replacing  with .

The ratio between the effective and applied stress intensity factors is normally denoted as ,

For instance, the effective stress ratio  for 2023-T3 aluminium at various stress ratios was reported to
be independent of load levels and can be expressed as

Although some researchers have argued and experimentally demonstrated that  also depends on ,
it seems that there is a great deal of confusion and controversy about the  dependence of .
Nevertheless, the concept of crack closure has been widely acknowledged and demonstrated to be useful
in interpreting fatigue crack growth under variable amplitude loading.

5.3 Variable Amplitude Loading
As discussed earlier, fatigue life prediction for constant amplitude loading is reasonably straightforward,
provided the fatigue crack growth constants are known. However, the majority of engineering structures
are subjected to fluctuating loading, and the life prediction is generally much more complicated than that
outlined in the previous section. The factors that affect crack growth include variable amplitude
spectrum, crack retardation due to overload, and acceleration due to underload. A number of theories
and engineering methods have been proposed to reflect these effects.

Strictly speaking, for a fracture mechanics approach to be valid for fatigue crack growth under spectrum
loading, the similitude condition has to be satisfied. For a crack growing in a rising or falling  field,
similitude may be approximately satisfied if  is small. In the case of overload, due to change in
crack tip plastic deformation, similitude does not strictly hold. Simple fatigue crack growth laws that
assume similitude are usually conservative when applied to variable amplitude loading. For example, a
loading history can be cycle counted to identify reversals, using the rainflow or range pair method, then a
linear summation of the fatigue lives of the various constant amplitude loads in the loading history would
provide a first order approximation. However, such a method generally leads to conservative predictions
(shorter lifetime), as it ignores the crack retardation effect to be described below.

It was first recognised empirically in the early 1960s that the application of a tensile overload in a
constant amplitude cyclic load leads to temporary slower crack growth rate following the overload. Such
a phenomenon is called crack retardation. In other words, the crack growth rate becomes smaller than it
would have been under constant amplitude loading of the same magnitude. It was also recognised that a
tensile-compressive overload following a constant amplitude cyclic load has little crack retardation
effect. In fact, a compressive overload alone would accelerate crack growth. The effect of crack
retardation can be better appreciated if we consider the elastic-plastic deformation ahead of a growing
crack. Upon the application of a tensile overload, a large plastic zone is induced at the crack tip. After
the removal of the overload, the elastic material surrounding the plastic zone acts like a clamp on this
zone causing compressive residual stresses. As the crack propagates into the plastic zone, the residual
compressive stresses tend to close the crack, leading to a decreasing growth rate as the crack advances
into the compressive residual stress field. The effect of retardation will gradually diminish as the crack
grows out of this residual stress field. It is easy to envisage that the opposite will occur for an
compressive overload: the residual stress will be tensile, leading to faster crack growth.

The development in fatigue crack growth prediction can be roughly divided into three stages
chronologically.

1. The first generation of crack growth analysis was based on linear assumption of constant amplitude
data for  versus , viz the Palmgren-Miner linear rule, which results directly from the
integration of crack growth law (see next section). As the effect of loading sequence is totally
ignored in this approach, the accuracy of the resulting prediction is generally poor.

2. From experimental results, a number of interactions between different load cycles of different
magnitude have been observed, most notably retardation after overload and crack growth
acceleration after underload. Based on these experimental findings, several plastic yield zone
models, so called second generation, were proposed. The most widely used is the Wheeler model,
which needs to be experimentally calibrated for a given spectrum. The main disadvantage of this
type of the model is the sensitivity to loading spectrum thus rendering it impossible to be used for
"blind" predictions.

3. The third generation crack growth models, commonly called strip yield model, emerged after the
discovery of crack closure by Elber (1971). When plotted against the effective stress intensity factor,
which is the difference between the maximum stress intensity factor and the stress intensity factor
below which crack remains closed, the effects of loading sequence and stress ratio would virtually
disappear. Based on this simple fact, several models have been developed to calculate the effective
stress intensity factor. For example Newman (1992; 1995). The crack opening stress level is
analytically calculated using the Dugdale-Barenblatt strip yield model. After the crack has advanced
a distance, a plastic wake is left behind, which in general exerts a resistance to crack closing during
the downward half cycle, thus reducing the effective stress intensity which dictates crack growth
rate. This plastic wake can also be (partially) destroyed if a high underload is applied, resulting in a
temporary acceleration of crack growth. The essence of this method is to analytically determine the
stress level required to counter act the resistance exerted by the residual plastic deformation (or
the stress level above which the crack remains open), and the crack growth rate is given by the
effective stress intensity factor,

where constants  and  are empirically determined from experiments. Parameter  is the applied
stress, and  is the stress ratio ( ). Clearly the only unknown in the above equation is the
crack opening stress level . This approach has been successfully used to correlate and predict
large-crack growth rate behaviour under a wide variety of loading conditions. This is possible
because the crack tip plastic deformation process that drives the crack is uniquely determined by
the stress intensity factor. However, when the crack is small, the plastic strain distribution ahead
the crack tip is no longer solely controlled by the stress intensity induced by the crack, but also
depends on the macro-stress/strain state, which is geometry and loading dependent.

The first two methods are relatively easy to apply, while the strip yield models were more numerically
involved, although this type of analysis was reported to give better correlations to fatigue crack growth
under spectrum loading. In the following, some detailed discussion of these methods is presented.

5.3.1 First Generation Model and Palmgren-Miner Linear Rule

It is easy to demonstrate the Palmgren-Miner linear damage summation rule is a direct result of crack
growth rate being proportional to crack length ( 2 in the Paris law). Let an initial stress range  be
changed to a different stress range  when the crack has grown from  to  after  cycles. At the
second stress range the crack grows to  to cause failure after  cycles.

At the first stress range, from equation (5.7),

hence

For the second stress range level

hence

hence

Similarly one can prove that the same conclusion can be obtained for a more general crack growth
relationship,

This is left as an exercise for the reader. Therefore the Palmgren-Miner linear summation rule assumes
inexplicitly that (1) the crack growth rate is proportional to crack length and (2) the proportionality is
solely dependent on the instantaneous stress level and independent of loading history. As will be seen
later that assumption (2) is generally not true, owing to the crack closure effect, which is history
dependent.

5.3.2 Wheeler Model

If there had been no overload, the crack would have progressed with a plastic zone of size equal to

where 1 for plane stress and √3 for finite thickness, and  is the amplitude of applied stress
intensity factor. At the moment of the overload the plastic zone size is

Fig.5.4 The Wheeler model for crack retardation

Wheeler assumed that retardation effect persists as long as  is contained within , see Fig.5.4, but
the overload effects disappear when the current plastic zone touches the outer boundary of . At any
instant, the distance between the crack tip and the outer boundary of  is equal to , we can
define two parameters

which are plotted in Fig.5.5. A retardation factor can now be defined as

where  is a fitting parameter. The crack growth rate is reduced from the baseline value by :

An important point about the Wheeler model is that the exponent  depends on material properties and
loading spectrum. Therefore this parameter must be obtained empirically from an experiment with a
stress spectrum that has similar characteristics of that to be analysed. A variable amplitude loading
analysis must be performed to determine the  value that gives the best correlation of crack growth. The
model can then be applied to structural predictions for components subjected to the same spectrum but
of different magnitude. A re-calibration of the Wheeler model with new experiments must be carried out
if the structure is subjected to a different stress spectrum. The linear summation method can be
considered as a special case of Wheeler's model by setting 0 .

Fig.5.5 Choices of retardation parameter

5.4 Damage Tolerance Design Methodology
The term damage tolerance has a variety of meanings, but normally refers to a design methodology in
which fracture mechanics analysis is used to predict crack growth life and quantify inspection intervals.
This approach is usually applied to structures that are susceptible to time-dependent flaw growth. The
two objectives of damage tolerance analysis are to determine (1) the effect of cracks on the (residual)
strength and (2) crack growth behaviour as a function of time. Damage tolerance analysis consists of
several steps. A brief outline of the steps involved in damage tolerance calculations is given below.
Assuming the service loading spectrum and material properties (fracture toughness and fatigue crack
growth rate constants) are known:

1. Determine the size of initial defects, e.g. NDI inspection.
2. Calculate the critical crack size at which failure would occur (see Chapter 4)
3. Integrate fatigue propagation equations to determine the number of load cycles (or blocks) for the

crack to grow from its initial size to its critical size (see section 5.1)
4. Set inspection interval to half the life calculated in step 3.

A comparison between "safe-life" and "damage tolerance" design methodologies is given below.

Safe-life Damage tolerance

structure is assumed to be defect free initial defect is assumed to exist: equal to NDI limit

no crack formation at design service life inspection to detect crack

design life < service life with or without
repair

crack is assumed to grow to critical length in two
inspection intervals

life at 1.2 design loads equal to 1.5 design
life

safe life derived from S-N curves (local
strain approach)

crack growth determined from fracture mechanics

scatter factor of 3-4 applied to calculated
lives

scatter factor = 2 in fatigue crack growth

failure probability = 0.001 failure probability after 2 inspections = 0.001
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Nf =

=

=

=
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0.42 × (ΔK10−11 )3 ∫

28.7

5
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5
a−3/2
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5
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=rp
1
π

K 2
max

(α σys)2 (5.8)

α σys

=rpc
1
π

(ΔK)2

(2α σys)2 (5.9)

R ≠ -1 ΔK ≠ 2Kmax

R
R

R
Kc

Kop
Kmax − Kop

ΔKeff

ΔKeff R
ΔKeff ΔK Kop Kmin

ΔK ΔKeff

= f (Δ )da
dN Keff (5.10)

U

U = ΔKeff

ΔK
(5.11)

U

U = 0.5 + 0.4R         (−0.1 ≤ R ≤ 0.7) (5.12)
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af N2

= lnNf1
1

C(Δ πσ1)2
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a0
(5.13)

= lnN1
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C(Δ πσ1)2
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=N1
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= AΔ ada
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1
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=rpo
1
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α σys
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ϕ = λγ (5.23)

γ ϕ
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• Edge notch specimen under cyclic loading 
± Assume titanium alloy 6%Al - 4%V 

• See figures below 
± Assume a remains << W and << h  
± Initial crack size a = 1.5 cm   
± Cyclic loading between  

• Minimum value: 8 MPA  
• Maximum value: 80 MPa 

± What is the life of the structure? 
 

   

Exercise 2 
y 

x 

V 

V 

W 
h 

a 
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• Edge notch specimen under cyclic loading 
± Material properties at room temperature 

• Yield: 830 MPa 
• Toughness: 55 MPa · m½    

± SIF if a remains < 2% of W  
• KI = 1.122 V (S a)1/2  

± Plane strain & elastic fracture? 
• Yes if specimen thick enough 

 
 
 

•  Crack is large enough 
 
 

 

• Moreover the applied stress << the yield stress 

Exercise 2: Solution 

y 

x 

V 

V 

W 
h 

a 
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• Edge notch specimen under cyclic loading (2) 
± Is the crack critical? 

 
 
• The crack will not lead to static failure 

± Fatigue? 
 
• As we are above the threshold there will be fatigue 
• R = 0.1, so crack experiences closing effect 

± What is the critical crack length leading to static failure? 

Exercise 2: Solution 
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• Edge notch specimen under cyclic loading (3) 
± Parameters in Paris¶ law 

• There is a phase transition around 
 DK=17 MPa . m1/2 but we are above 
• Paris¶ coefficients:  

– C=10-11 m (MPa . m1/2)-m  
– m=3.22 

Exercise 2: Solution 
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• Edge notch specimen under cyclic loading (4) 
± Paris¶ law 

 
• Can be integrated explicitly, and, for mำ2, it yields 

 
 

• So the number of cycles in terms of the crack size is 
 
 

± Critical size is reached after  
 1.74 105 cycles, but this value cannot 
 be used as 

• Paris¶ law is not valid is zone III  
• After 1.5 105 cycles the crack is  
 growing too quickly for allowing 
 inspections 
• 1.1 105 is a conservative time life 

Exercise 2: Solution 
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• Edge notch specimen under cyclic loading (5) 
± Some remarks 

 
• If there is an error of 10% in the estimation 
 of the initial crack length size 

± Life of the structure is 
 reduced by 15% 
± Using a 1.5 105-cycle life prediction 
 would actually lead to a crack 
 size located in zone III 

• We have assumed a < 0.02 W, which 
 corresponds to a  six-meter wide  
 specimen. In practice 

± Crack size cannot be considered 
 infinitely small  
± SIF must then be evaluated using 

» Either FEM simulations 
» Or SIF handbooks 

± Paris¶ law  
» Cannot be integrated in a closed form  
» Integration has to be performed numerically 

Exercise 2: Solution 
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Stress corrosion cracking 

• A crack can grow due to the combination of stress and chemical attack 
± This is not only fatigue but also for static stress with K<KC  
± It happens in particular environments 

• Salt water 
• Hydrogen 
• Chlorides 
• « 

± Mainly for metals 
• Steel in salt water, chloride, hydrogen 
• Aluminum alloys in salt water  

 

Steel AISA 
4335V 
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Design methods
When an engineer has to design a structure submihed to cyclic loading, there exist

different design approaches, appeared chronlogically in time with the improvment of

fracture mechanics theory

Infinite life design. In this case we always ensure that the stress amplitude σa is

lower than the endurance limit σe so that the life is "infinite". In practice this design

is never used as it is economically inefficient.

Safe life design. For this design we make sure that no cracks appear before a given

number of cycles (the structure life) is reached. At the end of the expected life the

component is changed even if no failure has occurred. This method clearly puts the

emphasis on cracks prevention: a crack free structure is assumed.



The number of cycles is determined by the the total life approach. Nowadays this

method is used for rotating structures vibrating with the flow as turbine blades.

Indeed because of the very high number of cycles to be sustained by these structures,

once a crack has formed the remaining life time is very short in hours. However a

particular ahention should be paid to the quality of the components as the structure is

assumed to be defect-free.

Fail Safe design. The philosophy of this design is to consider failure of a component as

possible. However the design is such that there remains enough integrity to operate

the structure safely. This means that in such a design the crack path has to be

determined and crack arresters have to be added to the structure. To avoid too many

critical cracks at once, it is necessary to regularly check the structure.



The difference with the approaches described before is that one focuses more on

crack arrest than on crack initiation. An example of such a design is the Boeing 737.

In 1988 the Aloha Airlines flight 243 suffered from a production defect: two fuselage

plates had not been glued, allowing sea water to induce corrosion, resulting in a

loading of the rivets due to the increase of volume between the plates (due to

corrosion). This led to fatigue of the rivets, which failed. But due to the design, the

crack followed the defined path, and the plane could still be operated.

Damage tolerant design This design is more recent and is used for recent aircraft

structures. This method assumes that cracks are present from the beginning of

service. To be able to predict the life time of the structure it is necessary to be able to

characterize the significance of the existing cracks.



To do so one needs to determine the initial crack sizes through non-destructive

inspections. Once the critical crack sizes are known the Paris-Erdogan law is used to

estimate the crack growth rate during service and thus the life of the structure.

Conservative inspection intervals, like every so many years or after a certain amount

of flight hours, are thus scheduled to validate or correct the predictions. During

these inspections one verifies the crack growth, and predicts the end of life af. If this

end of life is too close in the future, the part is either replaced or an implemented

repair-rehabilitation strategy is planned.


